1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 6                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2018, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Atree;     use Atree;
27with Aspects;   use Aspects;
28with Checks;    use Checks;
29with Contracts; use Contracts;
30with Debug;     use Debug;
31with Einfo;     use Einfo;
32with Errout;    use Errout;
33with Elists;    use Elists;
34with Expander;  use Expander;
35with Exp_Aggr;  use Exp_Aggr;
36with Exp_Atag;  use Exp_Atag;
37with Exp_Ch2;   use Exp_Ch2;
38with Exp_Ch3;   use Exp_Ch3;
39with Exp_Ch7;   use Exp_Ch7;
40with Exp_Ch9;   use Exp_Ch9;
41with Exp_Dbug;  use Exp_Dbug;
42with Exp_Disp;  use Exp_Disp;
43with Exp_Dist;  use Exp_Dist;
44with Exp_Intr;  use Exp_Intr;
45with Exp_Pakd;  use Exp_Pakd;
46with Exp_Tss;   use Exp_Tss;
47with Exp_Util;  use Exp_Util;
48with Freeze;    use Freeze;
49with Inline;    use Inline;
50with Itypes;    use Itypes;
51with Lib;       use Lib;
52with Namet;     use Namet;
53with Nlists;    use Nlists;
54with Nmake;     use Nmake;
55with Opt;       use Opt;
56with Restrict;  use Restrict;
57with Rident;    use Rident;
58with Rtsfind;   use Rtsfind;
59with Sem;       use Sem;
60with Sem_Aux;   use Sem_Aux;
61with Sem_Ch6;   use Sem_Ch6;
62with Sem_Ch8;   use Sem_Ch8;
63with Sem_Ch12;  use Sem_Ch12;
64with Sem_Ch13;  use Sem_Ch13;
65with Sem_Dim;   use Sem_Dim;
66with Sem_Disp;  use Sem_Disp;
67with Sem_Dist;  use Sem_Dist;
68with Sem_Eval;  use Sem_Eval;
69with Sem_Mech;  use Sem_Mech;
70with Sem_Res;   use Sem_Res;
71with Sem_SCIL;  use Sem_SCIL;
72with Sem_Util;  use Sem_Util;
73with Sinfo;     use Sinfo;
74with Snames;    use Snames;
75with Stand;     use Stand;
76with Tbuild;    use Tbuild;
77with Uintp;     use Uintp;
78with Validsw;   use Validsw;
79
80package body Exp_Ch6 is
81
82   -----------------------
83   -- Local Subprograms --
84   -----------------------
85
86   procedure Add_Access_Actual_To_Build_In_Place_Call
87     (Function_Call : Node_Id;
88      Function_Id   : Entity_Id;
89      Return_Object : Node_Id;
90      Is_Access     : Boolean := False);
91   --  Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
92   --  object name given by Return_Object and add the attribute to the end of
93   --  the actual parameter list associated with the build-in-place function
94   --  call denoted by Function_Call. However, if Is_Access is True, then
95   --  Return_Object is already an access expression, in which case it's passed
96   --  along directly to the build-in-place function. Finally, if Return_Object
97   --  is empty, then pass a null literal as the actual.
98
99   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
100     (Function_Call  : Node_Id;
101      Function_Id    : Entity_Id;
102      Alloc_Form     : BIP_Allocation_Form := Unspecified;
103      Alloc_Form_Exp : Node_Id             := Empty;
104      Pool_Actual    : Node_Id             := Make_Null (No_Location));
105   --  Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
106   --  function call that returns a caller-unknown-size result (BIP_Alloc_Form
107   --  and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
108   --  otherwise pass a literal corresponding to the Alloc_Form parameter
109   --  (which must not be Unspecified in that case). Pool_Actual is the
110   --  parameter to pass to BIP_Storage_Pool.
111
112   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
113     (Func_Call  : Node_Id;
114      Func_Id    : Entity_Id;
115      Ptr_Typ    : Entity_Id := Empty;
116      Master_Exp : Node_Id   := Empty);
117   --  Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
118   --  finalization actions, add an actual parameter which is a pointer to the
119   --  finalization master of the caller. If Master_Exp is not Empty, then that
120   --  will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
121   --  will result in an automatic "null" value for the actual.
122
123   procedure Add_Task_Actuals_To_Build_In_Place_Call
124     (Function_Call : Node_Id;
125      Function_Id   : Entity_Id;
126      Master_Actual : Node_Id;
127      Chain         : Node_Id := Empty);
128   --  Ada 2005 (AI-318-02): For a build-in-place call, if the result type
129   --  contains tasks, add two actual parameters: the master, and a pointer to
130   --  the caller's activation chain. Master_Actual is the actual parameter
131   --  expression to pass for the master. In most cases, this is the current
132   --  master (_master). The two exceptions are: If the function call is the
133   --  initialization expression for an allocator, we pass the master of the
134   --  access type. If the function call is the initialization expression for a
135   --  return object, we pass along the master passed in by the caller. In most
136   --  contexts, the activation chain to pass is the local one, which is
137   --  indicated by No (Chain). However, in an allocator, the caller passes in
138   --  the activation Chain. Note: Master_Actual can be Empty, but only if
139   --  there are no tasks.
140
141   function Caller_Known_Size
142     (Func_Call   : Node_Id;
143      Result_Subt : Entity_Id) return Boolean;
144   --  True if result subtype is definite, or has a size that does not require
145   --  secondary stack usage (i.e. no variant part or components whose type
146   --  depends on discriminants). In particular, untagged types with only
147   --  access discriminants do not require secondary stack use. Note we must
148   --  always use the secondary stack for dispatching-on-result calls.
149
150   procedure Check_Overriding_Operation (Subp : Entity_Id);
151   --  Subp is a dispatching operation. Check whether it may override an
152   --  inherited private operation, in which case its DT entry is that of
153   --  the hidden operation, not the one it may have received earlier.
154   --  This must be done before emitting the code to set the corresponding
155   --  DT to the address of the subprogram. The actual placement of Subp in
156   --  the proper place in the list of primitive operations is done in
157   --  Declare_Inherited_Private_Subprograms, which also has to deal with
158   --  implicit operations. This duplication is unavoidable for now???
159
160   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
161   --  This procedure is called only if the subprogram body N, whose spec
162   --  has the given entity Spec, contains a parameterless recursive call.
163   --  It attempts to generate runtime code to detect if this a case of
164   --  infinite recursion.
165   --
166   --  The body is scanned to determine dependencies. If the only external
167   --  dependencies are on a small set of scalar variables, then the values
168   --  of these variables are captured on entry to the subprogram, and if
169   --  the values are not changed for the call, we know immediately that
170   --  we have an infinite recursion.
171
172   procedure Expand_Actuals
173     (N         : Node_Id;
174      Subp      : Entity_Id;
175      Post_Call : out List_Id);
176   --  Return a list of actions to take place after the call in Post_Call. The
177   --  call will later be rewritten as an Expression_With_Actions, with the
178   --  Post_Call actions inserted, and the call inside.
179   --
180   --  For each actual of an in-out or out parameter which is a numeric (view)
181   --  conversion of the form T (A), where A denotes a variable, we insert the
182   --  declaration:
183   --
184   --    Temp : T[ := T (A)];
185   --
186   --  prior to the call. Then we replace the actual with a reference to Temp,
187   --  and append the assignment:
188   --
189   --    A := TypeA (Temp);
190   --
191   --  after the call. Here TypeA is the actual type of variable A. For out
192   --  parameters, the initial declaration has no expression. If A is not an
193   --  entity name, we generate instead:
194   --
195   --    Var  : TypeA renames A;
196   --    Temp : T := Var;       --  omitting expression for out parameter.
197   --    ...
198   --    Var := TypeA (Temp);
199   --
200   --  For other in-out parameters, we emit the required constraint checks
201   --  before and/or after the call.
202   --
203   --  For all parameter modes, actuals that denote components and slices of
204   --  packed arrays are expanded into suitable temporaries.
205   --
206   --  For non-scalar objects that are possibly unaligned, add call by copy
207   --  code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
208   --
209   --  For OUT and IN OUT parameters, add predicate checks after the call
210   --  based on the predicates of the actual type.
211
212   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
213   --  Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
214
215   procedure Expand_Ctrl_Function_Call (N : Node_Id);
216   --  N is a function call which returns a controlled object. Transform the
217   --  call into a temporary which retrieves the returned object from the
218   --  secondary stack using 'reference.
219
220   procedure Expand_Non_Function_Return (N : Node_Id);
221   --  Expand a simple return statement found in a procedure body, entry body,
222   --  accept statement, or an extended return statement. Note that all non-
223   --  function returns are simple return statements.
224
225   function Expand_Protected_Object_Reference
226     (N    : Node_Id;
227      Scop : Entity_Id) return Node_Id;
228
229   procedure Expand_Protected_Subprogram_Call
230     (N    : Node_Id;
231      Subp : Entity_Id;
232      Scop : Entity_Id);
233   --  A call to a protected subprogram within the protected object may appear
234   --  as a regular call. The list of actuals must be expanded to contain a
235   --  reference to the object itself, and the call becomes a call to the
236   --  corresponding protected subprogram.
237
238   procedure Expand_Simple_Function_Return (N : Node_Id);
239   --  Expand simple return from function. In the case where we are returning
240   --  from a function body this is called by Expand_N_Simple_Return_Statement.
241
242   function Has_Unconstrained_Access_Discriminants
243     (Subtyp : Entity_Id) return Boolean;
244   --  Returns True if the given subtype is unconstrained and has one or more
245   --  access discriminants.
246
247   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
248   --  Insert the Post_Call list previously produced by routine Expand_Actuals
249   --  or Expand_Call_Helper into the tree.
250
251   procedure Replace_Renaming_Declaration_Id
252      (New_Decl  : Node_Id;
253       Orig_Decl : Node_Id);
254   --  Replace the internal identifier of the new renaming declaration New_Decl
255   --  with the identifier of its original declaration Orig_Decl exchanging the
256   --  entities containing their defining identifiers to ensure the correct
257   --  replacement of the object declaration by the object renaming declaration
258   --  to avoid homograph conflicts (since the object declaration's defining
259   --  identifier was already entered in the current scope). The Next_Entity
260   --  links of the two entities are also swapped since the entities are part
261   --  of the return scope's entity list and the list structure would otherwise
262   --  be corrupted. The homonym chain is preserved as well.
263
264   procedure Rewrite_Function_Call_For_C (N : Node_Id);
265   --  When generating C code, replace a call to a function that returns an
266   --  array into the generated procedure with an additional out parameter.
267
268   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
269   --  N is a return statement for a function that returns its result on the
270   --  secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
271   --  function and all blocks and loops that the return statement is jumping
272   --  out of. This ensures that the secondary stack is not released; otherwise
273   --  the function result would be reclaimed before returning to the caller.
274
275   ----------------------------------------------
276   -- Add_Access_Actual_To_Build_In_Place_Call --
277   ----------------------------------------------
278
279   procedure Add_Access_Actual_To_Build_In_Place_Call
280     (Function_Call : Node_Id;
281      Function_Id   : Entity_Id;
282      Return_Object : Node_Id;
283      Is_Access     : Boolean := False)
284   is
285      Loc            : constant Source_Ptr := Sloc (Function_Call);
286      Obj_Address    : Node_Id;
287      Obj_Acc_Formal : Entity_Id;
288
289   begin
290      --  Locate the implicit access parameter in the called function
291
292      Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
293
294      --  If no return object is provided, then pass null
295
296      if not Present (Return_Object) then
297         Obj_Address := Make_Null (Loc);
298         Set_Parent (Obj_Address, Function_Call);
299
300      --  If Return_Object is already an expression of an access type, then use
301      --  it directly, since it must be an access value denoting the return
302      --  object, and couldn't possibly be the return object itself.
303
304      elsif Is_Access then
305         Obj_Address := Return_Object;
306         Set_Parent (Obj_Address, Function_Call);
307
308      --  Apply Unrestricted_Access to caller's return object
309
310      else
311         Obj_Address :=
312            Make_Attribute_Reference (Loc,
313              Prefix         => Return_Object,
314              Attribute_Name => Name_Unrestricted_Access);
315
316         Set_Parent (Return_Object, Obj_Address);
317         Set_Parent (Obj_Address, Function_Call);
318      end if;
319
320      Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
321
322      --  Build the parameter association for the new actual and add it to the
323      --  end of the function's actuals.
324
325      Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
326   end Add_Access_Actual_To_Build_In_Place_Call;
327
328   ------------------------------------------------------
329   -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
330   ------------------------------------------------------
331
332   procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
333     (Function_Call  : Node_Id;
334      Function_Id    : Entity_Id;
335      Alloc_Form     : BIP_Allocation_Form := Unspecified;
336      Alloc_Form_Exp : Node_Id             := Empty;
337      Pool_Actual    : Node_Id             := Make_Null (No_Location))
338   is
339      Loc               : constant Source_Ptr := Sloc (Function_Call);
340      Alloc_Form_Actual : Node_Id;
341      Alloc_Form_Formal : Node_Id;
342      Pool_Formal       : Node_Id;
343
344   begin
345      --  The allocation form generally doesn't need to be passed in the case
346      --  of a constrained result subtype, since normally the caller performs
347      --  the allocation in that case. However this formal is still needed in
348      --  the case where the function has a tagged result, because generally
349      --  such functions can be called in a dispatching context and such calls
350      --  must be handled like calls to class-wide functions.
351
352      if Is_Constrained (Underlying_Type (Etype (Function_Id)))
353        and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
354      then
355         return;
356      end if;
357
358      --  Locate the implicit allocation form parameter in the called function.
359      --  Maybe it would be better for each implicit formal of a build-in-place
360      --  function to have a flag or a Uint attribute to identify it. ???
361
362      Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
363
364      if Present (Alloc_Form_Exp) then
365         pragma Assert (Alloc_Form = Unspecified);
366
367         Alloc_Form_Actual := Alloc_Form_Exp;
368
369      else
370         pragma Assert (Alloc_Form /= Unspecified);
371
372         Alloc_Form_Actual :=
373           Make_Integer_Literal (Loc,
374             Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
375      end if;
376
377      Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
378
379      --  Build the parameter association for the new actual and add it to the
380      --  end of the function's actuals.
381
382      Add_Extra_Actual_To_Call
383        (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
384
385      --  Pass the Storage_Pool parameter. This parameter is omitted on
386      --  ZFP as those targets do not support pools.
387
388      if RTE_Available (RE_Root_Storage_Pool_Ptr) then
389         Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
390         Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
391         Add_Extra_Actual_To_Call
392           (Function_Call, Pool_Formal, Pool_Actual);
393      end if;
394   end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
395
396   -----------------------------------------------------------
397   -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
398   -----------------------------------------------------------
399
400   procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
401     (Func_Call  : Node_Id;
402      Func_Id    : Entity_Id;
403      Ptr_Typ    : Entity_Id := Empty;
404      Master_Exp : Node_Id   := Empty)
405   is
406   begin
407      if not Needs_BIP_Finalization_Master (Func_Id) then
408         return;
409      end if;
410
411      declare
412         Formal : constant Entity_Id :=
413                    Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
414         Loc    : constant Source_Ptr := Sloc (Func_Call);
415
416         Actual    : Node_Id;
417         Desig_Typ : Entity_Id;
418
419      begin
420         --  If there is a finalization master actual, such as the implicit
421         --  finalization master of an enclosing build-in-place function,
422         --  then this must be added as an extra actual of the call.
423
424         if Present (Master_Exp) then
425            Actual := Master_Exp;
426
427         --  Case where the context does not require an actual master
428
429         elsif No (Ptr_Typ) then
430            Actual := Make_Null (Loc);
431
432         else
433            Desig_Typ := Directly_Designated_Type (Ptr_Typ);
434
435            --  Check for a library-level access type whose designated type has
436            --  suppressed finalization or the access type is subject to pragma
437            --  No_Heap_Finalization. Such an access type lacks a master. Pass
438            --  a null actual to callee in order to signal a missing master.
439
440            if Is_Library_Level_Entity (Ptr_Typ)
441              and then (Finalize_Storage_Only (Desig_Typ)
442                         or else No_Heap_Finalization (Ptr_Typ))
443            then
444               Actual := Make_Null (Loc);
445
446            --  Types in need of finalization actions
447
448            elsif Needs_Finalization (Desig_Typ) then
449
450               --  The general mechanism of creating finalization masters for
451               --  anonymous access types is disabled by default, otherwise
452               --  finalization masters will pop all over the place. Such types
453               --  use context-specific masters.
454
455               if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
456                 and then No (Finalization_Master (Ptr_Typ))
457               then
458                  Build_Anonymous_Master (Ptr_Typ);
459               end if;
460
461               --  Access-to-controlled types should always have a master
462
463               pragma Assert (Present (Finalization_Master (Ptr_Typ)));
464
465               Actual :=
466                 Make_Attribute_Reference (Loc,
467                   Prefix =>
468                     New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
469                   Attribute_Name => Name_Unrestricted_Access);
470
471            --  Tagged types
472
473            else
474               Actual := Make_Null (Loc);
475            end if;
476         end if;
477
478         Analyze_And_Resolve (Actual, Etype (Formal));
479
480         --  Build the parameter association for the new actual and add it to
481         --  the end of the function's actuals.
482
483         Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
484      end;
485   end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
486
487   ------------------------------
488   -- Add_Extra_Actual_To_Call --
489   ------------------------------
490
491   procedure Add_Extra_Actual_To_Call
492     (Subprogram_Call : Node_Id;
493      Extra_Formal    : Entity_Id;
494      Extra_Actual    : Node_Id)
495   is
496      Loc         : constant Source_Ptr := Sloc (Subprogram_Call);
497      Param_Assoc : Node_Id;
498
499   begin
500      Param_Assoc :=
501        Make_Parameter_Association (Loc,
502          Selector_Name             => New_Occurrence_Of (Extra_Formal, Loc),
503          Explicit_Actual_Parameter => Extra_Actual);
504
505      Set_Parent (Param_Assoc, Subprogram_Call);
506      Set_Parent (Extra_Actual, Param_Assoc);
507
508      if Present (Parameter_Associations (Subprogram_Call)) then
509         if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
510              N_Parameter_Association
511         then
512
513            --  Find last named actual, and append
514
515            declare
516               L : Node_Id;
517            begin
518               L := First_Actual (Subprogram_Call);
519               while Present (L) loop
520                  if No (Next_Actual (L)) then
521                     Set_Next_Named_Actual (Parent (L), Extra_Actual);
522                     exit;
523                  end if;
524                  Next_Actual (L);
525               end loop;
526            end;
527
528         else
529            Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
530         end if;
531
532         Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
533
534      else
535         Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
536         Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
537      end if;
538   end Add_Extra_Actual_To_Call;
539
540   ---------------------------------------------
541   -- Add_Task_Actuals_To_Build_In_Place_Call --
542   ---------------------------------------------
543
544   procedure Add_Task_Actuals_To_Build_In_Place_Call
545     (Function_Call : Node_Id;
546      Function_Id   : Entity_Id;
547      Master_Actual : Node_Id;
548      Chain         : Node_Id := Empty)
549   is
550      Loc           : constant Source_Ptr := Sloc (Function_Call);
551      Result_Subt   : constant Entity_Id :=
552                        Available_View (Etype (Function_Id));
553      Actual        : Node_Id;
554      Chain_Actual  : Node_Id;
555      Chain_Formal  : Node_Id;
556      Master_Formal : Node_Id;
557
558   begin
559      --  No such extra parameters are needed if there are no tasks
560
561      if not Has_Task (Result_Subt) then
562         return;
563      end if;
564
565      Actual := Master_Actual;
566
567      --  Use a dummy _master actual in case of No_Task_Hierarchy
568
569      if Restriction_Active (No_Task_Hierarchy) then
570         Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
571
572      --  In the case where we use the master associated with an access type,
573      --  the actual is an entity and requires an explicit reference.
574
575      elsif Nkind (Actual) = N_Defining_Identifier then
576         Actual := New_Occurrence_Of (Actual, Loc);
577      end if;
578
579      --  Locate the implicit master parameter in the called function
580
581      Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
582      Analyze_And_Resolve (Actual, Etype (Master_Formal));
583
584      --  Build the parameter association for the new actual and add it to the
585      --  end of the function's actuals.
586
587      Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
588
589      --  Locate the implicit activation chain parameter in the called function
590
591      Chain_Formal :=
592        Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
593
594      --  Create the actual which is a pointer to the current activation chain
595
596      if No (Chain) then
597         Chain_Actual :=
598           Make_Attribute_Reference (Loc,
599             Prefix         => Make_Identifier (Loc, Name_uChain),
600             Attribute_Name => Name_Unrestricted_Access);
601
602      --  Allocator case; make a reference to the Chain passed in by the caller
603
604      else
605         Chain_Actual :=
606           Make_Attribute_Reference (Loc,
607             Prefix         => New_Occurrence_Of (Chain, Loc),
608             Attribute_Name => Name_Unrestricted_Access);
609      end if;
610
611      Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
612
613      --  Build the parameter association for the new actual and add it to the
614      --  end of the function's actuals.
615
616      Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
617   end Add_Task_Actuals_To_Build_In_Place_Call;
618
619   -----------------------
620   -- BIP_Formal_Suffix --
621   -----------------------
622
623   function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
624   begin
625      case Kind is
626         when BIP_Alloc_Form =>
627            return "BIPalloc";
628
629         when BIP_Storage_Pool =>
630            return "BIPstoragepool";
631
632         when BIP_Finalization_Master =>
633            return "BIPfinalizationmaster";
634
635         when BIP_Task_Master =>
636            return "BIPtaskmaster";
637
638         when BIP_Activation_Chain =>
639            return "BIPactivationchain";
640
641         when BIP_Object_Access =>
642            return "BIPaccess";
643      end case;
644   end BIP_Formal_Suffix;
645
646   ---------------------------
647   -- Build_In_Place_Formal --
648   ---------------------------
649
650   function Build_In_Place_Formal
651     (Func : Entity_Id;
652      Kind : BIP_Formal_Kind) return Entity_Id
653   is
654      Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
655      Extra_Formal : Entity_Id := Extra_Formals (Func);
656
657   begin
658      --  Maybe it would be better for each implicit formal of a build-in-place
659      --  function to have a flag or a Uint attribute to identify it. ???
660
661      --  The return type in the function declaration may have been a limited
662      --  view, and the extra formals for the function were not generated at
663      --  that point. At the point of call the full view must be available and
664      --  the extra formals can be created.
665
666      if No (Extra_Formal) then
667         Create_Extra_Formals (Func);
668         Extra_Formal := Extra_Formals (Func);
669      end if;
670
671      --  We search for a formal with a matching suffix. We can't search
672      --  for the full name, because of the code at the end of Sem_Ch6.-
673      --  Create_Extra_Formals, which copies the Extra_Formals over to
674      --  the Alias of an instance, which will cause the formals to have
675      --  "incorrect" names.
676
677      loop
678         pragma Assert (Present (Extra_Formal));
679         declare
680            Name : constant String := Get_Name_String (Chars (Extra_Formal));
681         begin
682            exit when Name'Length >= Formal_Suffix'Length
683              and then Formal_Suffix =
684                Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
685         end;
686
687         Next_Formal_With_Extras (Extra_Formal);
688      end loop;
689
690      return Extra_Formal;
691   end Build_In_Place_Formal;
692
693   -------------------------------
694   -- Build_Procedure_Body_Form --
695   -------------------------------
696
697   function Build_Procedure_Body_Form
698     (Func_Id   : Entity_Id;
699      Func_Body : Node_Id) return Node_Id
700   is
701      Loc : constant Source_Ptr := Sloc (Func_Body);
702
703      Proc_Decl : constant Node_Id   :=
704                    Next (Unit_Declaration_Node (Func_Id));
705      --  It is assumed that the next node following the declaration of the
706      --  corresponding subprogram spec is the declaration of the procedure
707      --  form.
708
709      Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
710
711      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
712      --  Replace each return statement found in the list Stmts with an
713      --  assignment of the return expression to parameter Param_Id.
714
715      ---------------------
716      -- Replace_Returns --
717      ---------------------
718
719      procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
720         Stmt : Node_Id;
721
722      begin
723         Stmt := First (Stmts);
724         while Present (Stmt) loop
725            if Nkind (Stmt) = N_Block_Statement then
726               Replace_Returns (Param_Id,
727                 Statements (Handled_Statement_Sequence (Stmt)));
728
729            elsif Nkind (Stmt) = N_Case_Statement then
730               declare
731                  Alt : Node_Id;
732               begin
733                  Alt := First (Alternatives (Stmt));
734                  while Present (Alt) loop
735                     Replace_Returns (Param_Id, Statements (Alt));
736                     Next (Alt);
737                  end loop;
738               end;
739
740            elsif Nkind (Stmt) = N_Extended_Return_Statement then
741               declare
742                  Ret_Obj : constant Entity_Id :=
743                              Defining_Entity
744                                (First (Return_Object_Declarations (Stmt)));
745                  Assign  : constant Node_Id :=
746                              Make_Assignment_Statement (Sloc (Stmt),
747                                Name       =>
748                                  New_Occurrence_Of (Param_Id, Loc),
749                                Expression =>
750                                  New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
751                  Stmts   : List_Id;
752
753               begin
754                  --  The extended return may just contain the declaration
755
756                  if Present (Handled_Statement_Sequence (Stmt)) then
757                     Stmts := Statements (Handled_Statement_Sequence (Stmt));
758                  else
759                     Stmts := New_List;
760                  end if;
761
762                  Set_Assignment_OK (Name (Assign));
763
764                  Rewrite (Stmt,
765                    Make_Block_Statement (Sloc (Stmt),
766                      Declarations               =>
767                        Return_Object_Declarations (Stmt),
768                      Handled_Statement_Sequence =>
769                        Make_Handled_Sequence_Of_Statements (Loc,
770                          Statements => Stmts)));
771
772                  Replace_Returns (Param_Id, Stmts);
773
774                  Append_To (Stmts, Assign);
775                  Append_To (Stmts, Make_Simple_Return_Statement (Loc));
776               end;
777
778            elsif Nkind (Stmt) = N_If_Statement then
779               Replace_Returns (Param_Id, Then_Statements (Stmt));
780               Replace_Returns (Param_Id, Else_Statements (Stmt));
781
782               declare
783                  Part : Node_Id;
784               begin
785                  Part := First (Elsif_Parts (Stmt));
786                  while Present (Part) loop
787                     Replace_Returns (Param_Id, Then_Statements (Part));
788                     Next (Part);
789                  end loop;
790               end;
791
792            elsif Nkind (Stmt) = N_Loop_Statement then
793               Replace_Returns (Param_Id, Statements (Stmt));
794
795            elsif Nkind (Stmt) = N_Simple_Return_Statement then
796
797               --  Generate:
798               --    Param := Expr;
799               --    return;
800
801               Rewrite (Stmt,
802                 Make_Assignment_Statement (Sloc (Stmt),
803                   Name       => New_Occurrence_Of (Param_Id, Loc),
804                   Expression => Relocate_Node (Expression (Stmt))));
805
806               Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
807
808               --  Skip the added return
809
810               Next (Stmt);
811            end if;
812
813            Next (Stmt);
814         end loop;
815      end Replace_Returns;
816
817      --  Local variables
818
819      Stmts    : List_Id;
820      New_Body : Node_Id;
821
822   --  Start of processing for Build_Procedure_Body_Form
823
824   begin
825      --  This routine replaces the original function body:
826
827      --    function F (...) return Array_Typ is
828      --    begin
829      --       ...
830      --       return Something;
831      --    end F;
832
833      --    with the following:
834
835      --    procedure P (..., Result : out Array_Typ) is
836      --    begin
837      --       ...
838      --       Result := Something;
839      --    end P;
840
841      Stmts :=
842        Statements (Handled_Statement_Sequence (Func_Body));
843      Replace_Returns (Last_Entity (Proc_Id), Stmts);
844
845      New_Body :=
846        Make_Subprogram_Body (Loc,
847          Specification              =>
848            Copy_Subprogram_Spec (Specification (Proc_Decl)),
849          Declarations               => Declarations (Func_Body),
850          Handled_Statement_Sequence =>
851            Make_Handled_Sequence_Of_Statements (Loc,
852              Statements => Stmts));
853
854      --  If the function is a generic instance, so is the new procedure.
855      --  Set flag accordingly so that the proper renaming declarations are
856      --  generated.
857
858      Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
859      return New_Body;
860   end Build_Procedure_Body_Form;
861
862   -----------------------
863   -- Caller_Known_Size --
864   -----------------------
865
866   function Caller_Known_Size
867     (Func_Call   : Node_Id;
868      Result_Subt : Entity_Id) return Boolean
869   is
870   begin
871      return
872          (Is_Definite_Subtype (Underlying_Type (Result_Subt))
873            and then No (Controlling_Argument (Func_Call)))
874        or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
875   end Caller_Known_Size;
876
877   --------------------------------
878   -- Check_Overriding_Operation --
879   --------------------------------
880
881   procedure Check_Overriding_Operation (Subp : Entity_Id) is
882      Typ     : constant Entity_Id := Find_Dispatching_Type (Subp);
883      Op_List : constant Elist_Id  := Primitive_Operations (Typ);
884      Op_Elmt : Elmt_Id;
885      Prim_Op : Entity_Id;
886      Par_Op  : Entity_Id;
887
888   begin
889      if Is_Derived_Type (Typ)
890        and then not Is_Private_Type (Typ)
891        and then In_Open_Scopes (Scope (Etype (Typ)))
892        and then Is_Base_Type (Typ)
893      then
894         --  Subp overrides an inherited private operation if there is an
895         --  inherited operation with a different name than Subp (see
896         --  Derive_Subprogram) whose Alias is a hidden subprogram with the
897         --  same name as Subp.
898
899         Op_Elmt := First_Elmt (Op_List);
900         while Present (Op_Elmt) loop
901            Prim_Op := Node (Op_Elmt);
902            Par_Op  := Alias (Prim_Op);
903
904            if Present (Par_Op)
905              and then not Comes_From_Source (Prim_Op)
906              and then Chars (Prim_Op) /= Chars (Par_Op)
907              and then Chars (Par_Op) = Chars (Subp)
908              and then Is_Hidden (Par_Op)
909              and then Type_Conformant (Prim_Op, Subp)
910            then
911               Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
912            end if;
913
914            Next_Elmt (Op_Elmt);
915         end loop;
916      end if;
917   end Check_Overriding_Operation;
918
919   -------------------------------
920   -- Detect_Infinite_Recursion --
921   -------------------------------
922
923   procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
924      Loc : constant Source_Ptr := Sloc (N);
925
926      Var_List : constant Elist_Id := New_Elmt_List;
927      --  List of globals referenced by body of procedure
928
929      Call_List : constant Elist_Id := New_Elmt_List;
930      --  List of recursive calls in body of procedure
931
932      Shad_List : constant Elist_Id := New_Elmt_List;
933      --  List of entity id's for entities created to capture the value of
934      --  referenced globals on entry to the procedure.
935
936      Scop : constant Uint := Scope_Depth (Spec);
937      --  This is used to record the scope depth of the current procedure, so
938      --  that we can identify global references.
939
940      Max_Vars : constant := 4;
941      --  Do not test more than four global variables
942
943      Count_Vars : Natural := 0;
944      --  Count variables found so far
945
946      Var  : Entity_Id;
947      Elm  : Elmt_Id;
948      Ent  : Entity_Id;
949      Call : Elmt_Id;
950      Decl : Node_Id;
951      Test : Node_Id;
952      Elm1 : Elmt_Id;
953      Elm2 : Elmt_Id;
954      Last : Node_Id;
955
956      function Process (Nod : Node_Id) return Traverse_Result;
957      --  Function to traverse the subprogram body (using Traverse_Func)
958
959      -------------
960      -- Process --
961      -------------
962
963      function Process (Nod : Node_Id) return Traverse_Result is
964      begin
965         --  Procedure call
966
967         if Nkind (Nod) = N_Procedure_Call_Statement then
968
969            --  Case of one of the detected recursive calls
970
971            if Is_Entity_Name (Name (Nod))
972              and then Has_Recursive_Call (Entity (Name (Nod)))
973              and then Entity (Name (Nod)) = Spec
974            then
975               Append_Elmt (Nod, Call_List);
976               return Skip;
977
978            --  Any other procedure call may have side effects
979
980            else
981               return Abandon;
982            end if;
983
984         --  A call to a pure function can always be ignored
985
986         elsif Nkind (Nod) = N_Function_Call
987           and then Is_Entity_Name (Name (Nod))
988           and then Is_Pure (Entity (Name (Nod)))
989         then
990            return Skip;
991
992         --  Case of an identifier reference
993
994         elsif Nkind (Nod) = N_Identifier then
995            Ent := Entity (Nod);
996
997            --  If no entity, then ignore the reference
998
999            --  Not clear why this can happen. To investigate, remove this
1000            --  test and look at the crash that occurs here in 3401-004 ???
1001
1002            if No (Ent) then
1003               return Skip;
1004
1005            --  Ignore entities with no Scope, again not clear how this
1006            --  can happen, to investigate, look at 4108-008 ???
1007
1008            elsif No (Scope (Ent)) then
1009               return Skip;
1010
1011            --  Ignore the reference if not to a more global object
1012
1013            elsif Scope_Depth (Scope (Ent)) >= Scop then
1014               return Skip;
1015
1016            --  References to types, exceptions and constants are always OK
1017
1018            elsif Is_Type (Ent)
1019              or else Ekind (Ent) = E_Exception
1020              or else Ekind (Ent) = E_Constant
1021            then
1022               return Skip;
1023
1024            --  If other than a non-volatile scalar variable, we have some
1025            --  kind of global reference (e.g. to a function) that we cannot
1026            --  deal with so we forget the attempt.
1027
1028            elsif Ekind (Ent) /= E_Variable
1029              or else not Is_Scalar_Type (Etype (Ent))
1030              or else Treat_As_Volatile (Ent)
1031            then
1032               return Abandon;
1033
1034            --  Otherwise we have a reference to a global scalar
1035
1036            else
1037               --  Loop through global entities already detected
1038
1039               Elm := First_Elmt (Var_List);
1040               loop
1041                  --  If not detected before, record this new global reference
1042
1043                  if No (Elm) then
1044                     Count_Vars := Count_Vars + 1;
1045
1046                     if Count_Vars <= Max_Vars then
1047                        Append_Elmt (Entity (Nod), Var_List);
1048                     else
1049                        return Abandon;
1050                     end if;
1051
1052                     exit;
1053
1054                  --  If recorded before, ignore
1055
1056                  elsif Node (Elm) = Entity (Nod) then
1057                     return Skip;
1058
1059                  --  Otherwise keep looking
1060
1061                  else
1062                     Next_Elmt (Elm);
1063                  end if;
1064               end loop;
1065
1066               return Skip;
1067            end if;
1068
1069         --  For all other node kinds, recursively visit syntactic children
1070
1071         else
1072            return OK;
1073         end if;
1074      end Process;
1075
1076      function Traverse_Body is new Traverse_Func (Process);
1077
1078   --  Start of processing for Detect_Infinite_Recursion
1079
1080   begin
1081      --  Do not attempt detection in No_Implicit_Conditional mode, since we
1082      --  won't be able to generate the code to handle the recursion in any
1083      --  case.
1084
1085      if Restriction_Active (No_Implicit_Conditionals) then
1086         return;
1087      end if;
1088
1089      --  Otherwise do traversal and quit if we get abandon signal
1090
1091      if Traverse_Body (N) = Abandon then
1092         return;
1093
1094      --  We must have a call, since Has_Recursive_Call was set. If not just
1095      --  ignore (this is only an error check, so if we have a funny situation,
1096      --  due to bugs or errors, we do not want to bomb).
1097
1098      elsif Is_Empty_Elmt_List (Call_List) then
1099         return;
1100      end if;
1101
1102      --  Here is the case where we detect recursion at compile time
1103
1104      --  Push our current scope for analyzing the declarations and code that
1105      --  we will insert for the checking.
1106
1107      Push_Scope (Spec);
1108
1109      --  This loop builds temporary variables for each of the referenced
1110      --  globals, so that at the end of the loop the list Shad_List contains
1111      --  these temporaries in one-to-one correspondence with the elements in
1112      --  Var_List.
1113
1114      Last := Empty;
1115      Elm := First_Elmt (Var_List);
1116      while Present (Elm) loop
1117         Var := Node (Elm);
1118         Ent := Make_Temporary (Loc, 'S');
1119         Append_Elmt (Ent, Shad_List);
1120
1121         --  Insert a declaration for this temporary at the start of the
1122         --  declarations for the procedure. The temporaries are declared as
1123         --  constant objects initialized to the current values of the
1124         --  corresponding temporaries.
1125
1126         Decl :=
1127           Make_Object_Declaration (Loc,
1128             Defining_Identifier => Ent,
1129             Object_Definition   => New_Occurrence_Of (Etype (Var), Loc),
1130             Constant_Present    => True,
1131             Expression          => New_Occurrence_Of (Var, Loc));
1132
1133         if No (Last) then
1134            Prepend (Decl, Declarations (N));
1135         else
1136            Insert_After (Last, Decl);
1137         end if;
1138
1139         Last := Decl;
1140         Analyze (Decl);
1141         Next_Elmt (Elm);
1142      end loop;
1143
1144      --  Loop through calls
1145
1146      Call := First_Elmt (Call_List);
1147      while Present (Call) loop
1148
1149         --  Build a predicate expression of the form
1150
1151         --    True
1152         --      and then global1 = temp1
1153         --      and then global2 = temp2
1154         --      ...
1155
1156         --  This predicate determines if any of the global values
1157         --  referenced by the procedure have changed since the
1158         --  current call, if not an infinite recursion is assured.
1159
1160         Test := New_Occurrence_Of (Standard_True, Loc);
1161
1162         Elm1 := First_Elmt (Var_List);
1163         Elm2 := First_Elmt (Shad_List);
1164         while Present (Elm1) loop
1165            Test :=
1166              Make_And_Then (Loc,
1167                Left_Opnd  => Test,
1168                Right_Opnd =>
1169                  Make_Op_Eq (Loc,
1170                    Left_Opnd  => New_Occurrence_Of (Node (Elm1), Loc),
1171                    Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1172
1173            Next_Elmt (Elm1);
1174            Next_Elmt (Elm2);
1175         end loop;
1176
1177         --  Now we replace the call with the sequence
1178
1179         --    if no-changes (see above) then
1180         --       raise Storage_Error;
1181         --    else
1182         --       original-call
1183         --    end if;
1184
1185         Rewrite (Node (Call),
1186           Make_If_Statement (Loc,
1187             Condition       => Test,
1188             Then_Statements => New_List (
1189               Make_Raise_Storage_Error (Loc,
1190                 Reason => SE_Infinite_Recursion)),
1191
1192             Else_Statements => New_List (
1193               Relocate_Node (Node (Call)))));
1194
1195         Analyze (Node (Call));
1196
1197         Next_Elmt (Call);
1198      end loop;
1199
1200      --  Remove temporary scope stack entry used for analysis
1201
1202      Pop_Scope;
1203   end Detect_Infinite_Recursion;
1204
1205   --------------------
1206   -- Expand_Actuals --
1207   --------------------
1208
1209   procedure Expand_Actuals
1210     (N         : Node_Id;
1211      Subp      : Entity_Id;
1212      Post_Call : out List_Id)
1213   is
1214      Loc       : constant Source_Ptr := Sloc (N);
1215      Actual    : Node_Id;
1216      Formal    : Entity_Id;
1217      N_Node    : Node_Id;
1218      E_Actual  : Entity_Id;
1219      E_Formal  : Entity_Id;
1220
1221      procedure Add_Call_By_Copy_Code;
1222      --  For cases where the parameter must be passed by copy, this routine
1223      --  generates a temporary variable into which the actual is copied and
1224      --  then passes this as the parameter. For an OUT or IN OUT parameter,
1225      --  an assignment is also generated to copy the result back. The call
1226      --  also takes care of any constraint checks required for the type
1227      --  conversion case (on both the way in and the way out).
1228
1229      procedure Add_Simple_Call_By_Copy_Code;
1230      --  This is similar to the above, but is used in cases where we know
1231      --  that all that is needed is to simply create a temporary and copy
1232      --  the value in and out of the temporary.
1233
1234      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1235      --  Perform copy-back for actual parameter Act which denotes a validation
1236      --  variable.
1237
1238      procedure Check_Fortran_Logical;
1239      --  A value of type Logical that is passed through a formal parameter
1240      --  must be normalized because .TRUE. usually does not have the same
1241      --  representation as True. We assume that .FALSE. = False = 0.
1242      --  What about functions that return a logical type ???
1243
1244      function Is_Legal_Copy return Boolean;
1245      --  Check that an actual can be copied before generating the temporary
1246      --  to be used in the call. If the actual is of a by_reference type then
1247      --  the program is illegal (this can only happen in the presence of
1248      --  rep. clauses that force an incorrect alignment). If the formal is
1249      --  a by_reference parameter imposed by a DEC pragma, emit a warning to
1250      --  the effect that this might lead to unaligned arguments.
1251
1252      function Make_Var (Actual : Node_Id) return Entity_Id;
1253      --  Returns an entity that refers to the given actual parameter, Actual
1254      --  (not including any type conversion). If Actual is an entity name,
1255      --  then this entity is returned unchanged, otherwise a renaming is
1256      --  created to provide an entity for the actual.
1257
1258      procedure Reset_Packed_Prefix;
1259      --  The expansion of a packed array component reference is delayed in
1260      --  the context of a call. Now we need to complete the expansion, so we
1261      --  unmark the analyzed bits in all prefixes.
