1 /* Definitions of target machine for GNU compiler.
2    Matsushita MN10300 series
3    Copyright (C) 1996-2018 Free Software Foundation, Inc.
4    Contributed by Jeff Law (law@cygnus.com).
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 #undef ASM_SPEC
23 #undef LIB_SPEC
24 #undef ENDFILE_SPEC
25 #undef  LINK_SPEC
26 #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27 #undef  STARTFILE_SPEC
28 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
29 
30 /* Names to predefine in the preprocessor for this target machine.  */
31 
32 #define TARGET_CPU_CPP_BUILTINS()		\
33   do						\
34     {						\
35       builtin_define ("__mn10300__");		\
36       builtin_define ("__MN10300__");		\
37       builtin_assert ("cpu=mn10300");		\
38       builtin_assert ("machine=mn10300");	\
39 						\
40       if (TARGET_AM34)				\
41         { 					\
42           builtin_define ("__AM33__=4");	\
43           builtin_define ("__AM34__");		\
44         }					\
45       else if (TARGET_AM33_2)			\
46         { 					\
47           builtin_define ("__AM33__=2");	\
48           builtin_define ("__AM33_2__");	\
49         }					\
50       else if (TARGET_AM33)			\
51         builtin_define ("__AM33__=1");		\
52 						\
53       builtin_define (TARGET_ALLOW_LIW ?	\
54 		      "__LIW__" : "__NO_LIW__");\
55 						\
56       builtin_define (TARGET_ALLOW_SETLB  ?	\
57 		      "__SETLB__" : "__NO_SETLB__");\
58     }						\
59   while (0)
60 
61 #ifndef MN10300_OPTS_H
62 #include "config/mn10300/mn10300-opts.h"
63 #endif
64 
65 extern enum processor_type mn10300_tune_cpu;
66 
67 #define TARGET_AM33	(mn10300_processor >= PROCESSOR_AM33)
68 #define TARGET_AM33_2	(mn10300_processor >= PROCESSOR_AM33_2)
69 #define TARGET_AM34	(mn10300_processor >= PROCESSOR_AM34)
70 
71 #ifndef PROCESSOR_DEFAULT
72 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
73 #endif
74 
75 
76 /* Target machine storage layout */
77 
78 /* Define this if most significant bit is lowest numbered
79    in instructions that operate on numbered bit-fields.
80    This is not true on the Matsushita MN1003.  */
81 #define BITS_BIG_ENDIAN 0
82 
83 /* Define this if most significant byte of a word is the lowest numbered.  */
84 /* This is not true on the Matsushita MN10300.  */
85 #define BYTES_BIG_ENDIAN 0
86 
87 /* Define this if most significant word of a multiword number is lowest
88    numbered.
89    This is not true on the Matsushita MN10300.  */
90 #define WORDS_BIG_ENDIAN 0
91 
92 /* Width of a word, in units (bytes).  */
93 #define UNITS_PER_WORD		4
94 
95 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
96 #define PARM_BOUNDARY		32
97 
98 /* The stack goes in 32-bit lumps.  */
99 #define STACK_BOUNDARY 		32
100 
101 /* Allocation boundary (in *bits*) for the code of a function.
102    8 is the minimum boundary; it's unclear if bigger alignments
103    would improve performance.  */
104 #define FUNCTION_BOUNDARY 8
105 
106 /* No data type wants to be aligned rounder than this.  */
107 #define BIGGEST_ALIGNMENT	32
108 
109 /* Alignment of field after `int : 0' in a structure.  */
110 #define EMPTY_FIELD_BOUNDARY    32
111 
112 /* Define this if move instructions will actually fail to work
113    when given unaligned data.  */
114 #define STRICT_ALIGNMENT 1
115 
116 /* Define this as 1 if `char' should by default be signed; else as 0.  */
117 #define DEFAULT_SIGNED_CHAR 0
118 
119 #undef  SIZE_TYPE
120 #define SIZE_TYPE "unsigned int"
121 
122 #undef  PTRDIFF_TYPE
123 #define PTRDIFF_TYPE "int"
124 
125 #undef  WCHAR_TYPE
126 #define WCHAR_TYPE "long int"
127 
128 #undef  WCHAR_TYPE_SIZE
129 #define WCHAR_TYPE_SIZE BITS_PER_WORD
130 
131 /* Standard register usage.  */
132 
133 /* Number of actual hardware registers.
