1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992-2018 Free Software Foundation, Inc.
3    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    Under Section 7 of GPL version 3, you are granted additional
18    permissions described in the GCC Runtime Library Exception, version
19    3.1, as published by the Free Software Foundation.
20 
21    You should have received a copy of the GNU General Public License and
22    a copy of the GCC Runtime Library Exception along with this program;
23    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24    <http://www.gnu.org/licenses/>.  */
25 
26 /* Note that some other tm.h files include this one and then override
27    many of the definitions.  */
28 
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32 
33 /* 128-bit floating point precision values.  */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37 
38 /* Definitions for the object file format.  These are set at
39    compile-time.  */
40 
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_PEF 3
44 #define OBJECT_MACHO 4
45 
46 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
47 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
48 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
49 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
50 
51 #ifndef TARGET_AIX
52 #define TARGET_AIX 0
53 #endif
54 
55 #ifndef TARGET_AIX_OS
56 #define TARGET_AIX_OS 0
57 #endif
58 
59 /* Control whether function entry points use a "dot" symbol when
60    ABI_AIX.  */
61 #define DOT_SYMBOLS 1
62 
63 /* Default string to use for cpu if not specified.  */
64 #ifndef TARGET_CPU_DEFAULT
65 #define TARGET_CPU_DEFAULT ((char *)0)
66 #endif
67 
68 /* If configured for PPC405, support PPC405CR Erratum77.  */
69 #ifdef CONFIG_PPC405CR
70 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
71 #else
72 #define PPC405_ERRATUM77 0
73 #endif
74 
75 #ifndef TARGET_PAIRED_FLOAT
76 #define TARGET_PAIRED_FLOAT 0
77 #endif
78 
79 #ifdef HAVE_AS_POPCNTB
80 #define ASM_CPU_POWER5_SPEC "-mpower5"
81 #else
82 #define ASM_CPU_POWER5_SPEC "-mpower4"
83 #endif
84 
85 #ifdef HAVE_AS_DFP
86 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
87 #else
88 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
89 #endif
90 
91 #ifdef HAVE_AS_POPCNTD
92 #define ASM_CPU_POWER7_SPEC "-mpower7"
93 #else
94 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
95 #endif
96 
97 #ifdef HAVE_AS_POWER8
98 #define ASM_CPU_POWER8_SPEC "-mpower8"
99 #else
100 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
101 #endif
102 
103 #ifdef HAVE_AS_POWER9
104 #define ASM_CPU_POWER9_SPEC "-mpower9"
105 #else
106 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
107 #endif
108 
109 #ifdef HAVE_AS_DCI
110 #define ASM_CPU_476_SPEC "-m476"
111 #else
112 #define ASM_CPU_476_SPEC "-mpower4"
113 #endif
114 
115 /* Common ASM definitions used by ASM_SPEC among the various targets for
116    handling -mcpu=xxx switches.  There is a parallel list in driver-rs6000.c to
117    provide the default assembler options if the user uses -mcpu=native, so if
118    you make changes here, make them also there.  PR63177: Do not pass -mpower8
119    to the assembler if -mpower9-vector was also used.  */
120 #define ASM_CPU_SPEC \
121 "%{!mcpu*: \
122   %{mpowerpc64*: -mppc64} \
123   %{!mpowerpc64*: %(asm_default)}} \
124 %{mcpu=native: %(asm_cpu_native)} \
125 %{mcpu=cell: -mcell} \
126 %{mcpu=power3: -mppc64} \
127 %{mcpu=power4: -mpower4} \
128 %{mcpu=power5: %(asm_cpu_power5)} \
129 %{mcpu=power5+: %(asm_cpu_power5)} \
130 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
131 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
132 %{mcpu=power7: %(asm_cpu_power7)} \
133 %{mcpu=power8: %{!mpower9-vector: %(asm_cpu_power8)}} \
134 %{mcpu=power9: %(asm_cpu_power9)} \
135 %{mcpu=a2: -ma2} \
136 %{mcpu=powerpc: -mppc} \
137 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
138 %{mcpu=rs64a: -mppc64} \
139 %{mcpu=401: -mppc} \
140 %{mcpu=403: -m403} \
141 %{mcpu=405: -m405} \
142 %{mcpu=405fp: -m405} \
143 %{mcpu=440: -m440} \
144 %{mcpu=440fp: -m440} \
145 %{mcpu=464: -m440} \
146 %{mcpu=464fp: -m440} \
147 %{mcpu=476: %(asm_cpu_476)} \
148 %{mcpu=476fp: %(asm_cpu_476)} \
149 %{mcpu=505: -mppc} \
150 %{mcpu=601: -m601} \
151 %{mcpu=602: -mppc} \
152 %{mcpu=603: -mppc} \
153 %{mcpu=603e: -mppc} \
154 %{mcpu=ec603e: -mppc} \
155 %{mcpu=604: -mppc} \
156 %{mcpu=604e: -mppc} \
157 %{mcpu=620: -mppc64} \
158 %{mcpu=630: -mppc64} \
159 %{mcpu=740: -mppc} \
160 %{mcpu=750: -mppc} \
161 %{mcpu=G3: -mppc} \
162 %{mcpu=7400: -mppc -maltivec} \
163 %{mcpu=7450: -mppc -maltivec} \
164 %{mcpu=G4: -mppc -maltivec} \
165 %{mcpu=801: -mppc} \
166 %{mcpu=821: -mppc} \
167 %{mcpu=823: -mppc} \
168 %{mcpu=860: -mppc} \
169 %{mcpu=970: -mpower4 -maltivec} \
170 %{mcpu=G5: -mpower4 -maltivec} \
171 %{mcpu=8540: -me500} \
172 %{mcpu=8548: -me500} \
173 %{mcpu=e300c2: -me300} \
174 %{mcpu=e300c3: -me300} \
175 %{mcpu=e500mc: -me500mc} \
176 %{mcpu=e500mc64: -me500mc64} \
177 %{mcpu=e5500: -me5500} \
178 %{mcpu=e6500: -me6500} \
179 %{maltivec: -maltivec} \
180 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
181 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
182 %{mpower9-vector: %{!mcpu*|mcpu=power8: %(asm_cpu_power9)}} \
183 -many"
184 
185 #define CPP_DEFAULT_SPEC ""
186 
187 #define ASM_DEFAULT_SPEC ""
188 
189 /* This macro defines names of additional specifications to put in the specs
190    that can be used in various specifications like CC1_SPEC.  Its definition
191    is an initializer with a subgrouping for each command option.
192 
193    Each subgrouping contains a string constant, that defines the
194    specification name, and a string constant that used by the GCC driver
195    program.
196 
197    Do not define this macro if it does not need to do anything.  */
198 
199 #define SUBTARGET_EXTRA_SPECS
200 
201 #define EXTRA_SPECS							\
202   { "cpp_default",		CPP_DEFAULT_SPEC },			\
203   { "asm_cpu",			ASM_CPU_SPEC },				\
204   { "asm_cpu_native",		ASM_CPU_NATIVE_SPEC },			\
205   { "asm_default",		ASM_DEFAULT_SPEC },			\
206   { "cc1_cpu",			CC1_CPU_SPEC },				\
207   { "asm_cpu_power5",		ASM_CPU_POWER5_SPEC },			\
208   { "asm_cpu_power6",		ASM_CPU_POWER6_SPEC },			\
209   { "asm_cpu_power7",		ASM_CPU_POWER7_SPEC },			\
210   { "asm_cpu_power8",		ASM_CPU_POWER8_SPEC },			\
211   { "asm_cpu_power9",		ASM_CPU_POWER9_SPEC },			\
212   { "asm_cpu_476",		ASM_CPU_476_SPEC },			\
213   SUBTARGET_EXTRA_SPECS
214 
215 /* -mcpu=native handling only makes sense with compiler running on
216    an PowerPC chip.  If changing this condition, also change
217    the condition in driver-rs6000.c.  */
218 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
219 /* In driver-rs6000.c.  */
220 extern const char *host_detect_local_cpu (int argc, const char **argv);
221 #define EXTRA_SPEC_FUNCTIONS \
222   { "local_cpu_detect", host_detect_local_cpu },
223 #define HAVE_LOCAL_CPU_DETECT
224 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
225 
226 #else
227 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
228 #endif
229 
230 #ifndef CC1_CPU_SPEC
231 #ifdef HAVE_LOCAL_CPU_DETECT
232 #define CC1_CPU_SPEC \
233 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
234  %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
235 #else
236 #define CC1_CPU_SPEC ""
237 #endif
238 #endif
239 
240 /* Architecture type.  */
241 
242 /* Define TARGET_MFCRF if the target assembler does not support the
243    optional field operand for mfcr.  */
244 
245 #ifndef HAVE_AS_MFCRF
246 #undef  TARGET_MFCRF
247 #define TARGET_MFCRF 0
248 #endif
249 
250 /* Define TARGET_POPCNTB if the target assembler does not support the
251    popcount byte instruction.  */
252 
253 #ifndef HAVE_AS_POPCNTB
254 #undef  TARGET_POPCNTB
255 #define TARGET_POPCNTB 0
256 #endif
257 
258 /* Define TARGET_FPRND if the target assembler does not support the
259    fp rounding instructions.  */
260 
261 #ifndef HAVE_AS_FPRND
262 #undef  TARGET_FPRND
263 #define TARGET_FPRND 0
264 #endif
265 
266 /* Define TARGET_CMPB if the target assembler does not support the
267    cmpb instruction.  */
268 
269 #ifndef HAVE_AS_CMPB
270 #undef  TARGET_CMPB
271 #define TARGET_CMPB 0
272 #endif
273 
274 /* Define TARGET_MFPGPR if the target assembler does not support the
275    mffpr and mftgpr instructions. */
276 
277 #ifndef HAVE_AS_MFPGPR
278 #undef  TARGET_MFPGPR
279 #define TARGET_MFPGPR 0
280 #endif
281 
282 /* Define TARGET_DFP if the target assembler does not support decimal
283    floating point instructions.  */
284 #ifndef HAVE_AS_DFP
285 #undef  TARGET_DFP
286 #define TARGET_DFP 0
287 #endif
288 
289 /* Define TARGET_POPCNTD if the target assembler does not support the
290    popcount word and double word instructions.  */
291 
292 #ifndef HAVE_AS_POPCNTD
293 #undef  TARGET_POPCNTD
294 #define TARGET_POPCNTD 0
295 #endif
296 
297 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
298    waitasecond instruction.  Allow -mpower8-fusion, since it does not add new
299    instructions.  */
300 
301 #ifndef HAVE_AS_POWER8
302 #undef  TARGET_DIRECT_MOVE
303 #undef  TARGET_CRYPTO
304 #undef  TARGET_HTM
305 #undef  TARGET_P8_VECTOR
306 #define TARGET_DIRECT_MOVE 0
307 #define TARGET_CRYPTO 0
308 #define TARGET_HTM 0
309 #define TARGET_P8_VECTOR 0
310 #endif
311 
312 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
313    Power9 instructions.  Allow -mpower9-fusion, since it does not add new
314    instructions.  Allow -misel, since it predates ISA 3.0 and does
315    not require any Power9 features.  */
316 
317 #ifndef HAVE_AS_POWER9
318 #undef  TARGET_FLOAT128_HW
319 #undef  TARGET_MODULO
320 #undef  TARGET_P9_VECTOR
321 #undef  TARGET_P9_MINMAX
322 #undef  TARGET_P9_MISC
323 #define TARGET_FLOAT128_HW 0
324 #define TARGET_MODULO 0
325 #define TARGET_P9_VECTOR 0
326 #define TARGET_P9_MINMAX 0
327 #define TARGET_P9_MISC 0
328 #endif
329 
330 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync.  If
331    not, generate the lwsync code as an integer constant.  */
332 #ifdef HAVE_AS_LWSYNC
333 #define TARGET_LWSYNC_INSTRUCTION 1
334 #else
335 #define TARGET_LWSYNC_INSTRUCTION 0
336 #endif
337 
338 /* Define TARGET_TLS_MARKERS if the target assembler does not support
339    arg markers for __tls_get_addr calls.  */
340 #ifndef HAVE_AS_TLS_MARKERS
341 #undef  TARGET_TLS_MARKERS
342 #define TARGET_TLS_MARKERS 0
343 #else
344 #define TARGET_TLS_MARKERS tls_markers
345 #endif
346 
347 #ifndef TARGET_SECURE_PLT
348 #define TARGET_SECURE_PLT 0
349 #endif
350 
351 #ifndef TARGET_CMODEL
352 #define TARGET_CMODEL CMODEL_SMALL
353 #endif
354 
355 #define TARGET_32BIT		(! TARGET_64BIT)
356 
357 #ifndef HAVE_AS_TLS
358 #define HAVE_AS_TLS 0
359 #endif
360 
361 #ifndef TARGET_LINK_STACK
362 #define TARGET_LINK_STACK 0
363 #endif
364 
365 #ifndef SET_TARGET_LINK_STACK
366 #define SET_TARGET_LINK_STACK(X) do { } while (0)
367 #endif
368 
369 #ifndef TARGET_FLOAT128_ENABLE_TYPE
370 #define TARGET_FLOAT128_ENABLE_TYPE 0
371 #endif
372 
373 /* Return 1 for a symbol ref for a thread-local storage symbol.  */
374 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
375   (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
376 
377 #ifdef IN_LIBGCC2
378 /* For libgcc2 we make sure this is a compile time constant */
379 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
380 #undef TARGET_POWERPC64
381 #define TARGET_POWERPC64	1
382 #else
383 #undef TARGET_POWERPC64
384 #define TARGET_POWERPC64	0
385 #endif
386 #else
387     /* The option machinery will define this.  */
388 #endif
389 
390 #define TARGET_DEFAULT (MASK_MULTIPLE)
391 
392 /* FPU operations supported.
