1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "profile-count.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "except.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "expr.h"
41 #include "common/common-target.h"
42 #include "output.h"
43 #include "params.h"
44 
45 static rtx break_out_memory_refs (rtx);
46 static void anti_adjust_stack_and_probe_stack_clash (rtx);
47 
48 
49 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
50 
51 HOST_WIDE_INT
trunc_int_for_mode(HOST_WIDE_INT c,machine_mode mode)52 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
53 {
54   /* Not scalar_int_mode because we also allow pointer bound modes.  */
55   scalar_mode smode = as_a <scalar_mode> (mode);
56   int width = GET_MODE_PRECISION (smode);
57 
58   /* You want to truncate to a _what_?  */
59   gcc_assert (SCALAR_INT_MODE_P (mode)
60 	      || POINTER_BOUNDS_MODE_P (mode));
61 
62   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
63   if (smode == BImode)
64     return c & 1 ? STORE_FLAG_VALUE : 0;
65 
66   /* Sign-extend for the requested mode.  */
67 
68   if (width < HOST_BITS_PER_WIDE_INT)
69     {
70       HOST_WIDE_INT sign = 1;
71       sign <<= width - 1;
72       c &= (sign << 1) - 1;
73       c ^= sign;
74       c -= sign;
75     }
76 
77   return c;
78 }
79 
80 /* Likewise for polynomial values, using the sign-extended representation
81    for each individual coefficient.  */
82 
83 poly_int64
trunc_int_for_mode(poly_int64 x,machine_mode mode)84 trunc_int_for_mode (poly_int64 x, machine_mode mode)
85 {
86   for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
87     x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
88   return x;
89 }
90 
91 /* Return an rtx for the sum of X and the integer C, given that X has
92    mode MODE.  INPLACE is true if X can be modified inplace or false
93    if it must be treated as immutable.  */
94 
95 rtx
plus_constant(machine_mode mode,rtx x,poly_int64 c,bool inplace)96 plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
97 {
98   RTX_CODE code;
99   rtx y;
100   rtx tem;
101   int all_constant = 0;
102 
103   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
104 
105   if (known_eq (c, 0))
106     return x;
107 
108  restart:
109 
110   code = GET_CODE (x);
111   y = x;
112 
113   switch (code)
114     {
115     CASE_CONST_SCALAR_INT:
116       return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
117     case MEM:
118       /* If this is a reference to the constant pool, try replacing it with
119 	 a reference to a new constant.  If the resulting address isn't
120 	 valid, don't return it because we have no way to validize it.  */
121       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
122 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 	{
124 	  rtx cst = get_pool_constant (XEXP (x, 0));
125 
126 	  if (GET_CODE (cst) == CONST_VECTOR
127 	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
128 	    {
129 	      cst = gen_lowpart (mode, cst);
130 	      gcc_assert (cst);
131 	    }
132 	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
133 	    {
134 	      tem = plus_constant (mode, cst, c);
135 	      tem = force_const_mem (GET_MODE (x), tem);
136 	      /* Targets may disallow some constants in the constant pool, thus
137 		 force_const_mem may return NULL_RTX.  */
138 	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
139 		return tem;
140 	    }
141 	}
142       break;
143 
144     case CONST:
145       /* If adding to something entirely constant, set a flag
146 	 so that we can add a CONST around the result.  */
147       if (inplace && shared_const_p (x))
148 	inplace = false;
149       x = XEXP (x, 0);
150       all_constant = 1;
151       goto restart;
152 
153     case SYMBOL_REF:
154     case LABEL_REF:
155       all_constant = 1;
156       break;
157 
158     case PLUS:
159       /* The interesting case is adding the integer to a sum.  Look
160 	 for constant term in the sum and combine with C.  For an
161 	 integer constant term or a constant term that is not an
162 	 explicit integer, we combine or group them together anyway.