1262
1263      ---------------------------
1264      -- Add_Call_By_Copy_Code --
1265      ---------------------------
1266
1267      procedure Add_Call_By_Copy_Code is
1268         Crep  : Boolean;
1269         Expr  : Node_Id;
1270         F_Typ : Entity_Id := Etype (Formal);
1271         Indic : Node_Id;
1272         Init  : Node_Id;
1273         Temp  : Entity_Id;
1274         V_Typ : Entity_Id;
1275         Var   : Entity_Id;
1276
1277      begin
1278         if not Is_Legal_Copy then
1279            return;
1280         end if;
1281
1282         Temp := Make_Temporary (Loc, 'T', Actual);
1283
1284         --  Handle formals whose type comes from the limited view
1285
1286         if From_Limited_With (F_Typ)
1287           and then Has_Non_Limited_View (F_Typ)
1288         then
1289            F_Typ := Non_Limited_View (F_Typ);
1290         end if;
1291
1292         --  Use formal type for temp, unless formal type is an unconstrained
1293         --  array, in which case we don't have to worry about bounds checks,
1294         --  and we use the actual type, since that has appropriate bounds.
1295
1296         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1297            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1298         else
1299            Indic := New_Occurrence_Of (F_Typ, Loc);
1300         end if;
1301
1302         if Nkind (Actual) = N_Type_Conversion then
1303            V_Typ := Etype (Expression (Actual));
1304
1305            --  If the formal is an (in-)out parameter, capture the name
1306            --  of the variable in order to build the post-call assignment.
1307
1308            Var := Make_Var (Expression (Actual));
1309
1310            Crep := not Same_Representation
1311                          (F_Typ, Etype (Expression (Actual)));
1312
1313         else
1314            V_Typ := Etype (Actual);
1315            Var   := Make_Var (Actual);
1316            Crep  := False;
1317         end if;
1318
1319         --  Setup initialization for case of in out parameter, or an out
1320         --  parameter where the formal is an unconstrained array (in the
1321         --  latter case, we have to pass in an object with bounds).
1322
1323         --  If this is an out parameter, the initial copy is wasteful, so as
1324         --  an optimization for the one-dimensional case we extract the
1325         --  bounds of the actual and build an uninitialized temporary of the
1326         --  right size.
1327
1328         if Ekind (Formal) = E_In_Out_Parameter
1329           or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
1330         then
1331            if Nkind (Actual) = N_Type_Conversion then
1332               if Conversion_OK (Actual) then
1333                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1334               else
1335                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1336               end if;
1337
1338            elsif Ekind (Formal) = E_Out_Parameter
1339              and then Is_Array_Type (F_Typ)
1340              and then Number_Dimensions (F_Typ) = 1
1341              and then not Has_Non_Null_Base_Init_Proc (F_Typ)
1342            then
1343               --  Actual is a one-dimensional array or slice, and the type
1344               --  requires no initialization. Create a temporary of the
1345               --  right size, but do not copy actual into it (optimization).
1346
1347               Init := Empty;
1348               Indic :=
1349                 Make_Subtype_Indication (Loc,
1350                   Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
1351                   Constraint   =>
1352                     Make_Index_Or_Discriminant_Constraint (Loc,
1353                       Constraints => New_List (
1354                         Make_Range (Loc,
1355                           Low_Bound  =>
1356                             Make_Attribute_Reference (Loc,
1357                               Prefix         => New_Occurrence_Of (Var, Loc),
1358                               Attribute_Name => Name_First),
1359                           High_Bound =>
1360                             Make_Attribute_Reference (Loc,
1361                               Prefix         => New_Occurrence_Of (Var, Loc),
1362                               Attribute_Name => Name_Last)))));
1363
1364            else
1365               Init := New_Occurrence_Of (Var, Loc);
1366            end if;
1367
1368         --  An initialization is created for packed conversions as
1369         --  actuals for out parameters to enable Make_Object_Declaration
1370         --  to determine the proper subtype for N_Node. Note that this
1371         --  is wasteful because the extra copying on the call side is
1372         --  not required for such out parameters. ???
1373
1374         elsif Ekind (Formal) = E_Out_Parameter
1375           and then Nkind (Actual) = N_Type_Conversion
1376           and then (Is_Bit_Packed_Array (F_Typ)
1377                       or else
1378                     Is_Bit_Packed_Array (Etype (Expression (Actual))))
1379         then
1380            if Conversion_OK (Actual) then
1381               Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1382            else
1383               Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1384            end if;
1385
1386         elsif Ekind (Formal) = E_In_Parameter then
1387
1388            --  Handle the case in which the actual is a type conversion
1389
1390            if Nkind (Actual) = N_Type_Conversion then
1391               if Conversion_OK (Actual) then
1392                  Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1393               else
1394                  Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1395               end if;
1396            else
1397               Init := New_Occurrence_Of (Var, Loc);
1398            end if;
1399
1400         else
1401            Init := Empty;
1402         end if;
1403
1404         N_Node :=
1405           Make_Object_Declaration (Loc,
1406             Defining_Identifier => Temp,
1407             Object_Definition   => Indic,
1408             Expression          => Init);
1409         Set_Assignment_OK (N_Node);
1410         Insert_Action (N, N_Node);
1411
1412         --  Now, normally the deal here is that we use the defining
1413         --  identifier created by that object declaration. There is
1414         --  one exception to this. In the change of representation case
1415         --  the above declaration will end up looking like:
1416
1417         --    temp : type := identifier;
1418
1419         --  And in this case we might as well use the identifier directly
1420         --  and eliminate the temporary. Note that the analysis of the
1421         --  declaration was not a waste of time in that case, since it is
1422         --  what generated the necessary change of representation code. If
1423         --  the change of representation introduced additional code, as in
1424         --  a fixed-integer conversion, the expression is not an identifier
1425         --  and must be kept.
1426
1427         if Crep
1428           and then Present (Expression (N_Node))
1429           and then Is_Entity_Name (Expression (N_Node))
1430         then
1431            Temp := Entity (Expression (N_Node));
1432            Rewrite (N_Node, Make_Null_Statement (Loc));
1433         end if;
1434
1435         --  For IN parameter, all we do is to replace the actual
1436
1437         if Ekind (Formal) = E_In_Parameter then
1438            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1439            Analyze (Actual);
1440
1441         --  Processing for OUT or IN OUT parameter
1442
1443         else
1444            --  Kill current value indications for the temporary variable we
1445            --  created, since we just passed it as an OUT parameter.
1446
1447            Kill_Current_Values (Temp);
1448            Set_Is_Known_Valid (Temp, False);
1449
1450            --  If type conversion, use reverse conversion on exit
1451
1452            if Nkind (Actual) = N_Type_Conversion then
1453               if Conversion_OK (Actual) then
1454                  Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1455               else
1456                  Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1457               end if;
1458            else
1459               Expr := New_Occurrence_Of (Temp, Loc);
1460            end if;
1461
1462            Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1463            Analyze (Actual);
1464
1465            --  If the actual is a conversion of a packed reference, it may
1466            --  already have been expanded by Remove_Side_Effects, and the
1467            --  resulting variable is a temporary which does not designate
1468            --  the proper out-parameter, which may not be addressable. In
1469            --  that case, generate an assignment to the original expression
1470            --  (before expansion of the packed reference) so that the proper
1471            --  expansion of assignment to a packed component can take place.
1472
1473            declare
1474               Obj : Node_Id;
1475               Lhs : Node_Id;
1476
1477            begin
1478               if Is_Renaming_Of_Object (Var)
1479                 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1480                 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1481                   = N_Indexed_Component
1482                 and then
1483                   Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1484               then
1485                  Obj := Renamed_Object (Var);
1486                  Lhs :=
1487                    Make_Selected_Component (Loc,
1488                      Prefix        =>
1489                        New_Copy_Tree (Original_Node (Prefix (Obj))),
1490                      Selector_Name => New_Copy (Selector_Name (Obj)));
1491                  Reset_Analyzed_Flags (Lhs);
1492
1493               else
1494                  Lhs := New_Occurrence_Of (Var, Loc);
1495               end if;
1496
1497               Set_Assignment_OK (Lhs);
1498
1499               if Is_Access_Type (E_Formal)
1500                 and then Is_Entity_Name (Lhs)
1501                 and then
1502                   Present (Effective_Extra_Accessibility (Entity (Lhs)))
1503               then
1504                  --  Copyback target is an Ada 2012 stand-alone object of an
1505                  --  anonymous access type.
1506
1507                  pragma Assert (Ada_Version >= Ada_2012);
1508
1509                  if Type_Access_Level (E_Formal) >
1510                     Object_Access_Level (Lhs)
1511                  then
1512                     Append_To (Post_Call,
1513                       Make_Raise_Program_Error (Loc,
1514                         Reason => PE_Accessibility_Check_Failed));
1515                  end if;
1516
1517                  Append_To (Post_Call,
1518                    Make_Assignment_Statement (Loc,
1519                      Name       => Lhs,
1520                      Expression => Expr));
1521
1522                  --  We would like to somehow suppress generation of the
1523                  --  extra_accessibility assignment generated by the expansion
1524                  --  of the above assignment statement. It's not a correctness
1525                  --  issue because the following assignment renders it dead,
1526                  --  but generating back-to-back assignments to the same
1527                  --  target is undesirable. ???
1528
1529                  Append_To (Post_Call,
1530                    Make_Assignment_Statement (Loc,
1531                      Name       => New_Occurrence_Of (
1532                        Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1533                      Expression => Make_Integer_Literal (Loc,
1534                        Type_Access_Level (E_Formal))));
1535
1536               else
1537                  Append_To (Post_Call,
1538                    Make_Assignment_Statement (Loc,
1539                      Name       => Lhs,
1540                      Expression => Expr));
1541               end if;
1542            end;
1543         end if;
1544      end Add_Call_By_Copy_Code;
1545
1546      ----------------------------------
1547      -- Add_Simple_Call_By_Copy_Code --
1548      ----------------------------------
1549
1550      procedure Add_Simple_Call_By_Copy_Code is
1551         Decl   : Node_Id;
1552         F_Typ  : Entity_Id := Etype (Formal);
1553         Incod  : Node_Id;
1554         Indic  : Node_Id;
1555         Lhs    : Node_Id;
1556         Outcod : Node_Id;
1557         Rhs    : Node_Id;
1558         Temp   : Entity_Id;
1559
1560      begin
1561         if not Is_Legal_Copy then
1562            return;
1563         end if;
1564
1565         --  Handle formals whose type comes from the limited view
1566
1567         if From_Limited_With (F_Typ)
1568           and then Has_Non_Limited_View (F_Typ)
1569         then
1570            F_Typ := Non_Limited_View (F_Typ);
1571         end if;
1572
1573         --  Use formal type for temp, unless formal type is an unconstrained
1574         --  array, in which case we don't have to worry about bounds checks,
1575         --  and we use the actual type, since that has appropriate bounds.
1576
1577         if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1578            Indic := New_Occurrence_Of (Etype (Actual), Loc);
1579         else
1580            Indic := New_Occurrence_Of (F_Typ, Loc);
1581         end if;
1582
1583         --  Prepare to generate code
1584
1585         Reset_Packed_Prefix;
1586
1587         Temp := Make_Temporary (Loc, 'T', Actual);
1588         Incod  := Relocate_Node (Actual);
1589         Outcod := New_Copy_Tree (Incod);
1590
1591         --  Generate declaration of temporary variable, initializing it
1592         --  with the input parameter unless we have an OUT formal or
1593         --  this is an initialization call.
1594
1595         --  If the formal is an out parameter with discriminants, the
1596         --  discriminants must be captured even if the rest of the object
1597         --  is in principle uninitialized, because the discriminants may
1598         --  be read by the called subprogram.
1599
1600         if Ekind (Formal) = E_Out_Parameter then
1601            Incod := Empty;
1602
1603            if Has_Discriminants (F_Typ) then
1604               Indic := New_Occurrence_Of (Etype (Actual), Loc);
1605            end if;
1606
1607         elsif Inside_Init_Proc then
1608
1609            --  Could use a comment here to match comment below ???
1610
1611            if Nkind (Actual) /= N_Selected_Component
1612              or else
1613                not Has_Discriminant_Dependent_Constraint
1614                  (Entity (Selector_Name (Actual)))
1615            then
1616               Incod := Empty;
1617
1618            --  Otherwise, keep the component in order to generate the proper
1619            --  actual subtype, that depends on enclosing discriminants.
1620
1621            else
1622               null;
1623            end if;
1624         end if;
1625
1626         Decl :=
1627           Make_Object_Declaration (Loc,
1628             Defining_Identifier => Temp,
1629             Object_Definition   => Indic,
1630             Expression          => Incod);
1631
1632         if Inside_Init_Proc
1633           and then No (Incod)
1634         then
1635            --  If the call is to initialize a component of a composite type,
1636            --  and the component does not depend on discriminants, use the
1637            --  actual type of the component. This is required in case the
1638            --  component is constrained, because in general the formal of the
1639            --  initialization procedure will be unconstrained. Note that if
1640            --  the component being initialized is constrained by an enclosing
1641            --  discriminant, the presence of the initialization in the
1642            --  declaration will generate an expression for the actual subtype.
1643
1644            Set_No_Initialization (Decl);
1645            Set_Object_Definition (Decl,
1646              New_Occurrence_Of (Etype (Actual), Loc));
1647         end if;
1648
1649         Insert_Action (N, Decl);
1650
1651         --  The actual is simply a reference to the temporary
1652
1653         Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1654
1655         --  Generate copy out if OUT or IN OUT parameter
1656
1657         if Ekind (Formal) /= E_In_Parameter then
1658            Lhs := Outcod;
1659            Rhs := New_Occurrence_Of (Temp, Loc);
1660
1661            --  Deal with conversion
1662
1663            if Nkind (Lhs) = N_Type_Conversion then
1664               Lhs := Expression (Lhs);
1665               Rhs := Convert_To (Etype (Actual), Rhs);
1666            end if;
1667
1668            Append_To (Post_Call,
1669              Make_Assignment_Statement (Loc,
1670                Name       => Lhs,
1671                Expression => Rhs));
1672            Set_Assignment_OK (Name (Last (Post_Call)));
1673         end if;
1674      end Add_Simple_Call_By_Copy_Code;
1675
1676      --------------------------------------
1677      -- Add_Validation_Call_By_Copy_Code --
1678      --------------------------------------
1679
1680      procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1681         Expr    : Node_Id;
1682         Obj     : Node_Id;
1683         Obj_Typ : Entity_Id;
1684         Var     : constant Node_Id := Unqual_Conv (Act);
1685         Var_Id  : Entity_Id;
1686
1687      begin
1688         --  Copy the value of the validation variable back into the object
1689         --  being validated.
1690
1691         if Is_Entity_Name (Var) then
1692            Var_Id  := Entity (Var);
1693            Obj     := Validated_Object (Var_Id);
1694            Obj_Typ := Etype (Obj);
1695
1696            Expr := New_Occurrence_Of (Var_Id, Loc);
1697
1698            --  A type conversion is needed when the validation variable and
1699            --  the validated object carry different types. This case occurs
1700            --  when the actual is qualified in some fashion.
1701
1702            --    Common:
1703            --      subtype Int is Integer range ...;
1704            --      procedure Call (Val : in out Integer);
1705
1706            --    Original:
1707            --      Object : Int;
1708            --      Call (Integer (Object));
1709
1710            --    Expanded:
1711            --      Object : Int;
1712            --      Var : Integer := Object;  --  conversion to base type
1713            --      if not Var'Valid then     --  validity check
1714            --      Call (Var);               --  modify Var
1715            --      Object := Int (Var);      --  conversion to subtype
1716
1717            if Etype (Var_Id) /= Obj_Typ then
1718               Expr :=
1719                 Make_Type_Conversion (Loc,
1720                   Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1721                   Expression   => Expr);
1722            end if;
1723
1724            --  Generate:
1725            --    Object := Var;
1726            --      <or>
1727            --    Object := Object_Type (Var);
1728
1729            Append_To (Post_Call,
1730              Make_Assignment_Statement (Loc,
1731                Name       => Obj,
1732                Expression => Expr));
1733
1734         --  If the flow reaches this point, then this routine was invoked with
1735         --  an actual which does not denote a validation variable.
1736
1737         else
1738            pragma Assert (False);
1739            null;
1740         end if;
1741      end Add_Validation_Call_By_Copy_Code;
1742
1743      ---------------------------
1744      -- Check_Fortran_Logical --
1745      ---------------------------
1746
1747      procedure Check_Fortran_Logical is
1748         Logical : constant Entity_Id := Etype (Formal);
1749         Var     : Entity_Id;
1750
1751      --  Note: this is very incomplete, e.g. it does not handle arrays
1752      --  of logical values. This is really not the right approach at all???)
1753
1754      begin
1755         if Convention (Subp) = Convention_Fortran
1756           and then Root_Type (Etype (Formal)) = Standard_Boolean
1757           and then Ekind (Formal) /= E_In_Parameter
1758         then
1759            Var := Make_Var (Actual);
1760            Append_To (Post_Call,
1761              Make_Assignment_Statement (Loc,
1762                Name => New_Occurrence_Of (Var, Loc),
1763                Expression =>
1764                  Unchecked_Convert_To (
1765                    Logical,
1766                    Make_Op_Ne (Loc,
1767                      Left_Opnd  => New_Occurrence_Of (Var, Loc),
1768                      Right_Opnd =>
1769                        Unchecked_Convert_To (
1770                          Logical,
1771                          New_Occurrence_Of (Standard_False, Loc))))));
1772         end if;
1773      end Check_Fortran_Logical;
1774
1775      -------------------
1776      -- Is_Legal_Copy --
1777      -------------------
1778
1779      function Is_Legal_Copy return Boolean is
1780      begin
1781         --  An attempt to copy a value of such a type can only occur if
1782         --  representation clauses give the actual a misaligned address.
1783
1784         if Is_By_Reference_Type (Etype (Formal)) then
1785
1786            --  The actual may in fact be properly aligned but there is not
1787            --  enough front-end information to determine this. In that case
1788            --  gigi will emit an error if a copy is not legal, or generate
1789            --  the proper code.
1790
1791            return False;
1792
1793         --  For users of Starlet, we assume that the specification of by-
1794         --  reference mechanism is mandatory. This may lead to unaligned
1795         --  objects but at least for DEC legacy code it is known to work.
1796         --  The warning will alert users of this code that a problem may
1797         --  be lurking.
1798
1799         elsif Mechanism (Formal) = By_Reference
1800           and then Is_Valued_Procedure (Scope (Formal))
1801         then
1802            Error_Msg_N
1803              ("by_reference actual may be misaligned??", Actual);
1804            return False;
1805
1806         else
1807            return True;
1808         end if;
1809      end Is_Legal_Copy;
1810
1811      --------------
1812      -- Make_Var --
1813      --------------
1814
1815      function Make_Var (Actual : Node_Id) return Entity_Id is
1816         Var : Entity_Id;
1817
1818      begin
1819         if Is_Entity_Name (Actual) then
1820            return Entity (Actual);
1821
1822         else
1823            Var := Make_Temporary (Loc, 'T', Actual);
1824
1825            N_Node :=
1826              Make_Object_Renaming_Declaration (Loc,
1827                Defining_Identifier => Var,
1828                Subtype_Mark        =>
1829                  New_Occurrence_Of (Etype (Actual), Loc),
1830                Name                => Relocate_Node (Actual));
1831
1832            Insert_Action (N, N_Node);
1833            return Var;
1834         end if;
1835      end Make_Var;
1836
1837      -------------------------
1838      -- Reset_Packed_Prefix --
1839      -------------------------
1840
1841      procedure Reset_Packed_Prefix is
1842         Pfx : Node_Id := Actual;
1843      begin
1844         loop
1845            Set_Analyzed (Pfx, False);
1846            exit when
1847              not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
1848            Pfx := Prefix (Pfx);
1849         end loop;
1850      end Reset_Packed_Prefix;
1851
1852   --  Start of processing for Expand_Actuals
1853
1854   begin
1855      Post_Call := New_List;
1856
1857      Formal := First_Formal (Subp);
1858      Actual := First_Actual (N);
1859      while Present (Formal) loop
1860         E_Formal := Etype (Formal);
1861         E_Actual := Etype (Actual);
1862
1863         --  Handle formals whose type comes from the limited view
1864
1865         if From_Limited_With (E_Formal)
1866           and then Has_Non_Limited_View (E_Formal)
1867         then
1868            E_Formal := Non_Limited_View (E_Formal);
1869         end if;
1870
1871         if Is_Scalar_Type (E_Formal)
1872           or else Nkind (Actual) = N_Slice
1873         then
1874            Check_Fortran_Logical;
1875
1876         --  RM 6.4.1 (11)
1877
1878         elsif Ekind (Formal) /= E_Out_Parameter then
1879
1880            --  The unusual case of the current instance of a protected type
1881            --  requires special handling. This can only occur in the context
1882            --  of a call within the body of a protected operation.
1883
1884            if Is_Entity_Name (Actual)
1885              and then Ekind (Entity (Actual)) = E_Protected_Type
1886              and then In_Open_Scopes (Entity (Actual))
1887            then
1888               if Scope (Subp) /= Entity (Actual) then
1889                  Error_Msg_N
1890                    ("operation outside protected type may not "
1891                     & "call back its protected operations??", Actual);
1892               end if;
1893
1894               Rewrite (Actual,
1895                 Expand_Protected_Object_Reference (N, Entity (Actual)));
1896            end if;
1897
1898            --  Ada 2005 (AI-318-02): If the actual parameter is a call to a
1899            --  build-in-place function, then a temporary return object needs
1900            --  to be created and access to it must be passed to the function.
1901            --  Currently we limit such functions to those with inherently
1902            --  limited result subtypes, but eventually we plan to expand the
1903            --  functions that are treated as build-in-place to include other
1904            --  composite result types.
1905
1906            if Is_Build_In_Place_Function_Call (Actual) then
1907               Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1908
1909            --  Ada 2005 (AI-318-02): Specialization of the previous case for
1910            --  actuals containing build-in-place function calls whose returned
1911            --  object covers interface types.
1912
1913            elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
1914               Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
1915            end if;
1916
1917            Apply_Constraint_Check (Actual, E_Formal);
1918
1919         --  Out parameter case. No constraint checks on access type
1920         --  RM 6.4.1 (13)
1921
1922         elsif Is_Access_Type (E_Formal) then
1923            null;
1924
1925         --  RM 6.4.1 (14)
1926
1927         elsif Has_Discriminants (Base_Type (E_Formal))
1928           or else Has_Non_Null_Base_Init_Proc (E_Formal)
1929         then
1930            Apply_Constraint_Check (Actual, E_Formal);
1931
1932         --  RM 6.4.1 (15)
1933
1934         else
1935            Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1936         end if;
1937
1938         --  Processing for IN-OUT and OUT parameters
1939
1940         if Ekind (Formal) /= E_In_Parameter then
1941
1942            --  For type conversions of arrays, apply length/range checks
1943
1944            if Is_Array_Type (E_Formal)
1945              and then Nkind (Actual) = N_Type_Conversion
1946            then
1947               if Is_Constrained (E_Formal) then
1948                  Apply_Length_Check (Expression (Actual), E_Formal);
1949               else
1950                  Apply_Range_Check (Expression (Actual), E_Formal);
1951               end if;
1952            end if;
1953
1954            --  The actual denotes a variable which captures the value of an
1955            --  object for validation purposes. Add a copy-back to reflect any
1956            --  potential changes in value back into the original object.
1957
1958            --    Var : ... := Object;
1959            --    if not Var'Valid then  --  validity check
1960            --    Call (Var);            --  modify var
1961            --    Object := Var;         --  update Object
1962
1963            --  This case is given higher priority because the subsequent check
1964            --  for type conversion may add an extra copy of the variable and
1965            --  prevent proper value propagation back in the original object.
1966
1967            if Is_Validation_Variable_Reference (Actual) then
1968               Add_Validation_Call_By_Copy_Code (Actual);
1969
1970            --  If argument is a type conversion for a type that is passed by
1971            --  copy, then we must pass the parameter by copy.
1972
1973            elsif Nkind (Actual) = N_Type_Conversion
1974              and then
1975                (Is_Numeric_Type (E_Formal)
1976                  or else Is_Access_Type (E_Formal)
1977                  or else Is_Enumeration_Type (E_Formal)
1978                  or else Is_Bit_Packed_Array (Etype (Formal))
1979                  or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1980
1981                  --  Also pass by copy if change of representation
1982
1983                  or else not Same_Representation
1984                                (Etype (Formal),
1985                                 Etype (Expression (Actual))))
1986            then
1987               Add_Call_By_Copy_Code;
1988
1989            --  References to components of bit-packed arrays are expanded
1990            --  at this point, rather than at the point of analysis of the
1991            --  actuals, to handle the expansion of the assignment to
1992            --  [in] out parameters.
1993
1994            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
1995               Add_Simple_Call_By_Copy_Code;
1996
1997            --  If a non-scalar actual is possibly bit-aligned, we need a copy
1998            --  because the back-end cannot cope with such objects. In other
1999            --  cases where alignment forces a copy, the back-end generates
2000            --  it properly. It should not be generated unconditionally in the
2001            --  front-end because it does not know precisely the alignment
2002            --  requirements of the target, and makes too conservative an
2003            --  estimate, leading to superfluous copies or spurious errors
2004            --  on by-reference parameters.
2005
2006            elsif Nkind (Actual) = N_Selected_Component
2007              and then
2008                Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
2009              and then not Represented_As_Scalar (Etype (Formal))
2010            then
2011               Add_Simple_Call_By_Copy_Code;
2012
2013            --  References to slices of bit-packed arrays are expanded
2014
2015            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2016               Add_Call_By_Copy_Code;
2017
2018            --  References to possibly unaligned slices of arrays are expanded
2019
2020            elsif Is_Possibly_Unaligned_Slice (Actual) then
2021               Add_Call_By_Copy_Code;
2022
2023            --  Deal with access types where the actual subtype and the
2024            --  formal subtype are not the same, requiring a check.
2025
2026            --  It is necessary to exclude tagged types because of "downward
2027            --  conversion" errors.
2028
2029            elsif Is_Access_Type (E_Formal)
2030              and then not Same_Type (E_Formal, E_Actual)
2031              and then not Is_Tagged_Type (Designated_Type (E_Formal))
2032            then
2033               Add_Call_By_Copy_Code;
2034
2035            --  If the actual is not a scalar and is marked for volatile
2036            --  treatment, whereas the formal is not volatile, then pass
2037            --  by copy unless it is a by-reference type.
2038
2039            --  Note: we use Is_Volatile here rather than Treat_As_Volatile,
2040            --  because this is the enforcement of a language rule that applies
2041            --  only to "real" volatile variables, not e.g. to the address
2042            --  clause overlay case.
2043
2044            elsif Is_Entity_Name (Actual)
2045              and then Is_Volatile (Entity (Actual))
2046              and then not Is_By_Reference_Type (E_Actual)
2047              and then not Is_Scalar_Type (Etype (Entity (Actual)))
2048              and then not Is_Volatile (E_Formal)
2049            then
2050               Add_Call_By_Copy_Code;
2051
2052            elsif Nkind (Actual) = N_Indexed_Component
2053              and then Is_Entity_Name (Prefix (Actual))
2054              and then Has_Volatile_Components (Entity (Prefix (Actual)))
2055            then
2056               Add_Call_By_Copy_Code;
2057
2058            --  Add call-by-copy code for the case of scalar out parameters
2059            --  when it is not known at compile time that the subtype of the
2060            --  formal is a subrange of the subtype of the actual (or vice
2061            --  versa for in out parameters), in order to get range checks
2062            --  on such actuals. (Maybe this case should be handled earlier
2063            --  in the if statement???)
2064
2065            elsif Is_Scalar_Type (E_Formal)
2066              and then
2067                (not In_Subrange_Of (E_Formal, E_Actual)
2068                  or else
2069                    (Ekind (Formal) = E_In_Out_Parameter
2070                      and then not In_Subrange_Of (E_Actual, E_Formal)))
2071            then
2072               --  Perhaps the setting back to False should be done within
2073               --  Add_Call_By_Copy_Code, since it could get set on other
2074               --  cases occurring above???
2075
2076               if Do_Range_Check (Actual) then
2077                  Set_Do_Range_Check (Actual, False);
2078               end if;
2079
2080               Add_Call_By_Copy_Code;
2081            end if;
2082
2083            --  RM 3.2.4 (23/3): A predicate is checked on in-out and out
2084            --  by-reference parameters on exit from the call. If the actual
2085            --  is a derived type and the operation is inherited, the body
2086            --  of the operation will not contain a call to the predicate
2087            --  function, so it must be done explicitly after the call. Ditto
2088            --  if the actual is an entity of a predicated subtype.
2089
2090            --  The rule refers to by-reference types, but a check is needed
2091            --  for by-copy types as well. That check is subsumed by the rule
2092            --  for subtype conversion on assignment, but we can generate the
2093            --  required check now.
2094
2095            --  Note also that Subp may be either a subprogram entity for
2096            --  direct calls, or a type entity for indirect calls, which must
2097            --  be handled separately because the name does not denote an
2098            --  overloadable entity.
2099
2100            By_Ref_Predicate_Check : declare
2101               Aund : constant Entity_Id := Underlying_Type (E_Actual);
2102               Atyp : Entity_Id;
2103
2104               function Is_Public_Subp return Boolean;
2105               --  Check whether the subprogram being called is a visible
2106               --  operation of the type of the actual. Used to determine
2107               --  whether an invariant check must be generated on the
2108               --  caller side.
2109
2110               ---------------------
2111               --  Is_Public_Subp --
2112               ---------------------
2113
2114               function Is_Public_Subp return Boolean is
2115                  Pack      : constant Entity_Id := Scope (Subp);
2116                  Subp_Decl : Node_Id;
2117
2118               begin
2119                  if not Is_Subprogram (Subp) then
2120                     return False;
2121
2122                  --  The operation may be inherited, or a primitive of the
2123                  --  root type.
2124
2125                  elsif
2126                    Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2127                                             N_Full_Type_Declaration)
2128                  then
2129                     Subp_Decl := Parent (Subp);
2130
2131                  else
2132                     Subp_Decl := Unit_Declaration_Node (Subp);
2133                  end if;
2134
2135                  return Ekind (Pack) = E_Package
2136                    and then
2137                      List_Containing (Subp_Decl) =
2138                        Visible_Declarations
2139                          (Specification (Unit_Declaration_Node (Pack)));
2140               end Is_Public_Subp;
2141
2142            --  Start of processing for By_Ref_Predicate_Check
2143
2144            begin
2145               if No (Aund) then
2146                  Atyp := E_Actual;
2147               else
2148                  Atyp := Aund;
2149               end if;
2150
2151               if Has_Predicates (Atyp)
2152                 and then Present (Predicate_Function (Atyp))
2153
2154                 --  Skip predicate checks for special cases
2155
2156                 and then Predicate_Tests_On_Arguments (Subp)
2157               then
2158                  Append_To (Post_Call,
2159                    Make_Predicate_Check (Atyp, Actual));
2160               end if;
2161
2162               --  We generated caller-side invariant checks in two cases:
2163
2164               --  a) when calling an inherited operation, where there is an
2165               --  implicit view conversion of the actual to the parent type.
2166
2167               --  b) When the conversion is explicit
2168
2169               --  We treat these cases separately because the required
2170               --  conversion for a) is added later when expanding the call.
2171
2172               if Has_Invariants (Etype (Actual))
2173                  and then
2174                    Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2175               then
2176                  if Comes_From_Source (N) and then Is_Public_Subp then
2177                     Append_To (Post_Call, Make_Invariant_Call (Actual));
2178                  end if;
2179
2180               elsif Nkind (Actual) = N_Type_Conversion
2181                 and then Has_Invariants (Etype (Expression (Actual)))
2182               then
2183                  if Comes_From_Source (N) and then Is_Public_Subp then
2184                     Append_To (Post_Call,
2185                       Make_Invariant_Call (Expression (Actual)));
2186                  end if;
2187               end if;
2188            end By_Ref_Predicate_Check;
2189
2190         --  Processing for IN parameters
2191
2192         else
2193            --  For IN parameters in the bit-packed array case, we expand an
2194            --  indexed component (the circuit in Exp_Ch4 deliberately left
2195            --  indexed components appearing as actuals untouched, so that
2196            --  the special processing above for the OUT and IN OUT cases
2197            --  could be performed. We could make the test in Exp_Ch4 more
2198            --  complex and have it detect the parameter mode, but it is
2199            --  easier simply to handle all cases here.)
2200
2201            if Nkind (Actual) = N_Indexed_Component
2202              and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
2203            then
2204               Reset_Packed_Prefix;
2205               Expand_Packed_Element_Reference (Actual);
2206
2207            --  If we have a reference to a bit-packed array, we copy it, since
2208            --  the actual must be byte aligned.
2209
2210            --  Is this really necessary in all cases???
2211
2212            elsif Is_Ref_To_Bit_Packed_Array (Actual) then
2213               Add_Simple_Call_By_Copy_Code;
2214
2215            --  If a non-scalar actual is possibly unaligned, we need a copy
2216
2217            elsif Is_Possibly_Unaligned_Object (Actual)
2218              and then not Represented_As_Scalar (Etype (Formal))
2219            then
2220               Add_Simple_Call_By_Copy_Code;
2221
2222            --  Similarly, we have to expand slices of packed arrays here
2223            --  because the result must be byte aligned.
2224
2225            elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2226               Add_Call_By_Copy_Code;
2227
2228            --  Only processing remaining is to pass by copy if this is a
2229            --  reference to a possibly unaligned slice, since the caller
2230            --  expects an appropriately aligned argument.
2231
2232            elsif Is_Possibly_Unaligned_Slice (Actual) then
2233               Add_Call_By_Copy_Code;
2234
2235            --  An unusual case: a current instance of an enclosing task can be
2236            --  an actual, and must be replaced by a reference to self.
2237
2238            elsif Is_Entity_Name (Actual)
2239              and then Is_Task_Type (Entity (Actual))
2240            then
2241               if In_Open_Scopes (Entity (Actual)) then
2242                  Rewrite (Actual,
2243                    (Make_Function_Call (Loc,
2244                       Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
2245                  Analyze (Actual);
2246
2247               --  A task type cannot otherwise appear as an actual
2248
2249               else
2250                  raise Program_Error;
2251               end if;
2252            end if;
2253         end if;
2254
2255         Next_Formal (Formal);
2256         Next_Actual (Actual);
2257      end loop;
2258   end Expand_Actuals;
2259
2260   -----------------
2261   -- Expand_Call --
2262   -----------------
2263
2264   procedure Expand_Call (N : Node_Id) is
2265      Post_Call : List_Id;
2266
2267   begin
2268      pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2269                                  N_Function_Call,
2270                                  N_Procedure_Call_Statement));
2271
2272      Expand_Call_Helper (N, Post_Call);
2273      Insert_Post_Call_Actions (N, Post_Call);
2274   end Expand_Call;
2275
2276   ------------------------
2277   -- Expand_Call_Helper --
2278   ------------------------
2279
2280   --  This procedure handles expansion of function calls and procedure call
2281   --  statements (i.e. it serves as the body for Expand_N_Function_Call and
2282   --  Expand_N_Procedure_Call_Statement). Processing for calls includes:
2283
2284   --    Replace call to Raise_Exception by Raise_Exception_Always if possible
2285   --    Provide values of actuals for all formals in Extra_Formals list
2286   --    Replace "call" to enumeration literal function by literal itself
2287   --    Rewrite call to predefined operator as operator
2288   --    Replace actuals to in-out parameters that are numeric conversions,
2289   --     with explicit assignment to temporaries before and after the call.
2290
2291   --   Note that the list of actuals has been filled with default expressions
2292   --   during semantic analysis of the call. Only the extra actuals required
2293   --   for the 'Constrained attribute and for accessibility checks are added
2294   --   at this point.
2295
2296   procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
2297      Loc           : constant Source_Ptr := Sloc (N);
2298      Call_Node     : Node_Id := N;
2299      Extra_Actuals : List_Id := No_List;
2300      Prev          : Node_Id := Empty;
2301
2302      procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2303      --  Adds one entry to the end of the actual parameter list. Used for
2304      --  default parameters and for extra actuals (for Extra_Formals). The
2305      --  argument is an N_Parameter_Association node.
2306
2307      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2308      --  Adds an extra actual to the list of extra actuals. Expr is the
2309      --  expression for the value of the actual, EF is the entity for the
2310      --  extra formal.
2311
2312      procedure Add_View_Conversion_Invariants
2313        (Formal : Entity_Id;
2314         Actual : Node_Id);
2315      --  Adds invariant checks for every intermediate type between the range
2316      --  of a view converted argument to its ancestor (from parent to child).
2317
2318      function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
2319      --  Within an instance, a type derived from an untagged formal derived
2320      --  type inherits from the original parent, not from the actual. The
2321      --  current derivation mechanism has the derived type inherit from the
2322      --  actual, which is only correct outside of the instance. If the
2323      --  subprogram is inherited, we test for this particular case through a
2324      --  convoluted tree traversal before setting the proper subprogram to be
2325      --  called.
2326
2327      function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2328      --  Return true if E comes from an instance that is not yet frozen
2329
2330      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2331      --  Determine if Subp denotes a non-dispatching call to a Deep routine
2332
2333      function New_Value (From : Node_Id) return Node_Id;
2334      --  From is the original Expression. New_Value is equivalent to a call
2335      --  to Duplicate_Subexpr with an explicit dereference when From is an
2336      --  access parameter.
2337
2338      --------------------------
2339      -- Add_Actual_Parameter --
2340      --------------------------
2341
2342      procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2343         Actual_Expr : constant Node_Id :=
2344                         Explicit_Actual_Parameter (Insert_Param);
2345
2346      begin
2347         --  Case of insertion is first named actual
2348
2349         if No (Prev) or else
2350            Nkind (Parent (Prev)) /= N_Parameter_Association
2351         then
2352            Set_Next_Named_Actual
2353              (Insert_Param, First_Named_Actual (Call_Node));
2354            Set_First_Named_Actual (Call_Node, Actual_Expr);
2355
2356            if No (Prev) then
2357               if No (Parameter_Associations (Call_Node)) then
2358                  Set_Parameter_Associations (Call_Node, New_List);
2359               end if;
2360
2361               Append (Insert_Param, Parameter_Associations (Call_Node));
2362
2363            else
2364               Insert_After (Prev, Insert_Param);
2365            end if;
2366
2367         --  Case of insertion is not first named actual
2368
2369         else
2370            Set_Next_Named_Actual
2371              (Insert_Param, Next_Named_Actual (Parent (Prev)));
2372            Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
2373            Append (Insert_Param, Parameter_Associations (Call_Node));
2374         end if;
2375
2376         Prev := Actual_Expr;
2377      end Add_Actual_Parameter;
2378
2379      ----------------------
2380      -- Add_Extra_Actual --
2381      ----------------------
2382
2383      procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2384         Loc : constant Source_Ptr := Sloc (Expr);
2385
2386      begin
2387         if Extra_Actuals = No_List then
2388            Extra_Actuals := New_List;
2389            Set_Parent (Extra_Actuals, Call_Node);
2390         end if;
2391
2392         Append_To (Extra_Actuals,
2393           Make_Parameter_Association (Loc,
2394             Selector_Name             => New_Occurrence_Of (EF, Loc),
2395             Explicit_Actual_Parameter => Expr));
2396
2397         Analyze_And_Resolve (Expr, Etype (EF));
2398
2399         if Nkind (Call_Node) = N_Function_Call then
2400            Set_Is_Accessibility_Actual (Parent (Expr));
2401         end if;
2402      end Add_Extra_Actual;
2403
2404      ------------------------------------
2405      -- Add_View_Conversion_Invariants --
2406      ------------------------------------
2407
2408      procedure Add_View_Conversion_Invariants
2409        (Formal : Entity_Id;
2410         Actual : Node_Id)
2411      is
2412         Arg        : Entity_Id;
2413         Curr_Typ   : Entity_Id;
2414         Inv_Checks : List_Id;
2415         Par_Typ    : Entity_Id;
2416
2417      begin
2418         Inv_Checks := No_List;
2419
2420         --  Extract the argument from a potentially nested set of view
2421         --  conversions.
2422
2423         Arg := Actual;
2424         while Nkind (Arg) = N_Type_Conversion loop
2425            Arg := Expression (Arg);
2426         end loop;
2427
2428         --  Move up the derivation chain starting with the type of the formal
2429         --  parameter down to the type of the actual object.
2430
2431         Curr_Typ := Empty;
2432         Par_Typ  := Etype (Arg);
2433         while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2434            Curr_Typ := Par_Typ;
2435
2436            if Has_Invariants (Curr_Typ)
2437              and then Present (Invariant_Procedure (Curr_Typ))
2438            then
2439               --  Verify the invariate of the current type. Generate:
2440
2441               --    <Curr_Typ>Invariant (Curr_Typ (Arg));
2442
2443               Prepend_New_To (Inv_Checks,
2444                 Make_Procedure_Call_Statement (Loc,
2445                   Name                   =>
2446                     New_Occurrence_Of
2447                       (Invariant_Procedure (Curr_Typ), Loc),
2448                   Parameter_Associations => New_List (
2449                     Make_Type_Conversion (Loc,
2450                       Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2451                       Expression   => New_Copy_Tree (Arg)))));
2452            end if;
2453
2454            Par_Typ := Base_Type (Etype (Curr_Typ));
2455         end loop;
2456
2457         if not Is_Empty_List (Inv_Checks) then
2458            Insert_Actions_After (N, Inv_Checks);
2459         end if;
2460      end Add_View_Conversion_Invariants;
2461
2462      ---------------------------
2463      -- Inherited_From_Formal --
2464      ---------------------------
2465
2466      function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2467         Par      : Entity_Id;
2468         Gen_Par  : Entity_Id;
2469         Gen_Prim : Elist_Id;
2470         Elmt     : Elmt_Id;
2471         Indic    : Node_Id;
2472
2473      begin
2474         --  If the operation is inherited, it is attached to the corresponding
2475         --  type derivation. If the parent in the derivation is a generic
2476         --  actual, it is a subtype of the actual, and we have to recover the
2477         --  original derived type declaration to find the proper parent.