393    Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
394    also test TARGET_HARD_FLOAT.  */
395 #define TARGET_SINGLE_FLOAT 1
396 #define TARGET_DOUBLE_FLOAT 1
397 #define TARGET_SINGLE_FPU   0
398 #define TARGET_SIMPLE_FPU   0
399 #define TARGET_XILINX_FPU   0
400 
401 /* Define generic processor types based upon current deployment.  */
402 #define PROCESSOR_COMMON    PROCESSOR_PPC601
403 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
404 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
405 
406 /* Define the default processor.  This is overridden by other tm.h files.  */
407 #define PROCESSOR_DEFAULT   PROCESSOR_PPC603
408 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
409 
410 /* Specify the dialect of assembler to use.  Only new mnemonics are supported
411    starting with GCC 4.8, i.e. just one dialect, but for backwards
412    compatibility with older inline asm ASSEMBLER_DIALECT needs to be
413    defined.  */
414 #define ASSEMBLER_DIALECT 1
415 
416 /* Debug support */
417 #define MASK_DEBUG_STACK	0x01	/* debug stack applications */
418 #define	MASK_DEBUG_ARG		0x02	/* debug argument handling */
419 #define MASK_DEBUG_REG		0x04	/* debug register handling */
420 #define MASK_DEBUG_ADDR		0x08	/* debug memory addressing */
421 #define MASK_DEBUG_COST		0x10	/* debug rtx codes */
422 #define MASK_DEBUG_TARGET	0x20	/* debug target attribute/pragma */
423 #define MASK_DEBUG_BUILTIN	0x40	/* debug builtins */
424 #define MASK_DEBUG_ALL		(MASK_DEBUG_STACK \
425 				 | MASK_DEBUG_ARG \
426 				 | MASK_DEBUG_REG \
427 				 | MASK_DEBUG_ADDR \
428 				 | MASK_DEBUG_COST \
429 				 | MASK_DEBUG_TARGET \
430 				 | MASK_DEBUG_BUILTIN)
431 
432 #define	TARGET_DEBUG_STACK	(rs6000_debug & MASK_DEBUG_STACK)
433 #define	TARGET_DEBUG_ARG	(rs6000_debug & MASK_DEBUG_ARG)
434 #define TARGET_DEBUG_REG	(rs6000_debug & MASK_DEBUG_REG)
435 #define TARGET_DEBUG_ADDR	(rs6000_debug & MASK_DEBUG_ADDR)
436 #define TARGET_DEBUG_COST	(rs6000_debug & MASK_DEBUG_COST)
437 #define TARGET_DEBUG_TARGET	(rs6000_debug & MASK_DEBUG_TARGET)
438 #define TARGET_DEBUG_BUILTIN	(rs6000_debug & MASK_DEBUG_BUILTIN)
439 
440 /* Helper macros for TFmode.  Quad floating point (TFmode) can be either IBM
441    long double format that uses a pair of doubles, or IEEE 128-bit floating
442    point.  KFmode was added as a way to represent IEEE 128-bit floating point,
443    even if the default for long double is the IBM long double format.
444    Similarly IFmode is the IBM long double format even if the default is IEEE
445    128-bit.  Don't allow IFmode if -msoft-float.  */
446 #define FLOAT128_IEEE_P(MODE)						\
447   ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
448     && ((MODE) == TFmode || (MODE) == TCmode))				\
449    || ((MODE) == KFmode) || ((MODE) == KCmode))
450 
451 #define FLOAT128_IBM_P(MODE)						\
452   ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128				\
453     && ((MODE) == TFmode || (MODE) == TCmode))				\
454    || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
455 
456 /* Helper macros to say whether a 128-bit floating point type can go in a
457    single vector register, or whether it needs paired scalar values.  */
458 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
459 
460 #define FLOAT128_2REG_P(MODE)						\
461   (FLOAT128_IBM_P (MODE)						\
462    || ((MODE) == TDmode)						\
463    || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
464 
465 /* Return true for floating point that does not use a vector register.  */
466 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE)				\
467   (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
468 
469 /* Describe the vector unit used for arithmetic operations.  */
470 extern enum rs6000_vector rs6000_vector_unit[];
471 
472 #define VECTOR_UNIT_NONE_P(MODE)			\
473   (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
474 
475 #define VECTOR_UNIT_VSX_P(MODE)				\
476   (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
477 
478 #define VECTOR_UNIT_P8_VECTOR_P(MODE)			\
479   (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
480 
481 #define VECTOR_UNIT_ALTIVEC_P(MODE)			\
482   (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
483 
484 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE)		\
485   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
486 	     (int)VECTOR_VSX,				\
487 	     (int)VECTOR_P8_VECTOR))
488 
489 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
490    altivec (VMX) or VSX vector instructions.  P8 vector support is upwards
491    compatible, so allow it as well, rather than changing all of the uses of the
492    macro.  */
493 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE)		\
494   (IN_RANGE ((int)rs6000_vector_unit[(MODE)],		\
495 	     (int)VECTOR_ALTIVEC,			\
496 	     (int)VECTOR_P8_VECTOR))
497 
498 /* Describe whether to use VSX loads or Altivec loads.  For now, just use the
499    same unit as the vector unit we are using, but we may want to migrate to
500    using VSX style loads even for types handled by altivec.  */
501 extern enum rs6000_vector rs6000_vector_mem[];
502 
503 #define VECTOR_MEM_NONE_P(MODE)				\
504   (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
505 
506 #define VECTOR_MEM_VSX_P(MODE)				\
507   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
508 
509 #define VECTOR_MEM_P8_VECTOR_P(MODE)			\
510   (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
511 
512 #define VECTOR_MEM_ALTIVEC_P(MODE)			\
513   (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
514 
515 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE)		\
516   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
517 	     (int)VECTOR_VSX,				\
518 	     (int)VECTOR_P8_VECTOR))
519 
520 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE)		\
521   (IN_RANGE ((int)rs6000_vector_mem[(MODE)],		\
522 	     (int)VECTOR_ALTIVEC,			\
523 	     (int)VECTOR_P8_VECTOR))
524 
525 /* Return the alignment of a given vector type, which is set based on the
526    vector unit use.  VSX for instance can load 32 or 64 bit aligned words
527    without problems, while Altivec requires 128-bit aligned vectors.  */
528 extern int rs6000_vector_align[];
529 
530 #define VECTOR_ALIGN(MODE)						\
531   ((rs6000_vector_align[(MODE)] != 0)					\
532    ? rs6000_vector_align[(MODE)]					\
533    : (int)GET_MODE_BITSIZE ((MODE)))
534 
535 /* Determine the element order to use for vector instructions.  By
536    default we use big-endian element order when targeting big-endian,
537    and little-endian element order when targeting little-endian.  For
538    programs being ported from BE Power to LE Power, it can sometimes
539    be useful to use big-endian element order when targeting little-endian.
540    This is set via -maltivec=be, for example.  */
541 #define VECTOR_ELT_ORDER_BIG                                  \
542   (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
543 
544 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
545    with scalar instructions.  */
546 #define VECTOR_ELEMENT_SCALAR_64BIT	((BYTES_BIG_ENDIAN) ? 0 : 1)
547 
548 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
549    with the ISA 3.0 MFVSRLD instructions.  */
550 #define VECTOR_ELEMENT_MFVSRLD_64BIT	((BYTES_BIG_ENDIAN) ? 1 : 0)
551 
552 /* Alignment options for fields in structures for sub-targets following
553    AIX-like ABI.
554    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
555    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
556 
557    Override the macro definitions when compiling libobjc to avoid undefined
558    reference to rs6000_alignment_flags due to library's use of GCC alignment
559    macros which use the macros below.  */
560 
561 #ifndef IN_TARGET_LIBS
562 #define MASK_ALIGN_POWER   0x00000000
563 #define MASK_ALIGN_NATURAL 0x00000001
564 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
565 #else
566 #define TARGET_ALIGN_NATURAL 0
567 #endif
568 
569 /* We use values 126..128 to pick the appropriate long double type (IFmode,
570    KFmode, TFmode).  */
571 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
572 #define TARGET_IEEEQUAD rs6000_ieeequad
573 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
574 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
575 
576 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
577    Enable 32-bit fcfid's on any of the switches for newer ISA machines or
578    XILINX.  */
579 #define TARGET_FCFID	(TARGET_POWERPC64				\
580 			 || TARGET_PPC_GPOPT	/* 970/power4 */	\
581 			 || TARGET_POPCNTB	/* ISA 2.02 */		\
582 			 || TARGET_CMPB		/* ISA 2.05 */		\
583 			 || TARGET_POPCNTD	/* ISA 2.06 */		\
584 			 || TARGET_XILINX_FPU)
585 
586 #define TARGET_FCTIDZ	TARGET_FCFID
587 #define TARGET_STFIWX	TARGET_PPC_GFXOPT
588 #define TARGET_LFIWAX	TARGET_CMPB
589 #define TARGET_LFIWZX	TARGET_POPCNTD
590 #define TARGET_FCFIDS	TARGET_POPCNTD
591 #define TARGET_FCFIDU	TARGET_POPCNTD
592 #define TARGET_FCFIDUS	TARGET_POPCNTD
593 #define TARGET_FCTIDUZ	TARGET_POPCNTD
594 #define TARGET_FCTIWUZ	TARGET_POPCNTD
595 #define TARGET_CTZ	TARGET_MODULO
596 #define TARGET_EXTSWSLI	(TARGET_MODULO && TARGET_POWERPC64)
597 #define TARGET_MADDLD	(TARGET_MODULO && TARGET_POWERPC64)
598 
599 #define TARGET_XSCVDPSPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
600 #define TARGET_XSCVSPDPN	(TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
601 #define TARGET_VADDUQM		(TARGET_P8_VECTOR && TARGET_POWERPC64)
602 #define TARGET_DIRECT_MOVE_128	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
603 				 && TARGET_POWERPC64)
604 #define TARGET_VEXTRACTUB	(TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
605 				 && TARGET_POWERPC64)
606 
607 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI).  */
608 #define TARGET_NO_SF_SUBREG	TARGET_DIRECT_MOVE_64BIT
609 #define TARGET_ALLOW_SF_SUBREG	(!TARGET_DIRECT_MOVE_64BIT)
610 
611 /* This wants to be set for p8 and newer.  On p7, overlapping unaligned
612    loads are slow. */
613 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
614 
615 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
616    in power7, so conditionalize them on p8 features.  TImode syncs need quad
617    memory support.  */
618 #define TARGET_SYNC_HI_QI	(TARGET_QUAD_MEMORY			\
619 				 || TARGET_QUAD_MEMORY_ATOMIC		\
620 				 || TARGET_DIRECT_MOVE)
621 
622 #define TARGET_SYNC_TI		TARGET_QUAD_MEMORY_ATOMIC
623 
624 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
625    to allocate the SDmode stack slot to get the value into the proper location
626    in the register.  */
627 #define TARGET_NO_SDMODE_STACK	(TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
628 
629 /* ISA 3.0 has new min/max functions that don't need fast math that are being
630    phased in.  Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
631    answers if the arguments are not in the normal range.  */
632 #define TARGET_MINMAX_SF	(TARGET_SF_FPR && TARGET_PPC_GFXOPT	\
633 				 && (TARGET_P9_MINMAX || !flag_trapping_math))
634 
635 #define TARGET_MINMAX_DF	(TARGET_DF_FPR && TARGET_PPC_GFXOPT	\
636 				 && (TARGET_P9_MINMAX || !flag_trapping_math))
637 
638 /* In switching from using target_flags to using rs6000_isa_flags, the options
639    machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>.  For now map
640    OPTION_MASK_<xxx> back into MASK_<xxx>.  */
641 #define MASK_ALTIVEC			OPTION_MASK_ALTIVEC
642 #define MASK_CMPB			OPTION_MASK_CMPB
643 #define MASK_CRYPTO			OPTION_MASK_CRYPTO
644 #define MASK_DFP			OPTION_MASK_DFP
645 #define MASK_DIRECT_MOVE		OPTION_MASK_DIRECT_MOVE
646 #define MASK_DLMZB			OPTION_MASK_DLMZB
647 #define MASK_EABI			OPTION_MASK_EABI
648 #define MASK_FLOAT128_KEYWORD		OPTION_MASK_FLOAT128_KEYWORD
649 #define MASK_FLOAT128_HW		OPTION_MASK_FLOAT128_HW
650 #define MASK_FPRND			OPTION_MASK_FPRND
651 #define MASK_P8_FUSION			OPTION_MASK_P8_FUSION
652 #define MASK_HARD_FLOAT			OPTION_MASK_HARD_FLOAT
653 #define MASK_HTM			OPTION_MASK_HTM
654 #define MASK_ISEL			OPTION_MASK_ISEL
655 #define MASK_MFCRF			OPTION_MASK_MFCRF
656 #define MASK_MFPGPR			OPTION_MASK_MFPGPR
657 #define MASK_MULHW			OPTION_MASK_MULHW
658 #define MASK_MULTIPLE			OPTION_MASK_MULTIPLE
659 #define MASK_NO_UPDATE			OPTION_MASK_NO_UPDATE
660 #define MASK_P8_VECTOR			OPTION_MASK_P8_VECTOR
661 #define MASK_P9_VECTOR			OPTION_MASK_P9_VECTOR
662 #define MASK_P9_MISC			OPTION_MASK_P9_MISC
663 #define MASK_POPCNTB			OPTION_MASK_POPCNTB
664 #define MASK_POPCNTD			OPTION_MASK_POPCNTD
665 #define MASK_PPC_GFXOPT			OPTION_MASK_PPC_GFXOPT
666 #define MASK_PPC_GPOPT			OPTION_MASK_PPC_GPOPT
667 #define MASK_RECIP_PRECISION		OPTION_MASK_RECIP_PRECISION
668 #define MASK_SOFT_FLOAT			OPTION_MASK_SOFT_FLOAT
669 #define MASK_STRICT_ALIGN		OPTION_MASK_STRICT_ALIGN
670 #define MASK_UPDATE			OPTION_MASK_UPDATE
671 #define MASK_VSX			OPTION_MASK_VSX
672 
673 #ifndef IN_LIBGCC2
674 #define MASK_POWERPC64			OPTION_MASK_POWERPC64
675 #endif
676 
677 #ifdef TARGET_64BIT
678 #define MASK_64BIT			OPTION_MASK_64BIT
679 #endif
680 
681 #ifdef TARGET_LITTLE_ENDIAN
682 #define MASK_LITTLE_ENDIAN		OPTION_MASK_LITTLE_ENDIAN
683 #endif
684 
685 #ifdef TARGET_REGNAMES
686 #define MASK_REGNAMES			OPTION_MASK_REGNAMES
687 #endif
688 
689 #ifdef TARGET_PROTOTYPE
690 #define MASK_PROTOTYPE			OPTION_MASK_PROTOTYPE
691 #endif
692 
693 #ifdef TARGET_MODULO
694 #define RS6000_BTM_MODULO		OPTION_MASK_MODULO
695 #endif
696 
697 
698 /* For power systems, we want to enable Altivec and VSX builtins even if the
699    user did not use -maltivec or -mvsx to allow the builtins to be used inside
700    of #pragma GCC target or the target attribute to change the code level for a
701    given system.  The Paired builtins are only enabled if you configure the
702    compiler for those builtins, and those machines don't support altivec or
703    VSX.  */
704 
705 #define TARGET_EXTRA_BUILTINS	(!TARGET_PAIRED_FLOAT			 \
706 				 && ((TARGET_POWERPC64			 \
707 				      || TARGET_PPC_GPOPT /* 970/power4 */ \
708 				      || TARGET_POPCNTB	  /* ISA 2.02 */ \