163 
164 	 We may not immediately return from the recursive call here, lest
165 	 all_constant gets lost.  */
166 
167       if (CONSTANT_P (XEXP (x, 1)))
168 	{
169 	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
170 	  if (term == const0_rtx)
171 	    x = XEXP (x, 0);
172 	  else if (inplace)
173 	    XEXP (x, 1) = term;
174 	  else
175 	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
176 	  c = 0;
177 	}
178       else if (rtx *const_loc = find_constant_term_loc (&y))
179 	{
180 	  if (!inplace)
181 	    {
182 	      /* We need to be careful since X may be shared and we can't
183 		 modify it in place.  */
184 	      x = copy_rtx (x);
185 	      const_loc = find_constant_term_loc (&x);
186 	    }
187 	  *const_loc = plus_constant (mode, *const_loc, c, true);
188 	  c = 0;
189 	}
190       break;
191 
192     default:
193       if (CONST_POLY_INT_P (x))
194 	return immed_wide_int_const (const_poly_int_value (x) + c, mode);
195       break;
196     }
197 
198   if (maybe_ne (c, 0))
199     x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
200 
201   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
202     return x;
203   else if (all_constant)
204     return gen_rtx_CONST (mode, x);
205   else
206     return x;
207 }
208 
209 /* If X is a sum, return a new sum like X but lacking any constant terms.
210    Add all the removed constant terms into *CONSTPTR.
211    X itself is not altered.  The result != X if and only if
212    it is not isomorphic to X.  */
213 
214 rtx
eliminate_constant_term(rtx x,rtx * constptr)215 eliminate_constant_term (rtx x, rtx *constptr)
216 {
217   rtx x0, x1;
218   rtx tem;
219 
220   if (GET_CODE (x) != PLUS)
221     return x;
222 
223   /* First handle constants appearing at this level explicitly.  */
224   if (CONST_INT_P (XEXP (x, 1))
225       && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
226 					   XEXP (x, 1))) != 0
227       && CONST_INT_P (tem))
228     {
229       *constptr = tem;
230       return eliminate_constant_term (XEXP (x, 0), constptr);
231     }
232 
233   tem = const0_rtx;
234   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
235   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
236   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
237       && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
238 					   *constptr, tem)) != 0
239       && CONST_INT_P (tem))
240     {
241       *constptr = tem;
242       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
243     }
244 
245   return x;
246 }
247 
248 
249 /* Return a copy of X in which all memory references
250    and all constants that involve symbol refs
251    have been replaced with new temporary registers.
252    Also emit code to load the memory locations and constants
253    into those registers.
254 
255    If X contains no such constants or memory references,
256    X itself (not a copy) is returned.
257 
258    If a constant is found in the address that is not a legitimate constant
259    in an insn, it is left alone in the hope that it might be valid in the
260    address.
261 
262    X may contain no arithmetic except addition, subtraction and multiplication.
263    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
264 
265 static rtx
break_out_memory_refs(rtx x)266 break_out_memory_refs (rtx x)
267 {
268   if (MEM_P (x)
269       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
270 	  && GET_MODE (x) != VOIDmode))
271     x = force_reg (GET_MODE (x), x);
272   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
273 	   || GET_CODE (x) == MULT)
274     {
275       rtx op0 = break_out_memory_refs (XEXP (x, 0));
276       rtx op1 = break_out_memory_refs (XEXP (x, 1));
277 
278       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
279 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
280     }
281 
282   return x;
283 }
284 
285 /* Given X, a memory address in address space AS' pointer mode, convert it to
286    an address in the address space's address mode, or vice versa (TO_MODE says
287    which way).  We take advantage of the fact that pointers are not allowed to
288    overflow by commuting arithmetic operations over conversions so that address
289    arithmetic insns can be used. IN_CONST is true if this conversion is inside
290    a CONST. NO_EMIT is true if no insns should be emitted, and instead
291    it should return NULL if it can't be simplified without emitting insns.  */
292 
293 rtx
convert_memory_address_addr_space_1(scalar_int_mode to_mode ATTRIBUTE_UNUSED,rtx x,addr_space_t as ATTRIBUTE_UNUSED,bool in_const ATTRIBUTE_UNUSED,bool no_emit ATTRIBUTE_UNUSED)294 convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
295 				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
296 				     bool in_const ATTRIBUTE_UNUSED,
297 				     bool no_emit ATTRIBUTE_UNUSED)
298 {
299 #ifndef POINTERS_EXTEND_UNSIGNED
300   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
301   return x;
302 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
303   scalar_int_mode pointer_mode, address_mode, from_mode;
304   rtx temp;
305   enum rtx_code code;
306 
307   /* If X already has the right mode, just return it.  */
308   if (GET_MODE (x) == to_mode)
309     return x;
310 
311   pointer_mode = targetm.addr_space.pointer_mode (as);
312   address_mode = targetm.addr_space.address_mode (as);