2478
2479         if Nkind (Parent (S)) /= N_Full_Type_Declaration
2480           or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2481           or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2482                                                   N_Derived_Type_Definition
2483           or else not In_Instance
2484         then
2485            return Empty;
2486
2487         else
2488            Indic :=
2489              Subtype_Indication
2490                (Type_Definition (Original_Node (Parent (S))));
2491
2492            if Nkind (Indic) = N_Subtype_Indication then
2493               Par := Entity (Subtype_Mark (Indic));
2494            else
2495               Par := Entity (Indic);
2496            end if;
2497         end if;
2498
2499         if not Is_Generic_Actual_Type (Par)
2500           or else Is_Tagged_Type (Par)
2501           or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2502           or else not In_Open_Scopes (Scope (Par))
2503         then
2504            return Empty;
2505         else
2506            Gen_Par := Generic_Parent_Type (Parent (Par));
2507         end if;
2508
2509         --  If the actual has no generic parent type, the formal is not
2510         --  a formal derived type, so nothing to inherit.
2511
2512         if No (Gen_Par) then
2513            return Empty;
2514         end if;
2515
2516         --  If the generic parent type is still the generic type, this is a
2517         --  private formal, not a derived formal, and there are no operations
2518         --  inherited from the formal.
2519
2520         if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2521            return Empty;
2522         end if;
2523
2524         Gen_Prim := Collect_Primitive_Operations (Gen_Par);
2525
2526         Elmt := First_Elmt (Gen_Prim);
2527         while Present (Elmt) loop
2528            if Chars (Node (Elmt)) = Chars (S) then
2529               declare
2530                  F1 : Entity_Id;
2531                  F2 : Entity_Id;
2532
2533               begin
2534                  F1 := First_Formal (S);
2535                  F2 := First_Formal (Node (Elmt));
2536                  while Present (F1)
2537                    and then Present (F2)
2538                  loop
2539                     if Etype (F1) = Etype (F2)
2540                       or else Etype (F2) = Gen_Par
2541                     then
2542                        Next_Formal (F1);
2543                        Next_Formal (F2);
2544                     else
2545                        Next_Elmt (Elmt);
2546                        exit;   --  not the right subprogram
2547                     end if;
2548
2549                     return Node (Elmt);
2550                  end loop;
2551               end;
2552
2553            else
2554               Next_Elmt (Elmt);
2555            end if;
2556         end loop;
2557
2558         raise Program_Error;
2559      end Inherited_From_Formal;
2560
2561      --------------------------
2562      -- In_Unfrozen_Instance --
2563      --------------------------
2564
2565      function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
2566         S : Entity_Id;
2567
2568      begin
2569         S := E;
2570         while Present (S) and then S /= Standard_Standard loop
2571            if Is_Generic_Instance (S)
2572              and then Present (Freeze_Node (S))
2573              and then not Analyzed (Freeze_Node (S))
2574            then
2575               return True;
2576            end if;
2577
2578            S := Scope (S);
2579         end loop;
2580
2581         return False;
2582      end In_Unfrozen_Instance;
2583
2584      -------------------------
2585      -- Is_Direct_Deep_Call --
2586      -------------------------
2587
2588      function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2589      begin
2590         if Is_TSS (Subp, TSS_Deep_Adjust)
2591           or else Is_TSS (Subp, TSS_Deep_Finalize)
2592           or else Is_TSS (Subp, TSS_Deep_Initialize)
2593         then
2594            declare
2595               Actual : Node_Id;
2596               Formal : Node_Id;
2597
2598            begin
2599               Actual := First (Parameter_Associations (N));
2600               Formal := First_Formal (Subp);
2601               while Present (Actual)
2602                 and then Present (Formal)
2603               loop
2604                  if Nkind (Actual) = N_Identifier
2605                    and then Is_Controlling_Actual (Actual)
2606                    and then Etype (Actual) = Etype (Formal)
2607                  then
2608                     return True;
2609                  end if;
2610
2611                  Next (Actual);
2612                  Next_Formal (Formal);
2613               end loop;
2614            end;
2615         end if;
2616
2617         return False;
2618      end Is_Direct_Deep_Call;
2619
2620      ---------------
2621      -- New_Value --
2622      ---------------
2623
2624      function New_Value (From : Node_Id) return Node_Id is
2625         Res : constant Node_Id := Duplicate_Subexpr (From);
2626      begin
2627         if Is_Access_Type (Etype (From)) then
2628            return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
2629         else
2630            return Res;
2631         end if;
2632      end New_Value;
2633
2634      --  Local variables
2635
2636      Remote        : constant Boolean := Is_Remote_Call (Call_Node);
2637      Actual        : Node_Id;
2638      Formal        : Entity_Id;
2639      Orig_Subp     : Entity_Id := Empty;
2640      Param_Count   : Natural := 0;
2641      Parent_Formal : Entity_Id;
2642      Parent_Subp   : Entity_Id;
2643      Pref_Entity   : Entity_Id;
2644      Scop          : Entity_Id;
2645      Subp          : Entity_Id;
2646
2647      Prev_Orig : Node_Id;
2648      --  Original node for an actual, which may have been rewritten. If the
2649      --  actual is a function call that has been transformed from a selected
2650      --  component, the original node is unanalyzed. Otherwise, it carries
2651      --  semantic information used to generate additional actuals.
2652
2653      CW_Interface_Formals_Present : Boolean := False;
2654
2655   --  Start of processing for Expand_Call_Helper
2656
2657   begin
2658      Post_Call := New_List;
2659
2660      --  Expand the function or procedure call if the first actual has a
2661      --  declared dimension aspect, and the subprogram is declared in one
2662      --  of the dimension I/O packages.
2663
2664      if Ada_Version >= Ada_2012
2665        and then
2666           Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
2667        and then Present (Parameter_Associations (Call_Node))
2668      then
2669         Expand_Put_Call_With_Symbol (Call_Node);
2670      end if;
2671
2672      --  Ignore if previous error
2673
2674      if Nkind (Call_Node) in N_Has_Etype
2675        and then Etype (Call_Node) = Any_Type
2676      then
2677         return;
2678      end if;
2679
2680      --  Call using access to subprogram with explicit dereference
2681
2682      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2683         Subp        := Etype (Name (Call_Node));
2684         Parent_Subp := Empty;
2685
2686      --  Case of call to simple entry, where the Name is a selected component
2687      --  whose prefix is the task, and whose selector name is the entry name
2688
2689      elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2690         Subp        := Entity (Selector_Name (Name (Call_Node)));
2691         Parent_Subp := Empty;
2692
2693      --  Case of call to member of entry family, where Name is an indexed
2694      --  component, with the prefix being a selected component giving the
2695      --  task and entry family name, and the index being the entry index.
2696
2697      elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2698         Subp        := Entity (Selector_Name (Prefix (Name (Call_Node))));
2699         Parent_Subp := Empty;
2700
2701      --  Normal case
2702
2703      else
2704         Subp        := Entity (Name (Call_Node));
2705         Parent_Subp := Alias (Subp);
2706
2707         --  Replace call to Raise_Exception by call to Raise_Exception_Always
2708         --  if we can tell that the first parameter cannot possibly be null.
2709         --  This improves efficiency by avoiding a run-time test.
2710
2711         --  We do not do this if Raise_Exception_Always does not exist, which
2712         --  can happen in configurable run time profiles which provide only a
2713         --  Raise_Exception.
2714
2715         if Is_RTE (Subp, RE_Raise_Exception)
2716           and then RTE_Available (RE_Raise_Exception_Always)
2717         then
2718            declare
2719               FA : constant Node_Id :=
2720                      Original_Node (First_Actual (Call_Node));
2721
2722            begin
2723               --  The case we catch is where the first argument is obtained
2724               --  using the Identity attribute (which must always be
2725               --  non-null).
2726
2727               if Nkind (FA) = N_Attribute_Reference
2728                 and then Attribute_Name (FA) = Name_Identity
2729               then
2730                  Subp := RTE (RE_Raise_Exception_Always);
2731                  Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
2732               end if;
2733            end;
2734         end if;
2735
2736         if Ekind (Subp) = E_Entry then
2737            Parent_Subp := Empty;
2738         end if;
2739      end if;
2740
2741      --  Ada 2005 (AI-345): We have a procedure call as a triggering
2742      --  alternative in an asynchronous select or as an entry call in
2743      --  a conditional or timed select. Check whether the procedure call
2744      --  is a renaming of an entry and rewrite it as an entry call.
2745
2746      if Ada_Version >= Ada_2005
2747        and then Nkind (Call_Node) = N_Procedure_Call_Statement
2748        and then
2749           ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
2750              and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
2751          or else
2752            (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
2753              and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
2754      then
2755         declare
2756            Ren_Decl : Node_Id;
2757            Ren_Root : Entity_Id := Subp;
2758
2759         begin
2760            --  This may be a chain of renamings, find the root
2761
2762            if Present (Alias (Ren_Root)) then
2763               Ren_Root := Alias (Ren_Root);
2764            end if;
2765
2766            if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2767               Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2768
2769               if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
2770                  Rewrite (Call_Node,
2771                    Make_Entry_Call_Statement (Loc,
2772                      Name =>
2773                        New_Copy_Tree (Name (Ren_Decl)),
2774                      Parameter_Associations =>
2775                        New_Copy_List_Tree
2776                          (Parameter_Associations (Call_Node))));
2777
2778                  return;
2779               end if;
2780            end if;
2781         end;
2782      end if;
2783
2784      if Modify_Tree_For_C
2785        and then Nkind (Call_Node) = N_Function_Call
2786        and then Is_Entity_Name (Name (Call_Node))
2787      then
2788         declare
2789            Func_Id : constant Entity_Id :=
2790                        Ultimate_Alias (Entity (Name (Call_Node)));
2791         begin
2792            --  When generating C code, transform a function call that returns
2793            --  a constrained array type into procedure form.
2794
2795            if Rewritten_For_C (Func_Id) then
2796
2797               --  For internally generated calls ensure that they reference
2798               --  the entity of the spec of the called function (needed since
2799               --  the expander may generate calls using the entity of their
2800               --  body). See for example Expand_Boolean_Operator().
2801
2802               if not (Comes_From_Source (Call_Node))
2803                 and then Nkind (Unit_Declaration_Node (Func_Id)) =
2804                            N_Subprogram_Body
2805               then
2806                  Set_Entity (Name (Call_Node),
2807                    Corresponding_Function
2808                      (Corresponding_Procedure (Func_Id)));
2809               end if;
2810
2811               Rewrite_Function_Call_For_C (Call_Node);
2812               return;
2813
2814            --  Also introduce a temporary for functions that return a record
2815            --  called within another procedure or function call, since records
2816            --  are passed by pointer in the generated C code, and we cannot
2817            --  take a pointer from a subprogram call.
2818
2819            elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
2820              and then Is_Record_Type (Etype (Func_Id))
2821            then
2822               declare
2823                  Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
2824                  Decl    : Node_Id;
2825
2826               begin
2827                  --  Generate:
2828                  --    Temp : ... := Func_Call (...);
2829
2830                  Decl :=
2831                    Make_Object_Declaration (Loc,
2832                      Defining_Identifier => Temp_Id,
2833                      Object_Definition   =>
2834                        New_Occurrence_Of (Etype (Func_Id), Loc),
2835                      Expression          =>
2836                        Make_Function_Call (Loc,
2837                          Name                   =>
2838                            New_Occurrence_Of (Func_Id, Loc),
2839                          Parameter_Associations =>
2840                            Parameter_Associations (Call_Node)));
2841
2842                  Insert_Action (Parent (Call_Node), Decl);
2843                  Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
2844                  return;
2845               end;
2846            end if;
2847         end;
2848      end if;
2849
2850      --  First step, compute extra actuals, corresponding to any Extra_Formals
2851      --  present. Note that we do not access Extra_Formals directly, instead
2852      --  we simply note the presence of the extra formals as we process the
2853      --  regular formals collecting corresponding actuals in Extra_Actuals.
2854
2855      --  We also generate any required range checks for actuals for in formals
2856      --  as we go through the loop, since this is a convenient place to do it.
2857      --  (Though it seems that this would be better done in Expand_Actuals???)
2858
2859      --  Special case: Thunks must not compute the extra actuals; they must
2860      --  just propagate to the target primitive their extra actuals.
2861
2862      if Is_Thunk (Current_Scope)
2863        and then Thunk_Entity (Current_Scope) = Subp
2864        and then Present (Extra_Formals (Subp))
2865      then
2866         pragma Assert (Present (Extra_Formals (Current_Scope)));
2867
2868         declare
2869            Target_Formal : Entity_Id;
2870            Thunk_Formal  : Entity_Id;
2871
2872         begin
2873            Target_Formal := Extra_Formals (Subp);
2874            Thunk_Formal  := Extra_Formals (Current_Scope);
2875            while Present (Target_Formal) loop
2876               Add_Extra_Actual
2877                 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
2878                  EF   => Thunk_Formal);
2879
2880               Target_Formal := Extra_Formal (Target_Formal);
2881               Thunk_Formal  := Extra_Formal (Thunk_Formal);
2882            end loop;
2883
2884            while Is_Non_Empty_List (Extra_Actuals) loop
2885               Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2886            end loop;
2887
2888            Expand_Actuals (Call_Node, Subp, Post_Call);
2889            pragma Assert (Is_Empty_List (Post_Call));
2890            return;
2891         end;
2892      end if;
2893
2894      Formal := First_Formal (Subp);
2895      Actual := First_Actual (Call_Node);
2896      Param_Count := 1;
2897      while Present (Formal) loop
2898
2899         --  Generate range check if required
2900
2901         if Do_Range_Check (Actual)
2902           and then Ekind (Formal) = E_In_Parameter
2903         then
2904            Generate_Range_Check
2905              (Actual, Etype (Formal), CE_Range_Check_Failed);
2906         end if;
2907
2908         --  Prepare to examine current entry
2909
2910         Prev := Actual;
2911         Prev_Orig := Original_Node (Prev);
2912
2913         --  Ada 2005 (AI-251): Check if any formal is a class-wide interface
2914         --  to expand it in a further round.
2915
2916         CW_Interface_Formals_Present :=
2917           CW_Interface_Formals_Present
2918             or else
2919               (Is_Class_Wide_Type (Etype (Formal))
2920                 and then Is_Interface (Etype (Etype (Formal))))
2921             or else
2922               (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2923                 and then Is_Class_Wide_Type (Directly_Designated_Type
2924                                               (Etype (Etype (Formal))))
2925                 and then Is_Interface (Directly_Designated_Type
2926                                         (Etype (Etype (Formal)))));
2927
2928         --  Create possible extra actual for constrained case. Usually, the
2929         --  extra actual is of the form actual'constrained, but since this
2930         --  attribute is only available for unconstrained records, TRUE is
2931         --  expanded if the type of the formal happens to be constrained (for
2932         --  instance when this procedure is inherited from an unconstrained
2933         --  record to a constrained one) or if the actual has no discriminant
2934         --  (its type is constrained). An exception to this is the case of a
2935         --  private type without discriminants. In this case we pass FALSE
2936         --  because the object has underlying discriminants with defaults.
2937
2938         if Present (Extra_Constrained (Formal)) then
2939            if Ekind (Etype (Prev)) in Private_Kind
2940              and then not Has_Discriminants (Base_Type (Etype (Prev)))
2941            then
2942               Add_Extra_Actual
2943                 (Expr => New_Occurrence_Of (Standard_False, Loc),
2944                  EF   => Extra_Constrained (Formal));
2945
2946            elsif Is_Constrained (Etype (Formal))
2947              or else not Has_Discriminants (Etype (Prev))
2948            then
2949               Add_Extra_Actual
2950                 (Expr => New_Occurrence_Of (Standard_True, Loc),
2951                  EF   => Extra_Constrained (Formal));
2952
2953            --  Do not produce extra actuals for Unchecked_Union parameters.
2954            --  Jump directly to the end of the loop.
2955
2956            elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2957               goto Skip_Extra_Actual_Generation;
2958
2959            else
2960               --  If the actual is a type conversion, then the constrained
2961               --  test applies to the actual, not the target type.
2962
2963               declare
2964                  Act_Prev : Node_Id;
2965
2966               begin
2967                  --  Test for unchecked conversions as well, which can occur
2968                  --  as out parameter actuals on calls to stream procedures.
2969
2970                  Act_Prev := Prev;
2971                  while Nkind_In (Act_Prev, N_Type_Conversion,
2972                                            N_Unchecked_Type_Conversion)
2973                  loop
2974                     Act_Prev := Expression (Act_Prev);
2975                  end loop;
2976
2977                  --  If the expression is a conversion of a dereference, this
2978                  --  is internally generated code that manipulates addresses,
2979                  --  e.g. when building interface tables. No check should
2980                  --  occur in this case, and the discriminated object is not
2981                  --  directly a hand.
2982
2983                  if not Comes_From_Source (Actual)
2984                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
2985                    and then Nkind (Act_Prev) = N_Explicit_Dereference
2986                  then
2987                     Add_Extra_Actual
2988                       (Expr => New_Occurrence_Of (Standard_False, Loc),
2989                        EF   => Extra_Constrained (Formal));
2990
2991                  else
2992                     Add_Extra_Actual
2993                       (Expr =>
2994                          Make_Attribute_Reference (Sloc (Prev),
2995                            Prefix         =>
2996                              Duplicate_Subexpr_No_Checks
2997                                (Act_Prev, Name_Req => True),
2998                            Attribute_Name => Name_Constrained),
2999                        EF   => Extra_Constrained (Formal));
3000                  end if;
3001               end;
3002            end if;
3003         end if;
3004
3005         --  Create possible extra actual for accessibility level
3006
3007         if Present (Extra_Accessibility (Formal)) then
3008
3009            --  Ada 2005 (AI-252): If the actual was rewritten as an Access
3010            --  attribute, then the original actual may be an aliased object
3011            --  occurring as the prefix in a call using "Object.Operation"
3012            --  notation. In that case we must pass the level of the object,
3013            --  so Prev_Orig is reset to Prev and the attribute will be
3014            --  processed by the code for Access attributes further below.
3015
3016            if Prev_Orig /= Prev
3017              and then Nkind (Prev) = N_Attribute_Reference
3018              and then Get_Attribute_Id (Attribute_Name (Prev)) =
3019                         Attribute_Access
3020              and then Is_Aliased_View (Prev_Orig)
3021            then
3022               Prev_Orig := Prev;
3023
3024            --  A class-wide precondition generates a test in which formals of
3025            --  the subprogram are replaced by actuals that came from source.
3026            --  In that case as well, the accessiblity comes from the actual.
3027            --  This is the one case in which there are references to formals
3028            --  outside of their subprogram.
3029
3030            elsif Prev_Orig /= Prev
3031              and then Is_Entity_Name (Prev_Orig)
3032              and then Present (Entity (Prev_Orig))
3033              and then Is_Formal (Entity (Prev_Orig))
3034              and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3035            then
3036               Prev_Orig := Prev;
3037
3038            --  If the actual is a formal of an enclosing subprogram it is
3039            --  the right entity, even if it is a rewriting. This happens
3040            --  when the call is within an inherited condition or predicate.
3041
3042            elsif Is_Entity_Name (Actual)
3043              and then Is_Formal (Entity (Actual))
3044              and then In_Open_Scopes (Scope (Entity (Actual)))
3045            then
3046               Prev_Orig := Prev;
3047
3048            elsif Nkind (Prev_Orig) = N_Type_Conversion then
3049               Prev_Orig := Expression (Prev_Orig);
3050            end if;
3051
3052            --  Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3053            --  accessibility levels.
3054
3055            if Is_Thunk (Current_Scope) then
3056               declare
3057                  Parm_Ent : Entity_Id;
3058
3059               begin
3060                  if Is_Controlling_Actual (Actual) then
3061
3062                     --  Find the corresponding actual of the thunk
3063
3064                     Parm_Ent := First_Entity (Current_Scope);
3065                     for J in 2 .. Param_Count loop
3066                        Next_Entity (Parm_Ent);
3067                     end loop;
3068
3069                  --  Handle unchecked conversion of access types generated
3070                  --  in thunks (cf. Expand_Interface_Thunk).
3071
3072                  elsif Is_Access_Type (Etype (Actual))
3073                    and then Nkind (Actual) = N_Unchecked_Type_Conversion
3074                  then
3075                     Parm_Ent := Entity (Expression (Actual));
3076
3077                  else pragma Assert (Is_Entity_Name (Actual));
3078                     Parm_Ent := Entity (Actual);
3079                  end if;
3080
3081                  Add_Extra_Actual
3082                    (Expr =>
3083                       New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
3084                     EF   => Extra_Accessibility (Formal));
3085               end;
3086
3087            elsif Is_Entity_Name (Prev_Orig) then
3088
3089               --  When passing an access parameter, or a renaming of an access
3090               --  parameter, as the actual to another access parameter we need
3091               --  to pass along the actual's own access level parameter. This
3092               --  is done if we are within the scope of the formal access
3093               --  parameter (if this is an inlined body the extra formal is
3094               --  irrelevant).
3095
3096               if (Is_Formal (Entity (Prev_Orig))
3097                    or else
3098                      (Present (Renamed_Object (Entity (Prev_Orig)))
3099                        and then
3100                          Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3101                        and then
3102                          Is_Formal
3103                            (Entity (Renamed_Object (Entity (Prev_Orig))))))
3104                 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3105                 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3106               then
3107                  declare
3108                     Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3109
3110                  begin
3111                     pragma Assert (Present (Parm_Ent));
3112
3113                     if Present (Extra_Accessibility (Parm_Ent)) then
3114                        Add_Extra_Actual
3115                          (Expr =>
3116                             New_Occurrence_Of
3117                               (Extra_Accessibility (Parm_Ent), Loc),
3118                           EF   => Extra_Accessibility (Formal));
3119
3120                     --  If the actual access parameter does not have an
3121                     --  associated extra formal providing its scope level,
3122                     --  then treat the actual as having library-level
3123                     --  accessibility.
3124
3125                     else
3126                        Add_Extra_Actual
3127                          (Expr =>
3128                             Make_Integer_Literal (Loc,
3129                               Intval => Scope_Depth (Standard_Standard)),
3130                           EF   => Extra_Accessibility (Formal));
3131                     end if;
3132                  end;
3133
3134               --  The actual is a normal access value, so just pass the level
3135               --  of the actual's access type.
3136
3137               else
3138                  Add_Extra_Actual
3139                    (Expr => Dynamic_Accessibility_Level (Prev_Orig),
3140                     EF   => Extra_Accessibility (Formal));
3141               end if;
3142
3143            --  If the actual is an access discriminant, then pass the level
3144            --  of the enclosing object (RM05-3.10.2(12.4/2)).
3145
3146            elsif Nkind (Prev_Orig) = N_Selected_Component
3147              and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3148                                                       E_Discriminant
3149              and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3150                                                       E_Anonymous_Access_Type
3151            then
3152               Add_Extra_Actual
3153                 (Expr =>
3154                    Make_Integer_Literal (Loc,
3155                      Intval => Object_Access_Level (Prefix (Prev_Orig))),
3156                  EF   => Extra_Accessibility (Formal));
3157
3158            --  All other cases
3159
3160            else
3161               case Nkind (Prev_Orig) is
3162                  when N_Attribute_Reference =>
3163                     case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
3164
3165                        --  For X'Access, pass on the level of the prefix X
3166
3167                        when Attribute_Access =>
3168
3169                           --  Accessibility level of S'Access is that of A
3170
3171                           Prev_Orig := Prefix (Prev_Orig);
3172
3173                           --  If the expression is a view conversion, the
3174                           --  accessibility level is that of the expression.
3175
3176                           if Nkind (Original_Node (Prev_Orig)) =
3177                                N_Type_Conversion
3178                             and then
3179                               Nkind (Expression (Original_Node (Prev_Orig))) =
3180                                 N_Explicit_Dereference
3181                           then
3182                              Prev_Orig :=
3183                                Expression (Original_Node (Prev_Orig));
3184                           end if;
3185
3186                           --  If this is an Access attribute applied to the
3187                           --  the current instance object passed to a type
3188                           --  initialization procedure, then use the level
3189                           --  of the type itself. This is not really correct,
3190                           --  as there should be an extra level parameter
3191                           --  passed in with _init formals (only in the case
3192                           --  where the type is immutably limited), but we
3193                           --  don't have an easy way currently to create such
3194                           --  an extra formal (init procs aren't ever frozen).
3195                           --  For now we just use the level of the type,
3196                           --  which may be too shallow, but that works better
3197                           --  than passing Object_Access_Level of the type,
3198                           --  which can be one level too deep in some cases.
3199                           --  ???
3200
3201                           --  A further case that requires special handling
3202                           --  is the common idiom E.all'access.  If E is a
3203                           --  formal of the enclosing subprogram, the
3204                           --  accessibility of the expression is that of E.
3205
3206                           if Is_Entity_Name (Prev_Orig) then
3207                              Pref_Entity := Entity (Prev_Orig);
3208
3209                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3210                             and then Is_Entity_Name (Prefix (Prev_Orig))
3211                           then
3212                              Pref_Entity := Entity (Prefix ((Prev_Orig)));
3213
3214                           else
3215                              Pref_Entity := Empty;
3216                           end if;
3217
3218                           if Is_Entity_Name (Prev_Orig)
3219                             and then Is_Type (Entity (Prev_Orig))
3220                           then
3221                              Add_Extra_Actual
3222                                (Expr =>
3223                                   Make_Integer_Literal (Loc,
3224                                     Intval =>
3225                                       Type_Access_Level (Pref_Entity)),
3226                                 EF   => Extra_Accessibility (Formal));
3227
3228                           elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3229                             and then Present (Pref_Entity)
3230                             and then Is_Formal (Pref_Entity)
3231                             and then Present
3232                                        (Extra_Accessibility (Pref_Entity))
3233                           then
3234                              Add_Extra_Actual
3235                                (Expr =>
3236                                   New_Occurrence_Of
3237                                     (Extra_Accessibility (Pref_Entity), Loc),
3238                                 EF   => Extra_Accessibility (Formal));
3239
3240                           else
3241                              Add_Extra_Actual
3242                                (Expr =>
3243                                   Make_Integer_Literal (Loc,
3244                                     Intval =>
3245                                       Object_Access_Level (Prev_Orig)),
3246                                 EF   => Extra_Accessibility (Formal));
3247                           end if;
3248
3249                        --  Treat the unchecked attributes as library-level
3250
3251                        when Attribute_Unchecked_Access
3252                           | Attribute_Unrestricted_Access
3253                        =>
3254                           Add_Extra_Actual
3255                             (Expr =>
3256                                Make_Integer_Literal (Loc,
3257                                  Intval => Scope_Depth (Standard_Standard)),
3258                              EF   => Extra_Accessibility (Formal));
3259
3260                        --  No other cases of attributes returning access
3261                        --  values that can be passed to access parameters.
3262
3263                        when others =>
3264                           raise Program_Error;
3265
3266                     end case;
3267
3268                  --  For allocators we pass the level of the execution of the
3269                  --  called subprogram, which is one greater than the current
3270                  --  scope level.
3271
3272                  when N_Allocator =>
3273                     Add_Extra_Actual
3274                       (Expr =>
3275                          Make_Integer_Literal (Loc,
3276                            Intval => Scope_Depth (Current_Scope) + 1),
3277                        EF   => Extra_Accessibility (Formal));
3278
3279                  --  For most other cases we simply pass the level of the
3280                  --  actual's access type. The type is retrieved from
3281                  --  Prev rather than Prev_Orig, because in some cases
3282                  --  Prev_Orig denotes an original expression that has
3283                  --  not been analyzed.
3284
3285                  when others =>
3286                     Add_Extra_Actual
3287                       (Expr => Dynamic_Accessibility_Level (Prev),
3288                        EF   => Extra_Accessibility (Formal));
3289               end case;
3290            end if;
3291         end if;
3292
3293         --  Perform the check of 4.6(49) that prevents a null value from being
3294         --  passed as an actual to an access parameter. Note that the check
3295         --  is elided in the common cases of passing an access attribute or
3296         --  access parameter as an actual. Also, we currently don't enforce
3297         --  this check for expander-generated actuals and when -gnatdj is set.
3298
3299         if Ada_Version >= Ada_2005 then
3300
3301            --  Ada 2005 (AI-231): Check null-excluding access types. Note that
3302            --  the intent of 6.4.1(13) is that null-exclusion checks should
3303            --  not be done for 'out' parameters, even though it refers only
3304            --  to constraint checks, and a null_exclusion is not a constraint.
3305            --  Note that AI05-0196-1 corrects this mistake in the RM.
3306
3307            if Is_Access_Type (Etype (Formal))
3308              and then Can_Never_Be_Null (Etype (Formal))
3309              and then Ekind (Formal) /= E_Out_Parameter
3310              and then Nkind (Prev) /= N_Raise_Constraint_Error
3311              and then (Known_Null (Prev)
3312                         or else not Can_Never_Be_Null (Etype (Prev)))
3313            then
3314               Install_Null_Excluding_Check (Prev);
3315            end if;
3316
3317         --  Ada_Version < Ada_2005
3318
3319         else
3320            if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3321              or else Access_Checks_Suppressed (Subp)
3322            then
3323               null;
3324
3325            elsif Debug_Flag_J then
3326               null;
3327
3328            elsif not Comes_From_Source (Prev) then
3329               null;
3330
3331            elsif Is_Entity_Name (Prev)
3332              and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3333            then
3334               null;
3335
3336            elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
3337               null;
3338
3339            else
3340               Install_Null_Excluding_Check (Prev);
3341            end if;
3342         end if;
3343
3344         --  Perform appropriate validity checks on parameters that
3345         --  are entities.
3346
3347         if Validity_Checks_On then
3348            if  (Ekind (Formal) = E_In_Parameter
3349                  and then Validity_Check_In_Params)
3350              or else
3351                (Ekind (Formal) = E_In_Out_Parameter
3352                  and then Validity_Check_In_Out_Params)
3353            then
3354               --  If the actual is an indexed component of a packed type (or
3355               --  is an indexed or selected component whose prefix recursively
3356               --  meets this condition), it has not been expanded yet. It will
3357               --  be copied in the validity code that follows, and has to be
3358               --  expanded appropriately, so reanalyze it.
3359
3360               --  What we do is just to unset analyzed bits on prefixes till
3361               --  we reach something that does not have a prefix.
3362
3363               declare
3364                  Nod : Node_Id;
3365
3366               begin
3367                  Nod := Actual;
3368                  while Nkind_In (Nod, N_Indexed_Component,
3369                                       N_Selected_Component)
3370                  loop
3371                     Set_Analyzed (Nod, False);
3372                     Nod := Prefix (Nod);
3373                  end loop;
3374               end;
3375
3376               Ensure_Valid (Actual);
3377            end if;
3378         end if;
3379
3380         --  For IN OUT and OUT parameters, ensure that subscripts are valid
3381         --  since this is a left side reference. We only do this for calls
3382         --  from the source program since we assume that compiler generated
3383         --  calls explicitly generate any required checks. We also need it
3384         --  only if we are doing standard validity checks, since clearly it is
3385         --  not needed if validity checks are off, and in subscript validity
3386         --  checking mode, all indexed components are checked with a call
3387         --  directly from Expand_N_Indexed_Component.
3388
3389         if Comes_From_Source (Call_Node)
3390           and then Ekind (Formal) /= E_In_Parameter
3391           and then Validity_Checks_On
3392           and then Validity_Check_Default
3393           and then not Validity_Check_Subscripts
3394         then
3395            Check_Valid_Lvalue_Subscripts (Actual);
3396         end if;
3397
3398         --  Mark any scalar OUT parameter that is a simple variable as no
3399         --  longer known to be valid (unless the type is always valid). This
3400         --  reflects the fact that if an OUT parameter is never set in a
3401         --  procedure, then it can become invalid on the procedure return.
3402
3403         if Ekind (Formal) = E_Out_Parameter
3404           and then Is_Entity_Name (Actual)
3405           and then Ekind (Entity (Actual)) = E_Variable
3406           and then not Is_Known_Valid (Etype (Actual))
3407         then
3408            Set_Is_Known_Valid (Entity (Actual), False);
3409         end if;
3410
3411         --  For an OUT or IN OUT parameter, if the actual is an entity, then
3412         --  clear current values, since they can be clobbered. We are probably
3413         --  doing this in more places than we need to, but better safe than
3414         --  sorry when it comes to retaining bad current values.
3415
3416         if Ekind (Formal) /= E_In_Parameter
3417           and then Is_Entity_Name (Actual)
3418           and then Present (Entity (Actual))
3419         then
3420            declare
3421               Ent : constant Entity_Id := Entity (Actual);
3422               Sav : Node_Id;
3423
3424            begin
3425               --  For an OUT or IN OUT parameter that is an assignable entity,
3426               --  we do not want to clobber the Last_Assignment field, since
3427               --  if it is set, it was precisely because it is indeed an OUT
3428               --  or IN OUT parameter. We do reset the Is_Known_Valid flag
3429               --  since the subprogram could have returned in invalid value.
3430
3431               if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
3432                 and then Is_Assignable (Ent)
3433               then
3434                  Sav := Last_Assignment (Ent);
3435                  Kill_Current_Values (Ent);
3436                  Set_Last_Assignment (Ent, Sav);
3437                  Set_Is_Known_Valid (Ent, False);
3438
3439               --  For all other cases, just kill the current values
3440
3441               else
3442                  Kill_Current_Values (Ent);
3443               end if;
3444            end;
3445         end if;
3446
3447         --  If the formal is class wide and the actual is an aggregate, force
3448         --  evaluation so that the back end who does not know about class-wide
3449         --  type, does not generate a temporary of the wrong size.
3450
3451         if not Is_Class_Wide_Type (Etype (Formal)) then
3452            null;
3453
3454         elsif Nkind (Actual) = N_Aggregate
3455           or else (Nkind (Actual) = N_Qualified_Expression
3456                     and then Nkind (Expression (Actual)) = N_Aggregate)
3457         then
3458            Force_Evaluation (Actual);
3459         end if;
3460
3461         --  In a remote call, if the formal is of a class-wide type, check
3462         --  that the actual meets the requirements described in E.4(18).
3463
3464         if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
3465            Insert_Action (Actual,
3466              Make_Transportable_Check (Loc,
3467                Duplicate_Subexpr_Move_Checks (Actual)));
3468         end if;
3469
3470         --  Perform invariant checks for all intermediate types in a view
3471         --  conversion after successful return from a call that passes the
3472         --  view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3473         --  13/3, 14/3)). Consider only source conversion in order to avoid
3474         --  generating spurious checks on complex expansion such as object
3475         --  initialization through an extension aggregate.
3476
3477         if Comes_From_Source (N)
3478           and then Ekind (Formal) /= E_In_Parameter
3479           and then Nkind (Actual) = N_Type_Conversion
3480         then
3481            Add_View_Conversion_Invariants (Formal, Actual);
3482         end if;
3483
3484         --  Generating C the initialization of an allocator is performed by
3485         --  means of individual statements, and hence it must be done before
3486         --  the call.
3487
3488         if Modify_Tree_For_C
3489           and then Nkind (Actual) = N_Allocator
3490           and then Nkind (Expression (Actual)) = N_Qualified_Expression
3491         then
3492            Remove_Side_Effects (Actual);
3493         end if;
3494
3495         --  This label is required when skipping extra actual generation for
3496         --  Unchecked_Union parameters.
3497
3498         <<Skip_Extra_Actual_Generation>>
3499
3500         Param_Count := Param_Count + 1;
3501         Next_Actual (Actual);
3502         Next_Formal (Formal);
3503      end loop;
3504
3505      --  If we are calling an Ada 2012 function which needs to have the
3506      --  "accessibility level determined by the point of call" (AI05-0234)
3507      --  passed in to it, then pass it in.
3508
3509      if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
3510        and then
3511          Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
3512      then
3513         declare
3514            Ancestor : Node_Id := Parent (Call_Node);
3515            Level    : Node_Id := Empty;
3516            Defer    : Boolean := False;
3517
3518         begin
3519            --  Unimplemented: if Subp returns an anonymous access type, then
3520
3521            --    a) if the call is the operand of an explict conversion, then
3522            --       the target type of the conversion (a named access type)
3523            --       determines the accessibility level pass in;
3524
3525            --    b) if the call defines an access discriminant of an object
3526            --       (e.g., the discriminant of an object being created by an
3527            --       allocator, or the discriminant of a function result),
3528            --       then the accessibility level to pass in is that of the
3529            --       discriminated object being initialized).
3530
3531            --  ???
3532
3533            while Nkind (Ancestor) = N_Qualified_Expression
3534            loop
3535               Ancestor := Parent (Ancestor);
3536            end loop;
3537
3538            case Nkind (Ancestor) is
3539               when N_Allocator =>
3540
3541                  --  At this point, we'd like to assign
3542
3543                  --    Level := Dynamic_Accessibility_Level (Ancestor);
3544
3545                  --  but Etype of Ancestor may not have been set yet,
3546                  --  so that doesn't work.
3547
3548                  --  Handle this later in Expand_Allocator_Expression.
3549
3550                  Defer := True;
3551
3552               when N_Object_Declaration
3553                  | N_Object_Renaming_Declaration
3554               =>
3555                  declare
3556                     Def_Id : constant Entity_Id :=
3557                                Defining_Identifier (Ancestor);
3558
3559                  begin
3560                     if Is_Return_Object (Def_Id) then
3561                        if Present (Extra_Accessibility_Of_Result
3562                                     (Return_Applies_To (Scope (Def_Id))))
3563                        then
3564                           --  Pass along value that was passed in if the
3565                           --  routine we are returning from also has an
3566                           --  Accessibility_Of_Result formal.
3567
3568                           Level :=
3569                             New_Occurrence_Of
3570                              (Extra_Accessibility_Of_Result
3571                                (Return_Applies_To (Scope (Def_Id))), Loc);
3572                        end if;
3573                     else
3574                        Level :=
3575                          Make_Integer_Literal (Loc,
3576                            Intval => Object_Access_Level (Def_Id));
3577                     end if;
3578                  end;
3579
3580               when N_Simple_Return_Statement =>
3581                  if Present (Extra_Accessibility_Of_Result
3582                               (Return_Applies_To
3583                                 (Return_Statement_Entity (Ancestor))))
3584                  then
3585                     --  Pass along value that was passed in if the returned
3586                     --  routine also has an Accessibility_Of_Result formal.
3587
3588                     Level :=
3589                       New_Occurrence_Of
3590                         (Extra_Accessibility_Of_Result
3591                           (Return_Applies_To
3592                             (Return_Statement_Entity (Ancestor))), Loc);
3593                  end if;
3594
3595               when others =>
3596                  null;
3597            end case;
3598
3599            if not Defer then
3600               if not Present (Level) then
3601
3602                  --  The "innermost master that evaluates the function call".
3603
3604                  --  ??? - Should we use Integer'Last here instead in order
3605                  --  to deal with (some of) the problems associated with
3606                  --  calls to subps whose enclosing scope is unknown (e.g.,
3607                  --  Anon_Access_To_Subp_Param.all)?
3608
3609                  Level :=
3610                    Make_Integer_Literal (Loc,
3611                      Intval => Scope_Depth (Current_Scope) + 1);
3612               end if;
3613
3614               Add_Extra_Actual
3615                 (Expr => Level,
3616                  EF   =>
3617                    Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
3618            end if;
3619         end;
3620      end if;
3621
3622      --  If we are expanding the RHS of an assignment we need to check if tag
3623      --  propagation is needed. You might expect this processing to be in
3624      --  Analyze_Assignment but has to be done earlier (bottom-up) because the
3625      --  assignment might be transformed to a declaration for an unconstrained
3626      --  value if the expression is classwide.
3627
3628      if Nkind (Call_Node) = N_Function_Call
3629        and then Is_Tag_Indeterminate (Call_Node)
3630        and then Is_Entity_Name (Name (Call_Node))
3631      then
3632         declare
3633            Ass : Node_Id := Empty;
3634
3635         begin
3636            if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3637               Ass := Parent (Call_Node);
3638
3639            elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3640              and then Nkind (Parent (Parent (Call_Node))) =
3641                                                  N_Assignment_Statement
3642            then
3643               Ass := Parent (Parent (Call_Node));
3644
3645            elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3646              and then Nkind (Parent (Parent (Call_Node))) =
3647                                                  N_Assignment_Statement
3648            then
3649               Ass := Parent (Parent (Call_Node));
3650            end if;
3651
3652            if Present (Ass)
3653              and then Is_Class_Wide_Type (Etype (Name (Ass)))
3654            then
3655               if Is_Access_Type (Etype (Call_Node)) then
3656                  if Designated_Type (Etype (Call_Node)) /=
3657                    Root_Type (Etype (Name (Ass)))
3658                  then
3659                     Error_Msg_NE
3660                       ("tag-indeterminate expression must have designated "
3661                        & "type& (RM 5.2 (6))",
3662                         Call_Node, Root_Type (Etype (Name (Ass))));
3663                  else
3664                     Propagate_Tag (Name (Ass), Call_Node);
3665                  end if;
3666
3667               elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
3668                  Error_Msg_NE
3669                    ("tag-indeterminate expression must have type & "
3670                     & "(RM 5.2 (6))",
3671                     Call_Node, Root_Type (Etype (Name (Ass))));
3672
3673               else
3674                  Propagate_Tag (Name (Ass), Call_Node);
3675               end if;
3676
3677               --  The call will be rewritten as a dispatching call, and
3678               --  expanded as such.