709 				      || TARGET_CMPB	  /* ISA 2.05 */ \
710 				      || TARGET_POPCNTD	  /* ISA 2.06 */ \
711 				      || TARGET_ALTIVEC			 \
712 				      || TARGET_VSX			 \
713 				      || TARGET_HARD_FLOAT)))
714 
715 /* E500 cores only support plain "sync", not lwsync.  */
716 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
717 			  || rs6000_cpu == PROCESSOR_PPC8548)
718 
719 
720 /* Whether SF/DF operations are supported by the normal floating point unit
721    (or the vector/scalar unit).  */
722 #define TARGET_SF_FPR	(TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
723 #define TARGET_DF_FPR	(TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
724 
725 /* Whether SF/DF operations are supported by any hardware.  */
726 #define TARGET_SF_INSN	TARGET_SF_FPR
727 #define TARGET_DF_INSN	TARGET_DF_FPR
728 
729 /* Which machine supports the various reciprocal estimate instructions.  */
730 #define TARGET_FRES	(TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
731 			 && TARGET_SINGLE_FLOAT)
732 
733 #define TARGET_FRE	(TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
734 			 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
735 
736 #define TARGET_FRSQRTES	(TARGET_HARD_FLOAT && TARGET_POPCNTB \
737 			 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
738 
739 #define TARGET_FRSQRTE	(TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
740 			 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
741 
742 /* Conditions to allow TOC fusion for loading/storing integers.  */
743 #define TARGET_TOC_FUSION_INT	(TARGET_P8_FUSION			\
744 				 && TARGET_TOC_FUSION			\
745 				 && (TARGET_CMODEL != CMODEL_SMALL)	\
746 				 && TARGET_POWERPC64)
747 
748 /* Conditions to allow TOC fusion for loading/storing floating point.  */
749 #define TARGET_TOC_FUSION_FP	(TARGET_P9_FUSION			\
750 				 && TARGET_TOC_FUSION			\
751 				 && (TARGET_CMODEL != CMODEL_SMALL)	\
752 				 && TARGET_POWERPC64			\
753 				 && TARGET_HARD_FLOAT			\
754 				 && TARGET_SINGLE_FLOAT			\
755 				 && TARGET_DOUBLE_FLOAT)
756 
757 /* Macro to say whether we can do optimizations where we need to do parts of
758    the calculation in 64-bit GPRs and then is transfered to the vector
759    registers.  Do not allow -maltivec=be for these optimizations, because it
760    adds to the complexity of the code.  */
761 #define TARGET_DIRECT_MOVE_64BIT	(TARGET_DIRECT_MOVE		\
762 					 && TARGET_P8_VECTOR		\
763 					 && TARGET_POWERPC64		\
764 					 && (rs6000_altivec_element_order != 2))
765 
766 /* Whether the various reciprocal divide/square root estimate instructions
767    exist, and whether we should automatically generate code for the instruction
768    by default.  */
769 #define RS6000_RECIP_MASK_HAVE_RE	0x1	/* have RE instruction.  */
770 #define RS6000_RECIP_MASK_AUTO_RE	0x2	/* generate RE by default.  */
771 #define RS6000_RECIP_MASK_HAVE_RSQRTE	0x4	/* have RSQRTE instruction.  */
772 #define RS6000_RECIP_MASK_AUTO_RSQRTE	0x8	/* gen. RSQRTE by default.  */
773 
774 extern unsigned char rs6000_recip_bits[];
775 
776 #define RS6000_RECIP_HAVE_RE_P(MODE) \
777   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
778 
779 #define RS6000_RECIP_AUTO_RE_P(MODE) \
780   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
781 
782 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
783   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
784 
785 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
786   (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
787 
788 /* The default CPU for TARGET_OPTION_OVERRIDE.  */
789 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
790 
791 /* Target pragma.  */
792 #define REGISTER_TARGET_PRAGMAS() do {				\
793   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
794   targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
795   targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
796   rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
797 } while (0)
798 
799 /* Target #defines.  */
800 #define TARGET_CPU_CPP_BUILTINS() \
801   rs6000_cpu_cpp_builtins (pfile)
802 
803 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
804    we're compiling for.  Some configurations may need to override it.  */
805 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
806   do						\
807     {						\
808       if (BYTES_BIG_ENDIAN)			\
809 	{					\
810 	  builtin_define ("__BIG_ENDIAN__");	\
811 	  builtin_define ("_BIG_ENDIAN");	\
812 	  builtin_assert ("machine=bigendian");	\
813 	}					\
814       else					\
815 	{					\
816 	  builtin_define ("__LITTLE_ENDIAN__");	\
817 	  builtin_define ("_LITTLE_ENDIAN");	\
818 	  builtin_assert ("machine=littleendian"); \
819 	}					\
820     }						\
821   while (0)
822 
823 /* Target machine storage layout.  */
824 
825 /* Define this macro if it is advisable to hold scalars in registers
826    in a wider mode than that declared by the program.  In such cases,
827    the value is constrained to be within the bounds of the declared
828    type, but kept valid in the wider mode.  The signedness of the
829    extension may differ from that of the type.  */
830 
831 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
832   if (GET_MODE_CLASS (MODE) == MODE_INT		\
833       && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
834     (MODE) = TARGET_32BIT ? SImode : DImode;
835 
836 /* Define this if most significant bit is lowest numbered
837    in instructions that operate on numbered bit-fields.  */
838 /* That is true on RS/6000.  */
839 #define BITS_BIG_ENDIAN 1
840 
841 /* Define this if most significant byte of a word is the lowest numbered.  */
842 /* That is true on RS/6000.  */
843 #define BYTES_BIG_ENDIAN 1
844 
845 /* Define this if most significant word of a multiword number is lowest
846    numbered.
847 
848    For RS/6000 we can decide arbitrarily since there are no machine
849    instructions for them.  Might as well be consistent with bits and bytes.  */
850 #define WORDS_BIG_ENDIAN 1
851 
852 /* This says that for the IBM long double the larger magnitude double
853    comes first.  It's really a two element double array, and arrays
854    don't index differently between little- and big-endian.  */
855 #define LONG_DOUBLE_LARGE_FIRST 1
856 
857 #define MAX_BITS_PER_WORD 64
858 
859 /* Width of a word, in units (bytes).  */
860 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
861 #ifdef IN_LIBGCC2
862 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
863 #else
864 #define MIN_UNITS_PER_WORD 4
865 #endif
866 #define UNITS_PER_FP_WORD 8
867 #define UNITS_PER_ALTIVEC_WORD 16
868 #define UNITS_PER_VSX_WORD 16
869 #define UNITS_PER_PAIRED_WORD 8
870 
871 /* Type used for ptrdiff_t, as a string used in a declaration.  */
872 #define PTRDIFF_TYPE "int"
873 
874 /* Type used for size_t, as a string used in a declaration.  */
875 #define SIZE_TYPE "long unsigned int"
876 
877 /* Type used for wchar_t, as a string used in a declaration.  */
878 #define WCHAR_TYPE "short unsigned int"
879 
880 /* Width of wchar_t in bits.  */
881 #define WCHAR_TYPE_SIZE 16
882 
883 /* A C expression for the size in bits of the type `short' on the
884    target machine.  If you don't define this, the default is half a
885    word.  (If this would be less than one storage unit, it is
886    rounded up to one unit.)  */
887 #define SHORT_TYPE_SIZE 16
888 
889 /* A C expression for the size in bits of the type `int' on the
890    target machine.  If you don't define this, the default is one
891    word.  */
892 #define INT_TYPE_SIZE 32
893 
894 /* A C expression for the size in bits of the type `long' on the
895    target machine.  If you don't define this, the default is one
896    word.  */
897 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
898 
899 /* A C expression for the size in bits of the type `long long' on the
900    target machine.  If you don't define this, the default is two
901    words.  */
902 #define LONG_LONG_TYPE_SIZE 64
903 
904 /* A C expression for the size in bits of the type `float' on the
905    target machine.  If you don't define this, the default is one
906    word.  */
907 #define FLOAT_TYPE_SIZE 32
908 
909 /* A C expression for the size in bits of the type `double' on the
910    target machine.  If you don't define this, the default is two
911    words.  */
912 #define DOUBLE_TYPE_SIZE 64
913 
914 /* A C expression for the size in bits of the type `long double' on the target
915    machine.  If you don't define this, the default is two words.  */
916 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
917 
918 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
919 #define WIDEST_HARDWARE_FP_SIZE 64
920 
921 /* Width in bits of a pointer.
922    See also the macro `Pmode' defined below.  */
923 extern unsigned rs6000_pointer_size;
924 #define POINTER_SIZE rs6000_pointer_size
925 
926 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
927 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
928 
929 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
930 #define STACK_BOUNDARY	\
931   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
932     ? 64 : 128)
933 
934 /* Allocation boundary (in *bits*) for the code of a function.  */
935 #define FUNCTION_BOUNDARY 32
936 
937 /* No data type wants to be aligned rounder than this.  */
938 #define BIGGEST_ALIGNMENT 128
939 
940 /* Alignment of field after `int : 0' in a structure.  */
941 #define EMPTY_FIELD_BOUNDARY 32
942 
943 /* Every structure's size must be a multiple of this.  */
944 #define STRUCTURE_SIZE_BOUNDARY 8
945 
946 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
947 #define PCC_BITFIELD_TYPE_MATTERS 1
948 
949 enum data_align { align_abi, align_opt, align_both };
950 
951 /* A C expression to compute the alignment for a variables in the
952    local store.  TYPE is the data type, and ALIGN is the alignment
953    that the object would ordinarily have.  */
954 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
955   rs6000_data_alignment (TYPE, ALIGN, align_both)
956 
957 /* Make arrays of chars word-aligned for the same reasons.  */
958 #define DATA_ALIGNMENT(TYPE, ALIGN) \
959   rs6000_data_alignment (TYPE, ALIGN, align_opt)
960 
961 /* Align vectors to 128 bits.  */
962 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
963   rs6000_data_alignment (TYPE, ALIGN, align_abi)
964 
965 /* Nonzero if move instructions will actually fail to work
966    when given unaligned data.  */
967 #define STRICT_ALIGNMENT 0
968 
969 /* Standard register usage.  */
970 
971 /* Number of actual hardware registers.
972    The hardware registers are assigned numbers for the compiler
973    from 0 to just below FIRST_PSEUDO_REGISTER.
974    All registers that the compiler knows about must be given numbers,
975    even those that are not normally considered general registers.
976 
977    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
978    a count register, a link register, and 8 condition register fields,
979    which we view here as separate registers.  AltiVec adds 32 vector
980    registers and a VRsave register.
981 
982    In addition, the difference between the frame and argument pointers is
983    a function of the number of registers saved, so we need to have a
984    register for AP that will later be eliminated in favor of SP or FP.
985    This is a normal register, but it is fixed.
986 
987    We also create a pseudo register for float/int conversions, that will
988    really represent the memory location used.  It is represented here as
989    a register, in order to work around problems in allocating stack storage
990    in inline functions.
991 
992    Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
993    pointer, which is eventually eliminated in favor of SP or FP.
994 
995    The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS.  */
996 
997 #define FIRST_PSEUDO_REGISTER 115
998 
999 /* This must be included for pre gcc 3.0 glibc compatibility.  */
1000 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1001 
1002 /* The sfp register and 3 HTM registers
1003    aren't included in DWARF_FRAME_REGISTERS.  */
1004 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1005 
1006 /* Use standard DWARF numbering for DWARF debugging information.  */
1007 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1008 
1009 /* Use gcc hard register numbering for eh_frame.  */
1010 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1011 
1012 /* Map register numbers held in the call frame info that gcc has
1013    collected using DWARF_FRAME_REGNUM to those that should be output in
1014    .debug_frame and .eh_frame.  */
1015 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1016   rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1017 
1018 /* 1 for registers that have pervasive standard uses
1019    and are not available for the register allocator.
1020 
1021    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
1022    as a local register; for all other OS's r2 is the TOC pointer.
1023 
1024    On System V implementations, r13 is fixed and not available for use.  */
1025 
1026 #define FIXED_REGISTERS  \
1027   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1028    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1029    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1030    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1031    0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,	   \
1032    /* AltiVec registers.  */			   \
1033    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1034    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1035    1, 1						   \
1036    , 1, 1, 1, 1					   \
1037 }
1038 
1039 /* 1 for registers not available across function calls.
1040    These must include the FIXED_REGISTERS and also any
1041    registers that can be used without being saved.
1042    The latter must include the registers where values are returned
1043    and the register where structure-value addresses are passed.