313   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
314 
315   /* Here we handle some special cases.  If none of them apply, fall through
316      to the default case.  */
317   switch (GET_CODE (x))
318     {
319     CASE_CONST_SCALAR_INT:
320       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
321 	code = TRUNCATE;
322       else if (POINTERS_EXTEND_UNSIGNED < 0)
323 	break;
324       else if (POINTERS_EXTEND_UNSIGNED > 0)
325 	code = ZERO_EXTEND;
326       else
327 	code = SIGN_EXTEND;
328       temp = simplify_unary_operation (code, to_mode, x, from_mode);
329       if (temp)
330 	return temp;
331       break;
332 
333     case SUBREG:
334       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
335 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
336 	return SUBREG_REG (x);
337       break;
338 
339     case LABEL_REF:
340       temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
341       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
342       return temp;
343 
344     case SYMBOL_REF:
345       temp = shallow_copy_rtx (x);
346       PUT_MODE (temp, to_mode);
347       return temp;
348 
349     case CONST:
350       temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
351 						  true, no_emit);
352       return temp ? gen_rtx_CONST (to_mode, temp) : temp;
353 
354     case PLUS:
355     case MULT:
356       /* For addition we can safely permute the conversion and addition
357 	 operation if one operand is a constant and converting the constant
358 	 does not change it or if one operand is a constant and we are
359 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
360 	 We can always safely permute them if we are making the address
361 	 narrower. Inside a CONST RTL, this is safe for both pointers
362 	 zero or sign extended as pointers cannot wrap. */
363       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
364 	  || (GET_CODE (x) == PLUS
365 	      && CONST_INT_P (XEXP (x, 1))
366 	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
367 		  || XEXP (x, 1) == convert_memory_address_addr_space_1
368 				     (to_mode, XEXP (x, 1), as, in_const,
369 				      no_emit)
370                   || POINTERS_EXTEND_UNSIGNED < 0)))
371 	{
372 	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
373 						      as, in_const, no_emit);
374 	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
375 					 temp, XEXP (x, 1))
376 		       : temp);
377 	}
378       break;
379 
380     default:
381       break;
382     }
383 
384   if (no_emit)
385     return NULL_RTX;
386 
387   return convert_modes (to_mode, from_mode,
388 			x, POINTERS_EXTEND_UNSIGNED);
389 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
390 }
391 
392 /* Given X, a memory address in address space AS' pointer mode, convert it to
393    an address in the address space's address mode, or vice versa (TO_MODE says
394    which way).  We take advantage of the fact that pointers are not allowed to
395    overflow by commuting arithmetic operations over conversions so that address
396    arithmetic insns can be used.  */
397 
398 rtx
convert_memory_address_addr_space(scalar_int_mode to_mode,rtx x,addr_space_t as)399 convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
400 				   addr_space_t as)
401 {
402   return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
403 }
404 
405 
406 /* Return something equivalent to X but valid as a memory address for something
407    of mode MODE in the named address space AS.  When X is not itself valid,
408    this works by copying X or subexpressions of it into registers.  */
409 
410 rtx
memory_address_addr_space(machine_mode mode,rtx x,addr_space_t as)411 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
412 {
413   rtx oldx = x;
414   scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
415 
416   x = convert_memory_address_addr_space (address_mode, x, as);
417 
418   /* By passing constant addresses through registers
419      we get a chance to cse them.  */
420   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
421     x = force_reg (address_mode, x);
422 
423   /* We get better cse by rejecting indirect addressing at this stage.
424      Let the combiner create indirect addresses where appropriate.
425      For now, generate the code so that the subexpressions useful to share
426      are visible.  But not if cse won't be done!  */
427   else
428     {
429       if (! cse_not_expected && !REG_P (x))
430 	x = break_out_memory_refs (x);
431 
432       /* At this point, any valid address is accepted.  */
433       if (memory_address_addr_space_p (mode, x, as))
434 	goto done;
435 
436       /* If it was valid before but breaking out memory refs invalidated it,
437 	 use it the old way.  */
438       if (memory_address_addr_space_p (mode, oldx, as))
439 	{
440 	  x = oldx;
441 	  goto done;
442 	}
443 
444       /* Perform machine-dependent transformations on X
445 	 in certain cases.  This is not necessary since the code
446 	 below can handle all possible cases, but machine-dependent
447 	 transformations can make better code.  */
448       {
449 	rtx orig_x = x;
450 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
451 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
452 	  goto done;
453       }
454 
455       /* PLUS and MULT can appear in special ways
456 	 as the result of attempts to make an address usable for indexing.