134    The hardware registers are assigned numbers for the compiler
135    from 0 to just below FIRST_PSEUDO_REGISTER.
136 
137    All registers that the compiler knows about must be given numbers,
138    even those that are not normally considered general registers.  */
139 
140 #define FIRST_PSEUDO_REGISTER 52
141 
142 /* Specify machine-specific register numbers.  The commented out entries
143    are defined in mn10300.md.  */
144 #define FIRST_DATA_REGNUM      0
145 #define LAST_DATA_REGNUM       3
146 #define FIRST_ADDRESS_REGNUM   4
147 /* #define PIC_REG             6 */
148 #define LAST_ADDRESS_REGNUM    8
149 /* #define SP_REG              9 */
150 #define FIRST_EXTENDED_REGNUM 10
151 #define LAST_EXTENDED_REGNUM  17
152 #define FIRST_FP_REGNUM       18
153 #define LAST_FP_REGNUM        49
154 /* #define MDR_REG            50 */
155 /* #define CC_REG             51 */
156 #define FIRST_ARGUMENT_REGNUM  0
157 
158 /* Specify the registers used for certain standard purposes.
159    The values of these macros are register numbers.  */
160 
161 /* Register to use for pushing function arguments.  */
162 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
163 
164 /* Base register for access to local variables of the function.  */
165 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
166 
167 /* Base register for access to arguments of the function.  This
168    is a fake register and will be eliminated into either the frame
169    pointer or stack pointer.  */
170 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
171 
172 /* Register in which static-chain is passed to a function.  */
173 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
174 
175 /* 1 for registers that have pervasive standard uses
176    and are not available for the register allocator.  */
177 
178 #define FIXED_REGISTERS \
179   { 0, 0, 0, 0,				/* data regs */		\
180     0, 0, 0, 0,				/* addr regs */		\
181     1,					/* arg reg */		\
182     1,					/* sp reg */		\
183     0, 0, 0, 0, 0, 0, 0, 0,		/* extended regs */	\
184     0, 0,				/* fp regs (18-19) */	\
185     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
186     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (30-39) */	\
187     0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (40-49) */	\
188     0,					/* mdr reg */		\
189     1					/* cc reg */		\
190   }
191 
192 /* 1 for registers not available across function calls.
193    These must include the FIXED_REGISTERS and also any
194    registers that can be used without being saved.
195    The latter must include the registers where values are returned
196    and the register where structure-value addresses are passed.
197    Aside from that, you can include as many other registers as you
198    like.  */
199 
200 #define CALL_USED_REGISTERS \
201   { 1, 1, 0, 0,				/* data regs */		\
202     1, 1, 0, 0,				/* addr regs */		\
203     1,					/* arg reg */		\
204     1,					/* sp reg */		\
205     1, 1, 1, 1, 0, 0, 0, 0,		/* extended regs */	\
206     1, 1,				/* fp regs (18-19) */	\
207     1, 1, 0, 0, 0, 0, 0, 0, 0, 0,	/* fp regs (20-29) */	\
208     0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	/* fp regs (30-39) */	\
209     1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* fp regs (40-49) */	\
210     1,					/* mdr reg */		\
211     1					/* cc reg */		\
212   }
213 
214 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
215    redundant.  It is needed when compiling in PIC mode because
216    the a2 register becomes fixed (and hence must be marked as
217    call_used) but in order to preserve the ABI it is not marked
218    as call_really_used.  */
219 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
220 
221 #define REG_ALLOC_ORDER \
222   { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
223   , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
224   , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
225   }
226 
227 /* 4 data, and effectively 3 address registers is small as far as I'm
228    concerned.  */
229 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
230 
231 /* Define the classes of registers for register constraints in the
232    machine description.  Also define ranges of constants.