1044    Aside from that, you can include as many other registers as you like.  */
1045 
1046 #define CALL_USED_REGISTERS  \
1047   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1048    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1049    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1050    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1051    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
1052    /* AltiVec registers.  */			   \
1053    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1054    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1055    1, 1						   \
1056    , 1, 1, 1, 1					   \
1057 }
1058 
1059 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1060    the entire set of `FIXED_REGISTERS' be included.
1061    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1062    This macro is optional.  If not specified, it defaults to the value
1063    of `CALL_USED_REGISTERS'.  */
1064 
1065 #define CALL_REALLY_USED_REGISTERS  \
1066   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1067    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1068    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1069    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1070    0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
1071    /* AltiVec registers.  */			   \
1072    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1073    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1074    0, 0						   \
1075    , 0, 0, 0, 0					   \
1076 }
1077 
1078 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1079 
1080 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1081 #define FIRST_SAVED_FP_REGNO	  (14+32)
1082 #define FIRST_SAVED_GP_REGNO	  (FIXED_R13 ? 14 : 13)
1083 
1084 /* List the order in which to allocate registers.  Each register must be
1085    listed once, even those in FIXED_REGISTERS.
1086 
1087    We allocate in the following order:
1088 	fp0		(not saved or used for anything)
1089 	fp13 - fp2	(not saved; incoming fp arg registers)
1090 	fp1		(not saved; return value)
1091 	fp31 - fp14	(saved; order given to save least number)
1092 	cr7, cr5	(not saved or special)
1093 	cr6		(not saved, but used for vector operations)
1094 	cr1		(not saved, but used for FP operations)
1095 	cr0		(not saved, but used for arithmetic operations)
1096 	cr4, cr3, cr2	(saved)
1097 	r9		(not saved; best for TImode)
1098 	r10, r8-r4	(not saved; highest first for less conflict with params)
1099 	r3		(not saved; return value register)
1100 	r11		(not saved; later alloc to help shrink-wrap)
1101 	r0		(not saved; cannot be base reg)
1102 	r31 - r13	(saved; order given to save least number)
1103 	r12		(not saved; if used for DImode or DFmode would use r13)
1104 	ctr		(not saved; when we have the choice ctr is better)
1105 	lr		(saved)
1106 	r1, r2, ap, ca	(fixed)
1107 	v0 - v1		(not saved or used for anything)
1108 	v13 - v3	(not saved; incoming vector arg registers)
1109 	v2		(not saved; incoming vector arg reg; return value)
1110 	v19 - v14	(not saved or used for anything)
1111 	v31 - v20	(saved; order given to save least number)
1112 	vrsave, vscr	(fixed)
1113 	sfp		(fixed)
1114 	tfhar		(fixed)
1115 	tfiar		(fixed)
1116 	texasr		(fixed)
1117 */
1118 
1119 #if FIXED_R2 == 1
1120 #define MAYBE_R2_AVAILABLE
1121 #define MAYBE_R2_FIXED 2,
1122 #else
1123 #define MAYBE_R2_AVAILABLE 2,
1124 #define MAYBE_R2_FIXED
1125 #endif
1126 
1127 #if FIXED_R13 == 1
1128 #define EARLY_R12 12,
1129 #define LATE_R12
1130 #else
1131 #define EARLY_R12
1132 #define LATE_R12 12,
1133 #endif
1134 
1135 #define REG_ALLOC_ORDER						\
1136   {32,								\
1137    /* move fr13 (ie 45) later, so if we need TFmode, it does */	\
1138    /* not use fr14 which is a saved register.  */		\
1139    44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45,		\
1140    33,								\
1141    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,		\
1142    50, 49, 48, 47, 46,						\
1143    75, 73, 74, 69, 68, 72, 71, 70,				\
1144    MAYBE_R2_AVAILABLE						\
1145    9, 10, 8, 7, 6, 5, 4,					\
1146    3, EARLY_R12 11, 0,						\
1147    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,		\
1148    18, 17, 16, 15, 14, 13, LATE_R12				\
1149    66, 65,							\
1150    1, MAYBE_R2_FIXED 67, 76,					\
1151    /* AltiVec registers.  */					\
1152    77, 78,							\
1153    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,			\
1154    79,								\
1155    96, 95, 94, 93, 92, 91,					\
1156    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97,	\
1157    109, 110,							\
1158    111, 112, 113, 114						\
1159 }
1160 
1161 /* True if register is floating-point.  */
1162 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1163 
1164 /* True if register is a condition register.  */
1165 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1166 
1167 /* True if register is a condition register, but not cr0.  */
1168 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1169 
1170 /* True if register is an integer register.  */
1171 #define INT_REGNO_P(N) \
1172   ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1173 
1174 /* PAIRED SIMD registers are just the FPRs.  */
1175 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1176 
1177 /* True if register is the CA register.  */
1178 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1179 
1180 /* True if register is an AltiVec register.  */
1181 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1182 
1183 /* True if register is a VSX register.  */
1184 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1185 
1186 /* Alternate name for any vector register supporting floating point, no matter
1187    which instruction set(s) are available.  */
1188 #define VFLOAT_REGNO_P(N) \
1189   (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1190 
1191 /* Alternate name for any vector register supporting integer, no matter which
1192    instruction set(s) are available.  */
1193 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1194 
1195 /* Alternate name for any vector register supporting logical operations, no
1196    matter which instruction set(s) are available.  Allow GPRs as well as the
1197    vector registers.  */
1198 #define VLOGICAL_REGNO_P(N)						\
1199   (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N)				\
1200    || (TARGET_VSX && FP_REGNO_P (N)))					\
1201 
1202 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1203    enough space to account for vectors in FP regs.  However, TFmode/TDmode
1204    should not use VSX instructions to do a caller save. */
1205 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1206   ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO]			\
1207    ? (MODE)								\
1208    : TARGET_VSX								\
1209      && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE))	\
1210      && FP_REGNO_P (REGNO)						\
1211    ? V2DFmode								\
1212    : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO)			\
1213    ? DFmode								\
1214    : (MODE) == TDmode && FP_REGNO_P (REGNO)				\
1215    ? DImode								\
1216    : choose_hard_reg_mode ((REGNO), (NREGS), false))
1217 
1218 #define VSX_VECTOR_MODE(MODE)		\
1219 	 ((MODE) == V4SFmode		\
1220 	  || (MODE) == V2DFmode)	\
1221 
1222 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1223    really a vector, but we want to treat it as a vector for moves, and
1224    such.  */
1225 
1226 #define ALTIVEC_VECTOR_MODE(MODE)					\
1227   ((MODE) == V16QImode							\
1228    || (MODE) == V8HImode						\
1229    || (MODE) == V4SFmode						\
1230    || (MODE) == V4SImode						\
1231    || FLOAT128_VECTOR_P (MODE))
1232 
1233 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE)				\
1234   (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE)			\
1235    || (MODE) == V2DImode || (MODE) == V1TImode)
1236 
1237 #define PAIRED_VECTOR_MODE(MODE)        \
1238          ((MODE) == V2SFmode)
1239 
1240 /* Post-reload, we can't use any new AltiVec registers, as we already
1241    emitted the vrsave mask.  */
1242 
1243 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1244   (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1245 
1246 /* Specify the cost of a branch insn; roughly the number of extra insns that
1247    should be added to avoid a branch.
1248 
1249    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1250    unscheduled conditional branch.  */
1251 
1252 #define BRANCH_COST(speed_p, predictable_p) 3
1253 
1254 /* Override BRANCH_COST heuristic which empirically produces worse
1255    performance for removing short circuiting from the logical ops.  */
1256 
1257 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1258 
1259 /* Specify the registers used for certain standard purposes.
1260    The values of these macros are register numbers.  */
1261 
1262 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1263 /* #define PC_REGNUM  */
1264 
1265 /* Register to use for pushing function arguments.  */
1266 #define STACK_POINTER_REGNUM 1
1267 
1268 /* Base register for access to local variables of the function.  */
1269 #define HARD_FRAME_POINTER_REGNUM 31
1270 
1271 /* Base register for access to local variables of the function.  */
1272 #define FRAME_POINTER_REGNUM 111
1273 
1274 /* Base register for access to arguments of the function.  */
1275 #define ARG_POINTER_REGNUM 67
1276 
1277 /* Place to put static chain when calling a function that requires it.  */
1278 #define STATIC_CHAIN_REGNUM 11
1279 
1280 /* Base register for access to thread local storage variables.  */
1281 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1282 
1283 
1284 /* Define the classes of registers for register constraints in the
1285    machine description.  Also define ranges of constants.
1286 
1287    One of the classes must always be named ALL_REGS and include all hard regs.
1288    If there is more than one class, another class must be named NO_REGS
1289    and contain no registers.
1290 
1291    The name GENERAL_REGS must be the name of a class (or an alias for
1292    another name such as ALL_REGS).  This is the class of registers
1293    that is allowed by "g" or "r" in a register constraint.
1294    Also, registers outside this class are allocated only when
1295    instructions express preferences for them.
1296 
1297    The classes must be numbered in nondecreasing order; that is,
1298    a larger-numbered class must never be contained completely
1299    in a smaller-numbered class.
1300 
1301    For any two classes, it is very desirable that there be another
1302    class that represents their union.  */
1303 
1304 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1305    condition registers, plus three special registers, CTR, and the link
1306    register.  AltiVec adds a vector register class.  VSX registers overlap the
1307    FPR registers and the Altivec registers.
1308 
1309    However, r0 is special in that it cannot be used as a base register.
1310    So make a class for registers valid as base registers.
1311 
1312    Also, cr0 is the only condition code register that can be used in
1313    arithmetic insns, so make a separate class for it.  */
1314 
1315 enum reg_class
1316 {
1317   NO_REGS,
1318   BASE_REGS,
1319   GENERAL_REGS,
1320   FLOAT_REGS,
1321   ALTIVEC_REGS,
1322   VSX_REGS,
1323   VRSAVE_REGS,
1324   VSCR_REGS,
1325   SPR_REGS,
1326   NON_SPECIAL_REGS,
1327   LINK_REGS,
1328   CTR_REGS,
1329   LINK_OR_CTR_REGS,
1330   SPECIAL_REGS,
1331   SPEC_OR_GEN_REGS,
1332   CR0_REGS,
1333   CR_REGS,
1334   NON_FLOAT_REGS,
1335   CA_REGS,
1336   ALL_REGS,
1337   LIM_REG_CLASSES
1338 };
1339 
1340 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1341 
1342 /* Give names of register classes as strings for dump file.  */
1343 
1344 #define REG_CLASS_NAMES							\
1345 {									\
1346   "NO_REGS",								\
1347   "BASE_REGS",								\
1348   "GENERAL_REGS",							\
1349   "FLOAT_REGS",								\
1350   "ALTIVEC_REGS",							\
1351   "VSX_REGS",								\
1352   "VRSAVE_REGS",							\
1353   "VSCR_REGS",								\
1354   "SPR_REGS",								\
1355   "NON_SPECIAL_REGS",							\
1356   "LINK_REGS",								\
1357   "CTR_REGS",								\
1358   "LINK_OR_CTR_REGS",							\
1359   "SPECIAL_REGS",							\
1360   "SPEC_OR_GEN_REGS",							\
1361   "CR0_REGS",								\
1362   "CR_REGS",								\
1363   "NON_FLOAT_REGS",							\
1364   "CA_REGS",								\
1365   "ALL_REGS"								\
1366 }
1367 
1368 /* Define which registers fit in which classes.