3679
3680               return;
3681            end if;
3682         end;
3683      end if;
3684
3685      --  Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3686      --  it to point to the correct secondary virtual table
3687
3688      if Nkind (Call_Node) in N_Subprogram_Call
3689        and then CW_Interface_Formals_Present
3690      then
3691         Expand_Interface_Actuals (Call_Node);
3692      end if;
3693
3694      --  Deals with Dispatch_Call if we still have a call, before expanding
3695      --  extra actuals since this will be done on the re-analysis of the
3696      --  dispatching call. Note that we do not try to shorten the actual list
3697      --  for a dispatching call, it would not make sense to do so. Expansion
3698      --  of dispatching calls is suppressed for VM targets, because the VM
3699      --  back-ends directly handle the generation of dispatching calls and
3700      --  would have to undo any expansion to an indirect call.
3701
3702      if Nkind (Call_Node) in N_Subprogram_Call
3703        and then Present (Controlling_Argument (Call_Node))
3704      then
3705         declare
3706            Call_Typ   : constant Entity_Id := Etype (Call_Node);
3707            Typ        : constant Entity_Id := Find_Dispatching_Type (Subp);
3708            Eq_Prim_Op : Entity_Id := Empty;
3709            New_Call   : Node_Id;
3710            Param      : Node_Id;
3711            Prev_Call  : Node_Id;
3712
3713         begin
3714            if not Is_Limited_Type (Typ) then
3715               Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3716            end if;
3717
3718            if Tagged_Type_Expansion then
3719               Expand_Dispatching_Call (Call_Node);
3720
3721               --  The following return is worrisome. Is it really OK to skip
3722               --  all remaining processing in this procedure ???
3723
3724               return;
3725
3726            --  VM targets
3727
3728            else
3729               Apply_Tag_Checks (Call_Node);
3730
3731               --  If this is a dispatching "=", we must first compare the
3732               --  tags so we generate: x.tag = y.tag and then x = y
3733
3734               if Subp = Eq_Prim_Op then
3735
3736                  --  Mark the node as analyzed to avoid reanalyzing this
3737                  --  dispatching call (which would cause a never-ending loop)
3738
3739                  Prev_Call := Relocate_Node (Call_Node);
3740                  Set_Analyzed (Prev_Call);
3741
3742                  Param := First_Actual (Call_Node);
3743                  New_Call :=
3744                    Make_And_Then (Loc,
3745                      Left_Opnd =>
3746                           Make_Op_Eq (Loc,
3747                             Left_Opnd =>
3748                               Make_Selected_Component (Loc,
3749                                 Prefix        => New_Value (Param),
3750                                 Selector_Name =>
3751                                   New_Occurrence_Of
3752                                     (First_Tag_Component (Typ), Loc)),
3753
3754                             Right_Opnd =>
3755                               Make_Selected_Component (Loc,
3756                                 Prefix        =>
3757                                   Unchecked_Convert_To (Typ,
3758                                     New_Value (Next_Actual (Param))),
3759                                 Selector_Name =>
3760                                   New_Occurrence_Of
3761                                     (First_Tag_Component (Typ), Loc))),
3762                      Right_Opnd => Prev_Call);
3763
3764                  Rewrite (Call_Node, New_Call);
3765
3766                  Analyze_And_Resolve
3767                    (Call_Node, Call_Typ, Suppress => All_Checks);
3768               end if;
3769
3770               --  Expansion of a dispatching call results in an indirect call,
3771               --  which in turn causes current values to be killed (see
3772               --  Resolve_Call), so on VM targets we do the call here to
3773               --  ensure consistent warnings between VM and non-VM targets.
3774
3775               Kill_Current_Values;
3776            end if;
3777
3778            --  If this is a dispatching "=" then we must update the reference
3779            --  to the call node because we generated:
3780            --     x.tag = y.tag and then x = y
3781
3782            if Subp = Eq_Prim_Op then
3783               Call_Node := Right_Opnd (Call_Node);
3784            end if;
3785         end;
3786      end if;
3787
3788      --  Similarly, expand calls to RCI subprograms on which pragma
3789      --  All_Calls_Remote applies. The rewriting will be reanalyzed
3790      --  later. Do this only when the call comes from source since we
3791      --  do not want such a rewriting to occur in expanded code.
3792
3793      if Is_All_Remote_Call (Call_Node) then
3794         Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
3795
3796      --  Similarly, do not add extra actuals for an entry call whose entity
3797      --  is a protected procedure, or for an internal protected subprogram
3798      --  call, because it will be rewritten as a protected subprogram call
3799      --  and reanalyzed (see Expand_Protected_Subprogram_Call).
3800
3801      elsif Is_Protected_Type (Scope (Subp))
3802         and then (Ekind (Subp) = E_Procedure
3803                    or else Ekind (Subp) = E_Function)
3804      then
3805         null;
3806
3807      --  During that loop we gathered the extra actuals (the ones that
3808      --  correspond to Extra_Formals), so now they can be appended.
3809
3810      else
3811         while Is_Non_Empty_List (Extra_Actuals) loop
3812            Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3813         end loop;
3814      end if;
3815
3816      --  At this point we have all the actuals, so this is the point at which
3817      --  the various expansion activities for actuals is carried out.
3818
3819      Expand_Actuals (Call_Node, Subp, Post_Call);
3820
3821      --  Verify that the actuals do not share storage. This check must be done
3822      --  on the caller side rather that inside the subprogram to avoid issues
3823      --  of parameter passing.
3824
3825      if Check_Aliasing_Of_Parameters then
3826         Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3827      end if;
3828
3829      --  If the subprogram is a renaming, or if it is inherited, replace it in
3830      --  the call with the name of the actual subprogram being called. If this
3831      --  is a dispatching call, the run-time decides what to call. The Alias
3832      --  attribute does not apply to entries.
3833
3834      if Nkind (Call_Node) /= N_Entry_Call_Statement
3835        and then No (Controlling_Argument (Call_Node))
3836        and then Present (Parent_Subp)
3837        and then not Is_Direct_Deep_Call (Subp)
3838      then
3839         if Present (Inherited_From_Formal (Subp)) then
3840            Parent_Subp := Inherited_From_Formal (Subp);
3841         else
3842            Parent_Subp := Ultimate_Alias (Parent_Subp);
3843         end if;
3844
3845         --  The below setting of Entity is suspect, see F109-018 discussion???
3846
3847         Set_Entity (Name (Call_Node), Parent_Subp);
3848
3849         if Is_Abstract_Subprogram (Parent_Subp)
3850           and then not In_Instance
3851         then
3852            Error_Msg_NE
3853              ("cannot call abstract subprogram &!",
3854               Name (Call_Node), Parent_Subp);
3855         end if;
3856
3857         --  Inspect all formals of derived subprogram Subp. Compare parameter
3858         --  types with the parent subprogram and check whether an actual may
3859         --  need a type conversion to the corresponding formal of the parent
3860         --  subprogram.
3861
3862         --  Not clear whether intrinsic subprograms need such conversions. ???
3863
3864         if not Is_Intrinsic_Subprogram (Parent_Subp)
3865           or else Is_Generic_Instance (Parent_Subp)
3866         then
3867            declare
3868               procedure Convert (Act : Node_Id; Typ : Entity_Id);
3869               --  Rewrite node Act as a type conversion of Act to Typ. Analyze
3870               --  and resolve the newly generated construct.
3871
3872               -------------
3873               -- Convert --
3874               -------------
3875
3876               procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3877               begin
3878                  Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3879                  Analyze (Act);
3880                  Resolve (Act, Typ);
3881               end Convert;
3882
3883               --  Local variables
3884
3885               Actual_Typ : Entity_Id;
3886               Formal_Typ : Entity_Id;
3887               Parent_Typ : Entity_Id;
3888
3889            begin
3890               Actual := First_Actual (Call_Node);
3891               Formal := First_Formal (Subp);
3892               Parent_Formal := First_Formal (Parent_Subp);
3893               while Present (Formal) loop
3894                  Actual_Typ := Etype (Actual);
3895                  Formal_Typ := Etype (Formal);
3896                  Parent_Typ := Etype (Parent_Formal);
3897
3898                  --  For an IN parameter of a scalar type, the parent formal
3899                  --  type and derived formal type differ or the parent formal
3900                  --  type and actual type do not match statically.
3901
3902                  if Is_Scalar_Type (Formal_Typ)
3903                    and then Ekind (Formal) = E_In_Parameter
3904                    and then Formal_Typ /= Parent_Typ
3905                    and then
3906                      not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3907                    and then not Raises_Constraint_Error (Actual)
3908                  then
3909                     Convert (Actual, Parent_Typ);
3910                     Enable_Range_Check (Actual);
3911
3912                     --  If the actual has been marked as requiring a range
3913                     --  check, then generate it here.
3914
3915                     if Do_Range_Check (Actual) then
3916                        Generate_Range_Check
3917                          (Actual, Etype (Formal), CE_Range_Check_Failed);
3918                     end if;
3919
3920                  --  For access types, the parent formal type and actual type
3921                  --  differ.
3922
3923                  elsif Is_Access_Type (Formal_Typ)
3924                    and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
3925                  then
3926                     if Ekind (Formal) /= E_In_Parameter then
3927                        Convert (Actual, Parent_Typ);
3928
3929                     elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3930                       and then Designated_Type (Parent_Typ) /=
3931                                Designated_Type (Actual_Typ)
3932                       and then not Is_Controlling_Formal (Formal)
3933                     then
3934                        --  This unchecked conversion is not necessary unless
3935                        --  inlining is enabled, because in that case the type
3936                        --  mismatch may become visible in the body about to be
3937                        --  inlined.
3938
3939                        Rewrite (Actual,
3940                          Unchecked_Convert_To (Parent_Typ,
3941                            Relocate_Node (Actual)));
3942                        Analyze (Actual);
3943                        Resolve (Actual, Parent_Typ);
3944                     end if;
3945
3946                  --  If there is a change of representation, then generate a
3947                  --  warning, and do the change of representation.
3948
3949                  elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3950                     Error_Msg_N
3951                       ("??change of representation required", Actual);
3952                     Convert (Actual, Parent_Typ);
3953
3954                  --  For array and record types, the parent formal type and
3955                  --  derived formal type have different sizes or pragma Pack
3956                  --  status.
3957
3958                  elsif ((Is_Array_Type (Formal_Typ)
3959                           and then Is_Array_Type (Parent_Typ))
3960                       or else
3961                         (Is_Record_Type (Formal_Typ)
3962                           and then Is_Record_Type (Parent_Typ)))
3963                    and then
3964                      (Esize (Formal_Typ) /= Esize (Parent_Typ)
3965                        or else Has_Pragma_Pack (Formal_Typ) /=
3966                                Has_Pragma_Pack (Parent_Typ))
3967                  then
3968                     Convert (Actual, Parent_Typ);
3969                  end if;
3970
3971                  Next_Actual (Actual);
3972                  Next_Formal (Formal);
3973                  Next_Formal (Parent_Formal);
3974               end loop;
3975            end;
3976         end if;
3977
3978         Orig_Subp := Subp;
3979         Subp := Parent_Subp;
3980      end if;
3981
3982      --  Deal with case where call is an explicit dereference
3983
3984      if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
3985
3986      --  Handle case of access to protected subprogram type
3987
3988         if Is_Access_Protected_Subprogram_Type
3989              (Base_Type (Etype (Prefix (Name (Call_Node)))))
3990         then
3991            --  If this is a call through an access to protected operation, the
3992            --  prefix has the form (object'address, operation'access). Rewrite
3993            --  as a for other protected calls: the object is the 1st parameter
3994            --  of the list of actuals.
3995
3996            declare
3997               Call : Node_Id;
3998               Parm : List_Id;
3999               Nam  : Node_Id;
4000               Obj  : Node_Id;
4001               Ptr  : constant Node_Id := Prefix (Name (Call_Node));
4002
4003               T : constant Entity_Id :=
4004                     Equivalent_Type (Base_Type (Etype (Ptr)));
4005
4006               D_T : constant Entity_Id :=
4007                       Designated_Type (Base_Type (Etype (Ptr)));
4008
4009            begin
4010               Obj :=
4011                 Make_Selected_Component (Loc,
4012                   Prefix        => Unchecked_Convert_To (T, Ptr),
4013                   Selector_Name =>
4014                     New_Occurrence_Of (First_Entity (T), Loc));
4015
4016               Nam :=
4017                 Make_Selected_Component (Loc,
4018                   Prefix        => Unchecked_Convert_To (T, Ptr),
4019                   Selector_Name =>
4020                     New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
4021
4022               Nam :=
4023                 Make_Explicit_Dereference (Loc,
4024                   Prefix => Nam);
4025
4026               if Present (Parameter_Associations (Call_Node)) then
4027                  Parm := Parameter_Associations (Call_Node);
4028               else
4029                  Parm := New_List;
4030               end if;
4031
4032               Prepend (Obj, Parm);
4033
4034               if Etype (D_T) = Standard_Void_Type then
4035                  Call :=
4036                    Make_Procedure_Call_Statement (Loc,
4037                      Name                   => Nam,
4038                      Parameter_Associations => Parm);
4039               else
4040                  Call :=
4041                    Make_Function_Call (Loc,
4042                      Name                   => Nam,
4043                      Parameter_Associations => Parm);
4044               end if;
4045
4046               Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
4047               Set_Etype (Call, Etype (D_T));
4048
4049               --  We do not re-analyze the call to avoid infinite recursion.
4050               --  We analyze separately the prefix and the object, and set
4051               --  the checks on the prefix that would otherwise be emitted
4052               --  when resolving a call.
4053
4054               Rewrite (Call_Node, Call);
4055               Analyze (Nam);
4056               Apply_Access_Check (Nam);
4057               Analyze (Obj);
4058               return;
4059            end;
4060         end if;
4061      end if;
4062
4063      --  If this is a call to an intrinsic subprogram, then perform the
4064      --  appropriate expansion to the corresponding tree node and we
4065      --  are all done (since after that the call is gone).
4066
4067      --  In the case where the intrinsic is to be processed by the back end,
4068      --  the call to Expand_Intrinsic_Call will do nothing, which is fine,
4069      --  since the idea in this case is to pass the call unchanged. If the
4070      --  intrinsic is an inherited unchecked conversion, and the derived type
4071      --  is the target type of the conversion, we must retain it as the return
4072      --  type of the expression. Otherwise the expansion below, which uses the
4073      --  parent operation, will yield the wrong type.
4074
4075      if Is_Intrinsic_Subprogram (Subp) then
4076         Expand_Intrinsic_Call (Call_Node, Subp);
4077
4078         if Nkind (Call_Node) = N_Unchecked_Type_Conversion
4079           and then Parent_Subp /= Orig_Subp
4080           and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4081         then
4082            Set_Etype (Call_Node, Etype (Orig_Subp));
4083         end if;
4084
4085         return;
4086      end if;
4087
4088      if Ekind_In (Subp, E_Function, E_Procedure) then
4089
4090         --  We perform a simple optimization on calls for To_Address by
4091         --  replacing them with an unchecked conversion. Not only is this
4092         --  efficient, but it also avoids order of elaboration problems when
4093         --  address clauses are inlined (address expression elaborated at the
4094         --  wrong point).
4095
4096         --  We perform this optimization regardless of whether we are in the
4097         --  main unit or in a unit in the context of the main unit, to ensure
4098         --  that the generated tree is the same in both cases, for CodePeer
4099         --  use.
4100
4101         if Is_RTE (Subp, RE_To_Address) then
4102            Rewrite (Call_Node,
4103              Unchecked_Convert_To
4104                (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
4105            return;
4106
4107         --  A call to a null procedure is replaced by a null statement, but we
4108         --  are not allowed to ignore possible side effects of the call, so we
4109         --  make sure that actuals are evaluated.
4110         --  We also suppress this optimization for GNATCoverage.
4111
4112         elsif Is_Null_Procedure (Subp)
4113           and then not Opt.Suppress_Control_Flow_Optimizations
4114         then
4115            Actual := First_Actual (Call_Node);
4116            while Present (Actual) loop
4117               Remove_Side_Effects (Actual);
4118               Next_Actual (Actual);
4119            end loop;
4120
4121            Rewrite (Call_Node, Make_Null_Statement (Loc));
4122            return;
4123         end if;
4124
4125         --  Handle inlining. No action needed if the subprogram is not inlined
4126
4127         if not Is_Inlined (Subp) then
4128            null;
4129
4130         --  Frontend inlining of expression functions (performed also when
4131         --  backend inlining is enabled).
4132
4133         elsif Is_Inlinable_Expression_Function (Subp) then
4134            Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4135            Analyze (N);
4136            return;
4137
4138         --  Handle frontend inlining
4139
4140         elsif not Back_End_Inlining then
4141            Inlined_Subprogram : declare
4142               Bod         : Node_Id;
4143               Must_Inline : Boolean := False;
4144               Spec        : constant Node_Id := Unit_Declaration_Node (Subp);
4145
4146            begin
4147               --  Verify that the body to inline has already been seen, and
4148               --  that if the body is in the current unit the inlining does
4149               --  not occur earlier. This avoids order-of-elaboration problems
4150               --  in the back end.
4151
4152               --  This should be documented in sinfo/einfo ???
4153
4154               if No (Spec)
4155                 or else Nkind (Spec) /= N_Subprogram_Declaration
4156                 or else No (Body_To_Inline (Spec))
4157               then
4158                  Must_Inline := False;
4159
4160               --  If this an inherited function that returns a private type,
4161               --  do not inline if the full view is an unconstrained array,
4162               --  because such calls cannot be inlined.
4163
4164               elsif Present (Orig_Subp)
4165                 and then Is_Array_Type (Etype (Orig_Subp))
4166                 and then not Is_Constrained (Etype (Orig_Subp))
4167               then
4168                  Must_Inline := False;
4169
4170               elsif In_Unfrozen_Instance (Scope (Subp)) then
4171                  Must_Inline := False;
4172
4173               else
4174                  Bod := Body_To_Inline (Spec);
4175
4176                  if (In_Extended_Main_Code_Unit (Call_Node)
4177                        or else In_Extended_Main_Code_Unit (Parent (Call_Node))
4178                        or else Has_Pragma_Inline_Always (Subp))
4179                    and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4180                               or else
4181                                 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4182                  then
4183                     Must_Inline := True;
4184
4185                  --  If we are compiling a package body that is not the main
4186                  --  unit, it must be for inlining/instantiation purposes,
4187                  --  in which case we inline the call to insure that the same
4188                  --  temporaries are generated when compiling the body by
4189                  --  itself. Otherwise link errors can occur.
4190
4191                  --  If the function being called is itself in the main unit,
4192                  --  we cannot inline, because there is a risk of double
4193                  --  elaboration and/or circularity: the inlining can make
4194                  --  visible a private entity in the body of the main unit,
4195                  --  that gigi will see before its sees its proper definition.
4196
4197                  elsif not (In_Extended_Main_Code_Unit (Call_Node))
4198                    and then In_Package_Body
4199                  then
4200                     Must_Inline := not In_Extended_Main_Source_Unit (Subp);
4201
4202                  --  Inline calls to _postconditions when generating C code
4203
4204                  elsif Modify_Tree_For_C
4205                    and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4206                    and then Chars (Name (N)) = Name_uPostconditions
4207                  then
4208                     Must_Inline := True;
4209                  end if;
4210               end if;
4211
4212               if Must_Inline then
4213                  Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4214
4215               else
4216                  --  Let the back end handle it
4217
4218                  Add_Inlined_Body (Subp, Call_Node);
4219
4220                  if Front_End_Inlining
4221                    and then Nkind (Spec) = N_Subprogram_Declaration
4222                    and then (In_Extended_Main_Code_Unit (Call_Node))
4223                    and then No (Body_To_Inline (Spec))
4224                    and then not Has_Completion (Subp)
4225                    and then In_Same_Extended_Unit (Sloc (Spec), Loc)
4226                  then
4227                     Cannot_Inline
4228                       ("cannot inline& (body not seen yet)?",
4229                        Call_Node, Subp);
4230                  end if;
4231               end if;
4232            end Inlined_Subprogram;
4233
4234         --  Back end inlining: let the back end handle it
4235
4236         elsif No (Unit_Declaration_Node (Subp))
4237           or else Nkind (Unit_Declaration_Node (Subp)) /=
4238                                                 N_Subprogram_Declaration
4239           or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
4240           or else Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) in
4241                                                                      N_Entity
4242         then
4243            Add_Inlined_Body (Subp, Call_Node);
4244
4245            --  If the inlined call appears within an instantiation and some
4246            --  level of optimization is required, ensure that the enclosing
4247            --  instance body is available so that the back-end can actually
4248            --  perform the inlining.
4249
4250            if In_Instance
4251              and then Comes_From_Source (Subp)
4252              and then Optimization_Level > 0
4253            then
4254               declare
4255                  Decl      : Node_Id;
4256                  Inst      : Entity_Id;
4257                  Inst_Node : Node_Id;
4258
4259               begin
4260                  Inst := Scope (Subp);
4261
4262                  --  Find enclosing instance
4263
4264                  while Present (Inst) and then Inst /= Standard_Standard loop
4265                     exit when Is_Generic_Instance (Inst);
4266                     Inst := Scope (Inst);
4267                  end loop;
4268
4269                  if Present (Inst)
4270                    and then Is_Generic_Instance (Inst)
4271                    and then not Is_Inlined (Inst)
4272                  then
4273                     Set_Is_Inlined (Inst);
4274                     Decl := Unit_Declaration_Node (Inst);
4275
4276                     --  Do not add a pending instantiation if the body exits
4277                     --  already, or if the instance is a compilation unit, or
4278                     --  the instance node is missing.
4279
4280                     if Present (Corresponding_Body (Decl))
4281                       or else Nkind (Parent (Decl)) = N_Compilation_Unit
4282                       or else No (Next (Decl))
4283                     then
4284                        null;
4285
4286                     else
4287                        --  The instantiation node usually follows the package
4288                        --  declaration for the instance. If the generic unit
4289                        --  has aspect specifications, they are transformed
4290                        --  into pragmas in the instance, and the instance node
4291                        --  appears after them.
4292
4293                        Inst_Node := Next (Decl);
4294
4295                        while Nkind (Inst_Node) /= N_Package_Instantiation loop
4296                           Inst_Node := Next (Inst_Node);
4297                        end loop;
4298
4299                        Add_Pending_Instantiation (Inst_Node, Decl);
4300                     end if;
4301                  end if;
4302               end;
4303            end if;
4304
4305         --  Front end expansion of simple functions returning unconstrained
4306         --  types (see Check_And_Split_Unconstrained_Function). Note that the
4307         --  case of a simple renaming (Body_To_Inline in N_Entity above, see
4308         --  also Build_Renamed_Body) cannot be expanded here because this may
4309         --  give rise to order-of-elaboration issues for the types of the
4310         --  parameters of the subprogram, if any.
4311
4312         else
4313            Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4314         end if;
4315      end if;
4316
4317      --  Check for protected subprogram. This is either an intra-object call,
4318      --  or a protected function call. Protected procedure calls are rewritten
4319      --  as entry calls and handled accordingly.
4320
4321      --  In Ada 2005, this may be an indirect call to an access parameter that
4322      --  is an access_to_subprogram. In that case the anonymous type has a
4323      --  scope that is a protected operation, but the call is a regular one.
4324      --  In either case do not expand call if subprogram is eliminated.
4325
4326      Scop := Scope (Subp);
4327
4328      if Nkind (Call_Node) /= N_Entry_Call_Statement
4329        and then Is_Protected_Type (Scop)
4330        and then Ekind (Subp) /= E_Subprogram_Type
4331        and then not Is_Eliminated (Subp)
4332      then
4333         --  If the call is an internal one, it is rewritten as a call to the
4334         --  corresponding unprotected subprogram.
4335
4336         Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
4337      end if;
4338
4339      --  Functions returning controlled objects need special attention. If
4340      --  the return type is limited, then the context is initialization and
4341      --  different processing applies. If the call is to a protected function,
4342      --  the expansion above will call Expand_Call recursively. Otherwise the
4343      --  function call is transformed into a temporary which obtains the
4344      --  result from the secondary stack.
4345
4346      if Needs_Finalization (Etype (Subp)) then
4347         if not Is_Build_In_Place_Function_Call (Call_Node)
4348           and then
4349             (No (First_Formal (Subp))
4350               or else
4351                 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4352         then
4353            Expand_Ctrl_Function_Call (Call_Node);
4354
4355         --  Build-in-place function calls which appear in anonymous contexts
4356         --  need a transient scope to ensure the proper finalization of the
4357         --  intermediate result after its use.
4358
4359         elsif Is_Build_In_Place_Function_Call (Call_Node)
4360           and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4361                              N_Attribute_Reference,
4362                              N_Function_Call,
4363                              N_Indexed_Component,
4364                              N_Object_Renaming_Declaration,
4365                              N_Procedure_Call_Statement,
4366                              N_Selected_Component,
4367                              N_Slice)
4368           and then
4369             (Ekind (Current_Scope) /= E_Loop
4370               or else Nkind (Parent (N)) /= N_Function_Call
4371               or else not Is_Build_In_Place_Function_Call (Parent (N)))
4372         then
4373            Establish_Transient_Scope (Call_Node, Manage_Sec_Stack => True);
4374         end if;
4375      end if;
4376   end Expand_Call_Helper;
4377
4378   -------------------------------
4379   -- Expand_Ctrl_Function_Call --
4380   -------------------------------
4381
4382   procedure Expand_Ctrl_Function_Call (N : Node_Id) is
4383      function Is_Element_Reference (N : Node_Id) return Boolean;
4384      --  Determine whether node N denotes a reference to an Ada 2012 container
4385      --  element.
4386
4387      --------------------------
4388      -- Is_Element_Reference --
4389      --------------------------
4390
4391      function Is_Element_Reference (N : Node_Id) return Boolean is
4392         Ref : constant Node_Id := Original_Node (N);
4393
4394      begin
4395         --  Analysis marks an element reference by setting the generalized
4396         --  indexing attribute of an indexed component before the component
4397         --  is rewritten into a function call.
4398
4399         return
4400           Nkind (Ref) = N_Indexed_Component
4401             and then Present (Generalized_Indexing (Ref));
4402      end Is_Element_Reference;
4403
4404   --  Start of processing for Expand_Ctrl_Function_Call
4405
4406   begin
4407      --  Optimization, if the returned value (which is on the sec-stack) is
4408      --  returned again, no need to copy/readjust/finalize, we can just pass
4409      --  the value thru (see Expand_N_Simple_Return_Statement), and thus no
4410      --  attachment is needed
4411
4412      if Nkind (Parent (N)) = N_Simple_Return_Statement then
4413         return;
4414      end if;
4415
4416      --  Resolution is now finished, make sure we don't start analysis again
4417      --  because of the duplication.
4418
4419      Set_Analyzed (N);
4420
4421      --  A function which returns a controlled object uses the secondary
4422      --  stack. Rewrite the call into a temporary which obtains the result of
4423      --  the function using 'reference.
4424
4425      Remove_Side_Effects (N);
4426
4427      --  The side effect removal of the function call produced a temporary.
4428      --  When the context is a case expression, if expression, or expression
4429      --  with actions, the lifetime of the temporary must be extended to match
4430      --  that of the context. Otherwise the function result will be finalized
4431      --  too early and affect the result of the expression. To prevent this
4432      --  unwanted effect, the temporary should not be considered for clean up
4433      --  actions by the general finalization machinery.
4434
4435      --  Exception to this rule are references to Ada 2012 container elements.
4436      --  Such references must be finalized at the end of each iteration of the
4437      --  related quantified expression, otherwise the container will remain
4438      --  busy.
4439
4440      if Nkind (N) = N_Explicit_Dereference
4441        and then Within_Case_Or_If_Expression (N)
4442        and then not Is_Element_Reference (N)
4443      then
4444         Set_Is_Ignored_Transient (Entity (Prefix (N)));
4445      end if;
4446   end Expand_Ctrl_Function_Call;
4447
4448   ----------------------------------------
4449   -- Expand_N_Extended_Return_Statement --
4450   ----------------------------------------
4451
4452   --  If there is a Handled_Statement_Sequence, we rewrite this:
4453
4454   --     return Result : T := <expression> do
4455   --        <handled_seq_of_stms>
4456   --     end return;
4457
4458   --  to be:
4459
4460   --     declare
4461   --        Result : T := <expression>;
4462   --     begin
4463   --        <handled_seq_of_stms>
4464   --        return Result;
4465   --     end;
4466
4467   --  Otherwise (no Handled_Statement_Sequence), we rewrite this:
4468
4469   --     return Result : T := <expression>;
4470
4471   --  to be:
4472
4473   --     return <expression>;
4474
4475   --  unless it's build-in-place or there's no <expression>, in which case
4476   --  we generate:
4477
4478   --     declare
4479   --        Result : T := <expression>;
4480   --     begin
4481   --        return Result;
4482   --     end;
4483
4484   --  Note that this case could have been written by the user as an extended
4485   --  return statement, or could have been transformed to this from a simple
4486   --  return statement.
4487
4488   --  That is, we need to have a reified return object if there are statements
4489   --  (which might refer to it) or if we're doing build-in-place (so we can
4490   --  set its address to the final resting place or if there is no expression
4491   --  (in which case default initial values might need to be set).
4492
4493   procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4494      Loc : constant Source_Ptr := Sloc (N);
4495
4496      function Build_Heap_Allocator
4497        (Temp_Id    : Entity_Id;
4498         Temp_Typ   : Entity_Id;
4499         Func_Id    : Entity_Id;
4500         Ret_Typ    : Entity_Id;
4501         Alloc_Expr : Node_Id) return Node_Id;
4502      --  Create the statements necessary to allocate a return object on the
4503      --  caller's master. The master is available through implicit parameter
4504      --  BIPfinalizationmaster.
4505      --
4506      --    if BIPfinalizationmaster /= null then
4507      --       declare
4508      --          type Ptr_Typ is access Ret_Typ;
4509      --          for Ptr_Typ'Storage_Pool use
4510      --                Base_Pool (BIPfinalizationmaster.all).all;
4511      --          Local : Ptr_Typ;
4512      --
4513      --       begin
4514      --          procedure Allocate (...) is
4515      --          begin
4516      --             System.Storage_Pools.Subpools.Allocate_Any (...);
4517      --          end Allocate;
4518      --
4519      --          Local := <Alloc_Expr>;
4520      --          Temp_Id := Temp_Typ (Local);
4521      --       end;
4522      --    end if;
4523      --
4524      --  Temp_Id is the temporary which is used to reference the internally
4525      --  created object in all allocation forms. Temp_Typ is the type of the
4526      --  temporary. Func_Id is the enclosing function. Ret_Typ is the return
4527      --  type of Func_Id. Alloc_Expr is the actual allocator.
4528
4529      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
4530      --  Construct a call to System.Tasking.Stages.Move_Activation_Chain
4531      --  with parameters:
4532      --    From         current activation chain
4533      --    To           activation chain passed in by the caller
4534      --    New_Master   master passed in by the caller
4535      --
4536      --  Func_Id is the entity of the function where the extended return
4537      --  statement appears.
4538
4539      --------------------------
4540      -- Build_Heap_Allocator --
4541      --------------------------
4542
4543      function Build_Heap_Allocator
4544        (Temp_Id    : Entity_Id;
4545         Temp_Typ   : Entity_Id;
4546         Func_Id    : Entity_Id;
4547         Ret_Typ    : Entity_Id;
4548         Alloc_Expr : Node_Id) return Node_Id
4549      is
4550      begin
4551         pragma Assert (Is_Build_In_Place_Function (Func_Id));
4552
4553         --  Processing for build-in-place object allocation.
4554
4555         if Needs_Finalization (Ret_Typ) then
4556            declare
4557               Decls      : constant List_Id := New_List;
4558               Fin_Mas_Id : constant Entity_Id :=
4559                              Build_In_Place_Formal
4560                                (Func_Id, BIP_Finalization_Master);
4561               Stmts      : constant List_Id := New_List;
4562               Desig_Typ  : Entity_Id;
4563               Local_Id   : Entity_Id;
4564               Pool_Id    : Entity_Id;
4565               Ptr_Typ    : Entity_Id;
4566
4567            begin
4568               --  Generate:
4569               --    Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
4570
4571               Pool_Id := Make_Temporary (Loc, 'P');
4572
4573               Append_To (Decls,
4574                 Make_Object_Renaming_Declaration (Loc,
4575                   Defining_Identifier => Pool_Id,
4576                   Subtype_Mark        =>
4577                     New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
4578                   Name                =>
4579                     Make_Explicit_Dereference (Loc,
4580                       Prefix =>
4581                         Make_Function_Call (Loc,
4582                           Name                   =>
4583                             New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
4584                           Parameter_Associations => New_List (
4585                             Make_Explicit_Dereference (Loc,
4586                               Prefix =>
4587                                 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
4588
4589               --  Create an access type which uses the storage pool of the
4590               --  caller's master. This additional type is necessary because
4591               --  the finalization master cannot be associated with the type
4592               --  of the temporary. Otherwise the secondary stack allocation
4593               --  will fail.
4594
4595               Desig_Typ := Ret_Typ;
4596
4597               --  Ensure that the build-in-place machinery uses a fat pointer
4598               --  when allocating an unconstrained array on the heap. In this
4599               --  case the result object type is a constrained array type even
4600               --  though the function type is unconstrained.
4601
4602               if Ekind (Desig_Typ) = E_Array_Subtype then
4603                  Desig_Typ := Base_Type (Desig_Typ);
4604               end if;
4605
4606               --  Generate:
4607               --    type Ptr_Typ is access Desig_Typ;
4608
4609               Ptr_Typ := Make_Temporary (Loc, 'P');
4610
4611               Append_To (Decls,
4612                 Make_Full_Type_Declaration (Loc,
4613                   Defining_Identifier => Ptr_Typ,
4614                   Type_Definition     =>
4615                     Make_Access_To_Object_Definition (Loc,
4616                       Subtype_Indication =>
4617                         New_Occurrence_Of (Desig_Typ, Loc))));
4618
4619               --  Perform minor decoration in order to set the master and the
4620               --  storage pool attributes.
4621
4622               Set_Ekind (Ptr_Typ, E_Access_Type);
4623               Set_Finalization_Master     (Ptr_Typ, Fin_Mas_Id);
4624               Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4625
4626               --  Create the temporary, generate:
4627               --    Local_Id : Ptr_Typ;
4628
4629               Local_Id := Make_Temporary (Loc, 'T');
4630
4631               Append_To (Decls,
4632                 Make_Object_Declaration (Loc,
4633                   Defining_Identifier => Local_Id,
4634                   Object_Definition   =>
4635                     New_Occurrence_Of (Ptr_Typ, Loc)));
4636
4637               --  Allocate the object, generate:
4638               --    Local_Id := <Alloc_Expr>;
4639
4640               Append_To (Stmts,
4641                 Make_Assignment_Statement (Loc,
4642                   Name       => New_Occurrence_Of (Local_Id, Loc),
4643                   Expression => Alloc_Expr));
4644
4645               --  Generate:
4646               --    Temp_Id := Temp_Typ (Local_Id);
4647
4648               Append_To (Stmts,
4649                 Make_Assignment_Statement (Loc,
4650                   Name       => New_Occurrence_Of (Temp_Id, Loc),
4651                   Expression =>
4652                     Unchecked_Convert_To (Temp_Typ,
4653                       New_Occurrence_Of (Local_Id, Loc))));
4654
4655               --  Wrap the allocation in a block. This is further conditioned
4656               --  by checking the caller finalization master at runtime. A
4657               --  null value indicates a non-existent master, most likely due
4658               --  to a Finalize_Storage_Only allocation.
4659
4660               --  Generate:
4661               --    if BIPfinalizationmaster /= null then
4662               --       declare
4663               --          <Decls>
4664               --       begin
4665               --          <Stmts>
4666               --       end;
4667               --    end if;
4668
4669               return
4670                 Make_If_Statement (Loc,
4671                   Condition       =>
4672                     Make_Op_Ne (Loc,
4673                       Left_Opnd  => New_Occurrence_Of (Fin_Mas_Id, Loc),
4674                       Right_Opnd => Make_Null (Loc)),
4675
4676                   Then_Statements => New_List (
4677                     Make_Block_Statement (Loc,
4678                       Declarations               => Decls,
4679                       Handled_Statement_Sequence =>
4680                         Make_Handled_Sequence_Of_Statements (Loc,
4681                           Statements => Stmts))));
4682            end;
4683
4684         --  For all other cases, generate:
4685         --    Temp_Id := <Alloc_Expr>;
4686
4687         else
4688            return
4689              Make_Assignment_Statement (Loc,
4690                Name       => New_Occurrence_Of (Temp_Id, Loc),
4691                Expression => Alloc_Expr);
4692         end if;
4693      end Build_Heap_Allocator;
4694
4695      ---------------------------
4696      -- Move_Activation_Chain --
4697      ---------------------------
4698
4699      function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
4700      begin
4701         return
4702           Make_Procedure_Call_Statement (Loc,
4703             Name                   =>
4704               New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
4705
4706             Parameter_Associations => New_List (
4707
4708               --  Source chain
4709
4710               Make_Attribute_Reference (Loc,
4711                 Prefix         => Make_Identifier (Loc, Name_uChain),
4712                 Attribute_Name => Name_Unrestricted_Access),
4713
4714               --  Destination chain
4715
4716               New_Occurrence_Of
4717                 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
4718
4719               --  New master
4720
4721               New_Occurrence_Of
4722                 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
4723      end Move_Activation_Chain;
4724
4725      --  Local variables
4726
4727      Func_Id      : constant Entity_Id :=
4728                       Return_Applies_To (Return_Statement_Entity (N));
4729      Is_BIP_Func  : constant Boolean   :=
4730                       Is_Build_In_Place_Function (Func_Id);
4731      Ret_Obj_Id   : constant Entity_Id :=
4732                       First_Entity (Return_Statement_Entity (N));
4733      Ret_Obj_Decl : constant Node_Id   := Parent (Ret_Obj_Id);
4734      Ret_Typ      : constant Entity_Id := Etype (Func_Id);
4735
4736      Exp         : Node_Id;
4737      HSS         : Node_Id;
4738      Result      : Node_Id;
4739      Stmts       : List_Id;
4740
4741      Return_Stmt : Node_Id := Empty;
4742      --  Force initialization to facilitate static analysis
4743
4744   --  Start of processing for Expand_N_Extended_Return_Statement
4745
4746   begin
4747      --  Given that functionality of interface thunks is simple (just displace
4748      --  the pointer to the object) they are always handled by means of
4749      --  simple return statements.
4750
4751      pragma Assert (not Is_Thunk (Current_Scope));
4752
4753      if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4754         Exp := Expression (Ret_Obj_Decl);
4755
4756         --  Assert that if F says "return R : T := G(...) do..."
4757         --  then F and G are both b-i-p, or neither b-i-p.
4758
4759         if Nkind (Exp) = N_Function_Call then
4760            pragma Assert (Ekind (Current_Scope) = E_Function);
4761            pragma Assert
4762              (Is_Build_In_Place_Function (Current_Scope) =
4763               Is_Build_In_Place_Function_Call (Exp));
4764            null;
4765         end if;
4766      else
4767         Exp := Empty;
4768      end if;
4769
4770      HSS := Handled_Statement_Sequence (N);
4771
4772      --  If the returned object needs finalization actions, the function must
4773      --  perform the appropriate cleanup should it fail to return. The state
4774      --  of the function itself is tracked through a flag which is coupled
4775      --  with the scope finalizer. There is one flag per each return object
4776      --  in case of multiple returns.
4777
4778      if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4779         declare
4780            Flag_Decl : Node_Id;
4781            Flag_Id   : Entity_Id;
4782            Func_Bod  : Node_Id;
4783
4784         begin
4785            --  Recover the function body
4786
4787            Func_Bod := Unit_Declaration_Node (Func_Id);
4788
4789            if Nkind (Func_Bod) = N_Subprogram_Declaration then
4790               Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4791            end if;
4792
4793            if Nkind (Func_Bod) = N_Function_Specification then
4794               Func_Bod := Parent (Func_Bod); -- one more level for child units
4795            end if;
4796
4797            pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
4798
4799            --  Create a flag to track the function state
4800
4801            Flag_Id := Make_Temporary (Loc, 'F');
4802            Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
4803
4804            --  Insert the flag at the beginning of the function declarations,
4805            --  generate:
4806            --    Fnn : Boolean := False;
4807
4808            Flag_Decl :=
4809              Make_Object_Declaration (Loc,
4810                Defining_Identifier => Flag_Id,
4811                  Object_Definition =>
4812                    New_Occurrence_Of (Standard_Boolean, Loc),
4813                  Expression        =>
4814                    New_Occurrence_Of (Standard_False, Loc));
4815
4816            Prepend_To (Declarations (Func_Bod), Flag_Decl);
4817            Analyze (Flag_Decl);
4818         end;
4819      end if;
4820
4821      --  Build a simple_return_statement that returns the return object when
4822      --  there is a statement sequence, or no expression, or the result will
4823      --  be built in place. Note however that we currently do this for all
4824      --  composite cases, even though not all are built in place.
4825
4826      if Present (HSS)
4827        or else Is_Composite_Type (Ret_Typ)
4828        or else No (Exp)
4829      then
4830         if No (HSS) then
4831            Stmts := New_List;
4832
4833         --  If the extended return has a handled statement sequence, then wrap
4834         --  it in a block and use the block as the first statement.