233 
234    One of the classes must always be named ALL_REGS and include all hard regs.
235    If there is more than one class, another class must be named NO_REGS
236    and contain no registers.
237 
238    The name GENERAL_REGS must be the name of a class (or an alias for
239    another name such as ALL_REGS).  This is the class of registers
240    that is allowed by "g" or "r" in a register constraint.
241    Also, registers outside this class are allocated only when
242    instructions express preferences for them.
243 
244    The classes must be numbered in nondecreasing order; that is,
245    a larger-numbered class must never be contained completely
246    in a smaller-numbered class.
247 
248    For any two classes, it is very desirable that there be another
249    class that represents their union.  */
250 
251 enum reg_class
252 {
253   NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
254   EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
255   GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
256 };
257 
258 #define N_REG_CLASSES (int) LIM_REG_CLASSES
259 
260 /* Give names of register classes as strings for dump file.  */
261 
262 #define REG_CLASS_NAMES					   		\
263 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
264   "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS",	\
265   "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS"		\
266 }
267 
268 /* Define which registers fit in which classes.
269    This is an initializer for a vector of HARD_REG_SET
270    of length N_REG_CLASSES.  */
271 
272 #define REG_CLASS_CONTENTS					\
273 { { 0,	        0 },	  /* No regs */				\
274   { 0x0000000f, 0 },	  /* DATA_REGS */			\
275   { 0x000001f0, 0 },	  /* ADDRESS_REGS */			\
276   { 0x00000200, 0 },	  /* SP_REGS */				\
277   { 0x000003f0, 0 },	  /* SP_OR_ADDRESS_REGS */		\
278   { 0x0003fc00, 0 },	  /* EXTENDED_REGS */			\
279   { 0xfffc0000, 0x3ffff },/* FP_REGS */				\
280   { 0x03fc0000, 0 },	  /* FP_ACC_REGS */			\
281   { 0x00000000, 0x80000 },/* CC_REGS */				\
282   { 0x00000000, 0x40000 },/* MDR_REGS */			\
283   { 0x0003fdff, 0 }, 	  /* GENERAL_REGS */			\
284   { 0x0003ffff, 0 },      /* SP_OR_GENERAL_REGS */		\
285   { 0xffffffff, 0xfffff } /* ALL_REGS */			\
286 }
287 
288 /* The same information, inverted:
289    Return the class number of the smallest class containing
290    reg number REGNO.  This could be a conditional expression
291    or could index an array.  */
292 
293 #define REGNO_REG_CLASS(REGNO)			     \
294   ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS :	     \
295    (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS :   \
296    (REGNO) == STACK_POINTER_REGNUM ? SP_REGS :	     \
297    (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
298    (REGNO) <= LAST_FP_REGNUM ? FP_REGS :	     \
299    (REGNO) == MDR_REG ? MDR_REGS :		     \
300    (REGNO) == CC_REG ? CC_REGS :		     \
301    NO_REGS)
302 
303 /* The class value for index registers, and the one for base regs.  */
304 #define INDEX_REG_CLASS \
305   (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
306 #define BASE_REG_CLASS \
307   (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
308 
309 /* Macros to check register numbers against specific register classes.  */
310 
311 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
312    and check its validity for a certain class.
313    We have two alternate definitions for each of them.
314    The usual definition accepts all pseudo regs; the other rejects
315    them unless they have been allocated suitable hard regs.
316    The symbol REG_OK_STRICT causes the latter definition to be used.
317 
318    Most source files want to accept pseudo regs in the hope that
319    they will get allocated to the class that the insn wants them to be in.
320    Source files for reload pass need to be strict.
321    After reload, it makes no difference, since pseudo regs have
322    been eliminated by then.  */
323 
324 /* These assume that REGNO is a hard or pseudo reg number.
325    They give nonzero only if REGNO is a hard reg of the suitable class
326    or a pseudo reg currently allocated to a suitable hard reg.