1369    This is an initializer for a vector of HARD_REG_SET
1370    of length N_REG_CLASSES.  */
1371 
1372 #define REG_CLASS_CONTENTS						\
1373 {									\
1374   /* NO_REGS.  */							\
1375   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 },			\
1376   /* BASE_REGS.  */							\
1377   { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 },			\
1378   /* GENERAL_REGS.  */							\
1379   { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 },			\
1380   /* FLOAT_REGS.  */							\
1381   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 },			\
1382   /* ALTIVEC_REGS.  */							\
1383   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff },			\
1384   /* VSX_REGS.  */							\
1385   { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff },			\
1386   /* VRSAVE_REGS.  */							\
1387   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 },			\
1388   /* VSCR_REGS.  */							\
1389   { 0x00000000, 0x00000000, 0x00000000, 0x00004000 },			\
1390   /* SPR_REGS.  */							\
1391   { 0x00000000, 0x00000000, 0x00000000, 0x00010000 },			\
1392   /* NON_SPECIAL_REGS.  */						\
1393   { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 },			\
1394   /* LINK_REGS.  */							\
1395   { 0x00000000, 0x00000000, 0x00000002, 0x00000000 },			\
1396   /* CTR_REGS.  */							\
1397   { 0x00000000, 0x00000000, 0x00000004, 0x00000000 },			\
1398   /* LINK_OR_CTR_REGS.  */						\
1399   { 0x00000000, 0x00000000, 0x00000006, 0x00000000 },			\
1400   /* SPECIAL_REGS.  */							\
1401   { 0x00000000, 0x00000000, 0x00000006, 0x00002000 },			\
1402   /* SPEC_OR_GEN_REGS.  */						\
1403   { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 },			\
1404   /* CR0_REGS.  */							\
1405   { 0x00000000, 0x00000000, 0x00000010, 0x00000000 },			\
1406   /* CR_REGS.  */							\
1407   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 },			\
1408   /* NON_FLOAT_REGS.  */						\
1409   { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 },			\
1410   /* CA_REGS.  */							\
1411   { 0x00000000, 0x00000000, 0x00001000, 0x00000000 },			\
1412   /* ALL_REGS.  */							\
1413   { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff }			\
1414 }
1415 
1416 /* The same information, inverted:
1417    Return the class number of the smallest class containing
1418    reg number REGNO.  This could be a conditional expression
1419    or could index an array.  */
1420 
1421 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1422 
1423 #define REGNO_REG_CLASS(REGNO) 						\
1424   (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1425    rs6000_regno_regclass[(REGNO)])
1426 
1427 /* Register classes for various constraints that are based on the target
1428    switches.  */
1429 enum r6000_reg_class_enum {
1430   RS6000_CONSTRAINT_d,		/* fpr registers for double values */
1431   RS6000_CONSTRAINT_f,		/* fpr registers for single values */
1432   RS6000_CONSTRAINT_v,		/* Altivec registers */
1433   RS6000_CONSTRAINT_wa,		/* Any VSX register */
1434   RS6000_CONSTRAINT_wb,		/* Altivec register if ISA 3.0 vector. */
1435   RS6000_CONSTRAINT_wd,		/* VSX register for V2DF */
1436   RS6000_CONSTRAINT_we,		/* VSX register if ISA 3.0 vector. */
1437   RS6000_CONSTRAINT_wf,		/* VSX register for V4SF */
1438   RS6000_CONSTRAINT_wg,		/* FPR register for -mmfpgpr */
1439   RS6000_CONSTRAINT_wh,		/* FPR register for direct moves.  */
1440   RS6000_CONSTRAINT_wi,		/* FPR/VSX register to hold DImode */
1441   RS6000_CONSTRAINT_wj,		/* FPR/VSX register for DImode direct moves. */
1442   RS6000_CONSTRAINT_wk,		/* FPR/VSX register for DFmode direct moves. */
1443   RS6000_CONSTRAINT_wl,		/* FPR register for LFIWAX */
1444   RS6000_CONSTRAINT_wm,		/* VSX register for direct move */
1445   RS6000_CONSTRAINT_wo,		/* VSX register for power9 vector.  */
1446   RS6000_CONSTRAINT_wp,		/* VSX reg for IEEE 128-bit fp TFmode. */
1447   RS6000_CONSTRAINT_wq,		/* VSX reg for IEEE 128-bit fp KFmode.  */
1448   RS6000_CONSTRAINT_wr,		/* GPR register if 64-bit  */
1449   RS6000_CONSTRAINT_ws,		/* VSX register for DF */
1450   RS6000_CONSTRAINT_wt,		/* VSX register for TImode */
1451   RS6000_CONSTRAINT_wu,		/* Altivec register for float load/stores.  */
1452   RS6000_CONSTRAINT_wv,		/* Altivec register for double load/stores.  */
1453   RS6000_CONSTRAINT_ww,		/* FP or VSX register for vsx float ops.  */
1454   RS6000_CONSTRAINT_wx,		/* FPR register for STFIWX */
1455   RS6000_CONSTRAINT_wy,		/* VSX register for SF */
1456   RS6000_CONSTRAINT_wz,		/* FPR register for LFIWZX */
1457   RS6000_CONSTRAINT_wA,		/* BASE_REGS if 64-bit.  */
1458   RS6000_CONSTRAINT_wH,		/* Altivec register for 32-bit integers.  */
1459   RS6000_CONSTRAINT_wI,		/* VSX register for 32-bit integers.  */
1460   RS6000_CONSTRAINT_wJ,		/* VSX register for 8/16-bit integers.  */
1461   RS6000_CONSTRAINT_wK,		/* Altivec register for 16/32-bit integers.  */
1462   RS6000_CONSTRAINT_MAX
1463 };
1464 
1465 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1466 
1467 /* The class value for index registers, and the one for base regs.  */
1468 #define INDEX_REG_CLASS GENERAL_REGS
1469 #define BASE_REG_CLASS BASE_REGS
1470 
1471 /* Return whether a given register class can hold VSX objects.  */
1472 #define VSX_REG_CLASS_P(CLASS)			\
1473   ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1474 
1475 /* Return whether a given register class targets general purpose registers.  */
1476 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1477 
1478 /* Given an rtx X being reloaded into a reg required to be
1479    in class CLASS, return the class of reg to actually use.
1480    In general this is just CLASS; but on some machines
1481    in some cases it is preferable to use a more restrictive class.
1482 
1483    On the RS/6000, we have to return NO_REGS when we want to reload a
1484    floating-point CONST_DOUBLE to force it to be copied to memory.
1485 
1486    We also don't want to reload integer values into floating-point
1487    registers if we can at all help it.  In fact, this can
1488    cause reload to die, if it tries to generate a reload of CTR
1489    into a FP register and discovers it doesn't have the memory location
1490    required.
1491 
1492    ??? Would it be a good idea to have reload do the converse, that is
1493    try to reload floating modes into FP registers if possible?
1494  */
1495 
1496 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1497   rs6000_preferred_reload_class_ptr (X, CLASS)
1498 
1499 /* Return the register class of a scratch register needed to copy IN into
1500    or out of a register in CLASS in MODE.  If it can be done directly,
1501    NO_REGS is returned.  */
1502 
1503 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1504   rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1505 
1506 /* Return the maximum number of consecutive registers
1507    needed to represent mode MODE in a register of class CLASS.
1508 
1509    On RS/6000, this is the size of MODE in words, except in the FP regs, where
1510    a single reg is enough for two words, unless we have VSX, where the FP
1511    registers can hold 128 bits.  */
1512 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1513 
1514 /* Stack layout; function entry, exit and calling.  */
1515 
1516 /* Define this if pushing a word on the stack
1517    makes the stack pointer a smaller address.  */
1518 #define STACK_GROWS_DOWNWARD 1
1519 
1520 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1521 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1522 
1523 /* Define this to nonzero if the nominal address of the stack frame
1524    is at the high-address end of the local variables;
1525    that is, each additional local variable allocated
1526    goes at a more negative offset in the frame.
1527 
1528    On the RS/6000, we grow upwards, from the area after the outgoing
1529    arguments.  */
1530 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0			\
1531 			      || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1532 
1533 /* Size of the fixed area on the stack */
1534 #define RS6000_SAVE_AREA \
1535   ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24)	\
1536    << (TARGET_64BIT ? 1 : 0))
1537 
1538 /* Stack offset for toc save slot.  */
1539 #define RS6000_TOC_SAVE_SLOT \
1540   ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1541 
1542 /* Align an address */
1543 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1544 
1545 /* Offset within stack frame to start allocating local variables at.
1546    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1547    first local allocated.  Otherwise, it is the offset to the BEGINNING
1548    of the first local allocated.
1549 
1550    On the RS/6000, the frame pointer is the same as the stack pointer,
1551    except for dynamic allocations.  So we start after the fixed area and
1552    outgoing parameter area.
1553 
1554    If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1555    space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1556    sizes of the fixed area and the parameter area must be a multiple of
1557    STACK_BOUNDARY.  */
1558 
1559 #define RS6000_STARTING_FRAME_OFFSET					\
1560   (cfun->calls_alloca							\
1561    ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA,	\
1562 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 ))		\
1563    : (RS6000_ALIGN (crtl->outgoing_args_size,				\
1564 		    (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)		\
1565       + RS6000_SAVE_AREA))
1566 
1567 /* Offset from the stack pointer register to an item dynamically
1568    allocated on the stack, e.g., by `alloca'.
1569 
1570    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1571    length of the outgoing arguments.  The default is correct for most
1572    machines.  See `function.c' for details.
1573 
1574    This value must be a multiple of STACK_BOUNDARY (hard coded in
1575    `emit-rtl.c').  */
1576 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1577   RS6000_ALIGN (crtl->outgoing_args_size.to_constant ()			\
1578 		+ STACK_POINTER_OFFSET,					\
1579 		(TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1580 
1581 /* If we generate an insn to push BYTES bytes,
1582    this says how many the stack pointer really advances by.
1583    On RS/6000, don't define this because there are no push insns.  */
1584 /*  #define PUSH_ROUNDING(BYTES) */
1585 
1586 /* Offset of first parameter from the argument pointer register value.
1587    On the RS/6000, we define the argument pointer to the start of the fixed
1588    area.  */
1589 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1590 
1591 /* Offset from the argument pointer register value to the top of
1592    stack.  This is different from FIRST_PARM_OFFSET because of the
1593    register save area.  */
1594 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1595 
1596 /* Define this if stack space is still allocated for a parameter passed
1597    in a register.  The value is the number of bytes allocated to this
1598    area.  */
1599 #define REG_PARM_STACK_SPACE(FNDECL) \
1600   rs6000_reg_parm_stack_space ((FNDECL), false)
1601 
1602 /* Define this macro if space guaranteed when compiling a function body
1603    is different to space required when making a call, a situation that
1604    can arise with K&R style function definitions.  */
1605 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1606   rs6000_reg_parm_stack_space ((FNDECL), true)
1607 
1608 /* Define this if the above stack space is to be considered part of the
1609    space allocated by the caller.  */
1610 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1611 
1612 /* This is the difference between the logical top of stack and the actual sp.
1613 
1614    For the RS/6000, sp points past the fixed area.  */
1615 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1616 
1617 /* Define this if the maximum size of all the outgoing args is to be
1618    accumulated and pushed during the prologue.  The amount can be
1619    found in the variable crtl->outgoing_args_size.  */
1620 #define ACCUMULATE_OUTGOING_ARGS 1
1621 
1622 /* Define how to find the value returned by a library function
1623    assuming the value has mode MODE.  */
1624 
1625 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1626 
1627 /* DRAFT_V4_STRUCT_RET defaults off.  */
1628 #define DRAFT_V4_STRUCT_RET 0
1629 
1630 /* Let TARGET_RETURN_IN_MEMORY control what happens.  */
1631 #define DEFAULT_PCC_STRUCT_RETURN 0
1632 
1633 /* Mode of stack savearea.
1634    FUNCTION is VOIDmode because calling convention maintains SP.
1635    BLOCK needs Pmode for SP.
1636    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1637 #define STACK_SAVEAREA_MODE(LEVEL)	\
1638   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1639   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1640 
1641 /* Minimum and maximum general purpose registers used to hold arguments.  */
1642 #define GP_ARG_MIN_REG 3
1643 #define GP_ARG_MAX_REG 10
1644 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1645 
1646 /* Minimum and maximum floating point registers used to hold arguments.  */
1647 #define FP_ARG_MIN_REG 33
1648 #define	FP_ARG_AIX_MAX_REG 45
1649 #define	FP_ARG_V4_MAX_REG  40
1650 #define	FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4				\
1651 			? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1652 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1653 
1654 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1655 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1656 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1657 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1658 
1659 /* Maximum number of registers per ELFv2 homogeneous aggregate argument.  */
1660 #define AGGR_ARG_NUM_REG 8
1661 
1662 /* Return registers */
1663 #define GP_ARG_RETURN GP_ARG_MIN_REG
1664 #define FP_ARG_RETURN FP_ARG_MIN_REG
1665 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1666 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN	\
1667 			   : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1668 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2		\
1669 				? (ALTIVEC_ARG_RETURN			\
1670 				   + (TARGET_FLOAT128_TYPE ? 1 : 0))	\
1671 			        : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1672 
1673 /* Flags for the call/call_value rtl operations set up by function_arg */
1674 #define CALL_NORMAL		0x00000000	/* no special processing */
1675 /* Bits in 0x00000001 are unused.  */
1676 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1677 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1678 #define CALL_LONG		0x00000008	/* always call indirect */
1679 #define CALL_LIBCALL		0x00000010	/* libcall */
1680 
1681 /* We don't have prologue and epilogue functions to save/restore
1682    everything for most ABIs.  */
1683 #define WORLD_SAVE_P(INFO) 0
1684 
1685 /* 1 if N is a possible register number for a function value
1686    as seen by the caller.
1687 
1688    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1689 #define FUNCTION_VALUE_REGNO_P(N)					\
1690   ((N) == GP_ARG_RETURN							\
1691    || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN)			\
1692        && TARGET_HARD_FLOAT)						\
1693    || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN)	\
1694        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1695 
1696 /* 1 if N is a possible register number for function argument passing.
1697    On RS/6000, these are r3-r10 and fp1-fp13.
1698    On AltiVec, v2 - v13 are used for passing vectors.  */
1699 #define FUNCTION_ARG_REGNO_P(N)						\
1700   (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG)			\
1701    || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG)		\
1702        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1703    || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG)			\
1704        && TARGET_HARD_FLOAT))
1705 
1706 /* Define a data type for recording info about an argument list
1707    during the scan of that argument list.  This data type should
1708    hold all necessary information about the function itself
1709    and about the args processed so far, enough to enable macros
1710    such as FUNCTION_ARG to determine where the next arg should go.
1711 
1712    On the RS/6000, this is a structure.  The first element is the number of
1713    total argument words, the second is used to store the next
1714    floating-point register number, and the third says how many more args we
1715    have prototype types for.
1716 
1717    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1718    the next available GP register, `fregno' is the next available FP
1719    register, and `words' is the number of words used on the stack.
1720 
1721    The varargs/stdarg support requires that this structure's size
1722    be a multiple of sizeof(int).  */
1723 
1724 typedef struct rs6000_args
1725 {
1726   int words;			/* # words used for passing GP registers */
1727   int fregno;			/* next available FP register */
1728   int vregno;			/* next available AltiVec register */
1729   int nargs_prototype;		/* # args left in the current prototype */
1730   int prototype;		/* Whether a prototype was defined */
1731   int stdarg;			/* Whether function is a stdarg function.  */
1732   int call_cookie;		/* Do special things for this call */
1733   int sysv_gregno;		/* next available GP register */
1734   int intoffset;		/* running offset in struct (darwin64) */
1735   int use_stack;		/* any part of struct on stack (darwin64) */
1736   int floats_in_gpr;		/* count of SFmode floats taking up
1737 				   GPR space (darwin64) */
1738   int named;			/* false for varargs params */
1739   int escapes;			/* if function visible outside tu */
1740   int libcall;			/* If this is a compiler generated call.  */
1741 } CUMULATIVE_ARGS;
1742 
1743 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1744    for a call to a function whose data type is FNTYPE.