457 	 Usually they are dealt with by calling force_operand, below.
458 	 But a sum containing constant terms is special
459 	 if removing them makes the sum a valid address:
460 	 then we generate that address in a register
461 	 and index off of it.  We do this because it often makes
462 	 shorter code, and because the addresses thus generated
463 	 in registers often become common subexpressions.  */
464       if (GET_CODE (x) == PLUS)
465 	{
466 	  rtx constant_term = const0_rtx;
467 	  rtx y = eliminate_constant_term (x, &constant_term);
468 	  if (constant_term == const0_rtx
469 	      || ! memory_address_addr_space_p (mode, y, as))
470 	    x = force_operand (x, NULL_RTX);
471 	  else
472 	    {
473 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
474 	      if (! memory_address_addr_space_p (mode, y, as))
475 		x = force_operand (x, NULL_RTX);
476 	      else
477 		x = y;
478 	    }
479 	}
480 
481       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
482 	x = force_operand (x, NULL_RTX);
483 
484       /* If we have a register that's an invalid address,
485 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
486       else if (REG_P (x))
487 	x = copy_to_reg (x);
488 
489       /* Last resort: copy the value to a register, since
490 	 the register is a valid address.  */
491       else
492 	x = force_reg (address_mode, x);
493     }
494 
495  done:
496 
497   gcc_assert (memory_address_addr_space_p (mode, x, as));
498   /* If we didn't change the address, we are done.  Otherwise, mark
499      a reg as a pointer if we have REG or REG + CONST_INT.  */
500   if (oldx == x)
501     return x;
502   else if (REG_P (x))
503     mark_reg_pointer (x, BITS_PER_UNIT);
504   else if (GET_CODE (x) == PLUS
505 	   && REG_P (XEXP (x, 0))
506 	   && CONST_INT_P (XEXP (x, 1)))
507     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
508 
509   /* OLDX may have been the address on a temporary.  Update the address
510      to indicate that X is now used.  */
511   update_temp_slot_address (oldx, x);
512 
513   return x;
514 }
515 
516 /* Convert a mem ref into one with a valid memory address.
517    Pass through anything else unchanged.  */
518 
519 rtx
validize_mem(rtx ref)520 validize_mem (rtx ref)
521 {
522   if (!MEM_P (ref))
523     return ref;
524   ref = use_anchored_address (ref);
525   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
526 				   MEM_ADDR_SPACE (ref)))
527     return ref;
528 
529   /* Don't alter REF itself, since that is probably a stack slot.  */
530   return replace_equiv_address (ref, XEXP (ref, 0));
531 }
532 
533 /* If X is a memory reference to a member of an object block, try rewriting
534    it to use an anchor instead.  Return the new memory reference on success
535    and the old one on failure.  */
536 
537 rtx
use_anchored_address(rtx x)538 use_anchored_address (rtx x)
539 {
540   rtx base;
541   HOST_WIDE_INT offset;
542   machine_mode mode;
543 
544   if (!flag_section_anchors)
545     return x;
546 
547   if (!MEM_P (x))
548     return x;
549 
550   /* Split the address into a base and offset.  */
551   base = XEXP (x, 0);
552   offset = 0;
553   if (GET_CODE (base) == CONST
554       && GET_CODE (XEXP (base, 0)) == PLUS
555       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
556     {
557       offset += INTVAL (XEXP (XEXP (base, 0), 1));
558       base = XEXP (XEXP (base, 0), 0);
559     }
560 
561   /* Check whether BASE is suitable for anchors.  */
562   if (GET_CODE (base) != SYMBOL_REF
563       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
564       || SYMBOL_REF_ANCHOR_P (base)
565       || SYMBOL_REF_BLOCK (base) == NULL
566       || !targetm.use_anchors_for_symbol_p (base))
567     return x;
568 
569   /* Decide where BASE is going to be.  */
570   place_block_symbol (base);
571 
572   /* Get the anchor we need to use.  */
573   offset += SYMBOL_REF_BLOCK_OFFSET (base);
574   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
575 			     SYMBOL_REF_TLS_MODEL (base));
576 
577   /* Work out the offset from the anchor.  */
578   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
579 
580   /* If we're going to run a CSE pass, force the anchor into a register.