327    Since they use reg_renumber, they are safe only once reg_renumber
328    has been allocated, which happens in reginfo.c during register
329    allocation.  */
330 
331 #ifndef REG_OK_STRICT
332 # define REG_STRICT 0
333 #else
334 # define REG_STRICT 1
335 #endif
336 
337 #define REGNO_DATA_P(regno, strict) \
338   mn10300_regno_in_class_p (regno, DATA_REGS, strict)
339 #define REGNO_ADDRESS_P(regno, strict) \
340   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
341 #define REGNO_EXTENDED_P(regno, strict) \
342   mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
343 #define REGNO_GENERAL_P(regno, strict) \
344   mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
345 
346 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
347   mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
348 #define REGNO_OK_FOR_BASE_P(regno) \
349   (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
350 #define REG_OK_FOR_BASE_P(X) \
351   (REGNO_OK_FOR_BASE_P (REGNO (X)))
352 
353 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
354   mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
355 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
356   (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
357 #define REG_OK_FOR_BIT_BASE_P(X) \
358   (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
359 
360 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
361   mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
362 #define REGNO_OK_FOR_INDEX_P(regno) \
363   (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
364 #define REG_OK_FOR_INDEX_P(X) \
365   (REGNO_OK_FOR_INDEX_P (REGNO (X)))
366 
367 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
368   (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
369 
370 /* A class that contains registers which the compiler must always
371    access in a mode that is the same size as the mode in which it
372    loaded the register.  */
373 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
374 
375 /* Return 1 if VALUE is in the range specified.  */
376 
377 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
378 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
379 
380 
381 /* Stack layout; function entry, exit and calling.  */
382 
383 /* Define this if pushing a word on the stack
384    makes the stack pointer a smaller address.  */
385 
386 #define STACK_GROWS_DOWNWARD 1
387 
388 /* Define this to nonzero if the nominal address of the stack frame
389    is at the high-address end of the local variables;
390    that is, each additional local variable allocated
391    goes at a more negative offset in the frame.  */
392 
393 #define FRAME_GROWS_DOWNWARD 1
394 
395 /* Offset of first parameter from the argument pointer register value.  */
396 /* Is equal to the size of the saved fp + pc, even if an fp isn't
397    saved since the value is used before we know.  */
398 
399 #define FIRST_PARM_OFFSET(FNDECL) 4
400 
401 /* But the CFA is at the arg pointer directly, not at the first argument.  */
402 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
403 
404 #define ELIMINABLE_REGS				\
405 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
406  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
407  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
408 
409 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
410   OFFSET = mn10300_initial_offset (FROM, TO)
411 
412 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
413    for a register flushback area.  */
414 #define REG_PARM_STACK_SPACE(DECL) 8
415 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
416 #define ACCUMULATE_OUTGOING_ARGS 1
417 
418 /* So we can allocate space for return pointers once for the function
419    instead of around every call.  */
420 #define STACK_POINTER_OFFSET 4
421 
422 /* 1 if N is a possible register number for function argument passing.
423    On the MN10300, d0 and d1 are used in this way.  */
424 
425 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
426 
427 
428 /* Define a data type for recording info about an argument list
429    during the scan of that argument list.  This data type should
430    hold all necessary information about the function itself
431    and about the args processed so far, enough to enable macros
432    such as FUNCTION_ARG to determine where the next arg should go.
433 
434    On the MN10300, this is a single integer, which is a number of bytes
435    of arguments scanned so far.  */
436 
437 #define CUMULATIVE_ARGS struct cum_arg
438 
439 struct cum_arg
440 {
441   int nbytes;
442 };
443 
444 /* Initialize a variable CUM of type CUMULATIVE_ARGS
445    for a call to a function whose data type is FNTYPE.
446    For a library call, FNTYPE is 0.
447 
448    On the MN10300, the offset starts at 0.  */
449 
450 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
451  ((CUM).nbytes = 0)
452 
453 #define FUNCTION_VALUE_REGNO_P(N)  mn10300_function_value_regno_p (N)
454 
455 #define DEFAULT_PCC_STRUCT_RETURN 0
456 
457 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
458    the stack pointer does not matter.  The value is tested only in
459    functions that have frame pointers.