1745    For a library call, FNTYPE is 0.  */
1746 
1747 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1748   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1749 			N_NAMED_ARGS, FNDECL, VOIDmode)
1750 
1751 /* Similar, but when scanning the definition of a procedure.  We always
1752    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1753 
1754 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1755   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1756 			1000, current_function_decl, VOIDmode)
1757 
1758 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1759 
1760 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1761   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1762 			0, NULL_TREE, MODE)
1763 
1764 #define PAD_VARARGS_DOWN \
1765   (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1766 
1767 /* Output assembler code to FILE to increment profiler label # LABELNO
1768    for profiling a function entry.  */
1769 
1770 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1771   output_function_profiler ((FILE), (LABELNO));
1772 
1773 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1774    the stack pointer does not matter. No definition is equivalent to
1775    always zero.
1776 
1777    On the RS/6000, this is nonzero because we can restore the stack from
1778    its backpointer, which we maintain.  */
1779 #define EXIT_IGNORE_STACK	1
1780 
1781 /* Define this macro as a C expression that is nonzero for registers
1782    that are used by the epilogue or the return' pattern.  The stack
1783    and frame pointer registers are already be assumed to be used as
1784    needed.  */
1785 
1786 #define	EPILOGUE_USES(REGNO)					\
1787   ((reload_completed && (REGNO) == LR_REGNO)			\
1788    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1789    || (crtl->calls_eh_return					\
1790        && TARGET_AIX						\
1791        && (REGNO) == 2))
1792 
1793 
1794 /* Length in units of the trampoline for entering a nested function.  */
1795 
1796 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1797 
1798 /* Definitions for __builtin_return_address and __builtin_frame_address.
1799    __builtin_return_address (0) should give link register (LR_REGNO), enable
1800    this.  */
1801 /* This should be uncommented, so that the link register is used, but
1802    currently this would result in unmatched insns and spilling fixed
1803    registers so we'll leave it for another day.  When these problems are
1804    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1805    (mrs) */
1806 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1807 
1808 /* Number of bytes into the frame return addresses can be found.  See
1809    rs6000_stack_info in rs6000.c for more information on how the different
1810    abi's store the return address.  */
1811 #define RETURN_ADDRESS_OFFSET \
1812   ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1813 
1814 /* The current return address is in link register (65).  The return address
1815    of anything farther back is accessed normally at an offset of 8 from the
1816    frame pointer.  */
1817 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1818   (rs6000_return_addr (COUNT, FRAME))
1819 
1820 
1821 /* Definitions for register eliminations.
1822 
1823    We have two registers that can be eliminated on the RS/6000.  First, the
1824    frame pointer register can often be eliminated in favor of the stack
1825    pointer register.  Secondly, the argument pointer register can always be
1826    eliminated; it is replaced with either the stack or frame pointer.
1827 
1828    In addition, we use the elimination mechanism to see if r30 is needed
1829    Initially we assume that it isn't.  If it is, we spill it.  This is done
1830    by making it an eliminable register.  We replace it with itself so that
1831    if it isn't needed, then existing uses won't be modified.  */
1832 
1833 /* This is an array of structures.  Each structure initializes one pair
1834    of eliminable registers.  The "from" register number is given first,
1835    followed by "to".  Eliminations of the same "from" register are listed
1836    in order of preference.  */
1837 #define ELIMINABLE_REGS					\
1838 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1839  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1840  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1841  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1842  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1843  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1844 
1845 /* Define the offset between two registers, one to be eliminated, and the other
1846    its replacement, at the start of a routine.  */
1847 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1848   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1849 
1850 /* Addressing modes, and classification of registers for them.  */
1851 
1852 #define HAVE_PRE_DECREMENT 1
1853 #define HAVE_PRE_INCREMENT 1
1854 #define HAVE_PRE_MODIFY_DISP 1
1855 #define HAVE_PRE_MODIFY_REG 1
1856 
1857 /* Macros to check register numbers against specific register classes.  */
1858 
1859 /* These assume that REGNO is a hard or pseudo reg number.
1860    They give nonzero only if REGNO is a hard reg of the suitable class
1861    or a pseudo reg currently allocated to a suitable hard reg.
1862    Since they use reg_renumber, they are safe only once reg_renumber
1863    has been allocated, which happens in reginfo.c during register
1864    allocation.  */
1865 
1866 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1867 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1868  ? (REGNO) <= 31 || (REGNO) == 67				\
1869    || (REGNO) == FRAME_POINTER_REGNUM				\
1870  : (reg_renumber[REGNO] >= 0					\
1871     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1872 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1873 
1874 #define REGNO_OK_FOR_BASE_P(REGNO)				\
1875 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1876  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
1877    || (REGNO) == FRAME_POINTER_REGNUM				\
1878  : (reg_renumber[REGNO] > 0					\
1879     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67	\
1880 	|| reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1881 
1882 /* Nonzero if X is a hard reg that can be used as an index
1883    or if it is a pseudo reg in the non-strict case.  */
1884 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
1885   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1886    || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1887 
1888 /* Nonzero if X is a hard reg that can be used as a base reg
1889    or if it is a pseudo reg in the non-strict case.  */
1890 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
1891   ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER)		\
1892    || REGNO_OK_FOR_BASE_P (REGNO (X)))
1893 
1894 
1895 /* Maximum number of registers that can appear in a valid memory address.  */
1896 
1897 #define MAX_REGS_PER_ADDRESS 2
1898 
1899 /* Recognize any constant value that is a valid address.  */
1900 
1901 #define CONSTANT_ADDRESS_P(X)   \
1902   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
1903    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
1904    || GET_CODE (X) == HIGH)
1905 
1906 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1907 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n))	\
1908 				    && EASY_VECTOR_15((n) >> 1) \
1909 				    && ((n) & 1) == 0)
1910 
1911 #define EASY_VECTOR_MSB(n,mode)						\
1912   ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) ==		\
1913    ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1914 
1915 
1916 /* Try a machine-dependent way of reloading an illegitimate address
1917    operand.  If we find one, push the reload and jump to WIN.  This
1918    macro is used in only one place: `find_reloads_address' in reload.c.
1919 
1920    Implemented on rs6000 by rs6000_legitimize_reload_address.
1921    Note that (X) is evaluated twice; this is safe in current usage.  */
1922 
1923 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
1924 do {									     \
1925   int win;								     \
1926   (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM),	     \
1927 			(int)(TYPE), (IND_LEVELS), &win);		     \
1928   if ( win )								     \
1929     goto WIN;								     \
1930 } while (0)
1931 
1932 #define FIND_BASE_TERM rs6000_find_base_term
1933 
1934 /* The register number of the register used to address a table of
1935    static data addresses in memory.  In some cases this register is
1936    defined by a processor's "application binary interface" (ABI).
1937    When this macro is defined, RTL is generated for this register
1938    once, as with the stack pointer and frame pointer registers.  If
1939    this macro is not defined, it is up to the machine-dependent files
1940    to allocate such a register (if necessary).  */
1941 
1942 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1943 #define PIC_OFFSET_TABLE_REGNUM \
1944   (TARGET_TOC ? TOC_REGISTER			\
1945    : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM	\
1946    : INVALID_REGNUM)
1947 
1948 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1949 
1950 /* Define this macro if the register defined by
1951    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
1952    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
1953 
1954 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1955 
1956 /* A C expression that is nonzero if X is a legitimate immediate
1957    operand on the target machine when generating position independent
1958    code.  You can assume that X satisfies `CONSTANT_P', so you need
1959    not check this.  You can also assume FLAG_PIC is true, so you need
1960    not check it either.  You need not define this macro if all
1961    constants (including `SYMBOL_REF') can be immediate operands when
1962    generating position independent code.  */
1963 
1964 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1965 
1966 /* Specify the machine mode that this machine uses
1967    for the index in the tablejump instruction.  */
1968 #define CASE_VECTOR_MODE SImode
1969 
1970 /* Define as C expression which evaluates to nonzero if the tablejump
1971    instruction expects the table to contain offsets from the address of the
1972    table.
1973    Do not define this if the table should contain absolute addresses.  */
1974 #define CASE_VECTOR_PC_RELATIVE 1
1975 
1976 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1977 #define DEFAULT_SIGNED_CHAR 0
1978 
1979 /* An integer expression for the size in bits of the largest integer machine
1980    mode that should actually be used.  */
1981 
1982 /* Allow pairs of registers to be used, which is the intent of the default.  */
1983 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1984 
1985 /* Max number of bytes we can move from memory to memory
1986    in one reasonably fast instruction.  */
1987 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1988 #define MAX_MOVE_MAX 8
1989 
1990 /* Nonzero if access to memory by bytes is no faster than for words.
1991    Also nonzero if doing byte operations (specifically shifts) in registers
1992    is undesirable.  */
1993 #define SLOW_BYTE_ACCESS 1
1994 
1995 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1996    will either zero-extend or sign-extend.  The value of this macro should
1997    be the code that says which one of the two operations is implicitly
1998    done, UNKNOWN if none.  */
1999 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2000 
2001 /* Define if loading short immediate values into registers sign extends.  */
2002 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2003 
2004 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
2005 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2006   ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
2007 
2008 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2009    zero.  The hardware instructions added in Power9 and the sequences using
2010    popcount return 32 or 64.  */
2011 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE)				\
2012   (TARGET_CTZ || TARGET_POPCNTD						\
2013    ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2)				\
2014    : ((VALUE) = -1, 2))
2015 
2016 /* Specify the machine mode that pointers have.
2017    After generation of rtl, the compiler makes no further distinction
2018    between pointers and any other objects of this machine mode.  */
2019 extern scalar_int_mode rs6000_pmode;
2020 #define Pmode rs6000_pmode
2021 
2022 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2023 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2024 
2025 /* Mode of a function address in a call instruction (for indexing purposes).
2026    Doesn't matter on RS/6000.  */
2027 #define FUNCTION_MODE SImode
2028 
2029 /* Define this if addresses of constant functions
2030    shouldn't be put through pseudo regs where they can be cse'd.
2031    Desirable on machines where ordinary constants are expensive
2032    but a CALL with constant address is cheap.  */
2033 #define NO_FUNCTION_CSE 1
2034 
2035 /* Define this to be nonzero if shift instructions ignore all but the low-order
2036    few bits.
2037 
2038    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2039    have been dropped from the PowerPC architecture.  */
2040 #define SHIFT_COUNT_TRUNCATED 0
2041 
2042 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2043    should be adjusted to reflect any required changes.  This macro is used when
2044    there is some systematic length adjustment required that would be difficult
2045    to express in the length attribute.  */
2046 
2047 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2048 
2049 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2050    COMPARE, return the mode to be used for the comparison.  For
2051    floating-point, CCFPmode should be used.  CCUNSmode should be used
2052    for unsigned comparisons.  CCEQmode should be used when we are
2053    doing an inequality comparison on the result of a
2054    comparison.  CCmode should be used in all other cases.  */
2055 
2056 #define SELECT_CC_MODE(OP,X,Y) \
2057   (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode	\
2058    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2059    : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X)			  \
2060       ? CCEQmode : CCmode))
2061 
2062 /* Can the condition code MODE be safely reversed?  This is safe in
2063    all cases on this port, because at present it doesn't use the
2064    trapping FP comparisons (fcmpo).  */
2065 #define REVERSIBLE_CC_MODE(MODE) 1
2066 
2067 /* Given a condition code and a mode, return the inverse condition.  */
2068 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2069 
2070 
2071 /* Target cpu costs.  */
2072 
2073 struct processor_costs {
2074   const int mulsi;	  /* cost of SImode multiplication.  */
2075   const int mulsi_const;  /* cost of SImode multiplication by constant.  */
2076   const int mulsi_const9; /* cost of SImode mult by short constant.  */
2077   const int muldi;	  /* cost of DImode multiplication.  */
2078   const int divsi;	  /* cost of SImode division.  */
2079   const int divdi;	  /* cost of DImode division.  */
2080   const int fp;		  /* cost of simple SFmode and DFmode insns.  */
2081   const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
2082   const int sdiv;	  /* cost of SFmode division (fdivs).  */
2083   const int ddiv;	  /* cost of DFmode division (fdiv).  */
2084   const int cache_line_size;    /* cache line size in bytes. */
2085   const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
2086   const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
2087   const int simultaneous_prefetches; /* number of parallel prefetch
2088 					operations.  */
2089   const int sfdf_convert;	/* cost of SF->DF conversion.  */
2090 };
2091 
2092 extern const struct processor_costs *rs6000_cost;
2093 
2094 /* Control the assembler format that we output.  */
2095 
2096 /* A C string constant describing how to begin a comment in the target
2097    assembler language.  The compiler assumes that the comment will end at
2098    the end of the line.  */
2099 #define ASM_COMMENT_START " #"
2100 
2101 /* Flag to say the TOC is initialized */
2102 extern int toc_initialized;
2103 
2104 /* Macro to output a special constant pool entry.  Go to WIN if we output
2105    it.  Otherwise, it is written the usual way.