4835
4836         else
4837            Stmts := New_List (
4838              Make_Block_Statement (Loc,
4839                Declarations               => New_List,
4840                Handled_Statement_Sequence => HSS));
4841         end if;
4842
4843         --  If the result type contains tasks, we call Move_Activation_Chain.
4844         --  Later, the cleanup code will call Complete_Master, which will
4845         --  terminate any unactivated tasks belonging to the return statement
4846         --  master. But Move_Activation_Chain updates their master to be that
4847         --  of the caller, so they will not be terminated unless the return
4848         --  statement completes unsuccessfully due to exception, abort, goto,
4849         --  or exit. As a formality, we test whether the function requires the
4850         --  result to be built in place, though that's necessarily true for
4851         --  the case of result types with task parts.
4852
4853         if Is_BIP_Func and then Has_Task (Ret_Typ) then
4854
4855            --  The return expression is an aggregate for a complex type which
4856            --  contains tasks. This particular case is left unexpanded since
4857            --  the regular expansion would insert all temporaries and
4858            --  initialization code in the wrong block.
4859
4860            if Nkind (Exp) = N_Aggregate then
4861               Expand_N_Aggregate (Exp);
4862            end if;
4863
4864            --  Do not move the activation chain if the return object does not
4865            --  contain tasks.
4866
4867            if Has_Task (Etype (Ret_Obj_Id)) then
4868               Append_To (Stmts, Move_Activation_Chain (Func_Id));
4869            end if;
4870         end if;
4871
4872         --  Update the state of the function right before the object is
4873         --  returned.
4874
4875         if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
4876            declare
4877               Flag_Id : constant Entity_Id :=
4878                           Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4879
4880            begin
4881               --  Generate:
4882               --    Fnn := True;
4883
4884               Append_To (Stmts,
4885                 Make_Assignment_Statement (Loc,
4886                   Name       => New_Occurrence_Of (Flag_Id, Loc),
4887                   Expression => New_Occurrence_Of (Standard_True, Loc)));
4888            end;
4889         end if;
4890
4891         --  Build a simple_return_statement that returns the return object
4892
4893         Return_Stmt :=
4894           Make_Simple_Return_Statement (Loc,
4895             Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
4896         Append_To (Stmts, Return_Stmt);
4897
4898         HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
4899      end if;
4900
4901      --  Case where we build a return statement block
4902
4903      if Present (HSS) then
4904         Result :=
4905           Make_Block_Statement (Loc,
4906             Declarations               => Return_Object_Declarations (N),
4907             Handled_Statement_Sequence => HSS);
4908
4909         --  We set the entity of the new block statement to be that of the
4910         --  return statement. This is necessary so that various fields, such
4911         --  as Finalization_Chain_Entity carry over from the return statement
4912         --  to the block. Note that this block is unusual, in that its entity
4913         --  is an E_Return_Statement rather than an E_Block.
4914
4915         Set_Identifier
4916           (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4917
4918         --  If the object decl was already rewritten as a renaming, then we
4919         --  don't want to do the object allocation and transformation of
4920         --  the return object declaration to a renaming. This case occurs
4921         --  when the return object is initialized by a call to another
4922         --  build-in-place function, and that function is responsible for
4923         --  the allocation of the return object.
4924
4925         if Is_BIP_Func
4926           and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
4927         then
4928            pragma Assert
4929              (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4930                and then
4931
4932                  --  It is a regular BIP object declaration
4933
4934                  (Is_Build_In_Place_Function_Call
4935                     (Expression (Original_Node (Ret_Obj_Decl)))
4936
4937                  --  It is a BIP object declaration that displaces the pointer
4938                  --  to the object to reference a convered interface type.
4939
4940                  or else
4941                    Present (Unqual_BIP_Iface_Function_Call
4942                              (Expression (Original_Node (Ret_Obj_Decl))))));
4943
4944            --  Return the build-in-place result by reference
4945
4946            Set_By_Ref (Return_Stmt);
4947
4948         elsif Is_BIP_Func then
4949
4950            --  Locate the implicit access parameter associated with the
4951            --  caller-supplied return object and convert the return
4952            --  statement's return object declaration to a renaming of a
4953            --  dereference of the access parameter. If the return object's
4954            --  declaration includes an expression that has not already been
4955            --  expanded as separate assignments, then add an assignment
4956            --  statement to ensure the return object gets initialized.
4957
4958            --    declare
4959            --       Result : T [:= <expression>];
4960            --    begin
4961            --       ...
4962
4963            --  is converted to
4964
4965            --    declare
4966            --       Result : T renames FuncRA.all;
4967            --       [Result := <expression;]
4968            --    begin
4969            --       ...
4970
4971            declare
4972               Ret_Obj_Expr : constant Node_Id   := Expression (Ret_Obj_Decl);
4973               Ret_Obj_Typ  : constant Entity_Id := Etype (Ret_Obj_Id);
4974
4975               Init_Assignment  : Node_Id := Empty;
4976               Obj_Acc_Formal   : Entity_Id;
4977               Obj_Acc_Deref    : Node_Id;
4978               Obj_Alloc_Formal : Entity_Id;
4979
4980            begin
4981               --  Build-in-place results must be returned by reference
4982
4983               Set_By_Ref (Return_Stmt);
4984
4985               --  Retrieve the implicit access parameter passed by the caller
4986
4987               Obj_Acc_Formal :=
4988                 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
4989
4990               --  If the return object's declaration includes an expression
4991               --  and the declaration isn't marked as No_Initialization, then
4992               --  we need to generate an assignment to the object and insert
4993               --  it after the declaration before rewriting it as a renaming
4994               --  (otherwise we'll lose the initialization). The case where
4995               --  the result type is an interface (or class-wide interface)
4996               --  is also excluded because the context of the function call
4997               --  must be unconstrained, so the initialization will always
4998               --  be done as part of an allocator evaluation (storage pool
4999               --  or secondary stack), never to a constrained target object
5000               --  passed in by the caller. Besides the assignment being
5001               --  unneeded in this case, it avoids problems with trying to
5002               --  generate a dispatching assignment when the return expression
5003               --  is a nonlimited descendant of a limited interface (the
5004               --  interface has no assignment operation).
5005
5006               if Present (Ret_Obj_Expr)
5007                 and then not No_Initialization (Ret_Obj_Decl)
5008                 and then not Is_Interface (Ret_Obj_Typ)
5009               then
5010                  Init_Assignment :=
5011                    Make_Assignment_Statement (Loc,
5012                      Name       => New_Occurrence_Of (Ret_Obj_Id, Loc),
5013                      Expression => New_Copy_Tree (Ret_Obj_Expr));
5014
5015                  Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5016                  Set_Assignment_OK (Name (Init_Assignment));
5017                  Set_No_Ctrl_Actions (Init_Assignment);
5018
5019                  Set_Parent (Name (Init_Assignment), Init_Assignment);
5020                  Set_Parent (Expression (Init_Assignment), Init_Assignment);
5021
5022                  Set_Expression (Ret_Obj_Decl, Empty);
5023
5024                  if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
5025                    and then not Is_Class_Wide_Type
5026                                   (Etype (Expression (Init_Assignment)))
5027                  then
5028                     Rewrite (Expression (Init_Assignment),
5029                       Make_Type_Conversion (Loc,
5030                         Subtype_Mark =>
5031                           New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
5032                         Expression   =>
5033                           Relocate_Node (Expression (Init_Assignment))));
5034                  end if;
5035
5036                  --  In the case of functions where the calling context can
5037                  --  determine the form of allocation needed, initialization
5038                  --  is done with each part of the if statement that handles
5039                  --  the different forms of allocation (this is true for
5040                  --  unconstrained and tagged result subtypes).
5041
5042                  if Is_Constrained (Ret_Typ)
5043                    and then not Is_Tagged_Type (Underlying_Type (Ret_Typ))
5044                  then
5045                     Insert_After (Ret_Obj_Decl, Init_Assignment);
5046                  end if;
5047               end if;
5048
5049               --  When the function's subtype is unconstrained, a run-time
5050               --  test is needed to determine the form of allocation to use
5051               --  for the return object. The function has an implicit formal
5052               --  parameter indicating this. If the BIP_Alloc_Form formal has
5053               --  the value one, then the caller has passed access to an
5054               --  existing object for use as the return object. If the value
5055               --  is two, then the return object must be allocated on the
5056               --  secondary stack. Otherwise, the object must be allocated in
5057               --  a storage pool. We generate an if statement to test the
5058               --  implicit allocation formal and initialize a local access
5059               --  value appropriately, creating allocators in the secondary
5060               --  stack and global heap cases.  The special formal also exists
5061               --  and must be tested when the function has a tagged result,
5062               --  even when the result subtype is constrained, because in
5063               --  general such functions can be called in dispatching contexts
5064               --  and must be handled similarly to functions with a class-wide
5065               --  result.
5066
5067               if not Is_Constrained (Ret_Typ)
5068                 or else Is_Tagged_Type (Underlying_Type (Ret_Typ))
5069               then
5070                  Obj_Alloc_Formal :=
5071                    Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
5072
5073                  declare
5074                     Pool_Id        : constant Entity_Id :=
5075                                        Make_Temporary (Loc, 'P');
5076                     Alloc_Obj_Id   : Entity_Id;
5077                     Alloc_Obj_Decl : Node_Id;
5078                     Alloc_If_Stmt  : Node_Id;
5079                     Heap_Allocator : Node_Id;
5080                     Pool_Decl      : Node_Id;
5081                     Pool_Allocator : Node_Id;
5082                     Ptr_Type_Decl  : Node_Id;
5083                     Ref_Type       : Entity_Id;
5084                     SS_Allocator   : Node_Id;
5085
5086                  begin
5087                     --  Reuse the itype created for the function's implicit
5088                     --  access formal. This avoids the need to create a new
5089                     --  access type here, plus it allows assigning the access
5090                     --  formal directly without applying a conversion.
5091
5092                     --    Ref_Type := Etype (Object_Access);
5093
5094                     --  Create an access type designating the function's
5095                     --  result subtype.
5096
5097                     Ref_Type := Make_Temporary (Loc, 'A');
5098
5099                     Ptr_Type_Decl :=
5100                       Make_Full_Type_Declaration (Loc,
5101                         Defining_Identifier => Ref_Type,
5102                         Type_Definition     =>
5103                           Make_Access_To_Object_Definition (Loc,
5104                             All_Present        => True,
5105                             Subtype_Indication =>
5106                               New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5107
5108                     Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5109
5110                     --  Create an access object that will be initialized to an
5111                     --  access value denoting the return object, either coming
5112                     --  from an implicit access value passed in by the caller
5113                     --  or from the result of an allocator.
5114
5115                     Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5116                     Set_Etype (Alloc_Obj_Id, Ref_Type);
5117
5118                     Alloc_Obj_Decl :=
5119                       Make_Object_Declaration (Loc,
5120                         Defining_Identifier => Alloc_Obj_Id,
5121                         Object_Definition   =>
5122                           New_Occurrence_Of (Ref_Type, Loc));
5123
5124                     Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5125
5126                     --  Create allocators for both the secondary stack and
5127                     --  global heap. If there's an initialization expression,
5128                     --  then create these as initialized allocators.
5129
5130                     if Present (Ret_Obj_Expr)
5131                       and then not No_Initialization (Ret_Obj_Decl)
5132                     then
5133                        --  Always use the type of the expression for the
5134                        --  qualified expression, rather than the result type.
5135                        --  In general we cannot always use the result type
5136                        --  for the allocator, because the expression might be
5137                        --  of a specific type, such as in the case of an
5138                        --  aggregate or even a nonlimited object when the
5139                        --  result type is a limited class-wide interface type.
5140
5141                        Heap_Allocator :=
5142                          Make_Allocator (Loc,
5143                            Expression =>
5144                              Make_Qualified_Expression (Loc,
5145                                Subtype_Mark =>
5146                                  New_Occurrence_Of
5147                                    (Etype (Ret_Obj_Expr), Loc),
5148                                Expression   => New_Copy_Tree (Ret_Obj_Expr)));
5149
5150                     else
5151                        --  If the function returns a class-wide type we cannot
5152                        --  use the return type for the allocator. Instead we
5153                        --  use the type of the expression, which must be an
5154                        --  aggregate of a definite type.
5155
5156                        if Is_Class_Wide_Type (Ret_Obj_Typ) then
5157                           Heap_Allocator :=
5158                             Make_Allocator (Loc,
5159                               Expression =>
5160                                 New_Occurrence_Of
5161                                   (Etype (Ret_Obj_Expr), Loc));
5162                        else
5163                           Heap_Allocator :=
5164                             Make_Allocator (Loc,
5165                               Expression =>
5166                                 New_Occurrence_Of (Ret_Obj_Typ, Loc));
5167                        end if;
5168
5169                        --  If the object requires default initialization then
5170                        --  that will happen later following the elaboration of
5171                        --  the object renaming. If we don't turn it off here
5172                        --  then the object will be default initialized twice.
5173
5174                        Set_No_Initialization (Heap_Allocator);
5175                     end if;
5176
5177                     --  Set the flag indicating that the allocator came from
5178                     --  a build-in-place return statement, so we can avoid
5179                     --  adjusting the allocated object. Note that this flag
5180                     --  will be inherited by the copies made below.
5181
5182                     Set_Alloc_For_BIP_Return (Heap_Allocator);
5183
5184                     --  The Pool_Allocator is just like the Heap_Allocator,
5185                     --  except we set Storage_Pool and Procedure_To_Call so
5186                     --  it will use the user-defined storage pool.
5187
5188                     Pool_Allocator := New_Copy_Tree (Heap_Allocator);
5189                     pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
5190
5191                     --  Do not generate the renaming of the build-in-place
5192                     --  pool parameter on ZFP because the parameter is not
5193                     --  created in the first place.
5194
5195                     if RTE_Available (RE_Root_Storage_Pool_Ptr) then
5196                        Pool_Decl :=
5197                          Make_Object_Renaming_Declaration (Loc,
5198                            Defining_Identifier => Pool_Id,
5199                            Subtype_Mark        =>
5200                              New_Occurrence_Of
5201                                (RTE (RE_Root_Storage_Pool), Loc),
5202                            Name                =>
5203                              Make_Explicit_Dereference (Loc,
5204                                New_Occurrence_Of
5205                                  (Build_In_Place_Formal
5206                                     (Func_Id, BIP_Storage_Pool), Loc)));
5207                        Set_Storage_Pool (Pool_Allocator, Pool_Id);
5208                        Set_Procedure_To_Call
5209                          (Pool_Allocator, RTE (RE_Allocate_Any));
5210                     else
5211                        Pool_Decl := Make_Null_Statement (Loc);
5212                     end if;
5213
5214                     --  If the No_Allocators restriction is active, then only
5215                     --  an allocator for secondary stack allocation is needed.
5216                     --  It's OK for such allocators to have Comes_From_Source
5217                     --  set to False, because gigi knows not to flag them as
5218                     --  being a violation of No_Implicit_Heap_Allocations.
5219
5220                     if Restriction_Active (No_Allocators) then
5221                        SS_Allocator   := Heap_Allocator;
5222                        Heap_Allocator := Make_Null (Loc);
5223                        Pool_Allocator := Make_Null (Loc);
5224
5225                     --  Otherwise the heap and pool allocators may be needed,
5226                     --  so we make another allocator for secondary stack
5227                     --  allocation.
5228
5229                     else
5230                        SS_Allocator := New_Copy_Tree (Heap_Allocator);
5231                        pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
5232
5233                        --  The heap and pool allocators are marked as
5234                        --  Comes_From_Source since they correspond to an
5235                        --  explicit user-written allocator (that is, it will
5236                        --  only be executed on behalf of callers that call the
5237                        --  function as initialization for such an allocator).
5238                        --  Prevents errors when No_Implicit_Heap_Allocations
5239                        --  is in force.
5240
5241                        Set_Comes_From_Source (Heap_Allocator, True);
5242                        Set_Comes_From_Source (Pool_Allocator, True);
5243                     end if;
5244
5245                     --  The allocator is returned on the secondary stack.
5246
5247                     Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5248                     Set_Procedure_To_Call
5249                       (SS_Allocator, RTE (RE_SS_Allocate));
5250
5251                     --  The allocator is returned on the secondary stack,
5252                     --  so indicate that the function return, as well as
5253                     --  all blocks that encloses the allocator, must not
5254                     --  release it. The flags must be set now because
5255                     --  the decision to use the secondary stack is done
5256                     --  very late in the course of expanding the return
5257                     --  statement, past the point where these flags are
5258                     --  normally set.
5259
5260                     Set_Uses_Sec_Stack (Func_Id);
5261                     Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5262                     Set_Sec_Stack_Needed_For_Return
5263                       (Return_Statement_Entity (N));
5264                     Set_Enclosing_Sec_Stack_Return (N);
5265
5266                     --  Create an if statement to test the BIP_Alloc_Form
5267                     --  formal and initialize the access object to either the
5268                     --  BIP_Object_Access formal (BIP_Alloc_Form =
5269                     --  Caller_Allocation), the result of allocating the
5270                     --  object in the secondary stack (BIP_Alloc_Form =
5271                     --  Secondary_Stack), or else an allocator to create the
5272                     --  return object in the heap or user-defined pool
5273                     --  (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
5274
5275                     --  ??? An unchecked type conversion must be made in the
5276                     --  case of assigning the access object formal to the
5277                     --  local access object, because a normal conversion would
5278                     --  be illegal in some cases (such as converting access-
5279                     --  to-unconstrained to access-to-constrained), but the
5280                     --  the unchecked conversion will presumably fail to work
5281                     --  right in just such cases. It's not clear at all how to
5282                     --  handle this. ???
5283
5284                     Alloc_If_Stmt :=
5285                       Make_If_Statement (Loc,
5286                         Condition =>
5287                           Make_Op_Eq (Loc,
5288                             Left_Opnd  =>
5289                               New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5290                             Right_Opnd =>
5291                               Make_Integer_Literal (Loc,
5292                                 UI_From_Int (BIP_Allocation_Form'Pos
5293                                                (Caller_Allocation)))),
5294
5295                         Then_Statements => New_List (
5296                           Make_Assignment_Statement (Loc,
5297                             Name       =>
5298                               New_Occurrence_Of (Alloc_Obj_Id, Loc),
5299                             Expression =>
5300                               Make_Unchecked_Type_Conversion (Loc,
5301                                 Subtype_Mark =>
5302                                   New_Occurrence_Of (Ref_Type, Loc),
5303                                 Expression   =>
5304                                   New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
5305
5306                         Elsif_Parts => New_List (
5307                           Make_Elsif_Part (Loc,
5308                             Condition =>
5309                               Make_Op_Eq (Loc,
5310                                 Left_Opnd  =>
5311                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5312                                 Right_Opnd =>
5313                                   Make_Integer_Literal (Loc,
5314                                     UI_From_Int (BIP_Allocation_Form'Pos
5315                                                    (Secondary_Stack)))),
5316
5317                             Then_Statements => New_List (
5318                               Make_Assignment_Statement (Loc,
5319                                 Name       =>
5320                                   New_Occurrence_Of (Alloc_Obj_Id, Loc),
5321                                 Expression => SS_Allocator))),
5322
5323                           Make_Elsif_Part (Loc,
5324                             Condition =>
5325                               Make_Op_Eq (Loc,
5326                                 Left_Opnd  =>
5327                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5328                                 Right_Opnd =>
5329                                   Make_Integer_Literal (Loc,
5330                                     UI_From_Int (BIP_Allocation_Form'Pos
5331                                                    (Global_Heap)))),
5332
5333                             Then_Statements => New_List (
5334                               Build_Heap_Allocator
5335                                 (Temp_Id    => Alloc_Obj_Id,
5336                                  Temp_Typ   => Ref_Type,
5337                                  Func_Id    => Func_Id,
5338                                  Ret_Typ    => Ret_Obj_Typ,
5339                                  Alloc_Expr => Heap_Allocator))),
5340
5341                           --  ???If all is well, we can put the following
5342                           --  'elsif' in the 'else', but this is a useful
5343                           --  self-check in case caller and callee don't agree
5344                           --  on whether BIPAlloc and so on should be passed.
5345
5346                           Make_Elsif_Part (Loc,
5347                             Condition =>
5348                               Make_Op_Eq (Loc,
5349                                 Left_Opnd  =>
5350                                   New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5351                                 Right_Opnd =>
5352                                   Make_Integer_Literal (Loc,
5353                                     UI_From_Int (BIP_Allocation_Form'Pos
5354                                                    (User_Storage_Pool)))),
5355
5356                             Then_Statements => New_List (
5357                               Pool_Decl,
5358                               Build_Heap_Allocator
5359                                 (Temp_Id    => Alloc_Obj_Id,
5360                                  Temp_Typ   => Ref_Type,
5361                                  Func_Id    => Func_Id,
5362                                  Ret_Typ    => Ret_Obj_Typ,
5363                                  Alloc_Expr => Pool_Allocator)))),
5364
5365                         --  Raise Program_Error if it's none of the above;
5366                         --  this is a compiler bug.
5367
5368                         Else_Statements => New_List (
5369                           Make_Raise_Program_Error (Loc,
5370                             Reason => PE_Build_In_Place_Mismatch)));
5371
5372                     --  If a separate initialization assignment was created
5373                     --  earlier, append that following the assignment of the
5374                     --  implicit access formal to the access object, to ensure
5375                     --  that the return object is initialized in that case. In
5376                     --  this situation, the target of the assignment must be
5377                     --  rewritten to denote a dereference of the access to the
5378                     --  return object passed in by the caller.
5379
5380                     if Present (Init_Assignment) then
5381                        Rewrite (Name (Init_Assignment),
5382                          Make_Explicit_Dereference (Loc,
5383                            Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
5384                        pragma Assert
5385                          (Assignment_OK
5386                             (Original_Node (Name (Init_Assignment))));
5387                        Set_Assignment_OK (Name (Init_Assignment));
5388
5389                        Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
5390
5391                        Append_To
5392                          (Then_Statements (Alloc_If_Stmt), Init_Assignment);
5393                     end if;
5394
5395                     Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
5396
5397                     --  Remember the local access object for use in the
5398                     --  dereference of the renaming created below.
5399
5400                     Obj_Acc_Formal := Alloc_Obj_Id;
5401                  end;
5402               end if;
5403
5404               --  Replace the return object declaration with a renaming of a
5405               --  dereference of the access value designating the return
5406               --  object.
5407
5408               Obj_Acc_Deref :=
5409                 Make_Explicit_Dereference (Loc,
5410                   Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
5411
5412               Rewrite (Ret_Obj_Decl,
5413                 Make_Object_Renaming_Declaration (Loc,
5414                   Defining_Identifier => Ret_Obj_Id,
5415                   Access_Definition   => Empty,
5416                   Subtype_Mark        => New_Occurrence_Of (Ret_Obj_Typ, Loc),
5417                   Name                => Obj_Acc_Deref));
5418
5419               Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
5420            end;
5421         end if;
5422
5423      --  Case where we do not build a block
5424
5425      else
5426         --  We're about to drop Return_Object_Declarations on the floor, so
5427         --  we need to insert it, in case it got expanded into useful code.
5428         --  Remove side effects from expression, which may be duplicated in
5429         --  subsequent checks (see Expand_Simple_Function_Return).
5430
5431         Insert_List_Before (N, Return_Object_Declarations (N));
5432         Remove_Side_Effects (Exp);
5433
5434         --  Build simple_return_statement that returns the expression directly
5435
5436         Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5437         Result := Return_Stmt;
5438      end if;
5439
5440      --  Set the flag to prevent infinite recursion
5441
5442      Set_Comes_From_Extended_Return_Statement (Return_Stmt);
5443
5444      Rewrite (N, Result);
5445      Analyze (N);
5446   end Expand_N_Extended_Return_Statement;
5447
5448   ----------------------------
5449   -- Expand_N_Function_Call --
5450   ----------------------------
5451
5452   procedure Expand_N_Function_Call (N : Node_Id) is
5453   begin
5454      Expand_Call (N);
5455   end Expand_N_Function_Call;
5456
5457   ---------------------------------------
5458   -- Expand_N_Procedure_Call_Statement --
5459   ---------------------------------------
5460
5461   procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5462   begin
5463      Expand_Call (N);
5464   end Expand_N_Procedure_Call_Statement;
5465
5466   --------------------------------------
5467   -- Expand_N_Simple_Return_Statement --
5468   --------------------------------------
5469
5470   procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5471   begin
5472      --  Defend against previous errors (i.e. the return statement calls a
5473      --  function that is not available in configurable runtime).
5474
5475      if Present (Expression (N))
5476        and then Nkind (Expression (N)) = N_Empty
5477      then
5478         Check_Error_Detected;
5479         return;
5480      end if;
5481
5482      --  Distinguish the function and non-function cases:
5483
5484      case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5485         when E_Function
5486            | E_Generic_Function
5487         =>
5488            Expand_Simple_Function_Return (N);
5489
5490         when E_Entry
5491            | E_Entry_Family
5492            | E_Generic_Procedure
5493            | E_Procedure
5494            | E_Return_Statement
5495         =>
5496            Expand_Non_Function_Return (N);
5497
5498         when others =>
5499            raise Program_Error;
5500      end case;
5501
5502   exception
5503      when RE_Not_Available =>
5504         return;
5505   end Expand_N_Simple_Return_Statement;
5506
5507   ------------------------------
5508   -- Expand_N_Subprogram_Body --
5509   ------------------------------
5510
5511   --  Add poll call if ATC polling is enabled, unless the body will be inlined
5512   --  by the back-end.
5513
5514   --  Add dummy push/pop label nodes at start and end to clear any local
5515   --  exception indications if local-exception-to-goto optimization is active.
5516
5517   --  Add return statement if last statement in body is not a return statement
5518   --  (this makes things easier on Gigi which does not want to have to handle
5519   --  a missing return).
5520
5521   --  Add call to Activate_Tasks if body is a task activator
5522
5523   --  Deal with possible detection of infinite recursion
5524
5525   --  Eliminate body completely if convention stubbed
5526
5527   --  Encode entity names within body, since we will not need to reference
5528   --  these entities any longer in the front end.
5529
5530   --  Initialize scalar out parameters if Initialize/Normalize_Scalars
5531
5532   --  Reset Pure indication if any parameter has root type System.Address
5533   --  or has any parameters of limited types, where limited means that the
5534   --  run-time view is limited (i.e. the full type is limited).
5535
5536   --  Wrap thread body
5537
5538   procedure Expand_N_Subprogram_Body (N : Node_Id) is
5539      Body_Id  : constant Entity_Id  := Defining_Entity (N);
5540      HSS      : constant Node_Id    := Handled_Statement_Sequence (N);
5541      Loc      : constant Source_Ptr := Sloc (N);
5542
5543      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5544      --  Append a return statement to the statement sequence Stmts if the last
5545      --  statement is not already a return or a goto statement. Note that the
5546      --  latter test is not critical, it does not matter if we add a few extra
5547      --  returns, since they get eliminated anyway later on. Spec_Id denotes
5548      --  the corresponding spec of the subprogram body.
5549
5550      ----------------
5551      -- Add_Return --
5552      ----------------
5553
5554      procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
5555         Last_Stmt : Node_Id;
5556         Loc       : Source_Ptr;
5557         Stmt      : Node_Id;
5558
5559      begin
5560         --  Get last statement, ignoring any Pop_xxx_Label nodes, which are
5561         --  not relevant in this context since they are not executable.
5562
5563         Last_Stmt := Last (Stmts);
5564         while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5565            Prev (Last_Stmt);
5566         end loop;
5567
5568         --  Now insert return unless last statement is a transfer
5569
5570         if not Is_Transfer (Last_Stmt) then
5571
5572            --  The source location for the return is the end label of the
5573            --  procedure if present. Otherwise use the sloc of the last
5574            --  statement in the list. If the list comes from a generated
5575            --  exception handler and we are not debugging generated code,
5576            --  all the statements within the handler are made invisible
5577            --  to the debugger.
5578
5579            if Nkind (Parent (Stmts)) = N_Exception_Handler
5580              and then not Comes_From_Source (Parent (Stmts))
5581            then
5582               Loc := Sloc (Last_Stmt);
5583            elsif Present (End_Label (HSS)) then
5584               Loc := Sloc (End_Label (HSS));
5585            else
5586               Loc := Sloc (Last_Stmt);
5587            end if;
5588
5589            --  Append return statement, and set analyzed manually. We can't
5590            --  call Analyze on this return since the scope is wrong.
5591
5592            --  Note: it almost works to push the scope and then do the Analyze
5593            --  call, but something goes wrong in some weird cases and it is
5594            --  not worth worrying about ???
5595
5596            Stmt := Make_Simple_Return_Statement (Loc);
5597
5598            --  The return statement is handled properly, and the call to the
5599            --  postcondition, inserted below, does not require information
5600            --  from the body either. However, that call is analyzed in the
5601            --  enclosing scope, and an elaboration check might improperly be
5602            --  added to it. A guard in Sem_Elab is needed to prevent that
5603            --  spurious check, see Check_Elab_Call.
5604
5605            Append_To (Stmts, Stmt);
5606            Set_Analyzed (Stmt);
5607
5608            --  Call the _Postconditions procedure if the related subprogram
5609            --  has contract assertions that need to be verified on exit.
5610
5611            if Ekind (Spec_Id) = E_Procedure
5612              and then Present (Postconditions_Proc (Spec_Id))
5613            then
5614               Insert_Action (Stmt,
5615                 Make_Procedure_Call_Statement (Loc,
5616                   Name =>
5617                     New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5618            end if;
5619         end if;
5620      end Add_Return;
5621
5622      --  Local variables
5623
5624      Except_H : Node_Id;
5625      L        : List_Id;
5626      Spec_Id  : Entity_Id;
5627
5628   --  Start of processing for Expand_N_Subprogram_Body
5629
5630   begin
5631      if Present (Corresponding_Spec (N)) then
5632         Spec_Id := Corresponding_Spec (N);
5633      else
5634         Spec_Id := Body_Id;
5635      end if;
5636
5637      --  If this is a Pure function which has any parameters whose root type
5638      --  is System.Address, reset the Pure indication.
5639      --  This check is also performed when the subprogram is frozen, but we
5640      --  repeat it on the body so that the indication is consistent, and so
5641      --  it applies as well to bodies without separate specifications.
5642
5643      if Is_Pure (Spec_Id)
5644        and then Is_Subprogram (Spec_Id)
5645        and then not Has_Pragma_Pure_Function (Spec_Id)
5646      then
5647         Check_Function_With_Address_Parameter (Spec_Id);
5648
5649         if Spec_Id /= Body_Id then
5650            Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5651         end if;
5652      end if;
5653
5654      --  Set L to either the list of declarations if present, or to the list
5655      --  of statements if no declarations are present. This is used to insert
5656      --  new stuff at the start.
5657
5658      if Is_Non_Empty_List (Declarations (N)) then
5659         L := Declarations (N);
5660      else
5661         L := Statements (HSS);
5662      end if;
5663
5664      --  If local-exception-to-goto optimization active, insert dummy push
5665      --  statements at start, and dummy pop statements at end, but inhibit
5666      --  this if we have No_Exception_Handlers, since they are useless and
5667      --  intefere with analysis, e.g. by codepeer.
5668
5669      if (Debug_Flag_Dot_G
5670           or else Restriction_Active (No_Exception_Propagation))
5671        and then not Restriction_Active (No_Exception_Handlers)
5672        and then not CodePeer_Mode
5673        and then Is_Non_Empty_List (L)
5674      then
5675         declare
5676            FS  : constant Node_Id    := First (L);
5677            FL  : constant Source_Ptr := Sloc (FS);
5678            LS  : Node_Id;
5679            LL  : Source_Ptr;
5680
5681         begin
5682            --  LS points to either last statement, if statements are present
5683            --  or to the last declaration if there are no statements present.
5684            --  It is the node after which the pop's are generated.
5685
5686            if Is_Non_Empty_List (Statements (HSS)) then
5687               LS := Last (Statements (HSS));
5688            else
5689               LS := Last (L);
5690            end if;
5691
5692            LL := Sloc (LS);
5693
5694            Insert_List_Before_And_Analyze (FS, New_List (
5695              Make_Push_Constraint_Error_Label (FL),
5696              Make_Push_Program_Error_Label    (FL),
5697              Make_Push_Storage_Error_Label    (FL)));
5698
5699            Insert_List_After_And_Analyze (LS, New_List (
5700              Make_Pop_Constraint_Error_Label  (LL),
5701              Make_Pop_Program_Error_Label     (LL),
5702              Make_Pop_Storage_Error_Label     (LL)));
5703         end;
5704      end if;
5705
5706      --  Need poll on entry to subprogram if polling enabled. We only do this
5707      --  for non-empty subprograms, since it does not seem necessary to poll
5708      --  for a dummy null subprogram.
5709
5710      if Is_Non_Empty_List (L) then
5711
5712         --  Do not add a polling call if the subprogram is to be inlined by
5713         --  the back-end, to avoid repeated calls with multiple inlinings.
5714
5715         if Is_Inlined (Spec_Id)
5716           and then Front_End_Inlining
5717           and then Optimization_Level > 1
5718         then
5719            null;
5720         else
5721            Generate_Poll_Call (First (L));
5722         end if;
5723      end if;
5724
5725      --  Initialize any scalar OUT args if Initialize/Normalize_Scalars
5726
5727      if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5728         declare
5729            F : Entity_Id;
5730            A : Node_Id;
5731
5732         begin
5733            --  Loop through formals
5734
5735            F := First_Formal (Spec_Id);
5736            while Present (F) loop
5737               if Is_Scalar_Type (Etype (F))
5738                 and then Ekind (F) = E_Out_Parameter
5739               then
5740                  Check_Restriction (No_Default_Initialization, F);
5741
5742                  --  Insert the initialization. We turn off validity checks
5743                  --  for this assignment, since we do not want any check on
5744                  --  the initial value itself (which may well be invalid).
5745                  --  Predicate checks are disabled as well (RM 6.4.1 (13/3))
5746
5747                  A :=
5748                    Make_Assignment_Statement (Loc,
5749                      Name       => New_Occurrence_Of (F, Loc),
5750                      Expression => Get_Simple_Init_Val (Etype (F), N));
5751                  Set_Suppress_Assignment_Checks (A);
5752
5753                  Insert_Before_And_Analyze (First (L),
5754                    A, Suppress => Validity_Check);
5755               end if;
5756
5757               Next_Formal (F);
5758            end loop;
5759         end;
5760      end if;
5761
5762      --  Clear out statement list for stubbed procedure
5763
5764      if Present (Corresponding_Spec (N)) then
5765         Set_Elaboration_Flag (N, Spec_Id);
5766
5767         if Convention (Spec_Id) = Convention_Stubbed
5768           or else Is_Eliminated (Spec_Id)
5769         then
5770            Set_Declarations (N, Empty_List);
5771            Set_Handled_Statement_Sequence (N,
5772              Make_Handled_Sequence_Of_Statements (Loc,
5773                Statements => New_List (Make_Null_Statement (Loc))));
5774
5775            return;
5776         end if;
5777      end if;
5778
5779      --  Create a set of discriminals for the next protected subprogram body
5780
5781      if Is_List_Member (N)
5782        and then Present (Parent (List_Containing (N)))
5783        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5784        and then Present (Next_Protected_Operation (N))
5785      then
5786         Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5787      end if;
5788
5789      --  Returns_By_Ref flag is normally set when the subprogram is frozen but
5790      --  subprograms with no specs are not frozen.
5791
5792      declare
5793         Typ  : constant Entity_Id := Etype (Spec_Id);
5794         Utyp : constant Entity_Id := Underlying_Type (Typ);
5795
5796      begin
5797         if Is_Limited_View (Typ) then
5798            Set_Returns_By_Ref (Spec_Id);
5799
5800         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5801            Set_Returns_By_Ref (Spec_Id);
5802         end if;
5803      end;
5804
5805      --  For a procedure, we add a return for all possible syntactic ends of
5806      --  the subprogram.
5807
5808      if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
5809         Add_Return (Spec_Id, Statements (HSS));
5810
5811         if Present (Exception_Handlers (HSS)) then
5812            Except_H := First_Non_Pragma (Exception_Handlers (HSS));
5813            while Present (Except_H) loop
5814               Add_Return (Spec_Id, Statements (Except_H));
5815               Next_Non_Pragma (Except_H);
5816            end loop;
5817         end if;
5818
5819      --  For a function, we must deal with the case where there is at least
5820      --  one missing return. What we do is to wrap the entire body of the
5821      --  function in a block:
5822
5823      --    begin
5824      --      ...
5825      --    end;
5826
5827      --  becomes
5828
5829      --    begin
5830      --       begin
5831      --          ...
5832      --       end;
5833
5834      --       raise Program_Error;
5835      --    end;
5836
5837      --  This approach is necessary because the raise must be signalled to the
5838      --  caller, not handled by any local handler (RM 6.4(11)).
5839
5840      --  Note: we do not need to analyze the constructed sequence here, since
5841      --  it has no handler, and an attempt to analyze the handled statement
5842      --  sequence twice is risky in various ways (e.g. the issue of expanding
5843      --  cleanup actions twice).
5844
5845      elsif Has_Missing_Return (Spec_Id) then
5846         declare
5847            Hloc : constant Source_Ptr := Sloc (HSS);
5848            Blok : constant Node_Id    :=
5849                     Make_Block_Statement (Hloc,
5850                       Handled_Statement_Sequence => HSS);
5851            Rais : constant Node_Id    :=
5852                     Make_Raise_Program_Error (Hloc,
5853                       Reason => PE_Missing_Return);
5854
5855         begin
5856            Set_Handled_Statement_Sequence (N,
5857              Make_Handled_Sequence_Of_Statements (Hloc,
5858                Statements => New_List (Blok, Rais)));
5859
5860            Push_Scope (Spec_Id);
5861            Analyze (Blok);
5862            Analyze (Rais);
5863            Pop_Scope;
5864         end;
5865      end if;
5866
5867      --  If subprogram contains a parameterless recursive call, then we may
5868      --  have an infinite recursion, so see if we can generate code to check
5869      --  for this possibility if storage checks are not suppressed.
5870
5871      if Ekind (Spec_Id) = E_Procedure
5872        and then Has_Recursive_Call (Spec_Id)
5873        and then not Storage_Checks_Suppressed (Spec_Id)
5874      then
5875         Detect_Infinite_Recursion (N, Spec_Id);
5876      end if;
5877
5878      --  Set to encode entity names in package body before gigi is called
5879
5880      Qualify_Entity_Names (N);
5881
5882      --  If the body belongs to a nonabstract library-level source primitive
5883      --  of a tagged type, install an elaboration check which ensures that a
5884      --  dispatching call targeting the primitive will not execute the body
5885      --  without it being previously elaborated.
5886
5887      Install_Primitive_Elaboration_Check (N);
5888   end Expand_N_Subprogram_Body;
5889
5890   -----------------------------------
5891   -- Expand_N_Subprogram_Body_Stub --
5892   -----------------------------------
5893
5894   procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5895      Bod : Node_Id;
5896
5897   begin
5898      if Present (Corresponding_Body (N)) then
5899         Bod := Unit_Declaration_Node (Corresponding_Body (N));
5900
5901         --  The body may have been expanded already when it is analyzed
5902         --  through the subunit node. Do no expand again: it interferes
5903         --  with the construction of unnesting tables when generating C.
5904
5905         if not Analyzed (Bod) then
5906            Expand_N_Subprogram_Body (Bod);
5907         end if;
5908
5909         --  Add full qualification to entities that may be created late
5910         --  during unnesting.
5911
5912         Qualify_Entity_Names (N);
5913      end if;
5914   end Expand_N_Subprogram_Body_Stub;
5915
5916   -------------------------------------
5917   -- Expand_N_Subprogram_Declaration --
5918   -------------------------------------
5919
5920   --  If the declaration appears within a protected body, it is a private
5921   --  operation of the protected type. We must create the corresponding
5922   --  protected subprogram an associated formals. For a normal protected
5923   --  operation, this is done when expanding the protected type declaration.
5924
5925   --  If the declaration is for a null procedure, emit null body
5926
5927   procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
5928      Loc  : constant Source_Ptr := Sloc (N);
5929      Subp : constant Entity_Id  := Defining_Entity (N);
5930
5931      --  Local variables
5932
5933      Scop      : constant Entity_Id  := Scope (Subp);
5934      Prot_Bod  : Node_Id;
5935      Prot_Decl : Node_Id;
5936      Prot_Id   : Entity_Id;
5937
5938   --  Start of processing for Expand_N_Subprogram_Declaration
5939
5940   begin
5941      --  In SPARK, subprogram declarations are only allowed in package
5942      --  specifications.
5943
5944      if Nkind (Parent (N)) /= N_Package_Specification then
5945         if Nkind (Parent (N)) = N_Compilation_Unit then
5946            Check_SPARK_05_Restriction
5947              ("subprogram declaration is not a library item", N);
5948
5949         elsif Present (Next (N))
5950           and then Nkind (Next (N)) = N_Pragma
5951           and then Get_Pragma_Id (Next (N)) = Pragma_Import
5952         then
5953            --  In SPARK, subprogram declarations are also permitted in
5954            --  declarative parts when immediately followed by a corresponding
5955            --  pragma Import. We only check here that there is some pragma
5956            --  Import.
5957
5958            null;
5959         else
5960            Check_SPARK_05_Restriction
5961              ("subprogram declaration is not allowed here", N);
5962         end if;
5963      end if;
5964
5965      --  Deal with case of protected subprogram. Do not generate protected
5966      --  operation if operation is flagged as eliminated.