460    No definition is equivalent to always zero.  */
461 
462 #define EXIT_IGNORE_STACK 1
463 
464 /* Output assembler code to FILE to increment profiler label # LABELNO
465    for profiling a function entry.  */
466 
467 #define FUNCTION_PROFILER(FILE, LABELNO) ;
468 
469 /* Length in units of the trampoline for entering a nested function.  */
470 
471 #define TRAMPOLINE_SIZE		16
472 #define TRAMPOLINE_ALIGNMENT	32
473 
474 /* A C expression whose value is RTL representing the value of the return
475    address for the frame COUNT steps up from the current frame.
476 
477    On the mn10300, the return address is not at a constant location
478    due to the frame layout.  Luckily, it is at a constant offset from
479    the argument pointer, so we define RETURN_ADDR_RTX to return a
480    MEM using arg_pointer_rtx.  Reload will replace arg_pointer_rtx
481    with a reference to the stack/frame pointer + an appropriate offset.  */
482 
483 #define RETURN_ADDR_RTX(COUNT, FRAME)   \
484   ((COUNT == 0)                         \
485    ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
486    : (rtx) 0)
487 
488 /* The return address is saved both in the stack and in MDR.  Using
489    the stack location is handiest for what unwinding needs.  */
490 #define INCOMING_RETURN_ADDR_RTX \
491   gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
492 
493 /* Maximum number of registers that can appear in a valid memory address.  */
494 
495 #define MAX_REGS_PER_ADDRESS 2
496 
497 
498 /* We have post-increments.  */
499 #define HAVE_POST_INCREMENT	TARGET_AM33
500 #define HAVE_POST_MODIFY_DISP	TARGET_AM33
501 
502 /* ... But we don't want to use them for block moves.  Small offsets are
503    just as effective, at least for inline block move sizes, and appears
504    to produce cleaner code.  */
505 #define USE_LOAD_POST_INCREMENT(M)	0
506 #define USE_STORE_POST_INCREMENT(M)	0
507 
508 /* Accept either REG or SUBREG where a register is valid.  */
509 
510 #define RTX_OK_FOR_BASE_P(X, strict)				\
511   ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X),		\
512  					     (strict))) 	\
513    || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
514        && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)),	\
515  				      (strict))))
516 
517 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN)		     \
518 do {									     \
519   rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
520   if (new_x)								     \
521     {									     \
522       X = new_x;							     \
523       goto WIN;								     \
524     }									     \
525 } while (0)
526 
527 
528 /* Zero if this needs fixing up to become PIC.  */
529 
530 #define LEGITIMATE_PIC_OPERAND_P(X) \
531   mn10300_legitimate_pic_operand_p (X)
532 
533 /* Register to hold the addressing base for
534    position independent code access to data items.  */
535 #define PIC_OFFSET_TABLE_REGNUM	PIC_REG
536 
537 /* The name of the pseudo-symbol representing the Global Offset Table.  */
538 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
539 
540 #define SYMBOLIC_CONST_P(X)	\
541 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)	\
542   && ! LEGITIMATE_PIC_OPERAND_P (X))
543 
544 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled.  */
545 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
546 
547 #define SELECT_CC_MODE(OP, X, Y)  mn10300_select_cc_mode (OP, X, Y)
548 #define REVERSIBLE_CC_MODE(MODE)  0
549 
550 /* Nonzero if access to memory by bytes or half words is no faster
551    than accessing full words.  */
552 #define SLOW_BYTE_ACCESS 1
553 
554 #define NO_FUNCTION_CSE 1
555 
556 /* According expr.c, a value of around 6 should minimize code size, and
557    for the MN10300 series, that's our primary concern.  */
558 #define MOVE_RATIO(speed) 6
559 
560 #define TEXT_SECTION_ASM_OP "\t.section .text"
561 #define DATA_SECTION_ASM_OP "\t.section .data"
562 #define BSS_SECTION_ASM_OP  "\t.section .bss"
563 
564 #define ASM_COMMENT_START "#"
565 
566 /* Output to assembler file text saying following lines
567    may contain character constants, extra white space, comments, etc.  */
568 
569 #define ASM_APP_ON "#APP\n"
570 
571 /* Output to assembler file text saying following lines
572    no longer contain unusual constructs.  */
573 
574 #define ASM_APP_OFF "#NO_APP\n"
575 
576 #undef  USER_LABEL_PREFIX
577 #define USER_LABEL_PREFIX "_"
578 
579 /* This says how to output the assembler to define a global
580    uninitialized but not common symbol.