2106 
2107    On the RS/6000, toc entries are handled this way.  */
2108 
2109 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2110 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2111     {									  \
2112       output_toc (FILE, X, LABELNO, MODE);				  \
2113       goto WIN;								  \
2114     }									  \
2115 }
2116 
2117 #ifdef HAVE_GAS_WEAK
2118 #define RS6000_WEAK 1
2119 #else
2120 #define RS6000_WEAK 0
2121 #endif
2122 
2123 #if RS6000_WEAK
2124 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2125 #define        ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2126   rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2127 #endif
2128 
2129 #if HAVE_GAS_WEAKREF
2130 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE)			\
2131   do									\
2132     {									\
2133       fputs ("\t.weakref\t", (FILE));					\
2134       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 				\
2135       fputs (", ", (FILE));						\
2136       RS6000_OUTPUT_BASENAME ((FILE), (VALUE));				\
2137       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2138 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2139 	{								\
2140 	  fputs ("\n\t.weakref\t.", (FILE));				\
2141 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2142 	  fputs (", .", (FILE));					\
2143 	  RS6000_OUTPUT_BASENAME ((FILE), (VALUE));			\
2144 	}								\
2145       fputc ('\n', (FILE));						\
2146     } while (0)
2147 #endif
2148 
2149 /* This implements the `alias' attribute.  */
2150 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2151 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2152   do									\
2153     {									\
2154       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2155       const char *name = IDENTIFIER_POINTER (TARGET);			\
2156       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2157 	  && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)			\
2158 	{								\
2159 	  if (TREE_PUBLIC (DECL))					\
2160 	    {								\
2161 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2162 		{							\
2163 		  fputs ("\t.globl\t.", FILE);				\
2164 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2165 		  putc ('\n', FILE);					\
2166 		}							\
2167 	    }								\
2168 	  else if (TARGET_XCOFF)					\
2169 	    {								\
2170 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2171 		{							\
2172 		  fputs ("\t.lglobl\t.", FILE);				\
2173 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2174 		  putc ('\n', FILE);					\
2175 		  fputs ("\t.lglobl\t", FILE);				\
2176 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2177 		  putc ('\n', FILE);					\
2178 		}							\
2179 	    }								\
2180 	  fputs ("\t.set\t.", FILE);					\
2181 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2182 	  fputs (",.", FILE);						\
2183 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2184 	  fputc ('\n', FILE);						\
2185 	}								\
2186       ASM_OUTPUT_DEF (FILE, alias, name);				\
2187     }									\
2188    while (0)
2189 
2190 #define TARGET_ASM_FILE_START rs6000_file_start
2191 
2192 /* Output to assembler file text saying following lines
2193    may contain character constants, extra white space, comments, etc.  */
2194 
2195 #define ASM_APP_ON ""
2196 
2197 /* Output to assembler file text saying following lines
2198    no longer contain unusual constructs.  */
2199 
2200 #define ASM_APP_OFF ""
2201 
2202 /* How to refer to registers in assembler output.
2203    This sequence is indexed by compiler's hard-register-number (see above).  */
2204 
2205 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2206 
2207 #define REGISTER_NAMES							\
2208 {									\
2209   &rs6000_reg_names[ 0][0],	/* r0   */				\
2210   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2211   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2212   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2213   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2214   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2215   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2216   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2217   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2218   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2219   &rs6000_reg_names[10][0],	/* r10  */				\
2220   &rs6000_reg_names[11][0],	/* r11  */				\
2221   &rs6000_reg_names[12][0],	/* r12  */				\
2222   &rs6000_reg_names[13][0],	/* r13  */				\
2223   &rs6000_reg_names[14][0],	/* r14  */				\
2224   &rs6000_reg_names[15][0],	/* r15  */				\
2225   &rs6000_reg_names[16][0],	/* r16  */				\
2226   &rs6000_reg_names[17][0],	/* r17  */				\
2227   &rs6000_reg_names[18][0],	/* r18  */				\
2228   &rs6000_reg_names[19][0],	/* r19  */				\
2229   &rs6000_reg_names[20][0],	/* r20  */				\
2230   &rs6000_reg_names[21][0],	/* r21  */				\
2231   &rs6000_reg_names[22][0],	/* r22  */				\
2232   &rs6000_reg_names[23][0],	/* r23  */				\
2233   &rs6000_reg_names[24][0],	/* r24  */				\
2234   &rs6000_reg_names[25][0],	/* r25  */				\
2235   &rs6000_reg_names[26][0],	/* r26  */				\
2236   &rs6000_reg_names[27][0],	/* r27  */				\
2237   &rs6000_reg_names[28][0],	/* r28  */				\
2238   &rs6000_reg_names[29][0],	/* r29  */				\
2239   &rs6000_reg_names[30][0],	/* r30  */				\
2240   &rs6000_reg_names[31][0],	/* r31  */				\
2241 									\
2242   &rs6000_reg_names[32][0],     /* fr0  */				\
2243   &rs6000_reg_names[33][0],	/* fr1  */				\
2244   &rs6000_reg_names[34][0],	/* fr2  */				\
2245   &rs6000_reg_names[35][0],	/* fr3  */				\
2246   &rs6000_reg_names[36][0],	/* fr4  */				\
2247   &rs6000_reg_names[37][0],	/* fr5  */				\
2248   &rs6000_reg_names[38][0],	/* fr6  */				\
2249   &rs6000_reg_names[39][0],	/* fr7  */				\
2250   &rs6000_reg_names[40][0],	/* fr8  */				\
2251   &rs6000_reg_names[41][0],	/* fr9  */				\
2252   &rs6000_reg_names[42][0],	/* fr10 */				\
2253   &rs6000_reg_names[43][0],	/* fr11 */				\
2254   &rs6000_reg_names[44][0],	/* fr12 */				\
2255   &rs6000_reg_names[45][0],	/* fr13 */				\
2256   &rs6000_reg_names[46][0],	/* fr14 */				\
2257   &rs6000_reg_names[47][0],	/* fr15 */				\
2258   &rs6000_reg_names[48][0],	/* fr16 */				\
2259   &rs6000_reg_names[49][0],	/* fr17 */				\
2260   &rs6000_reg_names[50][0],	/* fr18 */				\
2261   &rs6000_reg_names[51][0],	/* fr19 */				\
2262   &rs6000_reg_names[52][0],	/* fr20 */				\
2263   &rs6000_reg_names[53][0],	/* fr21 */				\
2264   &rs6000_reg_names[54][0],	/* fr22 */				\
2265   &rs6000_reg_names[55][0],	/* fr23 */				\
2266   &rs6000_reg_names[56][0],	/* fr24 */				\
2267   &rs6000_reg_names[57][0],	/* fr25 */				\
2268   &rs6000_reg_names[58][0],	/* fr26 */				\
2269   &rs6000_reg_names[59][0],	/* fr27 */				\
2270   &rs6000_reg_names[60][0],	/* fr28 */				\
2271   &rs6000_reg_names[61][0],	/* fr29 */				\
2272   &rs6000_reg_names[62][0],	/* fr30 */				\
2273   &rs6000_reg_names[63][0],	/* fr31 */				\
2274 									\
2275   &rs6000_reg_names[64][0],     /* was mq  */				\
2276   &rs6000_reg_names[65][0],	/* lr   */				\
2277   &rs6000_reg_names[66][0],	/* ctr  */				\
2278   &rs6000_reg_names[67][0],	/* ap   */				\
2279 									\
2280   &rs6000_reg_names[68][0],	/* cr0  */				\
2281   &rs6000_reg_names[69][0],	/* cr1  */				\
2282   &rs6000_reg_names[70][0],	/* cr2  */				\
2283   &rs6000_reg_names[71][0],	/* cr3  */				\
2284   &rs6000_reg_names[72][0],	/* cr4  */				\
2285   &rs6000_reg_names[73][0],	/* cr5  */				\
2286   &rs6000_reg_names[74][0],	/* cr6  */				\
2287   &rs6000_reg_names[75][0],	/* cr7  */				\
2288 									\
2289   &rs6000_reg_names[76][0],	/* ca  */				\
2290 									\
2291   &rs6000_reg_names[77][0],	/* v0  */				\
2292   &rs6000_reg_names[78][0],	/* v1  */				\
2293   &rs6000_reg_names[79][0],	/* v2  */				\
2294   &rs6000_reg_names[80][0],	/* v3  */				\
2295   &rs6000_reg_names[81][0],	/* v4  */				\
2296   &rs6000_reg_names[82][0],	/* v5  */				\
2297   &rs6000_reg_names[83][0],	/* v6  */				\
2298   &rs6000_reg_names[84][0],	/* v7  */				\
2299   &rs6000_reg_names[85][0],	/* v8  */				\
2300   &rs6000_reg_names[86][0],	/* v9  */				\
2301   &rs6000_reg_names[87][0],	/* v10  */				\
2302   &rs6000_reg_names[88][0],	/* v11  */				\
2303   &rs6000_reg_names[89][0],	/* v12  */				\
2304   &rs6000_reg_names[90][0],	/* v13  */				\
2305   &rs6000_reg_names[91][0],	/* v14  */				\
2306   &rs6000_reg_names[92][0],	/* v15  */				\
2307   &rs6000_reg_names[93][0],	/* v16  */				\
2308   &rs6000_reg_names[94][0],	/* v17  */				\
2309   &rs6000_reg_names[95][0],	/* v18  */				\
2310   &rs6000_reg_names[96][0],	/* v19  */				\
2311   &rs6000_reg_names[97][0],	/* v20  */				\
2312   &rs6000_reg_names[98][0],	/* v21  */				\
2313   &rs6000_reg_names[99][0],	/* v22  */				\
2314   &rs6000_reg_names[100][0],	/* v23  */				\
2315   &rs6000_reg_names[101][0],	/* v24  */				\
2316   &rs6000_reg_names[102][0],	/* v25  */				\
2317   &rs6000_reg_names[103][0],	/* v26  */				\
2318   &rs6000_reg_names[104][0],	/* v27  */				\
2319   &rs6000_reg_names[105][0],	/* v28  */				\
2320   &rs6000_reg_names[106][0],	/* v29  */				\
2321   &rs6000_reg_names[107][0],	/* v30  */				\
2322   &rs6000_reg_names[108][0],	/* v31  */				\
2323   &rs6000_reg_names[109][0],	/* vrsave  */				\
2324   &rs6000_reg_names[110][0],	/* vscr  */				\
2325   &rs6000_reg_names[111][0],	/* sfp  */				\
2326   &rs6000_reg_names[112][0],	/* tfhar  */				\
2327   &rs6000_reg_names[113][0],	/* tfiar  */				\
2328   &rs6000_reg_names[114][0],	/* texasr  */				\
2329 }
2330 
2331 /* Table of additional register names to use in user input.  */
2332 
2333 #define ADDITIONAL_REGISTER_NAMES \
2334  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2335   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2336   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2337   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2338   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2339   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2340   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2341   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2342   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2343   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2344   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2345   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2346   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2347   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2348   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2349   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2350   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2351   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2352   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2353   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2354   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2355   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2356   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2357   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2358   {"vrsave", 109}, {"vscr", 110},				\
2359   /* no additional names for: lr, ctr, ap */			\
2360   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2361   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2362   {"cc",   68}, {"sp",    1}, {"toc",   2},			\
2363   /* CA is only part of XER, but we do not model the other parts (yet).  */ \
2364   {"xer",  76},							\
2365   /* VSX registers overlaid on top of FR, Altivec registers */	\
2366   {"vs0",  32}, {"vs1",  33}, {"vs2",  34}, {"vs3",  35},	\
2367   {"vs4",  36}, {"vs5",  37}, {"vs6",  38}, {"vs7",  39},	\
2368   {"vs8",  40}, {"vs9",  41}, {"vs10", 42}, {"vs11", 43},	\
2369   {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47},	\
2370   {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51},	\
2371   {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55},	\
2372   {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59},	\
2373   {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63},	\
2374   {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80},       \
2375   {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84},       \
2376   {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88},       \
2377   {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92},       \
2378   {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96},       \
2379   {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100},	\
2380   {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104},      \
2381   {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108},	\
2382   /* Transactional Memory Facility (HTM) Registers.  */		\
2383   {"tfhar",  112}, {"tfiar",  113}, {"texasr",  114},		\
2384 }
2385 
2386 /* This is how to output an element of a case-vector that is relative.  */
2387 
2388 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2389   do { char buf[100];					\
2390        fputs ("\t.long ", FILE);			\
2391        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2392        assemble_name (FILE, buf);			\
2393        putc ('-', FILE);				\
2394        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2395        assemble_name (FILE, buf);			\
2396        putc ('\n', FILE);				\
2397      } while (0)
2398 
2399 /* This is how to output an assembler line
2400    that says to advance the location counter
2401    to a multiple of 2**LOG bytes.  */
2402 
2403 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2404   if ((LOG) != 0)			\
2405     fprintf (FILE, "\t.align %d\n", (LOG))
2406 
2407 /* How to align the given loop. */
2408 #define LOOP_ALIGN(LABEL)  rs6000_loop_align(LABEL)
2409 
2410 /* Alignment guaranteed by __builtin_malloc.  */
2411 /* FIXME:  128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2412    However, specifying the stronger guarantee currently leads to
2413    a regression in SPEC CPU2006 437.leslie3d.  The stronger
2414    guarantee should be implemented here once that's fixed.  */
2415 #define MALLOC_ABI_ALIGNMENT (64)
2416 
2417 /* Pick up the return address upon entry to a procedure. Used for
2418    dwarf2 unwind information.  This also enables the table driven
2419    mechanism.  */
2420 
2421 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LR_REGNO)
2422 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LR_REGNO)
2423 
2424 /* Describe how we implement __builtin_eh_return.  */
2425 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2426 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2427 
2428 /* Print operand X (an rtx) in assembler syntax to file FILE.