5967
5968      if Is_List_Member (N)
5969        and then Present (Parent (List_Containing (N)))
5970        and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5971        and then Is_Protected_Type (Scop)
5972      then
5973         if No (Protected_Body_Subprogram (Subp))
5974           and then not Is_Eliminated (Subp)
5975         then
5976            Prot_Decl :=
5977              Make_Subprogram_Declaration (Loc,
5978                Specification =>
5979                  Build_Protected_Sub_Specification
5980                    (N, Scop, Unprotected_Mode));
5981
5982            --  The protected subprogram is declared outside of the protected
5983            --  body. Given that the body has frozen all entities so far, we
5984            --  analyze the subprogram and perform freezing actions explicitly.
5985            --  including the generation of an explicit freeze node, to ensure
5986            --  that gigi has the proper order of elaboration.
5987            --  If the body is a subunit, the insertion point is before the
5988            --  stub in the parent.
5989
5990            Prot_Bod := Parent (List_Containing (N));
5991
5992            if Nkind (Parent (Prot_Bod)) = N_Subunit then
5993               Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5994            end if;
5995
5996            Insert_Before (Prot_Bod, Prot_Decl);
5997            Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
5998            Set_Has_Delayed_Freeze (Prot_Id);
5999
6000            Push_Scope (Scope (Scop));
6001            Analyze (Prot_Decl);
6002            Freeze_Before (N, Prot_Id);
6003            Set_Protected_Body_Subprogram (Subp, Prot_Id);
6004
6005            --  Create protected operation as well. Even though the operation
6006            --  is only accessible within the body, it is possible to make it
6007            --  available outside of the protected object by using 'Access to
6008            --  provide a callback, so build protected version in all cases.
6009
6010            Prot_Decl :=
6011              Make_Subprogram_Declaration (Loc,
6012                Specification =>
6013                  Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
6014            Insert_Before (Prot_Bod, Prot_Decl);
6015            Analyze (Prot_Decl);
6016
6017            Pop_Scope;
6018         end if;
6019
6020      --  Ada 2005 (AI-348): Generate body for a null procedure. In most
6021      --  cases this is superfluous because calls to it will be automatically
6022      --  inlined, but we definitely need the body if preconditions for the
6023      --  procedure are present, or if performing coverage analysis.
6024
6025      elsif Nkind (Specification (N)) = N_Procedure_Specification
6026        and then Null_Present (Specification (N))
6027      then
6028         declare
6029            Bod : constant Node_Id := Body_To_Inline (N);
6030
6031         begin
6032            Set_Has_Completion (Subp, False);
6033            Append_Freeze_Action (Subp, Bod);
6034
6035            --  The body now contains raise statements, so calls to it will
6036            --  not be inlined.
6037
6038            Set_Is_Inlined (Subp, False);
6039         end;
6040      end if;
6041
6042      --  When generating C code, transform a function that returns a
6043      --  constrained array type into a procedure with an out parameter
6044      --  that carries the return value.
6045
6046      --  We skip this transformation for unchecked conversions, since they
6047      --  are not needed by the C generator (and this also produces cleaner
6048      --  output).
6049
6050      if Modify_Tree_For_C
6051        and then Nkind (Specification (N)) = N_Function_Specification
6052        and then Is_Array_Type (Etype (Subp))
6053        and then Is_Constrained (Etype (Subp))
6054        and then not Is_Unchecked_Conversion_Instance (Subp)
6055      then
6056         Build_Procedure_Form (N);
6057      end if;
6058   end Expand_N_Subprogram_Declaration;
6059
6060   --------------------------------
6061   -- Expand_Non_Function_Return --
6062   --------------------------------
6063
6064   procedure Expand_Non_Function_Return (N : Node_Id) is
6065      pragma Assert (No (Expression (N)));
6066
6067      Loc       : constant Source_Ptr := Sloc (N);
6068      Scope_Id  : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6069      Kind      : constant Entity_Kind := Ekind (Scope_Id);
6070      Call      : Node_Id;
6071      Acc_Stat  : Node_Id;
6072      Goto_Stat : Node_Id;
6073      Lab_Node  : Node_Id;
6074
6075   begin
6076      --  Call the _Postconditions procedure if the related subprogram has
6077      --  contract assertions that need to be verified on exit.
6078
6079      if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6080        and then Present (Postconditions_Proc (Scope_Id))
6081      then
6082         Insert_Action (N,
6083           Make_Procedure_Call_Statement (Loc,
6084             Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
6085      end if;
6086
6087      --  If it is a return from a procedure do no extra steps
6088
6089      if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6090         return;
6091
6092      --  If it is a nested return within an extended one, replace it with a
6093      --  return of the previously declared return object.
6094
6095      elsif Kind = E_Return_Statement then
6096         Rewrite (N,
6097           Make_Simple_Return_Statement (Loc,
6098             Expression =>
6099               New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6100         Set_Comes_From_Extended_Return_Statement (N);
6101         Set_Return_Statement_Entity (N, Scope_Id);
6102         Expand_Simple_Function_Return (N);
6103         return;
6104      end if;
6105
6106      pragma Assert (Is_Entry (Scope_Id));
6107
6108      --  Look at the enclosing block to see whether the return is from an
6109      --  accept statement or an entry body.
6110
6111      for J in reverse 0 .. Scope_Stack.Last loop
6112         Scope_Id := Scope_Stack.Table (J).Entity;
6113         exit when Is_Concurrent_Type (Scope_Id);
6114      end loop;
6115
6116      --  If it is a return from accept statement it is expanded as call to
6117      --  RTS Complete_Rendezvous and a goto to the end of the accept body.
6118
6119      --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6120      --  Expand_N_Accept_Alternative in exp_ch9.adb)
6121
6122      if Is_Task_Type (Scope_Id) then
6123
6124         Call :=
6125           Make_Procedure_Call_Statement (Loc,
6126             Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
6127         Insert_Before (N, Call);
6128         --  why not insert actions here???
6129         Analyze (Call);
6130
6131         Acc_Stat := Parent (N);
6132         while Nkind (Acc_Stat) /= N_Accept_Statement loop
6133            Acc_Stat := Parent (Acc_Stat);
6134         end loop;
6135
6136         Lab_Node := Last (Statements
6137           (Handled_Statement_Sequence (Acc_Stat)));
6138
6139         Goto_Stat := Make_Goto_Statement (Loc,
6140           Name => New_Occurrence_Of
6141             (Entity (Identifier (Lab_Node)), Loc));
6142
6143         Set_Analyzed (Goto_Stat);
6144
6145         Rewrite (N, Goto_Stat);
6146         Analyze (N);
6147
6148      --  If it is a return from an entry body, put a Complete_Entry_Body call
6149      --  in front of the return.
6150
6151      elsif Is_Protected_Type (Scope_Id) then
6152         Call :=
6153           Make_Procedure_Call_Statement (Loc,
6154             Name =>
6155               New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
6156             Parameter_Associations => New_List (
6157               Make_Attribute_Reference (Loc,
6158                 Prefix         =>
6159                   New_Occurrence_Of
6160                     (Find_Protection_Object (Current_Scope), Loc),
6161                 Attribute_Name => Name_Unchecked_Access)));
6162
6163         Insert_Before (N, Call);
6164         Analyze (Call);
6165      end if;
6166   end Expand_Non_Function_Return;
6167
6168   ---------------------------------------
6169   -- Expand_Protected_Object_Reference --
6170   ---------------------------------------
6171
6172   function Expand_Protected_Object_Reference
6173     (N    : Node_Id;
6174      Scop : Entity_Id) return Node_Id
6175   is
6176      Loc   : constant Source_Ptr := Sloc (N);
6177      Corr  : Entity_Id;
6178      Rec   : Node_Id;
6179      Param : Entity_Id;
6180      Proc  : Entity_Id;
6181
6182   begin
6183      Rec := Make_Identifier (Loc, Name_uObject);
6184      Set_Etype (Rec, Corresponding_Record_Type (Scop));
6185
6186      --  Find enclosing protected operation, and retrieve its first parameter,
6187      --  which denotes the enclosing protected object. If the enclosing
6188      --  operation is an entry, we are immediately within the protected body,
6189      --  and we can retrieve the object from the service entries procedure. A
6190      --  barrier function has the same signature as an entry. A barrier
6191      --  function is compiled within the protected object, but unlike
6192      --  protected operations its never needs locks, so that its protected
6193      --  body subprogram points to itself.
6194
6195      Proc := Current_Scope;
6196      while Present (Proc)
6197        and then Scope (Proc) /= Scop
6198      loop
6199         Proc := Scope (Proc);
6200      end loop;
6201
6202      Corr := Protected_Body_Subprogram (Proc);
6203
6204      if No (Corr) then
6205
6206         --  Previous error left expansion incomplete.
6207         --  Nothing to do on this call.
6208
6209         return Empty;
6210      end if;
6211
6212      Param :=
6213        Defining_Identifier
6214          (First (Parameter_Specifications (Parent (Corr))));
6215
6216      if Is_Subprogram (Proc) and then Proc /= Corr then
6217
6218         --  Protected function or procedure
6219
6220         Set_Entity (Rec, Param);
6221
6222         --  Rec is a reference to an entity which will not be in scope when
6223         --  the call is reanalyzed, and needs no further analysis.
6224
6225         Set_Analyzed (Rec);
6226
6227      else
6228         --  Entry or barrier function for entry body. The first parameter of
6229         --  the entry body procedure is pointer to the object. We create a
6230         --  local variable of the proper type, duplicating what is done to
6231         --  define _object later on.
6232
6233         declare
6234            Decls   : List_Id;
6235            Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
6236
6237         begin
6238            Decls := New_List (
6239              Make_Full_Type_Declaration (Loc,
6240                Defining_Identifier => Obj_Ptr,
6241                  Type_Definition   =>
6242                     Make_Access_To_Object_Definition (Loc,
6243                       Subtype_Indication =>
6244                         New_Occurrence_Of
6245                           (Corresponding_Record_Type (Scop), Loc))));
6246
6247            Insert_Actions (N, Decls);
6248            Freeze_Before (N, Obj_Ptr);
6249
6250            Rec :=
6251              Make_Explicit_Dereference (Loc,
6252                Prefix =>
6253                  Unchecked_Convert_To (Obj_Ptr,
6254                    New_Occurrence_Of (Param, Loc)));
6255
6256            --  Analyze new actual. Other actuals in calls are already analyzed
6257            --  and the list of actuals is not reanalyzed after rewriting.
6258
6259            Set_Parent (Rec, N);
6260            Analyze (Rec);
6261         end;
6262      end if;
6263
6264      return Rec;
6265   end Expand_Protected_Object_Reference;
6266
6267   --------------------------------------
6268   -- Expand_Protected_Subprogram_Call --
6269   --------------------------------------
6270
6271   procedure Expand_Protected_Subprogram_Call
6272     (N    : Node_Id;
6273      Subp : Entity_Id;
6274      Scop : Entity_Id)
6275   is
6276      Rec : Node_Id;
6277
6278      procedure Expand_Internal_Init_Call;
6279      --  A call to an operation of the type may occur in the initialization
6280      --  of a private component. In that case the prefix of the call is an
6281      --  entity name and the call is treated as internal even though it
6282      --  appears in code outside of the protected type.
6283
6284      procedure Freeze_Called_Function;
6285      --  If it is a function call it can appear in elaboration code and
6286      --  the called entity must be frozen before the call. This must be
6287      --  done before the call is expanded, as the expansion may rewrite it
6288      --  to something other than a call (e.g. a temporary initialized in a
6289      --  transient block).
6290
6291      -------------------------------
6292      -- Expand_Internal_Init_Call --
6293      -------------------------------
6294
6295      procedure Expand_Internal_Init_Call is
6296      begin
6297         --  If the context is a protected object (rather than a protected
6298         --  type) the call itself is bound to raise program_error because
6299         --  the protected body will not have been elaborated yet. This is
6300         --  diagnosed subsequently in Sem_Elab.
6301
6302         Freeze_Called_Function;
6303
6304         --  The target of the internal call is the first formal of the
6305         --  enclosing initialization procedure.
6306
6307         Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6308         Build_Protected_Subprogram_Call (N,
6309           Name     => Name (N),
6310           Rec      => Rec,
6311           External => False);
6312         Analyze (N);
6313         Resolve (N, Etype (Subp));
6314      end Expand_Internal_Init_Call;
6315
6316      ----------------------------
6317      -- Freeze_Called_Function --
6318      ----------------------------
6319
6320      procedure Freeze_Called_Function is
6321      begin
6322         if Ekind (Subp) = E_Function then
6323            Freeze_Expression (Name (N));
6324         end if;
6325      end Freeze_Called_Function;
6326
6327   --  Start of processing for Expand_Protected_Subprogram_Call
6328
6329   begin
6330      --  If the protected object is not an enclosing scope, this is an inter-
6331      --  object function call. Inter-object procedure calls are expanded by
6332      --  Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6333      --  subprogram being called is in the protected body being compiled, and
6334      --  if the protected object in the call is statically the enclosing type.
6335      --  The object may be a component of some other data structure, in which
6336      --  case this must be handled as an inter-object call.
6337
6338      if not In_Open_Scopes (Scop)
6339        or else Is_Entry_Wrapper (Current_Scope)
6340        or else not Is_Entity_Name (Name (N))
6341      then
6342         if Nkind (Name (N)) = N_Selected_Component then
6343            Rec := Prefix (Name (N));
6344
6345         elsif Nkind (Name (N)) = N_Indexed_Component then
6346            Rec := Prefix (Prefix (Name (N)));
6347
6348         --  If this is a call within an entry wrapper, it appears within a
6349         --  precondition that calls another primitive of the synchronized
6350         --  type. The target object of the call is the first actual on the
6351         --  wrapper. Note that this is an external call, because the wrapper
6352         --  is called outside of the synchronized object. This means that
6353         --  an entry call to an entry with preconditions involves two
6354         --  synchronized operations.
6355
6356         elsif Ekind (Current_Scope) = E_Procedure
6357           and then Is_Entry_Wrapper (Current_Scope)
6358         then
6359            Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6360
6361         else
6362            --  If the context is the initialization procedure for a protected
6363            --  type, the call is legal because the called entity must be a
6364            --  function of that enclosing type, and this is treated as an
6365            --  internal call.
6366
6367            pragma Assert
6368              (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6369
6370            Expand_Internal_Init_Call;
6371            return;
6372         end if;
6373
6374         Freeze_Called_Function;
6375         Build_Protected_Subprogram_Call (N,
6376           Name     => New_Occurrence_Of (Subp, Sloc (N)),
6377           Rec      => Convert_Concurrent (Rec, Etype (Rec)),
6378           External => True);
6379
6380      else
6381         Rec := Expand_Protected_Object_Reference (N, Scop);
6382
6383         if No (Rec) then
6384            return;
6385         end if;
6386
6387         Freeze_Called_Function;
6388         Build_Protected_Subprogram_Call (N,
6389           Name     => Name (N),
6390           Rec      => Rec,
6391           External => False);
6392      end if;
6393
6394      --  Analyze and resolve the new call. The actuals have already been
6395      --  resolved, but expansion of a function call will add extra actuals
6396      --  if needed. Analysis of a procedure call already includes resolution.
6397
6398      Analyze (N);
6399
6400      if Ekind (Subp) = E_Function then
6401         Resolve (N, Etype (Subp));
6402      end if;
6403   end Expand_Protected_Subprogram_Call;
6404
6405   -----------------------------------
6406   -- Expand_Simple_Function_Return --
6407   -----------------------------------
6408
6409   --  The "simple" comes from the syntax rule simple_return_statement. The
6410   --  semantics are not at all simple.
6411
6412   procedure Expand_Simple_Function_Return (N : Node_Id) is
6413      Loc : constant Source_Ptr := Sloc (N);
6414
6415      Scope_Id : constant Entity_Id :=
6416                   Return_Applies_To (Return_Statement_Entity (N));
6417      --  The function we are returning from
6418
6419      R_Type : constant Entity_Id := Etype (Scope_Id);
6420      --  The result type of the function
6421
6422      Utyp : constant Entity_Id := Underlying_Type (R_Type);
6423
6424      Exp : Node_Id := Expression (N);
6425      pragma Assert (Present (Exp));
6426
6427      Exptyp : constant Entity_Id := Etype (Exp);
6428      --  The type of the expression (not necessarily the same as R_Type)
6429
6430      Subtype_Ind : Node_Id;
6431      --  If the result type of the function is class-wide and the expression
6432      --  has a specific type, then we use the expression's type as the type of
6433      --  the return object. In cases where the expression is an aggregate that
6434      --  is built in place, this avoids the need for an expensive conversion
6435      --  of the return object to the specific type on assignments to the
6436      --  individual components.
6437
6438   begin
6439      if Is_Class_Wide_Type (R_Type)
6440        and then not Is_Class_Wide_Type (Exptyp)
6441        and then Nkind (Exp) /= N_Type_Conversion
6442      then
6443         Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
6444      else
6445         Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6446
6447         --  If the result type is class-wide and the expression is a view
6448         --  conversion, the conversion plays no role in the expansion because
6449         --  it does not modify the tag of the object. Remove the conversion
6450         --  altogether to prevent tag overwriting.
6451
6452         if Is_Class_Wide_Type (R_Type)
6453           and then not Is_Class_Wide_Type (Exptyp)
6454           and then Nkind (Exp) = N_Type_Conversion
6455         then
6456            Exp := Expression (Exp);
6457         end if;
6458      end if;
6459
6460      --  Assert that if F says "return G(...);"
6461      --  then F and G are both b-i-p, or neither b-i-p.
6462
6463      if Nkind (Exp) = N_Function_Call then
6464         pragma Assert (Ekind (Scope_Id) = E_Function);
6465         pragma Assert
6466           (Is_Build_In_Place_Function (Scope_Id) =
6467            Is_Build_In_Place_Function_Call (Exp));
6468         null;
6469      end if;
6470
6471      --  For the case of a simple return that does not come from an
6472      --  extended return, in the case of build-in-place, we rewrite
6473      --  "return <expression>;" to be:
6474
6475      --    return _anon_ : <return_subtype> := <expression>
6476
6477      --  The expansion produced by Expand_N_Extended_Return_Statement will
6478      --  contain simple return statements (for example, a block containing
6479      --  simple return of the return object), which brings us back here with
6480      --  Comes_From_Extended_Return_Statement set. The reason for the barrier
6481      --  checking for a simple return that does not come from an extended
6482      --  return is to avoid this infinite recursion.
6483
6484      --  The reason for this design is that for Ada 2005 limited returns, we
6485      --  need to reify the return object, so we can build it "in place", and
6486      --  we need a block statement to hang finalization and tasking stuff.
6487
6488      --  ??? In order to avoid disruption, we avoid translating to extended
6489      --  return except in the cases where we really need to (Ada 2005 for
6490      --  inherently limited). We might prefer to do this translation in all
6491      --  cases (except perhaps for the case of Ada 95 inherently limited),
6492      --  in order to fully exercise the Expand_N_Extended_Return_Statement
6493      --  code. This would also allow us to do the build-in-place optimization
6494      --  for efficiency even in cases where it is semantically not required.
6495
6496      --  As before, we check the type of the return expression rather than the
6497      --  return type of the function, because the latter may be a limited
6498      --  class-wide interface type, which is not a limited type, even though
6499      --  the type of the expression may be.
6500
6501      pragma Assert
6502        (Comes_From_Extended_Return_Statement (N)
6503          or else not Is_Build_In_Place_Function_Call (Exp)
6504          or else Is_Build_In_Place_Function (Scope_Id));
6505
6506      if not Comes_From_Extended_Return_Statement (N)
6507        and then Is_Build_In_Place_Function (Scope_Id)
6508        and then not Debug_Flag_Dot_L
6509
6510         --  The functionality of interface thunks is simple and it is always
6511         --  handled by means of simple return statements. This leaves their
6512         --  expansion simple and clean.
6513
6514        and then not Is_Thunk (Current_Scope)
6515      then
6516         declare
6517            Return_Object_Entity : constant Entity_Id :=
6518                                     Make_Temporary (Loc, 'R', Exp);
6519
6520            Obj_Decl : constant Node_Id :=
6521                         Make_Object_Declaration (Loc,
6522                           Defining_Identifier => Return_Object_Entity,
6523                           Object_Definition   => Subtype_Ind,
6524                           Expression          => Exp);
6525
6526            Ext : constant Node_Id :=
6527                    Make_Extended_Return_Statement (Loc,
6528                      Return_Object_Declarations => New_List (Obj_Decl));
6529            --  Do not perform this high-level optimization if the result type
6530            --  is an interface because the "this" pointer must be displaced.
6531
6532         begin
6533            Rewrite (N, Ext);
6534            Analyze (N);
6535            return;
6536         end;
6537      end if;
6538
6539      --  Here we have a simple return statement that is part of the expansion
6540      --  of an extended return statement (either written by the user, or
6541      --  generated by the above code).
6542
6543      --  Always normalize C/Fortran boolean result. This is not always needed,
6544      --  but it seems a good idea to minimize the passing around of non-
6545      --  normalized values, and in any case this handles the processing of
6546      --  barrier functions for protected types, which turn the condition into
6547      --  a return statement.
6548
6549      if Is_Boolean_Type (Exptyp)
6550        and then Nonzero_Is_True (Exptyp)
6551      then
6552         Adjust_Condition (Exp);
6553         Adjust_Result_Type (Exp, Exptyp);
6554      end if;
6555
6556      --  Do validity check if enabled for returns
6557
6558      if Validity_Checks_On
6559        and then Validity_Check_Returns
6560      then
6561         Ensure_Valid (Exp);
6562      end if;
6563
6564      --  Check the result expression of a scalar function against the subtype
6565      --  of the function by inserting a conversion. This conversion must
6566      --  eventually be performed for other classes of types, but for now it's
6567      --  only done for scalars.
6568      --  ???
6569
6570      if Is_Scalar_Type (Exptyp) then
6571         Rewrite (Exp, Convert_To (R_Type, Exp));
6572
6573         --  The expression is resolved to ensure that the conversion gets
6574         --  expanded to generate a possible constraint check.
6575
6576         Analyze_And_Resolve (Exp, R_Type);
6577      end if;
6578
6579      --  Deal with returning variable length objects and controlled types
6580
6581      --  Nothing to do if we are returning by reference, or this is not a
6582      --  type that requires special processing (indicated by the fact that
6583      --  it requires a cleanup scope for the secondary stack case).
6584
6585      if Is_Build_In_Place_Function (Scope_Id)
6586        or else Is_Limited_Interface (Exptyp)
6587      then
6588         null;
6589
6590      --  No copy needed for thunks returning interface type objects since
6591      --  the object is returned by reference and the maximum functionality
6592      --  required is just to displace the pointer.
6593
6594      elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
6595         null;
6596
6597      --  If the call is within a thunk and the type is a limited view, the
6598      --  backend will eventually see the non-limited view of the type.
6599
6600      elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
6601         return;
6602
6603      elsif not Requires_Transient_Scope (R_Type) then
6604
6605         --  Mutable records with variable-length components are not returned
6606         --  on the sec-stack, so we need to make sure that the back end will
6607         --  only copy back the size of the actual value, and not the maximum
6608         --  size. We create an actual subtype for this purpose. However we
6609         --  need not do it if the expression is a function call since this
6610         --  will be done in the called function and doing it here too would
6611         --  cause a temporary with maximum size to be created.
6612
6613         declare
6614            Ubt  : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6615            Decl : Node_Id;
6616            Ent  : Entity_Id;
6617         begin
6618            if Nkind (Exp) /= N_Function_Call
6619              and then Has_Discriminants (Ubt)
6620              and then not Is_Constrained (Ubt)
6621              and then not Has_Unchecked_Union (Ubt)
6622            then
6623               Decl := Build_Actual_Subtype (Ubt, Exp);
6624               Ent := Defining_Identifier (Decl);
6625               Insert_Action (Exp, Decl);
6626               Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6627               Analyze_And_Resolve (Exp);
6628            end if;
6629         end;
6630
6631      --  Here if secondary stack is used
6632
6633      else
6634         --  Prevent the reclamation of the secondary stack by all enclosing
6635         --  blocks and loops as well as the related function; otherwise the
6636         --  result would be reclaimed too early.
6637
6638         Set_Enclosing_Sec_Stack_Return (N);
6639
6640         --  Optimize the case where the result is a function call. In this
6641         --  case either the result is already on the secondary stack, or is
6642         --  already being returned with the stack pointer depressed and no
6643         --  further processing is required except to set the By_Ref flag
6644         --  to ensure that gigi does not attempt an extra unnecessary copy.
6645         --  (actually not just unnecessary but harmfully wrong in the case
6646         --  of a controlled type, where gigi does not know how to do a copy).
6647         --  To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6648         --  for array types if the constrained status of the target type is
6649         --  different from that of the expression.
6650
6651         if Requires_Transient_Scope (Exptyp)
6652           and then
6653              (not Is_Array_Type (Exptyp)
6654                or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6655                or else CW_Or_Has_Controlled_Part (Utyp))
6656           and then Nkind (Exp) = N_Function_Call
6657         then
6658            Set_By_Ref (N);
6659
6660            --  Remove side effects from the expression now so that other parts
6661            --  of the expander do not have to reanalyze this node without this
6662            --  optimization
6663
6664            Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6665
6666            --  Ada 2005 (AI-251): If the type of the returned object is
6667            --  an interface then add an implicit type conversion to force
6668            --  displacement of the "this" pointer.
6669
6670            if Is_Interface (R_Type) then
6671               Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6672            end if;
6673
6674            Analyze_And_Resolve (Exp, R_Type);
6675
6676         --  For controlled types, do the allocation on the secondary stack
6677         --  manually in order to call adjust at the right time:
6678
6679         --    type Anon1 is access R_Type;
6680         --    for Anon1'Storage_pool use ss_pool;
6681         --    Anon2 : anon1 := new R_Type'(expr);
6682         --    return Anon2.all;
6683
6684         --  We do the same for classwide types that are not potentially
6685         --  controlled (by the virtue of restriction No_Finalization) because
6686         --  gigi is not able to properly allocate class-wide types.
6687
6688         elsif CW_Or_Has_Controlled_Part (Utyp) then
6689            declare
6690               Loc        : constant Source_Ptr := Sloc (N);
6691               Acc_Typ    : constant Entity_Id := Make_Temporary (Loc, 'A');
6692               Alloc_Node : Node_Id;
6693               Temp       : Entity_Id;
6694
6695            begin
6696               Set_Ekind (Acc_Typ, E_Access_Type);
6697
6698               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6699
6700               --  This is an allocator for the secondary stack, and it's fine
6701               --  to have Comes_From_Source set False on it, as gigi knows not
6702               --  to flag it as a violation of No_Implicit_Heap_Allocations.
6703
6704               Alloc_Node :=
6705                 Make_Allocator (Loc,
6706                   Expression =>
6707                     Make_Qualified_Expression (Loc,
6708                       Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
6709                       Expression   => Relocate_Node (Exp)));
6710
6711               --  We do not want discriminant checks on the declaration,
6712               --  given that it gets its value from the allocator.
6713
6714               Set_No_Initialization (Alloc_Node);
6715
6716               Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6717
6718               Insert_List_Before_And_Analyze (N, New_List (
6719                 Make_Full_Type_Declaration (Loc,
6720                   Defining_Identifier => Acc_Typ,
6721                   Type_Definition     =>
6722                     Make_Access_To_Object_Definition (Loc,
6723                       Subtype_Indication => Subtype_Ind)),
6724
6725                 Make_Object_Declaration (Loc,
6726                   Defining_Identifier => Temp,
6727                   Object_Definition   => New_Occurrence_Of (Acc_Typ, Loc),
6728                   Expression          => Alloc_Node)));
6729
6730               Rewrite (Exp,
6731                 Make_Explicit_Dereference (Loc,
6732                 Prefix => New_Occurrence_Of (Temp, Loc)));
6733
6734               --  Ada 2005 (AI-251): If the type of the returned object is
6735               --  an interface then add an implicit type conversion to force
6736               --  displacement of the "this" pointer.
6737
6738               if Is_Interface (R_Type) then
6739                  Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6740               end if;
6741
6742               Analyze_And_Resolve (Exp, R_Type);
6743            end;
6744
6745         --  Otherwise use the gigi mechanism to allocate result on the
6746         --  secondary stack.
6747
6748         else
6749            Check_Restriction (No_Secondary_Stack, N);
6750            Set_Storage_Pool (N, RTE (RE_SS_Pool));
6751            Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6752         end if;
6753      end if;
6754
6755      --  Implement the rules of 6.5(8-10), which require a tag check in
6756      --  the case of a limited tagged return type, and tag reassignment for
6757      --  nonlimited tagged results. These actions are needed when the return
6758      --  type is a specific tagged type and the result expression is a
6759      --  conversion or a formal parameter, because in that case the tag of
6760      --  the expression might differ from the tag of the specific result type.
6761
6762      if Is_Tagged_Type (Utyp)
6763        and then not Is_Class_Wide_Type (Utyp)
6764        and then (Nkind_In (Exp, N_Type_Conversion,
6765                                 N_Unchecked_Type_Conversion)
6766                    or else (Is_Entity_Name (Exp)
6767                               and then Ekind (Entity (Exp)) in Formal_Kind))
6768      then
6769         --  When the return type is limited, perform a check that the tag of
6770         --  the result is the same as the tag of the return type.
6771
6772         if Is_Limited_Type (R_Type) then
6773            Insert_Action (Exp,
6774              Make_Raise_Constraint_Error (Loc,
6775                Condition =>
6776                  Make_Op_Ne (Loc,
6777                    Left_Opnd  =>
6778                      Make_Selected_Component (Loc,
6779                        Prefix        => Duplicate_Subexpr (Exp),
6780                        Selector_Name => Make_Identifier (Loc, Name_uTag)),
6781                    Right_Opnd =>
6782                      Make_Attribute_Reference (Loc,
6783                        Prefix         =>
6784                          New_Occurrence_Of (Base_Type (Utyp), Loc),
6785                        Attribute_Name => Name_Tag)),
6786                Reason    => CE_Tag_Check_Failed));
6787
6788         --  If the result type is a specific nonlimited tagged type, then we
6789         --  have to ensure that the tag of the result is that of the result
6790         --  type. This is handled by making a copy of the expression in
6791         --  the case where it might have a different tag, namely when the
6792         --  expression is a conversion or a formal parameter. We create a new
6793         --  object of the result type and initialize it from the expression,
6794         --  which will implicitly force the tag to be set appropriately.
6795
6796         else
6797            declare
6798               ExpR       : constant Node_Id   := Relocate_Node (Exp);
6799               Result_Id  : constant Entity_Id :=
6800                              Make_Temporary (Loc, 'R', ExpR);
6801               Result_Exp : constant Node_Id   :=
6802                              New_Occurrence_Of (Result_Id, Loc);
6803               Result_Obj : constant Node_Id   :=
6804                              Make_Object_Declaration (Loc,
6805                                Defining_Identifier => Result_Id,
6806                                Object_Definition   =>
6807                                  New_Occurrence_Of (R_Type, Loc),
6808                                Constant_Present    => True,
6809                                Expression          => ExpR);
6810
6811            begin
6812               Set_Assignment_OK (Result_Obj);
6813               Insert_Action (Exp, Result_Obj);
6814
6815               Rewrite (Exp, Result_Exp);
6816               Analyze_And_Resolve (Exp, R_Type);
6817            end;
6818         end if;
6819
6820      --  Ada 2005 (AI-344): If the result type is class-wide, then insert
6821      --  a check that the level of the return expression's underlying type
6822      --  is not deeper than the level of the master enclosing the function.
6823      --  Always generate the check when the type of the return expression
6824      --  is class-wide, when it's a type conversion, or when it's a formal
6825      --  parameter. Otherwise, suppress the check in the case where the
6826      --  return expression has a specific type whose level is known not to
6827      --  be statically deeper than the function's result type.
6828
6829      --  No runtime check needed in interface thunks since it is performed
6830      --  by the target primitive associated with the thunk.
6831
6832      --  Note: accessibility check is skipped in the VM case, since there
6833      --  does not seem to be any practical way to implement this check.
6834
6835      elsif Ada_Version >= Ada_2005
6836        and then Tagged_Type_Expansion
6837        and then Is_Class_Wide_Type (R_Type)
6838        and then not Is_Thunk (Current_Scope)
6839        and then not Scope_Suppress.Suppress (Accessibility_Check)
6840        and then
6841          (Is_Class_Wide_Type (Etype (Exp))
6842            or else Nkind_In (Exp, N_Type_Conversion,
6843                                   N_Unchecked_Type_Conversion)
6844            or else (Is_Entity_Name (Exp)
6845                      and then Ekind (Entity (Exp)) in Formal_Kind)
6846            or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6847                      Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6848      then
6849         declare
6850            Tag_Node : Node_Id;
6851
6852         begin
6853            --  Ada 2005 (AI-251): In class-wide interface objects we displace
6854            --  "this" to reference the base of the object. This is required to
6855            --  get access to the TSD of the object.
6856
6857            if Is_Class_Wide_Type (Etype (Exp))
6858              and then Is_Interface (Etype (Exp))
6859            then
6860               --  If the expression is an explicit dereference then we can
6861               --  directly displace the pointer to reference the base of
6862               --  the object.
6863
6864               if Nkind (Exp) = N_Explicit_Dereference then
6865                  Tag_Node :=
6866                    Make_Explicit_Dereference (Loc,
6867                      Prefix =>
6868                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6869                          Make_Function_Call (Loc,
6870                            Name                   =>
6871                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6872                            Parameter_Associations => New_List (
6873                              Unchecked_Convert_To (RTE (RE_Address),
6874                                Duplicate_Subexpr (Prefix (Exp)))))));
6875
6876               --  Similar case to the previous one but the expression is a
6877               --  renaming of an explicit dereference.
6878
6879               elsif Nkind (Exp) = N_Identifier
6880                 and then Present (Renamed_Object (Entity (Exp)))
6881                 and then Nkind (Renamed_Object (Entity (Exp)))
6882                            = N_Explicit_Dereference
6883               then
6884                  Tag_Node :=
6885                    Make_Explicit_Dereference (Loc,
6886                      Prefix =>
6887                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6888                          Make_Function_Call (Loc,
6889                            Name                   =>
6890                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6891                            Parameter_Associations => New_List (
6892                              Unchecked_Convert_To (RTE (RE_Address),
6893                                Duplicate_Subexpr
6894                                  (Prefix
6895                                    (Renamed_Object (Entity (Exp)))))))));
6896
6897               --  Common case: obtain the address of the actual object and
6898               --  displace the pointer to reference the base of the object.
6899
6900               else
6901                  Tag_Node :=
6902                    Make_Explicit_Dereference (Loc,
6903                      Prefix =>
6904                        Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6905                          Make_Function_Call (Loc,
6906                            Name               =>
6907                              New_Occurrence_Of (RTE (RE_Base_Address), Loc),
6908                            Parameter_Associations => New_List (
6909                              Make_Attribute_Reference (Loc,
6910                                Prefix         => Duplicate_Subexpr (Exp),
6911                                Attribute_Name => Name_Address)))));
6912               end if;
6913            else
6914               Tag_Node :=
6915                 Make_Attribute_Reference (Loc,
6916                   Prefix         => Duplicate_Subexpr (Exp),
6917                   Attribute_Name => Name_Tag);
6918            end if;
6919
6920            --  CodePeer does not do anything useful with
6921            --  Ada.Tags.Type_Specific_Data components.
6922
6923            if not CodePeer_Mode then
6924               Insert_Action (Exp,
6925                 Make_Raise_Program_Error (Loc,
6926                   Condition =>
6927                     Make_Op_Gt (Loc,
6928                       Left_Opnd  => Build_Get_Access_Level (Loc, Tag_Node),
6929                       Right_Opnd =>
6930                         Make_Integer_Literal (Loc,
6931                           Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6932                   Reason    => PE_Accessibility_Check_Failed));
6933            end if;
6934         end;
6935
6936      --  AI05-0073: If function has a controlling access result, check that
6937      --  the tag of the return value, if it is not null, matches designated
6938      --  type of return type.
6939
6940      --  The return expression is referenced twice in the code below, so it
6941      --  must be made free of side effects. Given that different compilers
6942      --  may evaluate these parameters in different order, both occurrences
6943      --  perform a copy.
6944
6945      elsif Ekind (R_Type) = E_Anonymous_Access_Type
6946        and then Has_Controlling_Result (Scope_Id)
6947      then
6948         Insert_Action (N,
6949           Make_Raise_Constraint_Error (Loc,
6950             Condition =>
6951               Make_And_Then (Loc,
6952                 Left_Opnd  =>
6953                   Make_Op_Ne (Loc,
6954                     Left_Opnd  => Duplicate_Subexpr (Exp),
6955                     Right_Opnd => Make_Null (Loc)),
6956
6957                 Right_Opnd => Make_Op_Ne (Loc,
6958                   Left_Opnd  =>
6959                     Make_Selected_Component (Loc,
6960                       Prefix        => Duplicate_Subexpr (Exp),
6961                       Selector_Name => Make_Identifier (Loc, Name_uTag)),
6962
6963                   Right_Opnd =>
6964                     Make_Attribute_Reference (Loc,
6965                       Prefix         =>
6966                         New_Occurrence_Of (Designated_Type (R_Type), Loc),
6967                       Attribute_Name => Name_Tag))),
6968
6969             Reason    => CE_Tag_Check_Failed),
6970             Suppress  => All_Checks);
6971      end if;
6972
6973      --  AI05-0234: RM 6.5(21/3). Check access discriminants to
6974      --  ensure that the function result does not outlive an
6975      --  object designated by one of it discriminants.
6976
6977      if Present (Extra_Accessibility_Of_Result (Scope_Id))
6978        and then Has_Unconstrained_Access_Discriminants (R_Type)
6979      then
6980         declare
6981            Discrim_Source : Node_Id;
6982
6983            procedure Check_Against_Result_Level (Level : Node_Id);
6984            --  Check the given accessibility level against the level
6985            --  determined by the point of call. (AI05-0234).
6986
6987            --------------------------------
6988            -- Check_Against_Result_Level --
6989            --------------------------------
6990
6991            procedure Check_Against_Result_Level (Level : Node_Id) is
6992            begin
6993               Insert_Action (N,
6994                 Make_Raise_Program_Error (Loc,
6995                   Condition =>
6996                     Make_Op_Gt (Loc,
6997                       Left_Opnd  => Level,
6998                       Right_Opnd =>
6999                         New_Occurrence_Of
7000                           (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7001                       Reason => PE_Accessibility_Check_Failed));
7002            end Check_Against_Result_Level;
7003
7004         begin
7005            Discrim_Source := Exp;
7006            while Nkind (Discrim_Source) = N_Qualified_Expression loop
7007               Discrim_Source := Expression (Discrim_Source);
7008            end loop;
7009
7010            if Nkind (Discrim_Source) = N_Identifier
7011              and then Is_Return_Object (Entity (Discrim_Source))
7012            then
7013               Discrim_Source := Entity (Discrim_Source);
7014
7015               if Is_Constrained (Etype (Discrim_Source)) then
7016                  Discrim_Source := Etype (Discrim_Source);
7017               else
7018                  Discrim_Source := Expression (Parent (Discrim_Source));
7019               end if;
7020
7021            elsif Nkind (Discrim_Source) = N_Identifier
7022              and then Nkind_In (Original_Node (Discrim_Source),
7023                                 N_Aggregate, N_Extension_Aggregate)
7024            then
7025               Discrim_Source := Original_Node (Discrim_Source);
7026
7027            elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7028              Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7029            then
7030               Discrim_Source := Original_Node (Discrim_Source);
7031            end if;
7032
7033            Discrim_Source := Unqual_Conv (Discrim_Source);
7034
7035            case Nkind (Discrim_Source) is
7036               when N_Defining_Identifier =>
7037                  pragma Assert (Is_Composite_Type (Discrim_Source)
7038                                  and then Has_Discriminants (Discrim_Source)
7039                                  and then Is_Constrained (Discrim_Source));
7040
7041                  declare
7042                     Discrim   : Entity_Id :=
7043                                   First_Discriminant (Base_Type (R_Type));
7044                     Disc_Elmt : Elmt_Id   :=
7045                                   First_Elmt (Discriminant_Constraint
7046                                                 (Discrim_Source));
7047                  begin
7048                     loop
7049                        if Ekind (Etype (Discrim)) =
7050                             E_Anonymous_Access_Type
7051                        then
7052                           Check_Against_Result_Level
7053                             (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7054                        end if;
7055
7056                        Next_Elmt (Disc_Elmt);
7057                        Next_Discriminant (Discrim);
7058                        exit when not Present (Discrim);
7059                     end loop;
7060                  end;
7061
7062               when N_Aggregate
7063                  | N_Extension_Aggregate
7064               =>
7065                  --  Unimplemented: extension aggregate case where discrims
7066                  --  come from ancestor part, not extension part.
7067
7068                  declare
7069                     Discrim  : Entity_Id :=
7070                                  First_Discriminant (Base_Type (R_Type));
7071
7072                     Disc_Exp : Node_Id   := Empty;
7073
7074                     Positionals_Exhausted
7075                              : Boolean   := not Present (Expressions
7076                                                            (Discrim_Source));
7077
7078                     function Associated_Expr
7079                       (Comp_Id : Entity_Id;
7080                        Associations : List_Id) return Node_Id;
7081
7082                     --  Given a component and a component associations list,
7083                     --  locate the expression for that component; returns
7084                     --  Empty if no such expression is found.