581    Try to use asm_output_bss to implement this macro.  */
582 
583 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
584   asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
585 
586 /* Globalizing directive for a label.  */
587 #define GLOBAL_ASM_OP "\t.global "
588 
589 /* This is how to output a reference to a user-level label named NAME.
590    `assemble_name' uses this.  */
591 
592 #undef  ASM_OUTPUT_LABELREF
593 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
594   asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
595 
596 /* This is how we tell the assembler that two symbols have the same value.  */
597 
598 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
599   do					 \
600     {					 \
601       assemble_name (FILE, NAME1);	 \
602       fputs (" = ", FILE);		 \
603       assemble_name (FILE, NAME2);	 \
604       fputc ('\n', FILE);		 \
605     }					 \
606   while (0)
607 
608 /* How to refer to registers in assembler output.
609    This sequence is indexed by compiler's hard-register-number (see above).  */
610 
611 #define REGISTER_NAMES							\
612 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp",		\
613   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"			\
614 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7"		\
615 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15"		\
616 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23"	\
617 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"	\
618 , "mdr", "EPSW"								\
619 }
620 
621 #define ADDITIONAL_REGISTER_NAMES				\
622 { {"r8",  4}, {"r9",  5}, {"r10", 6}, {"r11", 7},		\
623   {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3},		\
624   {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13},		\
625   {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17}		\
626 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24}		\
627 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32}		\
628 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40}	\
629 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48}	\
630 , {"cc", CC_REG}						\
631 }
632 
633 /* Print an instruction operand X on file FILE.
634    look in mn10300.c for details */
635 
636 #define PRINT_OPERAND(FILE, X, CODE) \
637   mn10300_print_operand (FILE, X, CODE)
638 
639 /* Print a memory operand whose address is X, on file FILE.
640    This uses a function in output-vax.c.  */
641 
642 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
643   mn10300_print_operand_address (FILE, ADDR)
644 
645 /* This is how to output an element of a case-vector that is absolute.  */
646 
647 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
648   fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
649 
650 /* This is how to output an element of a case-vector that is relative.  */
651 
652 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
653   fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
654 
655 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
656   if ((LOG) != 0)			\
657     fprintf (FILE, "\t.align %d\n", (LOG))
658 
659 /* We don't have to worry about dbx compatibility for the mn10300.  */
660 #define DEFAULT_GDB_EXTENSIONS 1
661 
662 /* Use dwarf2 debugging info by default.  */
663 #undef  PREFERRED_DEBUGGING_TYPE
664 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
665 #define DWARF2_DEBUGGING_INFO 1
666 #define DWARF2_ASM_LINE_DEBUG_INFO 1
667 
668 /* Specify the machine mode that this machine uses
669    for the index in the tablejump instruction.  */
670 #define CASE_VECTOR_MODE Pmode
671 
672 /* Define if operations between registers always perform the operation
673    on the full register even if a narrower mode is specified.  */
674 #define WORD_REGISTER_OPERATIONS 1
675 
676 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
677 
678 /* Max number of bytes we can move from memory to memory
679    in one reasonably fast instruction.  */
680 #define MOVE_MAX	4
681 
682 /* Define if shifts truncate the shift count
683    which implies one can omit a sign-extension or zero-extension
684    of a shift count.  */
685 #define SHIFT_COUNT_TRUNCATED 1
686 
687 /* Specify the machine mode that pointers have.
688    After generation of rtl, the compiler makes no further distinction
689    between pointers and any other objects of this machine mode.  */
690 #define Pmode SImode
691 
692 /* A function address in a call instruction
693    is a byte address (for indexing purposes)
694    so give the MEM rtx a byte's mode.  */
695 #define FUNCTION_MODE QImode
696 
697 /* The assembler op to get a word.  */
698 
699 #define FILE_ASM_OP "\t.file\n"
700 
701