2429    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2430    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2431 
2432 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2433 
2434 /* Define which CODE values are valid.  */
2435 
2436 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  ((CODE) == '&')
2437 
2438 /* Print a memory address as an operand to reference that memory location.  */
2439 
2440 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2441 
2442 /* For switching between functions with different target attributes.  */
2443 #define SWITCHABLE_TARGET 1
2444 
2445 /* uncomment for disabling the corresponding default options */
2446 /* #define  MACHINE_no_sched_interblock */
2447 /* #define  MACHINE_no_sched_speculative */
2448 /* #define  MACHINE_no_sched_speculative_load */
2449 
2450 /* General flags.  */
2451 extern int frame_pointer_needed;
2452 
2453 /* Classification of the builtin functions as to which switches enable the
2454    builtin, and what attributes it should have.  We used to use the target
2455    flags macros, but we've run out of bits, so we now map the options into new
2456    settings used here.  */
2457 
2458 /* Builtin attributes.  */
2459 #define RS6000_BTC_SPECIAL	0x00000000	/* Special function.  */
2460 #define RS6000_BTC_UNARY	0x00000001	/* normal unary function.  */
2461 #define RS6000_BTC_BINARY	0x00000002	/* normal binary function.  */
2462 #define RS6000_BTC_TERNARY	0x00000003	/* normal ternary function.  */
2463 #define RS6000_BTC_PREDICATE	0x00000004	/* predicate function.  */
2464 #define RS6000_BTC_ABS		0x00000005	/* Altivec/VSX ABS function.  */
2465 #define RS6000_BTC_DST		0x00000007	/* Altivec DST function.  */
2466 #define RS6000_BTC_TYPE_MASK	0x0000000f	/* Mask to isolate types */
2467 
2468 #define RS6000_BTC_MISC		0x00000000	/* No special attributes.  */
2469 #define RS6000_BTC_CONST	0x00000100	/* Neither uses, nor
2470 						   modifies global state.  */
2471 #define RS6000_BTC_PURE		0x00000200	/* reads global
2472 						   state/mem and does
2473 						   not modify global state.  */
2474 #define RS6000_BTC_FP		0x00000400	/* depends on rounding mode.  */
2475 #define RS6000_BTC_ATTR_MASK	0x00000700	/* Mask of the attributes.  */
2476 
2477 /* Miscellaneous information.  */
2478 #define RS6000_BTC_SPR		0x01000000	/* function references SPRs.  */
2479 #define RS6000_BTC_VOID		0x02000000	/* function has no return value.  */
2480 #define RS6000_BTC_CR		0x04000000	/* function references a CR.  */
2481 #define RS6000_BTC_OVERLOADED	0x08000000	/* function is overloaded.  */
2482 #define RS6000_BTC_MISC_MASK	0x1f000000	/* Mask of the misc info.  */
2483 
2484 /* Convenience macros to document the instruction type.  */
2485 #define RS6000_BTC_MEM		RS6000_BTC_MISC	/* load/store touches mem.  */
2486 #define RS6000_BTC_SAT		RS6000_BTC_MISC	/* saturate sets VSCR.  */
2487 
2488 /* Builtin targets.  For now, we reuse the masks for those options that are in
2489    target flags, and pick two random bits for paired and ldbl128, which
2490    aren't in target_flags.  */
2491 #define RS6000_BTM_ALWAYS	0		/* Always enabled.  */
2492 #define RS6000_BTM_ALTIVEC	MASK_ALTIVEC	/* VMX/altivec vectors.  */
2493 #define RS6000_BTM_CMPB		MASK_CMPB	/* ISA 2.05: compare bytes.  */
2494 #define RS6000_BTM_VSX		MASK_VSX	/* VSX (vector/scalar).  */
2495 #define RS6000_BTM_P8_VECTOR	MASK_P8_VECTOR	/* ISA 2.07 vector.  */
2496 #define RS6000_BTM_P9_VECTOR	MASK_P9_VECTOR	/* ISA 3.0 vector.  */
2497 #define RS6000_BTM_P9_MISC	MASK_P9_MISC	/* ISA 3.0 misc. non-vector */
2498 #define RS6000_BTM_CRYPTO	MASK_CRYPTO	/* crypto funcs.  */
2499 #define RS6000_BTM_HTM		MASK_HTM	/* hardware TM funcs.  */
2500 #define RS6000_BTM_PAIRED	MASK_MULHW	/* 750CL paired insns.  */
2501 #define RS6000_BTM_FRE		MASK_POPCNTB	/* FRE instruction.  */
2502 #define RS6000_BTM_FRES		MASK_PPC_GFXOPT	/* FRES instruction.  */
2503 #define RS6000_BTM_FRSQRTE	MASK_PPC_GFXOPT	/* FRSQRTE instruction.  */
2504 #define RS6000_BTM_FRSQRTES	MASK_POPCNTB	/* FRSQRTES instruction.  */
2505 #define RS6000_BTM_POPCNTD	MASK_POPCNTD	/* Target supports ISA 2.06.  */
2506 #define RS6000_BTM_CELL		MASK_FPRND	/* Target is cell powerpc.  */
2507 #define RS6000_BTM_DFP		MASK_DFP	/* Decimal floating point.  */
2508 #define RS6000_BTM_HARD_FLOAT	MASK_SOFT_FLOAT	/* Hardware floating point.  */
2509 #define RS6000_BTM_LDBL128	MASK_MULTIPLE	/* 128-bit long double.  */
2510 #define RS6000_BTM_64BIT	MASK_64BIT	/* 64-bit addressing.  */
2511 #define RS6000_BTM_POWERPC64	MASK_POWERPC64	/* 64-bit registers.  */
2512 #define RS6000_BTM_FLOAT128	MASK_FLOAT128_KEYWORD /* IEEE 128-bit float.  */
2513 #define RS6000_BTM_FLOAT128_HW	MASK_FLOAT128_HW /* IEEE 128-bit float h/w.  */
2514 
2515 #define RS6000_BTM_COMMON	(RS6000_BTM_ALTIVEC			\
2516 				 | RS6000_BTM_VSX			\
2517 				 | RS6000_BTM_P8_VECTOR			\
2518 				 | RS6000_BTM_P9_VECTOR			\
2519 				 | RS6000_BTM_P9_MISC			\
2520 				 | RS6000_BTM_MODULO                    \
2521 				 | RS6000_BTM_CRYPTO			\
2522 				 | RS6000_BTM_FRE			\
2523 				 | RS6000_BTM_FRES			\
2524 				 | RS6000_BTM_FRSQRTE			\
2525 				 | RS6000_BTM_FRSQRTES			\
2526 				 | RS6000_BTM_HTM			\
2527 				 | RS6000_BTM_POPCNTD			\
2528 				 | RS6000_BTM_CELL			\
2529 				 | RS6000_BTM_DFP			\
2530 				 | RS6000_BTM_HARD_FLOAT		\
2531 				 | RS6000_BTM_LDBL128			\
2532 				 | RS6000_BTM_POWERPC64			\
2533 				 | RS6000_BTM_FLOAT128			\
2534 				 | RS6000_BTM_FLOAT128_HW)
2535 
2536 /* Define builtin enum index.  */
2537 
2538 #undef RS6000_BUILTIN_0
2539 #undef RS6000_BUILTIN_1
2540 #undef RS6000_BUILTIN_2
2541 #undef RS6000_BUILTIN_3
2542 #undef RS6000_BUILTIN_A
2543 #undef RS6000_BUILTIN_D
2544 #undef RS6000_BUILTIN_H
2545 #undef RS6000_BUILTIN_P
2546 #undef RS6000_BUILTIN_Q
2547 #undef RS6000_BUILTIN_X
2548 
2549 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2550 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2551 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2552 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2553 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2554 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2555 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2556 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2557 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2558 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2559 
2560 enum rs6000_builtins
2561 {
2562 #include "rs6000-builtin.def"
2563 
2564   RS6000_BUILTIN_COUNT
2565 };
2566 
2567 #undef RS6000_BUILTIN_0
2568 #undef RS6000_BUILTIN_1
2569 #undef RS6000_BUILTIN_2
2570 #undef RS6000_BUILTIN_3
2571 #undef RS6000_BUILTIN_A
2572 #undef RS6000_BUILTIN_D
2573 #undef RS6000_BUILTIN_H
2574 #undef RS6000_BUILTIN_P
2575 #undef RS6000_BUILTIN_Q
2576 #undef RS6000_BUILTIN_X
2577 
2578 enum rs6000_builtin_type_index
2579 {
2580   RS6000_BTI_NOT_OPAQUE,
2581   RS6000_BTI_opaque_V2SI,
2582   RS6000_BTI_opaque_V2SF,
2583   RS6000_BTI_opaque_p_V2SI,
2584   RS6000_BTI_opaque_V4SI,
2585   RS6000_BTI_V16QI,              /* __vector signed char */
2586   RS6000_BTI_V1TI,
2587   RS6000_BTI_V2SI,
2588   RS6000_BTI_V2SF,
2589   RS6000_BTI_V2DI,
2590   RS6000_BTI_V2DF,
2591   RS6000_BTI_V4HI,
2592   RS6000_BTI_V4SI,
2593   RS6000_BTI_V4SF,
2594   RS6000_BTI_V8HI,
2595   RS6000_BTI_unsigned_V16QI,     /* __vector unsigned char */
2596   RS6000_BTI_unsigned_V1TI,
2597   RS6000_BTI_unsigned_V8HI,
2598   RS6000_BTI_unsigned_V4SI,
2599   RS6000_BTI_unsigned_V2DI,
2600   RS6000_BTI_bool_char,          /* __bool char */
2601   RS6000_BTI_bool_short,         /* __bool short */
2602   RS6000_BTI_bool_int,           /* __bool int */
2603   RS6000_BTI_bool_long_long,     /* __bool long long */
2604   RS6000_BTI_pixel,              /* __pixel (16 bits arranged as 4
2605 				    channels of 1, 5, 5, and 5 bits
2606 				    respectively as packed with the
2607 				    vpkpx insn.  __pixel is only
2608 				    meaningful as a vector type.
2609 				    There is no corresponding scalar
2610 				    __pixel data type.)  */
2611   RS6000_BTI_bool_V16QI,         /* __vector __bool char */
2612   RS6000_BTI_bool_V8HI,          /* __vector __bool short */
2613   RS6000_BTI_bool_V4SI,          /* __vector __bool int */
2614   RS6000_BTI_bool_V2DI,          /* __vector __bool long */
2615   RS6000_BTI_pixel_V8HI,         /* __vector __pixel */
2616   RS6000_BTI_long,	         /* long_integer_type_node */
2617   RS6000_BTI_unsigned_long,      /* long_unsigned_type_node */
2618   RS6000_BTI_long_long,	         /* long_long_integer_type_node */
2619   RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2620   RS6000_BTI_INTQI,	         /* (signed) intQI_type_node */
2621   RS6000_BTI_UINTQI,		 /* unsigned_intQI_type_node */
2622   RS6000_BTI_INTHI,	         /* intHI_type_node */
2623   RS6000_BTI_UINTHI,		 /* unsigned_intHI_type_node */
2624   RS6000_BTI_INTSI,		 /* intSI_type_node (signed) */
2625   RS6000_BTI_UINTSI,		 /* unsigned_intSI_type_node */
2626   RS6000_BTI_INTDI,		 /* intDI_type_node */
2627   RS6000_BTI_UINTDI,		 /* unsigned_intDI_type_node */
2628   RS6000_BTI_INTTI,		 /* intTI_type_node */
2629   RS6000_BTI_UINTTI,		 /* unsigned_intTI_type_node */
2630   RS6000_BTI_float,	         /* float_type_node */
2631   RS6000_BTI_double,	         /* double_type_node */
2632   RS6000_BTI_long_double,        /* long_double_type_node */
2633   RS6000_BTI_dfloat64,		 /* dfloat64_type_node */
2634   RS6000_BTI_dfloat128,		 /* dfloat128_type_node */
2635   RS6000_BTI_void,	         /* void_type_node */
2636   RS6000_BTI_ieee128_float,	 /* ieee 128-bit floating point */
2637   RS6000_BTI_ibm128_float,	 /* IBM 128-bit floating point */
2638   RS6000_BTI_const_str,		 /* pointer to const char * */
2639   RS6000_BTI_MAX
2640 };
2641 
2642 
2643 #define opaque_V2SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2644 #define opaque_V2SF_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2645 #define opaque_p_V2SI_type_node       (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2646 #define opaque_V4SI_type_node         (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2647 #define V16QI_type_node               (rs6000_builtin_types[RS6000_BTI_V16QI])
2648 #define V1TI_type_node                (rs6000_builtin_types[RS6000_BTI_V1TI])
2649 #define V2DI_type_node                (rs6000_builtin_types[RS6000_BTI_V2DI])
2650 #define V2DF_type_node                (rs6000_builtin_types[RS6000_BTI_V2DF])
2651 #define V2SI_type_node                (rs6000_builtin_types[RS6000_BTI_V2SI])
2652 #define V2SF_type_node                (rs6000_builtin_types[RS6000_BTI_V2SF])
2653 #define V4HI_type_node                (rs6000_builtin_types[RS6000_BTI_V4HI])
2654 #define V4SI_type_node                (rs6000_builtin_types[RS6000_BTI_V4SI])
2655 #define V4SF_type_node                (rs6000_builtin_types[RS6000_BTI_V4SF])
2656 #define V8HI_type_node                (rs6000_builtin_types[RS6000_BTI_V8HI])
2657 #define unsigned_V16QI_type_node      (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2658 #define unsigned_V1TI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2659 #define unsigned_V8HI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2660 #define unsigned_V4SI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2661 #define unsigned_V2DI_type_node       (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2662 #define bool_char_type_node           (rs6000_builtin_types[RS6000_BTI_bool_char])
2663 #define bool_short_type_node          (rs6000_builtin_types[RS6000_BTI_bool_short])
2664 #define bool_int_type_node            (rs6000_builtin_types[RS6000_BTI_bool_int])
2665 #define bool_long_long_type_node      (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2666 #define pixel_type_node               (rs6000_builtin_types[RS6000_BTI_pixel])
2667 #define bool_V16QI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2668 #define bool_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2669 #define bool_V4SI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2670 #define bool_V2DI_type_node	      (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2671 #define pixel_V8HI_type_node	      (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2672 
2673 #define long_long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long_long])
2674 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2675 #define long_integer_type_internal_node  (rs6000_builtin_types[RS6000_BTI_long])
2676 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2677 #define intQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTQI])
2678 #define uintQI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTQI])
2679 #define intHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTHI])
2680 #define uintHI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTHI])
2681 #define intSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTSI])
2682 #define uintSI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTSI])
2683 #define intDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTDI])
2684 #define uintDI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTDI])
2685 #define intTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_INTTI])
2686 #define uintTI_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_UINTTI])
2687 #define float_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_float])
2688 #define double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_double])
2689 #define long_double_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_long_double])
2690 #define dfloat64_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat64])
2691 #define dfloat128_type_internal_node	 (rs6000_builtin_types[RS6000_BTI_dfloat128])
2692 #define void_type_internal_node		 (rs6000_builtin_types[RS6000_BTI_void])
2693 #define ieee128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2694 #define ibm128_float_type_node		 (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2695 #define const_str_type_node		 (rs6000_builtin_types[RS6000_BTI_const_str])
2696 
2697 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2698 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2699 
2700 #define TARGET_SUPPORTS_WIDE_INT 1
2701 
2702 #if (GCC_VERSION >= 3000)
2703 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2704 #endif
2705