7085
7086                     ---------------------
7087                     -- Associated_Expr --
7088                     ---------------------
7089
7090                     function Associated_Expr
7091                       (Comp_Id : Entity_Id;
7092                        Associations : List_Id) return Node_Id
7093                     is
7094                        Assoc  : Node_Id;
7095                        Choice : Node_Id;
7096
7097                     begin
7098                        --  Simple linear search seems ok here
7099
7100                        Assoc := First (Associations);
7101                        while Present (Assoc) loop
7102                           Choice := First (Choices (Assoc));
7103                           while Present (Choice) loop
7104                              if (Nkind (Choice) = N_Identifier
7105                                   and then Chars (Choice) = Chars (Comp_Id))
7106                                or else (Nkind (Choice) = N_Others_Choice)
7107                              then
7108                                 return Expression (Assoc);
7109                              end if;
7110
7111                              Next (Choice);
7112                           end loop;
7113
7114                           Next (Assoc);
7115                        end loop;
7116
7117                        return Empty;
7118                     end Associated_Expr;
7119
7120                  begin
7121                     if not Positionals_Exhausted then
7122                        Disc_Exp := First (Expressions (Discrim_Source));
7123                     end if;
7124
7125                     loop
7126                        if Positionals_Exhausted then
7127                           Disc_Exp :=
7128                             Associated_Expr
7129                               (Discrim,
7130                                Component_Associations (Discrim_Source));
7131                        end if;
7132
7133                        if Ekind (Etype (Discrim)) =
7134                             E_Anonymous_Access_Type
7135                        then
7136                           Check_Against_Result_Level
7137                             (Dynamic_Accessibility_Level (Disc_Exp));
7138                        end if;
7139
7140                        Next_Discriminant (Discrim);
7141                        exit when not Present (Discrim);
7142
7143                        if not Positionals_Exhausted then
7144                           Next (Disc_Exp);
7145                           Positionals_Exhausted := not Present (Disc_Exp);
7146                        end if;
7147                     end loop;
7148                  end;
7149
7150               when N_Function_Call =>
7151
7152                  --  No check needed (check performed by callee)
7153
7154                  null;
7155
7156               when others =>
7157                  declare
7158                     Level : constant Node_Id :=
7159                               Make_Integer_Literal (Loc,
7160                                 Object_Access_Level (Discrim_Source));
7161
7162                  begin
7163                     --  Unimplemented: check for name prefix that includes
7164                     --  a dereference of an access value with a dynamic
7165                     --  accessibility level (e.g., an access param or a
7166                     --  saooaaat) and use dynamic level in that case. For
7167                     --  example:
7168                     --    return Access_Param.all(Some_Index).Some_Component;
7169                     --  ???
7170
7171                     Set_Etype (Level, Standard_Natural);
7172                     Check_Against_Result_Level (Level);
7173                  end;
7174            end case;
7175         end;
7176      end if;
7177
7178      --  If we are returning an object that may not be bit-aligned, then copy
7179      --  the value into a temporary first. This copy may need to expand to a
7180      --  loop of component operations.
7181
7182      if Is_Possibly_Unaligned_Slice (Exp)
7183        or else Is_Possibly_Unaligned_Object (Exp)
7184      then
7185         declare
7186            ExpR : constant Node_Id   := Relocate_Node (Exp);
7187            Tnn  : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7188         begin
7189            Insert_Action (Exp,
7190              Make_Object_Declaration (Loc,
7191                Defining_Identifier => Tnn,
7192                Constant_Present    => True,
7193                Object_Definition   => New_Occurrence_Of (R_Type, Loc),
7194                Expression          => ExpR),
7195              Suppress => All_Checks);
7196            Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7197         end;
7198      end if;
7199
7200      --  Call the _Postconditions procedure if the related function has
7201      --  contract assertions that need to be verified on exit.
7202
7203      if Ekind (Scope_Id) = E_Function
7204        and then Present (Postconditions_Proc (Scope_Id))
7205      then
7206         --  In the case of discriminated objects, we have created a
7207         --  constrained subtype above, and used the underlying type. This
7208         --  transformation is post-analysis and harmless, except that now the
7209         --  call to the post-condition will be analyzed and the type kinds
7210         --  have to match.
7211
7212         if Nkind (Exp) = N_Unchecked_Type_Conversion
7213           and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
7214         then
7215            Rewrite (Exp, Expression (Relocate_Node (Exp)));
7216         end if;
7217
7218         --  We are going to reference the returned value twice in this case,
7219         --  once in the call to _Postconditions, and once in the actual return
7220         --  statement, but we can't have side effects happening twice.
7221
7222         Force_Evaluation (Exp, Mode => Strict);
7223
7224         --  Generate call to _Postconditions
7225
7226         Insert_Action (Exp,
7227           Make_Procedure_Call_Statement (Loc,
7228             Name                   =>
7229               New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
7230             Parameter_Associations => New_List (New_Copy_Tree (Exp))));
7231      end if;
7232
7233      --  Ada 2005 (AI-251): If this return statement corresponds with an
7234      --  simple return statement associated with an extended return statement
7235      --  and the type of the returned object is an interface then generate an
7236      --  implicit conversion to force displacement of the "this" pointer.
7237
7238      if Ada_Version >= Ada_2005
7239        and then Comes_From_Extended_Return_Statement (N)
7240        and then Nkind (Expression (N)) = N_Identifier
7241        and then Is_Interface (Utyp)
7242        and then Utyp /= Underlying_Type (Exptyp)
7243      then
7244         Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7245         Analyze_And_Resolve (Exp);
7246      end if;
7247   end Expand_Simple_Function_Return;
7248
7249   --------------------------------------------
7250   -- Has_Unconstrained_Access_Discriminants --
7251   --------------------------------------------
7252
7253   function Has_Unconstrained_Access_Discriminants
7254     (Subtyp : Entity_Id) return Boolean
7255   is
7256      Discr : Entity_Id;
7257
7258   begin
7259      if Has_Discriminants (Subtyp)
7260        and then not Is_Constrained (Subtyp)
7261      then
7262         Discr := First_Discriminant (Subtyp);
7263         while Present (Discr) loop
7264            if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7265               return True;
7266            end if;
7267
7268            Next_Discriminant (Discr);
7269         end loop;
7270      end if;
7271
7272      return False;
7273   end Has_Unconstrained_Access_Discriminants;
7274
7275   -----------------------------------
7276   -- Is_Build_In_Place_Result_Type --
7277   -----------------------------------
7278
7279   function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7280   begin
7281      if not Expander_Active then
7282         return False;
7283      end if;
7284
7285      --  In Ada 2005 all functions with an inherently limited return type
7286      --  must be handled using a build-in-place profile, including the case
7287      --  of a function with a limited interface result, where the function
7288      --  may return objects of nonlimited descendants.
7289
7290      if Is_Limited_View (Typ) then
7291         return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7292
7293      else
7294         if Debug_Flag_Dot_9 then
7295            return False;
7296         end if;
7297
7298         if Has_Interfaces (Typ) then
7299            return False;
7300         end if;
7301
7302         declare
7303            T : Entity_Id := Typ;
7304         begin
7305            --  For T'Class, return True if it's True for T. This is necessary
7306            --  because a class-wide function might say "return F (...)", where
7307            --  F returns the corresponding specific type. We need a loop in
7308            --  case T is a subtype of a class-wide type.
7309
7310            while Is_Class_Wide_Type (T) loop
7311               T := Etype (T);
7312            end loop;
7313
7314            --  If this is a generic formal type in an instance, return True if
7315            --  it's True for the generic actual type.
7316
7317            if Nkind (Parent (T)) = N_Subtype_Declaration
7318              and then Present (Generic_Parent_Type (Parent (T)))
7319            then
7320               T := Entity (Subtype_Indication (Parent (T)));
7321
7322               if Present (Full_View (T)) then
7323                  T := Full_View (T);
7324               end if;
7325            end if;
7326
7327            if Present (Underlying_Type (T)) then
7328               T := Underlying_Type (T);
7329            end if;
7330
7331            declare
7332               Result : Boolean;
7333               --  So we can stop here in the debugger
7334            begin
7335               --  ???For now, enable build-in-place for a very narrow set of
7336               --  controlled types. Change "if True" to "if False" to
7337               --  experiment with more controlled types. Eventually, we might
7338               --  like to enable build-in-place for all tagged types, all
7339               --  types that need finalization, and all caller-unknown-size
7340               --  types.
7341
7342               if True then
7343                  Result := Is_Controlled (T)
7344                    and then Present (Enclosing_Subprogram (T))
7345                    and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7346                    and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7347               else
7348                  Result := Is_Controlled (T);
7349               end if;
7350
7351               return Result;
7352            end;
7353         end;
7354      end if;
7355   end Is_Build_In_Place_Result_Type;
7356
7357   --------------------------------
7358   -- Is_Build_In_Place_Function --
7359   --------------------------------
7360
7361   function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7362   begin
7363      --  This function is called from Expand_Subtype_From_Expr during
7364      --  semantic analysis, even when expansion is off. In those cases
7365      --  the build_in_place expansion will not take place.
7366
7367      if not Expander_Active then
7368         return False;
7369      end if;
7370
7371      --  For now we test whether E denotes a function or access-to-function
7372      --  type whose result subtype is inherently limited. Later this test
7373      --  may be revised to allow composite nonlimited types. Functions with
7374      --  a foreign convention or whose result type has a foreign convention
7375      --  never qualify.
7376
7377      if Ekind_In (E, E_Function, E_Generic_Function)
7378        or else (Ekind (E) = E_Subprogram_Type
7379                  and then Etype (E) /= Standard_Void_Type)
7380      then
7381         --  Note: If the function has a foreign convention, it cannot build
7382         --  its result in place, so you're on your own. On the other hand,
7383         --  if only the return type has a foreign convention, its layout is
7384         --  intended to be compatible with the other language, but the build-
7385         --  in place machinery can ensure that the object is not copied.
7386
7387         return Is_Build_In_Place_Result_Type (Etype (E))
7388           and then not Has_Foreign_Convention (E)
7389           and then not Debug_Flag_Dot_L;
7390
7391      else
7392         return False;
7393      end if;
7394   end Is_Build_In_Place_Function;
7395
7396   -------------------------------------
7397   -- Is_Build_In_Place_Function_Call --
7398   -------------------------------------
7399
7400   function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
7401      Exp_Node    : constant Node_Id := Unqual_Conv (N);
7402      Function_Id : Entity_Id;
7403
7404   begin
7405      --  Return False if the expander is currently inactive, since awareness
7406      --  of build-in-place treatment is only relevant during expansion. Note
7407      --  that Is_Build_In_Place_Function, which is called as part of this
7408      --  function, is also conditioned this way, but we need to check here as
7409      --  well to avoid blowing up on processing protected calls when expansion
7410      --  is disabled (such as with -gnatc) since those would trip over the
7411      --  raise of Program_Error below.
7412
7413      --  In SPARK mode, build-in-place calls are not expanded, so that we
7414      --  may end up with a call that is neither resolved to an entity, nor
7415      --  an indirect call.
7416
7417      if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
7418         return False;
7419      end if;
7420
7421      if Is_Entity_Name (Name (Exp_Node)) then
7422         Function_Id := Entity (Name (Exp_Node));
7423
7424      --  In the case of an explicitly dereferenced call, use the subprogram
7425      --  type generated for the dereference.
7426
7427      elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
7428         Function_Id := Etype (Name (Exp_Node));
7429
7430      --  This may be a call to a protected function.
7431
7432      elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
7433         Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
7434
7435      else
7436         raise Program_Error;
7437      end if;
7438
7439      declare
7440         Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
7441         --  So we can stop here in the debugger
7442      begin
7443         return Result;
7444      end;
7445   end Is_Build_In_Place_Function_Call;
7446
7447   -----------------------
7448   -- Freeze_Subprogram --
7449   -----------------------
7450
7451   procedure Freeze_Subprogram (N : Node_Id) is
7452      Loc : constant Source_Ptr := Sloc (N);
7453
7454      procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7455      --  (Ada 2005): Register a predefined primitive in all the secondary
7456      --  dispatch tables of its primitive type.
7457
7458      ----------------------------------
7459      -- Register_Predefined_DT_Entry --
7460      ----------------------------------
7461
7462      procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7463         Iface_DT_Ptr : Elmt_Id;
7464         Tagged_Typ   : Entity_Id;
7465         Thunk_Id     : Entity_Id;
7466         Thunk_Code   : Node_Id;
7467
7468      begin
7469         Tagged_Typ := Find_Dispatching_Type (Prim);
7470
7471         if No (Access_Disp_Table (Tagged_Typ))
7472           or else not Has_Interfaces (Tagged_Typ)
7473           or else not RTE_Available (RE_Interface_Tag)
7474           or else Restriction_Active (No_Dispatching_Calls)
7475         then
7476            return;
7477         end if;
7478
7479         --  Skip the first two access-to-dispatch-table pointers since they
7480         --  leads to the primary dispatch table (predefined DT and user
7481         --  defined DT). We are only concerned with the secondary dispatch
7482         --  table pointers. Note that the access-to- dispatch-table pointer
7483         --  corresponds to the first implemented interface retrieved below.
7484
7485         Iface_DT_Ptr :=
7486           Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
7487
7488         while Present (Iface_DT_Ptr)
7489           and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7490         loop
7491            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7492            Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7493
7494            if Present (Thunk_Code) then
7495               Insert_Actions_After (N, New_List (
7496                 Thunk_Code,
7497
7498                 Build_Set_Predefined_Prim_Op_Address (Loc,
7499                   Tag_Node     =>
7500                     New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7501                   Position     => DT_Position (Prim),
7502                   Address_Node =>
7503                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7504                       Make_Attribute_Reference (Loc,
7505                         Prefix         => New_Occurrence_Of (Thunk_Id, Loc),
7506                         Attribute_Name => Name_Unrestricted_Access))),
7507
7508                 Build_Set_Predefined_Prim_Op_Address (Loc,
7509                   Tag_Node     =>
7510                     New_Occurrence_Of
7511                      (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7512                       Loc),
7513                   Position     => DT_Position (Prim),
7514                   Address_Node =>
7515                     Unchecked_Convert_To (RTE (RE_Prim_Ptr),
7516                       Make_Attribute_Reference (Loc,
7517                         Prefix         => New_Occurrence_Of (Prim, Loc),
7518                         Attribute_Name => Name_Unrestricted_Access)))));
7519            end if;
7520
7521            --  Skip the tag of the predefined primitives dispatch table
7522
7523            Next_Elmt (Iface_DT_Ptr);
7524            pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7525
7526            --  Skip tag of the no-thunks dispatch table
7527
7528            Next_Elmt (Iface_DT_Ptr);
7529            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7530
7531            --  Skip tag of predefined primitives no-thunks dispatch table
7532
7533            Next_Elmt (Iface_DT_Ptr);
7534            pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7535
7536            Next_Elmt (Iface_DT_Ptr);
7537         end loop;
7538      end Register_Predefined_DT_Entry;
7539
7540      --  Local variables
7541
7542      Subp : constant Entity_Id  := Entity (N);
7543
7544   --  Start of processing for Freeze_Subprogram
7545
7546   begin
7547      --  We suppress the initialization of the dispatch table entry when
7548      --  not Tagged_Type_Expansion because the dispatching mechanism is
7549      --  handled internally by the target.
7550
7551      if Is_Dispatching_Operation (Subp)
7552        and then not Is_Abstract_Subprogram (Subp)
7553        and then Present (DTC_Entity (Subp))
7554        and then Present (Scope (DTC_Entity (Subp)))
7555        and then Tagged_Type_Expansion
7556        and then not Restriction_Active (No_Dispatching_Calls)
7557        and then RTE_Available (RE_Tag)
7558      then
7559         declare
7560            Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
7561
7562         begin
7563            --  Handle private overridden primitives
7564
7565            if not Is_CPP_Class (Typ) then
7566               Check_Overriding_Operation (Subp);
7567            end if;
7568
7569            --  We assume that imported CPP primitives correspond with objects
7570            --  whose constructor is in the CPP side; therefore we don't need
7571            --  to generate code to register them in the dispatch table.
7572
7573            if Is_CPP_Class (Typ) then
7574               null;
7575
7576            --  Handle CPP primitives found in derivations of CPP_Class types.
7577            --  These primitives must have been inherited from some parent, and
7578            --  there is no need to register them in the dispatch table because
7579            --  Build_Inherit_Prims takes care of initializing these slots.
7580
7581            elsif Is_Imported (Subp)
7582               and then (Convention (Subp) = Convention_CPP
7583                           or else Convention (Subp) = Convention_C)
7584            then
7585               null;
7586
7587            --  Generate code to register the primitive in non statically
7588            --  allocated dispatch tables
7589
7590            elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7591
7592               --  When a primitive is frozen, enter its name in its dispatch
7593               --  table slot.
7594
7595               if not Is_Interface (Typ)
7596                 or else Present (Interface_Alias (Subp))
7597               then
7598                  if Is_Predefined_Dispatching_Operation (Subp) then
7599                     Register_Predefined_DT_Entry (Subp);
7600                  end if;
7601
7602                  Insert_Actions_After (N,
7603                    Register_Primitive (Loc, Prim => Subp));
7604               end if;
7605            end if;
7606         end;
7607      end if;
7608
7609      --  Mark functions that return by reference. Note that it cannot be part
7610      --  of the normal semantic analysis of the spec since the underlying
7611      --  returned type may not be known yet (for private types).
7612
7613      declare
7614         Typ  : constant Entity_Id := Etype (Subp);
7615         Utyp : constant Entity_Id := Underlying_Type (Typ);
7616
7617      begin
7618         if Is_Limited_View (Typ) then
7619            Set_Returns_By_Ref (Subp);
7620
7621         elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
7622            Set_Returns_By_Ref (Subp);
7623         end if;
7624      end;
7625
7626      --  Wnen freezing a null procedure, analyze its delayed aspects now
7627      --  because we may not have reached the end of the declarative list when
7628      --  delayed aspects are normally analyzed. This ensures that dispatching
7629      --  calls are properly rewritten when the generated _Postcondition
7630      --  procedure is analyzed in the null procedure body.
7631
7632      if Nkind (Parent (Subp)) = N_Procedure_Specification
7633        and then Null_Present (Parent (Subp))
7634      then
7635         Analyze_Entry_Or_Subprogram_Contract (Subp);
7636      end if;
7637   end Freeze_Subprogram;
7638
7639   ------------------------------
7640   -- Insert_Post_Call_Actions --
7641   ------------------------------
7642
7643   procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
7644      Context : constant Node_Id := Parent (N);
7645
7646   begin
7647      if Is_Empty_List (Post_Call) then
7648         return;
7649      end if;
7650
7651      --  Cases where the call is not a member of a statement list. This
7652      --  includes the case where the call is an actual in another function
7653      --  call or indexing, i.e. an expression context as well.
7654
7655      if not Is_List_Member (N)
7656        or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
7657      then
7658         --  In Ada 2012 the call may be a function call in an expression
7659         --  (since OUT and IN OUT parameters are now allowed for such calls).
7660         --  The write-back of (in)-out parameters is handled by the back-end,
7661         --  but the constraint checks generated when subtypes of formal and
7662         --  actual don't match must be inserted in the form of assignments.
7663
7664         if Nkind (Original_Node (N)) = N_Function_Call then
7665            pragma Assert (Ada_Version >= Ada_2012);
7666            --  Functions with '[in] out' parameters are only allowed in Ada
7667            --  2012.
7668
7669            --  We used to handle this by climbing up parents to a
7670            --  non-statement/declaration and then simply making a call to
7671            --  Insert_Actions_After (P, Post_Call), but that doesn't work
7672            --  for Ada 2012. If we are in the middle of an expression, e.g.
7673            --  the condition of an IF, this call would insert after the IF
7674            --  statement, which is much too late to be doing the write back.
7675            --  For example:
7676
7677            --     if Clobber (X) then
7678            --        Put_Line (X'Img);
7679            --     else
7680            --        goto Junk
7681            --     end if;
7682
7683            --  Now assume Clobber changes X, if we put the write back after
7684            --  the IF, the Put_Line gets the wrong value and the goto causes
7685            --  the write back to be skipped completely.
7686
7687            --  To deal with this, we replace the call by
7688
7689            --    do
7690            --       Tnnn : constant function-result-type := function-call;
7691            --       Post_Call actions
7692            --    in
7693            --       Tnnn;
7694            --    end;
7695
7696            declare
7697               Loc   : constant Source_Ptr := Sloc (N);
7698               Tnnn  : constant Entity_Id := Make_Temporary (Loc, 'T');
7699               FRTyp : constant Entity_Id := Etype (N);
7700               Name  : constant Node_Id   := Relocate_Node (N);
7701
7702            begin
7703               Prepend_To (Post_Call,
7704                 Make_Object_Declaration (Loc,
7705                   Defining_Identifier => Tnnn,
7706                   Object_Definition   => New_Occurrence_Of (FRTyp, Loc),
7707                   Constant_Present    => True,
7708                   Expression          => Name));
7709
7710               Rewrite (N,
7711                 Make_Expression_With_Actions (Loc,
7712                   Actions    => Post_Call,
7713                   Expression => New_Occurrence_Of (Tnnn, Loc)));
7714
7715               --  We don't want to just blindly call Analyze_And_Resolve
7716               --  because that would cause unwanted recursion on the call.
7717               --  So for a moment set the call as analyzed to prevent that
7718               --  recursion, and get the rest analyzed properly, then reset
7719               --  the analyzed flag, so our caller can continue.
7720
7721               Set_Analyzed (Name, True);
7722               Analyze_And_Resolve (N, FRTyp);
7723               Set_Analyzed (Name, False);
7724            end;
7725
7726         --  If not the special Ada 2012 case of a function call, then we must
7727         --  have the triggering statement of a triggering alternative or an
7728         --  entry call alternative, and we can add the post call stuff to the
7729         --  corresponding statement list.
7730
7731         else
7732            pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7733                                              N_Triggering_Alternative));
7734
7735            if Is_Non_Empty_List (Statements (Context)) then
7736               Insert_List_Before_And_Analyze
7737                 (First (Statements (Context)), Post_Call);
7738            else
7739               Set_Statements (Context, Post_Call);
7740            end if;
7741         end if;
7742
7743      --  A procedure call is always part of a declarative or statement list,
7744      --  however a function call may appear nested within a construct. Most
7745      --  cases of function call nesting are handled in the special case above.
7746      --  The only exception is when the function call acts as an actual in a
7747      --  procedure call. In this case the function call is in a list, but the
7748      --  post-call actions must be inserted after the procedure call.
7749
7750      elsif Nkind (Context) = N_Procedure_Call_Statement then
7751         Insert_Actions_After (Context, Post_Call);
7752
7753      --  Otherwise, normal case where N is in a statement sequence, just put
7754      --  the post-call stuff after the call statement.
7755
7756      else
7757         Insert_Actions_After (N, Post_Call);
7758      end if;
7759   end Insert_Post_Call_Actions;
7760
7761   -----------------------
7762   -- Is_Null_Procedure --
7763   -----------------------
7764
7765   function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
7766      Decl : constant Node_Id := Unit_Declaration_Node (Subp);
7767
7768   begin
7769      if Ekind (Subp) /= E_Procedure then
7770         return False;
7771
7772      --  Check if this is a declared null procedure
7773
7774      elsif Nkind (Decl) = N_Subprogram_Declaration then
7775         if not Null_Present (Specification (Decl)) then
7776            return False;
7777
7778         elsif No (Body_To_Inline (Decl)) then
7779            return False;
7780
7781         --  Check if the body contains only a null statement, followed by
7782         --  the return statement added during expansion.
7783
7784         else
7785            declare
7786               Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7787
7788               Stat  : Node_Id;
7789               Stat2 : Node_Id;
7790
7791            begin
7792               if Nkind (Orig_Bod) /= N_Subprogram_Body then
7793                  return False;
7794               else
7795                  --  We must skip SCIL nodes because they are currently
7796                  --  implemented as special N_Null_Statement nodes.
7797
7798                  Stat :=
7799                     First_Non_SCIL_Node
7800                       (Statements (Handled_Statement_Sequence (Orig_Bod)));
7801                  Stat2 := Next_Non_SCIL_Node (Stat);
7802
7803                  return
7804                     Is_Empty_List (Declarations (Orig_Bod))
7805                       and then Nkind (Stat) = N_Null_Statement
7806                       and then
7807                        (No (Stat2)
7808                          or else
7809                            (Nkind (Stat2) = N_Simple_Return_Statement
7810                              and then No (Next (Stat2))));
7811               end if;
7812            end;
7813         end if;
7814
7815      else
7816         return False;
7817      end if;
7818   end Is_Null_Procedure;
7819
7820   -------------------------------------------
7821   -- Make_Build_In_Place_Call_In_Allocator --
7822   -------------------------------------------
7823
7824   procedure Make_Build_In_Place_Call_In_Allocator
7825     (Allocator     : Node_Id;
7826      Function_Call : Node_Id)
7827   is
7828      Acc_Type          : constant Entity_Id := Etype (Allocator);
7829      Loc               : constant Source_Ptr := Sloc (Function_Call);
7830      Func_Call         : Node_Id := Function_Call;
7831      Ref_Func_Call     : Node_Id;
7832      Function_Id       : Entity_Id;
7833      Result_Subt       : Entity_Id;
7834      New_Allocator     : Node_Id;
7835      Return_Obj_Access : Entity_Id; -- temp for function result
7836      Temp_Init         : Node_Id; -- initial value of Return_Obj_Access
7837      Alloc_Form        : BIP_Allocation_Form;
7838      Pool              : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
7839      Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
7840      Chain             : Entity_Id; -- activation chain, in case of tasks
7841
7842   begin
7843      --  Step past qualification or unchecked conversion (the latter can occur
7844      --  in cases of calls to 'Input).
7845
7846      if Nkind_In (Func_Call,
7847                   N_Qualified_Expression,
7848                   N_Type_Conversion,
7849                   N_Unchecked_Type_Conversion)
7850      then
7851         Func_Call := Expression (Func_Call);
7852      end if;
7853
7854      --  Mark the call as processed as a build-in-place call
7855
7856      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
7857      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7858
7859      if Is_Entity_Name (Name (Func_Call)) then
7860         Function_Id := Entity (Name (Func_Call));
7861
7862      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7863         Function_Id := Etype (Name (Func_Call));
7864
7865      else
7866         raise Program_Error;
7867      end if;
7868
7869      Result_Subt := Available_View (Etype (Function_Id));
7870
7871      --  Create a temp for the function result. In the caller-allocates case,
7872      --  this will be initialized to the result of a new uninitialized
7873      --  allocator. Note: we do not use Allocator as the Related_Node of
7874      --  Return_Obj_Access in call to Make_Temporary below as this would
7875      --  create a sort of infinite "recursion".
7876
7877      Return_Obj_Access := Make_Temporary (Loc, 'R');
7878      Set_Etype (Return_Obj_Access, Acc_Type);
7879      Set_Can_Never_Be_Null (Acc_Type, False);
7880      --  It gets initialized to null, so we can't have that
7881
7882      --  When the result subtype is constrained, the return object is
7883      --  allocated on the caller side, and access to it is passed to the
7884      --  function.
7885
7886      --  Here and in related routines, we must examine the full view of the
7887      --  type, because the view at the point of call may differ from that
7888      --  that in the function body, and the expansion mechanism depends on
7889      --  the characteristics of the full view.
7890
7891      if Is_Constrained (Underlying_Type (Result_Subt)) then
7892         --  Replace the initialized allocator of form "new T'(Func (...))"
7893         --  with an uninitialized allocator of form "new T", where T is the
7894         --  result subtype of the called function. The call to the function
7895         --  is handled separately further below.
7896
7897         New_Allocator :=
7898           Make_Allocator (Loc,
7899             Expression => New_Occurrence_Of (Result_Subt, Loc));
7900         Set_No_Initialization (New_Allocator);
7901
7902         --  Copy attributes to new allocator. Note that the new allocator
7903         --  logically comes from source if the original one did, so copy the
7904         --  relevant flag. This ensures proper treatment of the restriction
7905         --  No_Implicit_Heap_Allocations in this case.
7906
7907         Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
7908         Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
7909         Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
7910
7911         Rewrite (Allocator, New_Allocator);
7912
7913         --  Initial value of the temp is the result of the uninitialized
7914         --  allocator. Unchecked_Convert is needed for T'Input where T is
7915         --  derived from a controlled type.
7916
7917         Temp_Init := Relocate_Node (Allocator);
7918
7919         if Nkind_In
7920           (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7921         then
7922            Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
7923         end if;
7924
7925         --  Indicate that caller allocates, and pass in the return object
7926
7927         Alloc_Form := Caller_Allocation;
7928         Pool := Make_Null (No_Location);
7929         Return_Obj_Actual :=
7930           Make_Unchecked_Type_Conversion (Loc,
7931             Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7932             Expression   =>
7933               Make_Explicit_Dereference (Loc,
7934                 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
7935
7936      --  When the result subtype is unconstrained, the function itself must
7937      --  perform the allocation of the return object, so we pass parameters
7938      --  indicating that.
7939
7940      else
7941         Temp_Init := Empty;
7942
7943         --  Case of a user-defined storage pool. Pass an allocation parameter
7944         --  indicating that the function should allocate its result in the
7945         --  pool, and pass the pool. Use 'Unrestricted_Access because the
7946         --  pool may not be aliased.
7947
7948         if Present (Associated_Storage_Pool (Acc_Type)) then
7949            Alloc_Form := User_Storage_Pool;
7950            Pool :=
7951              Make_Attribute_Reference (Loc,
7952                Prefix         =>
7953                  New_Occurrence_Of
7954                    (Associated_Storage_Pool (Acc_Type), Loc),
7955                Attribute_Name => Name_Unrestricted_Access);
7956
7957         --  No user-defined pool; pass an allocation parameter indicating that
7958         --  the function should allocate its result on the heap.
7959
7960         else
7961            Alloc_Form := Global_Heap;
7962            Pool := Make_Null (No_Location);
7963         end if;
7964
7965         --  The caller does not provide the return object in this case, so we
7966         --  have to pass null for the object access actual.
7967
7968         Return_Obj_Actual := Empty;
7969      end if;
7970
7971      --  Declare the temp object
7972
7973      Insert_Action (Allocator,
7974        Make_Object_Declaration (Loc,
7975          Defining_Identifier => Return_Obj_Access,
7976          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
7977          Expression          => Temp_Init));
7978
7979      Ref_Func_Call := Make_Reference (Loc, Func_Call);
7980
7981      --  Ada 2005 (AI-251): If the type of the allocator is an interface
7982      --  then generate an implicit conversion to force displacement of the
7983      --  "this" pointer.
7984
7985      if Is_Interface (Designated_Type (Acc_Type)) then
7986         Rewrite
7987           (Ref_Func_Call,
7988            OK_Convert_To (Acc_Type, Ref_Func_Call));
7989
7990      --  If the types are incompatible, we need an unchecked conversion. Note
7991      --  that the full types will be compatible, but the types not visibly
7992      --  compatible.
7993
7994      elsif Nkind_In
7995        (Function_Call, N_Type_Conversion, N_Unchecked_Type_Conversion)
7996      then
7997         Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
7998      end if;
7999
8000      declare
8001         Assign : constant Node_Id :=
8002           Make_Assignment_Statement (Loc,
8003             Name       => New_Occurrence_Of (Return_Obj_Access, Loc),
8004             Expression => Ref_Func_Call);
8005         --  Assign the result of the function call into the temp. In the
8006         --  caller-allocates case, this is overwriting the temp with its
8007         --  initial value, which has no effect. In the callee-allocates case,
8008         --  this is setting the temp to point to the object allocated by the
8009         --  callee. Unchecked_Convert is needed for T'Input where T is derived
8010         --  from a controlled type.
8011
8012         Actions : List_Id;
8013         --  Actions to be inserted. If there are no tasks, this is just the
8014         --  assignment statement. If the allocated object has tasks, we need
8015         --  to wrap the assignment in a block that activates them. The
8016         --  activation chain of that block must be passed to the function,
8017         --  rather than some outer chain.
8018      begin
8019         if Has_Task (Result_Subt) then
8020            Actions := New_List;
8021            Build_Task_Allocate_Block_With_Init_Stmts
8022              (Actions, Allocator, Init_Stmts => New_List (Assign));
8023            Chain := Activation_Chain_Entity (Last (Actions));
8024         else
8025            Actions := New_List (Assign);
8026            Chain   := Empty;
8027         end if;
8028
8029         Insert_Actions (Allocator, Actions);
8030      end;
8031
8032      --  When the function has a controlling result, an allocation-form
8033      --  parameter must be passed indicating that the caller is allocating
8034      --  the result object. This is needed because such a function can be
8035      --  called as a dispatching operation and must be treated similarly
8036      --  to functions with unconstrained result subtypes.
8037
8038      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8039        (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8040
8041      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8042        (Func_Call, Function_Id, Acc_Type);
8043
8044      Add_Task_Actuals_To_Build_In_Place_Call
8045        (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8046         Chain => Chain);
8047
8048      --  Add an implicit actual to the function call that provides access
8049      --  to the allocated object. An unchecked conversion to the (specific)
8050      --  result subtype of the function is inserted to handle cases where
8051      --  the access type of the allocator has a class-wide designated type.
8052
8053      Add_Access_Actual_To_Build_In_Place_Call
8054        (Func_Call, Function_Id, Return_Obj_Actual);
8055
8056      --  Finally, replace the allocator node with a reference to the temp
8057
8058      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
8059
8060      Analyze_And_Resolve (Allocator, Acc_Type);
8061   end Make_Build_In_Place_Call_In_Allocator;
8062
8063   ---------------------------------------------------
8064   -- Make_Build_In_Place_Call_In_Anonymous_Context --
8065   ---------------------------------------------------
8066
8067   procedure Make_Build_In_Place_Call_In_Anonymous_Context
8068     (Function_Call : Node_Id)
8069   is
8070      Loc             : constant Source_Ptr := Sloc (Function_Call);
8071      Func_Call       : constant Node_Id := Unqual_Conv (Function_Call);
8072      Function_Id     : Entity_Id;
8073      Result_Subt     : Entity_Id;
8074      Return_Obj_Id   : Entity_Id;
8075      Return_Obj_Decl : Entity_Id;
8076
8077   begin
8078      --  If the call has already been processed to add build-in-place actuals
8079      --  then return. One place this can occur is for calls to build-in-place
8080      --  functions that occur within a call to a protected operation, where
8081      --  due to rewriting and expansion of the protected call there can be
8082      --  more than one call to Expand_Actuals for the same set of actuals.
8083
8084      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8085         return;
8086      end if;
8087
8088      --  Mark the call as processed as a build-in-place call
8089
8090      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8091
8092      if Is_Entity_Name (Name (Func_Call)) then
8093         Function_Id := Entity (Name (Func_Call));
8094
8095      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8096         Function_Id := Etype (Name (Func_Call));
8097
8098      else
8099         raise Program_Error;
8100      end if;
8101
8102      Result_Subt := Etype (Function_Id);
8103
8104      --  If the build-in-place function returns a controlled object, then the
8105      --  object needs to be finalized immediately after the context. Since
8106      --  this case produces a transient scope, the servicing finalizer needs
8107      --  to name the returned object. Create a temporary which is initialized
8108      --  with the function call:
8109      --
8110      --    Temp_Id : Func_Type := BIP_Func_Call;
8111      --
8112      --  The initialization expression of the temporary will be rewritten by
8113      --  the expander using the appropriate mechanism in Make_Build_In_Place_
8114      --  Call_In_Object_Declaration.
8115
8116      if Needs_Finalization (Result_Subt) then
8117         declare
8118            Temp_Id   : constant Entity_Id := Make_Temporary (Loc, 'R');
8119            Temp_Decl : Node_Id;
8120
8121         begin
8122            --  Reset the guard on the function call since the following does
8123            --  not perform actual call expansion.
8124
8125            Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8126
8127            Temp_Decl :=
8128              Make_Object_Declaration (Loc,
8129                Defining_Identifier => Temp_Id,
8130                Object_Definition =>
8131                  New_Occurrence_Of (Result_Subt, Loc),
8132                Expression =>
8133                  New_Copy_Tree (Function_Call));
8134
8135            Insert_Action (Function_Call, Temp_Decl);
8136
8137            Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
8138            Analyze (Function_Call);
8139         end;
8140
8141      --  When the result subtype is definite, an object of the subtype is
8142      --  declared and an access value designating it is passed as an actual.
8143
8144      elsif Caller_Known_Size (Func_Call, Result_Subt) then
8145
8146         --  Create a temporary object to hold the function result
8147
8148         Return_Obj_Id := Make_Temporary (Loc, 'R');
8149         Set_Etype (Return_Obj_Id, Result_Subt);
8150
8151         Return_Obj_Decl :=
8152           Make_Object_Declaration (Loc,
8153             Defining_Identifier => Return_Obj_Id,
8154             Aliased_Present     => True,
8155             Object_Definition   => New_Occurrence_Of (Result_Subt, Loc));
8156
8157         Set_No_Initialization (Return_Obj_Decl);
8158
8159         Insert_Action (Func_Call, Return_Obj_Decl);
8160
8161         --  When the function has a controlling result, an allocation-form
8162         --  parameter must be passed indicating that the caller is allocating
8163         --  the result object. This is needed because such a function can be
8164         --  called as a dispatching operation and must be treated similarly
8165         --  to functions with unconstrained result subtypes.
8166
8167         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8168           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8169
8170         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8171           (Func_Call, Function_Id);
8172
8173         Add_Task_Actuals_To_Build_In_Place_Call
8174           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8175
8176         --  Add an implicit actual to the function call that provides access
8177         --  to the caller's return object.
8178
8179         Add_Access_Actual_To_Build_In_Place_Call
8180           (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
8181
8182      --  When the result subtype is unconstrained, the function must allocate
8183      --  the return object in the secondary stack, so appropriate implicit
8184      --  parameters are added to the call to indicate that. A transient
8185      --  scope is established to ensure eventual cleanup of the result.
8186
8187      else
8188         --  Pass an allocation parameter indicating that the function should
8189         --  allocate its result on the secondary stack.
8190
8191         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8192           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8193
8194         Add_Finalization_Master_Actual_To_Build_In_Place_Call
8195           (Func_Call, Function_Id);
8196
8197         Add_Task_Actuals_To_Build_In_Place_Call
8198           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8199
8200         --  Pass a null value to the function since no return object is
8201         --  available on the caller side.
8202
8203         Add_Access_Actual_To_Build_In_Place_Call
8204           (Func_Call, Function_Id, Empty);
8205      end if;
8206   end Make_Build_In_Place_Call_In_Anonymous_Context;
8207
8208   --------------------------------------------
8209   -- Make_Build_In_Place_Call_In_Assignment --
8210   --------------------------------------------
8211
8212   procedure Make_Build_In_Place_Call_In_Assignment
8213     (Assign        : Node_Id;
8214      Function_Call : Node_Id)
8215   is
8216      Func_Call    : constant Node_Id    := Unqual_Conv (Function_Call);
8217      Lhs          : constant Node_Id    := Name (Assign);
8218      Loc          : constant Source_Ptr := Sloc (Function_Call);
8219      Func_Id      : Entity_Id;
8220      Obj_Decl     : Node_Id;
8221      Obj_Id       : Entity_Id;
8222      Ptr_Typ      : Entity_Id;
8223      Ptr_Typ_Decl : Node_Id;
8224      New_Expr     : Node_Id;
8225      Result_Subt  : Entity_Id;
8226
8227   begin
8228      --  Mark the call as processed as a build-in-place call
8229
8230      pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
8231      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8232
8233      if Is_Entity_Name (Name (Func_Call)) then
8234         Func_Id := Entity (Name (Func_Call));
8235
8236      elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8237         Func_Id := Etype (Name (Func_Call));
8238
8239      else
8240         raise Program_Error;
8241      end if;
8242
8243      Result_Subt := Etype (Func_Id);
8244
8245      --  When the result subtype is unconstrained, an additional actual must
8246      --  be passed to indicate that the caller is providing the return object.
8247      --  This parameter must also be passed when the called function has a
8248      --  controlling result, because dispatching calls to the function needs
8249      --  to be treated effectively the same as calls to class-wide functions.
8250
8251      Add_Unconstrained_Actuals_To_Build_In_Place_Call
8252        (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
8253
8254      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8255        (Func_Call, Func_Id);
8256
8257      Add_Task_Actuals_To_Build_In_Place_Call
8258        (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
8259
8260      --  Add an implicit actual to the function call that provides access to
8261      --  the caller's return object.
8262
8263      Add_Access_Actual_To_Build_In_Place_Call
8264        (Func_Call,
8265         Func_Id,
8266         Make_Unchecked_Type_Conversion (Loc,
8267           Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8268           Expression   => Relocate_Node (Lhs)));
8269
8270      --  Create an access type designating the function's result subtype
8271
8272      Ptr_Typ := Make_Temporary (Loc, 'A');
8273
8274      Ptr_Typ_Decl :=
8275        Make_Full_Type_Declaration (Loc,
8276          Defining_Identifier => Ptr_Typ,
8277          Type_Definition     =>
8278            Make_Access_To_Object_Definition (Loc,
8279              All_Present        => True,
8280              Subtype_Indication =>
8281                New_Occurrence_Of (Result_Subt, Loc)));
8282      Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8283
8284      --  Finally, create an access object initialized to a reference to the
8285      --  function call. We know this access value is non-null, so mark the
8286      --  entity accordingly to suppress junk access checks.
8287
8288      New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8289
8290      --  Add a conversion if it's the wrong type
8291
8292      if Etype (New_Expr) /= Ptr_Typ then
8293         New_Expr :=
8294           Make_Unchecked_Type_Conversion (Loc,
8295             New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
8296      end if;
8297
8298      Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
8299      Set_Etype (Obj_Id, Ptr_Typ);
8300      Set_Is_Known_Non_Null (Obj_Id);
8301
8302      Obj_Decl :=
8303        Make_Object_Declaration (Loc,
8304          Defining_Identifier => Obj_Id,
8305          Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8306          Expression          => New_Expr);
8307      Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
8308
8309      Rewrite (Assign, Make_Null_Statement (Loc));
8310   end Make_Build_In_Place_Call_In_Assignment;
8311
8312   ----------------------------------------------------
8313   -- Make_Build_In_Place_Call_In_Object_Declaration --
8314   ----------------------------------------------------
8315
8316   procedure Make_Build_In_Place_Call_In_Object_Declaration
8317     (Obj_Decl      : Node_Id;
8318      Function_Call : Node_Id)
8319   is
8320      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8321      --  Get the value of Function_Id, below
8322
8323      ---------------------
8324      -- Get_Function_Id --
8325      ---------------------
8326
8327      function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8328      begin
8329         if Is_Entity_Name (Name (Func_Call)) then
8330            return Entity (Name (Func_Call));
8331
8332         elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8333            return Etype (Name (Func_Call));
8334
8335         else
8336            raise Program_Error;
8337         end if;
8338      end Get_Function_Id;
8339
8340      --  Local variables
8341
8342      Func_Call   : constant Node_Id    := Unqual_Conv (Function_Call);
8343      Function_Id : constant Entity_Id  := Get_Function_Id (Func_Call);
8344      Loc         : constant Source_Ptr := Sloc (Function_Call);
8345      Obj_Loc     : constant Source_Ptr := Sloc (Obj_Decl);
8346      Obj_Def_Id  : constant Entity_Id  := Defining_Identifier (Obj_Decl);
8347      Obj_Typ     : constant Entity_Id  := Etype (Obj_Def_Id);
8348      Encl_Func   : constant Entity_Id  := Enclosing_Subprogram (Obj_Def_Id);
8349      Result_Subt : constant Entity_Id  := Etype (Function_Id);
8350
8351      Call_Deref      : Node_Id;
8352      Caller_Object   : Node_Id;
8353      Def_Id          : Entity_Id;
8354      Designated_Type : Entity_Id;
8355      Fmaster_Actual  : Node_Id := Empty;
8356      Pool_Actual     : Node_Id;
8357      Ptr_Typ         : Entity_Id;
8358      Ptr_Typ_Decl    : Node_Id;
8359      Pass_Caller_Acc : Boolean := False;
8360      Res_Decl        : Node_Id;
8361
8362      Definite : constant Boolean :=
8363                   Caller_Known_Size (Func_Call, Result_Subt)
8364                     and then not Is_Class_Wide_Type (Obj_Typ);
8365      --  In the case of "X : T'Class := F(...);", where F returns a
8366      --  Caller_Known_Size (specific) tagged type, we treat it as
8367      --  indefinite, because the code for the Definite case below sets the
8368      --  initialization expression of the object to Empty, which would be
8369      --  illegal Ada, and would cause gigi to misallocate X.
8370
8371   --  Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
8372
8373   begin
8374      --  If the call has already been processed to add build-in-place actuals
8375      --  then return.
8376
8377      if Is_Expanded_Build_In_Place_Call (Func_Call) then
8378         return;
8379      end if;
8380
8381      --  Mark the call as processed as a build-in-place call
8382
8383      Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8384
8385      --  Create an access type designating the function's result subtype.
8386      --  We use the type of the original call because it may be a call to an
8387      --  inherited operation, which the expansion has replaced with the parent
8388      --  operation that yields the parent type. Note that this access type
8389      --  must be declared before we establish a transient scope, so that it
8390      --  receives the proper accessibility level.
8391
8392      if Is_Class_Wide_Type (Obj_Typ)
8393        and then not Is_Interface (Obj_Typ)
8394        and then not Is_Class_Wide_Type (Etype (Function_Call))
8395      then
8396         Designated_Type := Obj_Typ;
8397      else
8398         Designated_Type := Etype (Function_Call);
8399      end if;
8400
8401      Ptr_Typ := Make_Temporary (Loc, 'A');
8402      Ptr_Typ_Decl :=
8403        Make_Full_Type_Declaration (Loc,
8404          Defining_Identifier => Ptr_Typ,
8405          Type_Definition     =>
8406            Make_Access_To_Object_Definition (Loc,
8407              All_Present        => True,
8408              Subtype_Indication =>
8409                New_Occurrence_Of (Designated_Type, Loc)));
8410
8411      --  The access type and its accompanying object must be inserted after
8412      --  the object declaration in the constrained case, so that the function
8413      --  call can be passed access to the object. In the indefinite case, or
8414      --  if the object declaration is for a return object, the access type and
8415      --  object must be inserted before the object, since the object
8416      --  declaration is rewritten to be a renaming of a dereference of the
8417      --  access object. Note: we need to freeze Ptr_Typ explicitly, because
8418      --  the result object is in a different (transient) scope, so won't cause
8419      --  freezing.
8420
8421      if Definite and then not Is_Return_Object (Obj_Def_Id) then
8422
8423         --  The presence of an address clause complicates the build-in-place
8424         --  expansion because the indicated address must be processed before
8425         --  the indirect call is generated (including the definition of a
8426         --  local pointer to the object).  The address clause may come from
8427         --  an aspect specification or from an explicit attribute
8428         --  specification appearing after the object declaration. These two
8429         --  cases require different processing.
8430
8431         if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8432
8433            --  Skip non-delayed pragmas that correspond to other aspects, if
8434            --  any, to find proper insertion point for freeze node of object.
8435
8436            declare
8437               D : Node_Id := Obj_Decl;
8438               N : Node_Id := Next (D);
8439
8440            begin
8441               while Present (N)
8442                 and then Nkind_In (N, N_Pragma, N_Attribute_Reference)
8443               loop
8444                  Analyze (N);
8445                  D := N;
8446                  Next (N);
8447               end loop;
8448
8449               Insert_After (D, Ptr_Typ_Decl);
8450
8451               --  Freeze object before pointer declaration, to ensure that
8452               --  generated attribute for address is inserted at the proper
8453               --  place.
8454
8455               Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8456            end;
8457
8458            Analyze (Ptr_Typ_Decl);
8459
8460         elsif Present (Following_Address_Clause (Obj_Decl)) then
8461
8462            --  Locate explicit address clause, which may also follow pragmas
8463            --  generated by other aspect specifications.
8464
8465            declare
8466               Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8467               D    : Node_Id := Next (Obj_Decl);
8468
8469            begin
8470               while Present (D) loop
8471                  Analyze (D);
8472                  exit when D = Addr;
8473                  Next (D);
8474               end loop;
8475
8476               Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8477            end;
8478
8479         else
8480            Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8481         end if;
8482      else
8483         Insert_Action (Obj_Decl, Ptr_Typ_Decl);
8484      end if;
8485
8486      --  Force immediate freezing of Ptr_Typ because Res_Decl will be
8487      --  elaborated in an inner (transient) scope and thus won't cause
8488      --  freezing by itself. It's not an itype, but it needs to be frozen
8489      --  inside the current subprogram (see Freeze_Outside in freeze.adb).
8490
8491      Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8492
8493      --  If the object is a return object of an enclosing build-in-place
8494      --  function, then the implicit build-in-place parameters of the
8495      --  enclosing function are simply passed along to the called function.
8496      --  (Unfortunately, this won't cover the case of extension aggregates
8497      --  where the ancestor part is a build-in-place indefinite function
8498      --  call that should be passed along the caller's parameters.
8499      --  Currently those get mishandled by reassigning the result of the
8500      --  call to the aggregate return object, when the call result should
8501      --  really be directly built in place in the aggregate and not in a
8502      --  temporary. ???)
8503
8504      if Is_Return_Object (Obj_Def_Id) then
8505         Pass_Caller_Acc := True;
8506
8507         --  When the enclosing function has a BIP_Alloc_Form formal then we
8508         --  pass it along to the callee (such as when the enclosing function
8509         --  has an unconstrained or tagged result type).
8510
8511         if Needs_BIP_Alloc_Form (Encl_Func) then
8512            if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8513               Pool_Actual :=
8514                 New_Occurrence_Of
8515                   (Build_In_Place_Formal
8516                     (Encl_Func, BIP_Storage_Pool), Loc);
8517
8518            --  The build-in-place pool formal is not built on e.g. ZFP
8519
8520            else
8521               Pool_Actual := Empty;
8522            end if;
8523
8524            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8525              (Function_Call  => Func_Call,
8526               Function_Id    => Function_Id,
8527               Alloc_Form_Exp =>
8528                 New_Occurrence_Of
8529                   (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8530               Pool_Actual    => Pool_Actual);
8531
8532         --  Otherwise, if enclosing function has a definite result subtype,
8533         --  then caller allocation will be used.
8534
8535         else
8536            Add_Unconstrained_Actuals_To_Build_In_Place_Call
8537              (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8538         end if;
8539
8540         if Needs_BIP_Finalization_Master (Encl_Func) then
8541            Fmaster_Actual :=
8542              New_Occurrence_Of
8543                (Build_In_Place_Formal
8544                   (Encl_Func, BIP_Finalization_Master), Loc);
8545         end if;
8546
8547         --  Retrieve the BIPacc formal from the enclosing function and convert
8548         --  it to the access type of the callee's BIP_Object_Access formal.
8549
8550         Caller_Object :=
8551           Make_Unchecked_Type_Conversion (Loc,
8552             Subtype_Mark =>
8553               New_Occurrence_Of
8554                 (Etype (Build_In_Place_Formal
8555                    (Function_Id, BIP_Object_Access)),
8556                  Loc),
8557             Expression   =>
8558               New_Occurrence_Of
8559                 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8560                  Loc));
8561
8562      --  In the definite case, add an implicit actual to the function call
8563      --  that provides access to the declared object. An unchecked conversion
8564      --  to the (specific) result type of the function is inserted to handle
8565      --  the case where the object is declared with a class-wide type.
8566
8567      elsif Definite then
8568         Caller_Object :=
8569            Make_Unchecked_Type_Conversion (Loc,
8570              Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8571              Expression   => New_Occurrence_Of (Obj_Def_Id, Loc));
8572
8573         --  When the function has a controlling result, an allocation-form
8574         --  parameter must be passed indicating that the caller is allocating
8575         --  the result object. This is needed because such a function can be
8576         --  called as a dispatching operation and must be treated similarly to
8577         --  functions with indefinite result subtypes.
8578
8579         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8580           (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8581
8582      --  The allocation for indefinite library-level objects occurs on the
8583      --  heap as opposed to the secondary stack. This accommodates DLLs where
8584      --  the secondary stack is destroyed after each library unload. This is a
8585      --  hybrid mechanism where a stack-allocated object lives on the heap.
8586
8587      elsif Is_Library_Level_Entity (Obj_Def_Id)
8588        and then not Restriction_Active (No_Implicit_Heap_Allocations)
8589      then
8590         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8591           (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8592         Caller_Object := Empty;
8593
8594         --  Create a finalization master for the access result type to ensure
8595         --  that the heap allocation can properly chain the object and later
8596         --  finalize it when the library unit goes out of scope.
8597
8598         if Needs_Finalization (Etype (Func_Call)) then
8599            Build_Finalization_Master
8600              (Typ            => Ptr_Typ,
8601               For_Lib_Level  => True,
8602               Insertion_Node => Ptr_Typ_Decl);
8603
8604            Fmaster_Actual :=
8605              Make_Attribute_Reference (Loc,
8606                Prefix         =>
8607                  New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8608                Attribute_Name => Name_Unrestricted_Access);
8609         end if;
8610
8611      --  In other indefinite cases, pass an indication to do the allocation
8612      --  on the secondary stack and set Caller_Object to Empty so that a null
8613      --  value will be passed for the caller's object address. A transient
8614      --  scope is established to ensure eventual cleanup of the result.
8615
8616      else
8617         Add_Unconstrained_Actuals_To_Build_In_Place_Call
8618           (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8619         Caller_Object := Empty;
8620
8621         Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
8622      end if;
8623
8624      --  Pass along any finalization master actual, which is needed in the
8625      --  case where the called function initializes a return object of an
8626      --  enclosing build-in-place function.
8627
8628      Add_Finalization_Master_Actual_To_Build_In_Place_Call
8629        (Func_Call  => Func_Call,
8630         Func_Id    => Function_Id,
8631         Master_Exp => Fmaster_Actual);
8632
8633      if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
8634        and then Has_Task (Result_Subt)
8635      then
8636         --  Here we're passing along the master that was passed in to this
8637         --  function.
8638
8639         Add_Task_Actuals_To_Build_In_Place_Call
8640           (Func_Call, Function_Id,
8641            Master_Actual =>
8642              New_Occurrence_Of
8643                (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8644
8645      else
8646         Add_Task_Actuals_To_Build_In_Place_Call
8647           (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8648      end if;
8649
8650      Add_Access_Actual_To_Build_In_Place_Call
8651        (Func_Call,
8652         Function_Id,
8653         Caller_Object,
8654         Is_Access => Pass_Caller_Acc);
8655
8656      --  Finally, create an access object initialized to a reference to the
8657      --  function call. We know this access value cannot be null, so mark the
8658      --  entity accordingly to suppress the access check.
8659
8660      Def_Id := Make_Temporary (Loc, 'R', Func_Call);
8661      Set_Etype (Def_Id, Ptr_Typ);
8662      Set_Is_Known_Non_Null (Def_Id);
8663
8664      if Nkind_In (Function_Call, N_Type_Conversion,
8665                                  N_Unchecked_Type_Conversion)
8666      then
8667         Res_Decl :=
8668           Make_Object_Declaration (Loc,
8669             Defining_Identifier => Def_Id,
8670             Constant_Present    => True,
8671             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8672             Expression          =>
8673               Make_Unchecked_Type_Conversion (Loc,
8674                 New_Occurrence_Of (Ptr_Typ, Loc),
8675                 Make_Reference (Loc, Relocate_Node (Func_Call))));
8676      else
8677         Res_Decl :=
8678           Make_Object_Declaration (Loc,
8679             Defining_Identifier => Def_Id,
8680             Constant_Present    => True,
8681             Object_Definition   => New_Occurrence_Of (Ptr_Typ, Loc),
8682             Expression          =>
8683               Make_Reference (Loc, Relocate_Node (Func_Call)));
8684      end if;
8685
8686      Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
8687
8688      --  If the result subtype of the called function is definite and is not
8689      --  itself the return expression of an enclosing BIP function, then mark
8690      --  the object as having no initialization.
8691
8692      if Definite and then not Is_Return_Object (Obj_Def_Id) then
8693
8694         --  The related object declaration is encased in a transient block
8695         --  because the build-in-place function call contains at least one
8696         --  nested function call that produces a controlled transient
8697         --  temporary:
8698
8699         --    Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
8700
8701         --  Since the build-in-place expansion decouples the call from the
8702         --  object declaration, the finalization machinery lacks the context
8703         --  which prompted the generation of the transient block. To resolve
8704         --  this scenario, store the build-in-place call.
8705
8706         if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
8707            Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
8708         end if;
8709
8710         Set_Expression (Obj_Decl, Empty);
8711         Set_No_Initialization (Obj_Decl);
8712
8713      --  In case of an indefinite result subtype, or if the call is the
8714      --  return expression of an enclosing BIP function, rewrite the object
8715      --  declaration as an object renaming where the renamed object is a
8716      --  dereference of <function_Call>'reference:
8717      --
8718      --      Obj : Subt renames <function_call>'Ref.all;
8719
8720      else
8721         Call_Deref :=
8722           Make_Explicit_Dereference (Obj_Loc,
8723             Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
8724
8725         Rewrite (Obj_Decl,
8726           Make_Object_Renaming_Declaration (Obj_Loc,
8727             Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
8728             Subtype_Mark        =>
8729               New_Occurrence_Of (Designated_Type, Obj_Loc),
8730             Name                => Call_Deref));
8731
8732         --  At this point, Defining_Identifier (Obj_Decl) is no longer equal
8733         --  to Obj_Def_Id.
8734
8735         Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
8736
8737         --  If the original entity comes from source, then mark the new
8738         --  entity as needing debug information, even though it's defined
8739         --  by a generated renaming that does not come from source, so that
8740         --  the Materialize_Entity flag will be set on the entity when
8741         --  Debug_Renaming_Declaration is called during analysis.
8742
8743         if Comes_From_Source (Obj_Def_Id) then
8744            Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
8745         end if;
8746
8747         Analyze (Obj_Decl);
8748         Replace_Renaming_Declaration_Id
8749           (Obj_Decl, Original_Node (Obj_Decl));
8750      end if;
8751   end Make_Build_In_Place_Call_In_Object_Declaration;
8752
8753   -------------------------------------------------
8754   -- Make_Build_In_Place_Iface_Call_In_Allocator --
8755   -------------------------------------------------
8756
8757   procedure Make_Build_In_Place_Iface_Call_In_Allocator
8758     (Allocator     : Node_Id;
8759      Function_Call : Node_Id)
8760   is
8761      BIP_Func_Call : constant Node_Id :=
8762                        Unqual_BIP_Iface_Function_Call (Function_Call);
8763      Loc           : constant Source_Ptr := Sloc (Function_Call);
8764
8765      Anon_Type : Entity_Id;
8766      Tmp_Decl  : Node_Id;
8767      Tmp_Id    : Entity_Id;
8768
8769   begin
8770      --  No action of the call has already been processed
8771
8772      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8773         return;
8774      end if;
8775
8776      Tmp_Id := Make_Temporary (Loc, 'D');
8777
8778      --  Insert a temporary before N initialized with the BIP function call
8779      --  without its enclosing type conversions and analyze it without its
8780      --  expansion. This temporary facilitates us reusing the BIP machinery,
8781      --  which takes care of adding the extra build-in-place actuals and
8782      --  transforms this object declaration into an object renaming
8783      --  declaration.
8784
8785      Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
8786      Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
8787      Set_Etype (Anon_Type, Anon_Type);
8788
8789      Tmp_Decl :=
8790        Make_Object_Declaration (Loc,
8791          Defining_Identifier => Tmp_Id,
8792          Object_Definition   => New_Occurrence_Of (Anon_Type, Loc),
8793          Expression          =>
8794            Make_Allocator (Loc,
8795              Expression =>
8796                Make_Qualified_Expression (Loc,
8797                  Subtype_Mark =>
8798                    New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8799                  Expression   => New_Copy_Tree (BIP_Func_Call))));
8800
8801      Expander_Mode_Save_And_Set (False);
8802      Insert_Action (Allocator, Tmp_Decl);
8803      Expander_Mode_Restore;
8804
8805      Make_Build_In_Place_Call_In_Allocator
8806        (Allocator     => Expression (Tmp_Decl),
8807         Function_Call => Expression (Expression (Tmp_Decl)));
8808
8809      Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
8810   end Make_Build_In_Place_Iface_Call_In_Allocator;
8811
8812   ---------------------------------------------------------
8813   -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
8814   ---------------------------------------------------------
8815
8816   procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
8817     (Function_Call : Node_Id)
8818   is
8819      BIP_Func_Call : constant Node_Id :=
8820                        Unqual_BIP_Iface_Function_Call (Function_Call);
8821      Loc           : constant Source_Ptr := Sloc (Function_Call);
8822
8823      Tmp_Decl : Node_Id;
8824      Tmp_Id   : Entity_Id;
8825
8826   begin
8827      --  No action of the call has already been processed
8828
8829      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8830         return;
8831      end if;
8832
8833      pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
8834
8835      --  Insert a temporary before the call initialized with function call to
8836      --  reuse the BIP machinery which takes care of adding the extra build-in
8837      --  place actuals and transforms this object declaration into an object
8838      --  renaming declaration.
8839
8840      Tmp_Id := Make_Temporary (Loc, 'D');
8841
8842      Tmp_Decl :=
8843        Make_Object_Declaration (Loc,
8844          Defining_Identifier => Tmp_Id,
8845          Object_Definition   =>
8846            New_Occurrence_Of (Etype (Function_Call), Loc),
8847          Expression          => Relocate_Node (Function_Call));
8848
8849      Expander_Mode_Save_And_Set (False);
8850      Insert_Action (Function_Call, Tmp_Decl);
8851      Expander_Mode_Restore;
8852
8853      Make_Build_In_Place_Iface_Call_In_Object_Declaration
8854        (Obj_Decl      => Tmp_Decl,
8855         Function_Call => Expression (Tmp_Decl));
8856   end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
8857
8858   ----------------------------------------------------------
8859   -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
8860   ----------------------------------------------------------
8861
8862   procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
8863     (Obj_Decl      : Node_Id;
8864      Function_Call : Node_Id)
8865   is
8866      BIP_Func_Call : constant Node_Id :=
8867                        Unqual_BIP_Iface_Function_Call (Function_Call);
8868      Loc           : constant Source_Ptr := Sloc (Function_Call);
8869      Obj_Id        : constant Entity_Id := Defining_Entity (Obj_Decl);
8870
8871      Tmp_Decl : Node_Id;
8872      Tmp_Id   : Entity_Id;
8873
8874   begin
8875      --  No action of the call has already been processed
8876
8877      if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
8878         return;
8879      end if;
8880
8881      Tmp_Id := Make_Temporary (Loc, 'D');
8882
8883      --  Insert a temporary before N initialized with the BIP function call
8884      --  without its enclosing type conversions and analyze it without its
8885      --  expansion. This temporary facilitates us reusing the BIP machinery,
8886      --  which takes care of adding the extra build-in-place actuals and
8887      --  transforms this object declaration into an object renaming
8888      --  declaration.
8889
8890      Tmp_Decl :=
8891        Make_Object_Declaration (Loc,
8892          Defining_Identifier => Tmp_Id,
8893          Object_Definition   =>
8894            New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
8895          Expression          => New_Copy_Tree (BIP_Func_Call));
8896
8897      Expander_Mode_Save_And_Set (False);
8898      Insert_Action (Obj_Decl, Tmp_Decl);
8899      Expander_Mode_Restore;
8900
8901      Make_Build_In_Place_Call_In_Object_Declaration
8902        (Obj_Decl      => Tmp_Decl,
8903         Function_Call => Expression (Tmp_Decl));
8904
8905      pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
8906
8907      --  Replace the original build-in-place function call by a reference to
8908      --  the resulting temporary object renaming declaration. In this way,
8909      --  all the interface conversions performed in the original Function_Call
8910      --  on the build-in-place object are preserved.
8911
8912      Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
8913
8914      --  Replace the original object declaration by an internal object
8915      --  renaming declaration. This leaves the generated code more clean (the
8916      --  build-in-place function call in an object renaming declaration and
8917      --  displacements of the pointer to the build-in-place object in another
8918      --  renaming declaration) and allows us to invoke the routine that takes
8919      --  care of replacing the identifier of the renaming declaration (routine
8920      --  originally developed for the regular build-in-place management).
8921
8922      Rewrite (Obj_Decl,
8923        Make_Object_Renaming_Declaration (Loc,
8924          Defining_Identifier => Make_Temporary (Loc, 'D'),
8925          Subtype_Mark        => New_Occurrence_Of (Etype (Obj_Id), Loc),
8926          Name                => Function_Call));
8927      Analyze (Obj_Decl);
8928
8929      Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
8930   end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
8931
8932   --------------------------------------------
8933   -- Make_CPP_Constructor_Call_In_Allocator --
8934   --------------------------------------------
8935
8936   procedure Make_CPP_Constructor_Call_In_Allocator
8937     (Allocator     : Node_Id;
8938      Function_Call : Node_Id)
8939   is
8940      Loc         : constant Source_Ptr := Sloc (Function_Call);
8941      Acc_Type    : constant Entity_Id := Etype (Allocator);
8942      Function_Id : constant Entity_Id := Entity (Name (Function_Call));
8943      Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
8944
8945      New_Allocator     : Node_Id;
8946      Return_Obj_Access : Entity_Id;
8947      Tmp_Obj           : Node_Id;
8948
8949   begin
8950      pragma Assert (Nkind (Allocator) = N_Allocator
8951                      and then Nkind (Function_Call) = N_Function_Call);
8952      pragma Assert (Convention (Function_Id) = Convention_CPP
8953                      and then Is_Constructor (Function_Id));
8954      pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
8955
8956      --  Replace the initialized allocator of form "new T'(Func (...))" with
8957      --  an uninitialized allocator of form "new T", where T is the result
8958      --  subtype of the called function. The call to the function is handled
8959      --  separately further below.
8960
8961      New_Allocator :=
8962        Make_Allocator (Loc,
8963          Expression => New_Occurrence_Of (Result_Subt, Loc));
8964      Set_No_Initialization (New_Allocator);
8965
8966      --  Copy attributes to new allocator. Note that the new allocator
8967      --  logically comes from source if the original one did, so copy the
8968      --  relevant flag. This ensures proper treatment of the restriction
8969      --  No_Implicit_Heap_Allocations in this case.
8970
8971      Set_Storage_Pool      (New_Allocator, Storage_Pool      (Allocator));
8972      Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
8973      Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
8974
8975      Rewrite (Allocator, New_Allocator);
8976
8977      --  Create a new access object and initialize it to the result of the
8978      --  new uninitialized allocator. Note: we do not use Allocator as the
8979      --  Related_Node of Return_Obj_Access in call to Make_Temporary below
8980      --  as this would create a sort of infinite "recursion".
8981
8982      Return_Obj_Access := Make_Temporary (Loc, 'R');
8983      Set_Etype (Return_Obj_Access, Acc_Type);
8984
8985      --  Generate:
8986      --    Rnnn : constant ptr_T := new (T);
8987      --    Init (Rnn.all,...);
8988
8989      Tmp_Obj :=
8990        Make_Object_Declaration (Loc,
8991          Defining_Identifier => Return_Obj_Access,
8992          Constant_Present    => True,
8993          Object_Definition   => New_Occurrence_Of (Acc_Type, Loc),
8994          Expression          => Relocate_Node (Allocator));
8995      Insert_Action (Allocator, Tmp_Obj);
8996
8997      Insert_List_After_And_Analyze (Tmp_Obj,
8998        Build_Initialization_Call (Loc,
8999          Id_Ref =>
9000            Make_Explicit_Dereference (Loc,
9001              Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
9002          Typ => Etype (Function_Id),
9003          Constructor_Ref => Function_Call));
9004
9005      --  Finally, replace the allocator node with a reference to the result of
9006      --  the function call itself (which will effectively be an access to the
9007      --  object created by the allocator).
9008
9009      Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
9010
9011      --  Ada 2005 (AI-251): If the type of the allocator is an interface then
9012      --  generate an implicit conversion to force displacement of the "this"
9013      --  pointer.
9014
9015      if Is_Interface (Designated_Type (Acc_Type)) then
9016         Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9017      end if;
9018
9019      Analyze_And_Resolve (Allocator, Acc_Type);
9020   end Make_CPP_Constructor_Call_In_Allocator;
9021
9022   -----------------------------------
9023   -- Needs_BIP_Finalization_Master --
9024   -----------------------------------
9025
9026   function Needs_BIP_Finalization_Master
9027     (Func_Id : Entity_Id) return Boolean
9028   is
9029      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9030      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9031   begin
9032      --  A formal giving the finalization master is needed for build-in-place
9033      --  functions whose result type needs finalization or is a tagged type.
9034      --  Tagged primitive build-in-place functions need such a formal because
9035      --  they can be called by a dispatching call, and extensions may require
9036      --  finalization even if the root type doesn't. This means they're also
9037      --  needed for tagged nonprimitive build-in-place functions with tagged
9038      --  results, since such functions can be called via access-to-function
9039      --  types, and those can be used to call primitives, so masters have to
9040      --  be passed to all such build-in-place functions, primitive or not.
9041
9042      return
9043        not Restriction_Active (No_Finalization)
9044          and then (Needs_Finalization (Func_Typ)
9045                     or else Is_Tagged_Type (Func_Typ));
9046   end Needs_BIP_Finalization_Master;
9047
9048   --------------------------
9049   -- Needs_BIP_Alloc_Form --
9050   --------------------------
9051
9052   function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9053      pragma Assert (Is_Build_In_Place_Function (Func_Id));
9054      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9055   begin
9056      return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9057   end Needs_BIP_Alloc_Form;
9058
9059   --------------------------------------
9060   -- Needs_Result_Accessibility_Level --
9061   --------------------------------------
9062
9063   function Needs_Result_Accessibility_Level
9064     (Func_Id : Entity_Id) return Boolean
9065   is
9066      Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9067
9068      function Has_Unconstrained_Access_Discriminant_Component
9069        (Comp_Typ : Entity_Id) return Boolean;
9070      --  Returns True if any component of the type has an unconstrained access
9071      --  discriminant.
9072
9073      -----------------------------------------------------
9074      -- Has_Unconstrained_Access_Discriminant_Component --
9075      -----------------------------------------------------
9076
9077      function Has_Unconstrained_Access_Discriminant_Component
9078        (Comp_Typ :  Entity_Id) return Boolean
9079      is
9080      begin
9081         if not Is_Limited_Type (Comp_Typ) then
9082            return False;
9083
9084            --  Only limited types can have access discriminants with
9085            --  defaults.
9086
9087         elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9088            return True;
9089
9090         elsif Is_Array_Type (Comp_Typ) then
9091            return Has_Unconstrained_Access_Discriminant_Component
9092                     (Underlying_Type (Component_Type (Comp_Typ)));
9093
9094         elsif Is_Record_Type (Comp_Typ) then
9095            declare
9096               Comp : Entity_Id;
9097
9098            begin
9099               Comp := First_Component (Comp_Typ);
9100               while Present (Comp) loop
9101                  if Has_Unconstrained_Access_Discriminant_Component
9102                       (Underlying_Type (Etype (Comp)))
9103                  then
9104                     return True;
9105                  end if;
9106
9107                  Next_Component (Comp);
9108               end loop;
9109            end;
9110         end if;
9111
9112         return False;
9113      end Has_Unconstrained_Access_Discriminant_Component;
9114
9115      Feature_Disabled : constant Boolean := True;
9116      --  Temporary
9117
9118   --  Start of processing for Needs_Result_Accessibility_Level
9119
9120   begin
9121      --  False if completion unavailable (how does this happen???)
9122
9123      if not Present (Func_Typ) then
9124         return False;
9125
9126      elsif Feature_Disabled then
9127         return False;
9128
9129      --  False if not a function, also handle enum-lit renames case
9130
9131      elsif Func_Typ = Standard_Void_Type
9132        or else Is_Scalar_Type (Func_Typ)
9133      then
9134         return False;
9135
9136      --  Handle a corner case, a cross-dialect subp renaming. For example,
9137      --  an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9138      --  an Ada 2005 (or earlier) unit references predefined run-time units.
9139
9140      elsif Present (Alias (Func_Id)) then
9141
9142         --  Unimplemented: a cross-dialect subp renaming which does not set
9143         --  the Alias attribute (e.g., a rename of a dereference of an access
9144         --  to subprogram value). ???
9145
9146         return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
9147
9148      --  Remaining cases require Ada 2012 mode
9149
9150      elsif Ada_Version < Ada_2012 then
9151         return False;
9152
9153      elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
9154        or else Is_Tagged_Type (Func_Typ)
9155      then
9156         --  In the case of, say, a null tagged record result type, the need
9157         --  for this extra parameter might not be obvious. This function
9158         --  returns True for all tagged types for compatibility reasons.
9159         --  A function with, say, a tagged null controlling result type might
9160         --  be overridden by a primitive of an extension having an access
9161         --  discriminant and the overrider and overridden must have compatible
9162         --  calling conventions (including implicitly declared parameters).
9163         --  Similarly, values of one access-to-subprogram type might designate
9164         --  both a primitive subprogram of a given type and a function
9165         --  which is, for example, not a primitive subprogram of any type.
9166         --  Again, this requires calling convention compatibility.
9167         --  It might be possible to solve these issues by introducing
9168         --  wrappers, but that is not the approach that was chosen.
9169
9170         return True;
9171
9172      elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
9173         return True;
9174
9175      elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
9176         return True;
9177
9178      --  False for all other cases
9179
9180      else
9181         return False;
9182      end if;
9183   end Needs_Result_Accessibility_Level;
9184
9185   -------------------------------------
9186   -- Replace_Renaming_Declaration_Id --
9187   -------------------------------------
9188
9189   procedure Replace_Renaming_Declaration_Id
9190      (New_Decl  : Node_Id;
9191       Orig_Decl : Node_Id)
9192   is
9193      New_Id  : constant Entity_Id := Defining_Entity (New_Decl);
9194      Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9195
9196   begin
9197      Set_Chars (New_Id, Chars (Orig_Id));
9198
9199      --  Swap next entity links in preparation for exchanging entities
9200
9201      declare
9202         Next_Id : constant Entity_Id := Next_Entity (New_Id);
9203      begin
9204         Set_Next_Entity (New_Id, Next_Entity (Orig_Id));
9205         Set_Next_Entity (Orig_Id, Next_Id);
9206      end;
9207
9208      Set_Homonym (New_Id, Homonym (Orig_Id));
9209      Exchange_Entities (New_Id, Orig_Id);
9210
9211      --  Preserve source indication of original declaration, so that xref
9212      --  information is properly generated for the right entity.
9213
9214      Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9215      Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9216
9217      Set_Comes_From_Source (New_Id, False);
9218   end Replace_Renaming_Declaration_Id;
9219
9220   ---------------------------------
9221   -- Rewrite_Function_Call_For_C --
9222   ---------------------------------
9223
9224   procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9225      Orig_Func   : constant Entity_Id  := Entity (Name (N));
9226      Func_Id     : constant Entity_Id  := Ultimate_Alias (Orig_Func);
9227      Par         : constant Node_Id    := Parent (N);
9228      Proc_Id     : constant Entity_Id  := Corresponding_Procedure (Func_Id);
9229      Loc         : constant Source_Ptr := Sloc (Par);
9230      Actuals     : List_Id;
9231      Last_Actual : Node_Id;
9232      Last_Formal : Entity_Id;
9233
9234   --  Start of processing for Rewrite_Function_Call_For_C
9235
9236   begin
9237      --  The actuals may be given by named associations, so the added actual
9238      --  that is the target of the return value of the call must be a named
9239      --  association as well, so we retrieve the name of the generated
9240      --  out_formal.
9241
9242      Last_Formal := First_Formal (Proc_Id);
9243      while Present (Next_Formal (Last_Formal)) loop
9244         Last_Formal := Next_Formal (Last_Formal);
9245      end loop;
9246
9247      Actuals := Parameter_Associations (N);
9248
9249      --  The original function may lack parameters
9250
9251      if No (Actuals) then
9252         Actuals := New_List;
9253      end if;
9254
9255      --  If the function call is the expression of an assignment statement,
9256      --  transform the assignment into a procedure call. Generate:
9257
9258      --    LHS := Func_Call (...);
9259
9260      --    Proc_Call (..., LHS);
9261
9262      --  If function is inherited, a conversion may be necessary.
9263
9264      if Nkind (Par) = N_Assignment_Statement then
9265         Last_Actual :=  Name (Par);
9266
9267         if not Comes_From_Source (Orig_Func)
9268           and then Etype (Orig_Func) /= Etype (Func_Id)
9269         then
9270            Last_Actual :=
9271              Make_Type_Conversion (Loc,
9272                New_Occurrence_Of (Etype (Func_Id), Loc),
9273                Last_Actual);
9274         end if;
9275
9276         Append_To (Actuals,
9277           Make_Parameter_Association (Loc,
9278             Selector_Name             =>
9279               Make_Identifier (Loc, Chars (Last_Formal)),
9280             Explicit_Actual_Parameter => Last_Actual));
9281
9282         Rewrite (Par,
9283           Make_Procedure_Call_Statement (Loc,
9284             Name                   => New_Occurrence_Of (Proc_Id, Loc),
9285             Parameter_Associations => Actuals));
9286         Analyze (Par);
9287
9288      --  Otherwise the context is an expression. Generate a temporary and a
9289      --  procedure call to obtain the function result. Generate:
9290
9291      --    ... Func_Call (...) ...
9292
9293      --    Temp : ...;
9294      --    Proc_Call (..., Temp);
9295      --    ... Temp ...
9296
9297      else
9298         declare
9299            Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9300            Call    : Node_Id;
9301            Decl    : Node_Id;
9302
9303         begin
9304            --  Generate:
9305            --    Temp : ...;
9306
9307            Decl :=
9308              Make_Object_Declaration (Loc,
9309                Defining_Identifier => Temp_Id,
9310                Object_Definition   =>
9311                  New_Occurrence_Of (Etype (Func_Id), Loc));
9312
9313            --  Generate:
9314            --    Proc_Call (..., Temp);
9315
9316            Append_To (Actuals,
9317              Make_Parameter_Association (Loc,
9318                Selector_Name             =>
9319                  Make_Identifier (Loc, Chars (Last_Formal)),
9320                Explicit_Actual_Parameter =>
9321                  New_Occurrence_Of (Temp_Id, Loc)));
9322
9323            Call :=
9324              Make_Procedure_Call_Statement (Loc,
9325                Name                   => New_Occurrence_Of (Proc_Id, Loc),
9326                Parameter_Associations => Actuals);
9327
9328            Insert_Actions (Par, New_List (Decl, Call));
9329            Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9330         end;
9331      end if;
9332   end Rewrite_Function_Call_For_C;
9333
9334   ------------------------------------
9335   -- Set_Enclosing_Sec_Stack_Return --
9336   ------------------------------------
9337
9338   procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9339      P : Node_Id := N;
9340
9341   begin
9342      --  Due to a possible mix of internally generated blocks, source blocks
9343      --  and loops, the scope stack may not be contiguous as all labels are
9344      --  inserted at the top level within the related function. Instead,
9345      --  perform a parent-based traversal and mark all appropriate constructs.
9346
9347      while Present (P) loop
9348
9349         --  Mark the label of a source or internally generated block or
9350         --  loop.
9351
9352         if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9353            Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9354
9355         --  Mark the enclosing function
9356
9357         elsif Nkind (P) = N_Subprogram_Body then
9358            if Present (Corresponding_Spec (P)) then
9359               Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9360            else
9361               Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9362            end if;
9363
9364            --  Do not go beyond the enclosing function
9365
9366            exit;
9367         end if;
9368
9369         P := Parent (P);
9370      end loop;
9371   end Set_Enclosing_Sec_Stack_Return;
9372
9373   ------------------------------------
9374   -- Unqual_BIP_Iface_Function_Call --
9375   ------------------------------------
9376
9377   function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9378      Has_Pointer_Displacement : Boolean := False;
9379      On_Object_Declaration    : Boolean := False;
9380      --  Remember if processing the renaming expressions on recursion we have
9381      --  traversed an object declaration, since we can traverse many object
9382      --  declaration renamings but just one regular object declaration.
9383
9384      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9385      --  Search for a build-in-place function call skipping any qualification
9386      --  including qualified expressions, type conversions, references, calls
9387      --  to displace the pointer to the object, and renamings. Return Empty if
9388      --  no build-in-place function call is found.
9389
9390      ------------------------------
9391      -- Unqual_BIP_Function_Call --
9392      ------------------------------
9393
9394      function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9395      begin
9396         --  Recurse to handle case of multiple levels of qualification and/or
9397         --  conversion.
9398
9399         if Nkind_In (Expr, N_Qualified_Expression,
9400                            N_Type_Conversion,
9401                            N_Unchecked_Type_Conversion)
9402         then
9403            return Unqual_BIP_Function_Call (Expression (Expr));
9404
9405         --  Recurse to handle case of multiple levels of references and
9406         --  explicit dereferences.
9407
9408         elsif Nkind_In (Expr, N_Attribute_Reference,
9409                               N_Explicit_Dereference,
9410                               N_Reference)
9411         then
9412            return Unqual_BIP_Function_Call (Prefix (Expr));
9413
9414         --  Recurse on object renamings
9415
9416         elsif Nkind (Expr) = N_Identifier
9417           and then Present (Entity (Expr))
9418           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9419           and then Nkind (Parent (Entity (Expr))) =
9420                      N_Object_Renaming_Declaration
9421           and then Present (Renamed_Object (Entity (Expr)))
9422         then
9423            return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9424
9425         --  Recurse on the initializing expression of the first reference of
9426         --  an object declaration.
9427
9428         elsif not On_Object_Declaration
9429           and then Nkind (Expr) = N_Identifier
9430           and then Present (Entity (Expr))
9431           and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9432           and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9433           and then Present (Expression (Parent (Entity (Expr))))
9434         then
9435            On_Object_Declaration := True;
9436            return
9437              Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
9438
9439         --  Recurse to handle calls to displace the pointer to the object to
9440         --  reference a secondary dispatch table.
9441
9442         elsif Nkind (Expr) = N_Function_Call
9443           and then Nkind (Name (Expr)) in N_Has_Entity
9444           and then Present (Entity (Name (Expr)))
9445           and then RTU_Loaded (Ada_Tags)
9446           and then RTE_Available (RE_Displace)
9447           and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9448         then
9449            Has_Pointer_Displacement := True;
9450            return
9451              Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9452
9453         --  Normal case: check if the inner expression is a BIP function call
9454         --  and the pointer to the object is displaced.
9455
9456         elsif Has_Pointer_Displacement
9457           and then Is_Build_In_Place_Function_Call (Expr)
9458         then
9459            return Expr;
9460
9461         else
9462            return Empty;
9463         end if;
9464      end Unqual_BIP_Function_Call;
9465
9466   --  Start of processing for Unqual_BIP_Iface_Function_Call
9467
9468   begin
9469      if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
9470
9471         --  Can happen for X'Elab_Spec in the binder-generated file
9472
9473         return Empty;
9474      end if;
9475
9476      return Unqual_BIP_Function_Call (Expr);
9477   end Unqual_BIP_Iface_Function_Call;
9478
9479end Exp_Ch6;
9480