581      We will then be able to reuse registers for several accesses, if the
582      target costs say that that's worthwhile.  */
583   mode = GET_MODE (base);
584   if (!cse_not_expected)
585     base = force_reg (mode, base);
586 
587   return replace_equiv_address (x, plus_constant (mode, base, offset));
588 }
589 
590 /* Copy the value or contents of X to a new temp reg and return that reg.  */
591 
592 rtx
copy_to_reg(rtx x)593 copy_to_reg (rtx x)
594 {
595   rtx temp = gen_reg_rtx (GET_MODE (x));
596 
597   /* If not an operand, must be an address with PLUS and MULT so
598      do the computation.  */
599   if (! general_operand (x, VOIDmode))
600     x = force_operand (x, temp);
601 
602   if (x != temp)
603     emit_move_insn (temp, x);
604 
605   return temp;
606 }
607 
608 /* Like copy_to_reg but always give the new register mode Pmode
609    in case X is a constant.  */
610 
611 rtx
copy_addr_to_reg(rtx x)612 copy_addr_to_reg (rtx x)
613 {
614   return copy_to_mode_reg (Pmode, x);
615 }
616 
617 /* Like copy_to_reg but always give the new register mode MODE
618    in case X is a constant.  */
619 
620 rtx
copy_to_mode_reg(machine_mode mode,rtx x)621 copy_to_mode_reg (machine_mode mode, rtx x)
622 {
623   rtx temp = gen_reg_rtx (mode);
624 
625   /* If not an operand, must be an address with PLUS and MULT so
626      do the computation.  */
627   if (! general_operand (x, VOIDmode))
628     x = force_operand (x, temp);
629 
630   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
631   if (x != temp)
632     emit_move_insn (temp, x);
633   return temp;
634 }
635 
636 /* Load X into a register if it is not already one.
637    Use mode MODE for the register.
638    X should be valid for mode MODE, but it may be a constant which
639    is valid for all integer modes; that's why caller must specify MODE.
640 
641    The caller must not alter the value in the register we return,
642    since we mark it as a "constant" register.  */
643 
644 rtx
force_reg(machine_mode mode,rtx x)645 force_reg (machine_mode mode, rtx x)
646 {
647   rtx temp, set;
648   rtx_insn *insn;
649 
650   if (REG_P (x))
651     return x;
652 
653   if (general_operand (x, mode))
654     {
655       temp = gen_reg_rtx (mode);
656       insn = emit_move_insn (temp, x);
657     }
658   else
659     {
660       temp = force_operand (x, NULL_RTX);
661       if (REG_P (temp))
662 	insn = get_last_insn ();
663       else
664 	{
665 	  rtx temp2 = gen_reg_rtx (mode);
666 	  insn = emit_move_insn (temp2, temp);
667 	  temp = temp2;
668 	}
669     }
670 
671   /* Let optimizers know that TEMP's value never changes
672      and that X can be substituted for it.  Don't get confused
673      if INSN set something else (such as a SUBREG of TEMP).  */
674   if (CONSTANT_P (x)
675       && (set = single_set (insn)) != 0
676       && SET_DEST (set) == temp
677       && ! rtx_equal_p (x, SET_SRC (set)))
678     set_unique_reg_note (insn, REG_EQUAL, x);
679 
680   /* Let optimizers know that TEMP is a pointer, and if so, the
681      known alignment of that pointer.  */
682   {
683     unsigned align = 0;
684     if (GET_CODE (x) == SYMBOL_REF)
685       {
686         align = BITS_PER_UNIT;
687 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
688 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
689       }
690     else if (GET_CODE (x) == LABEL_REF)
691       align = BITS_PER_UNIT;
692     else if (GET_CODE (x) == CONST
693 	     && GET_CODE (XEXP (x, 0)) == PLUS
694 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
695 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
696       {
697 	rtx s = XEXP (XEXP (x, 0), 0);
698 	rtx c = XEXP (XEXP (x, 0), 1);
699 	unsigned sa, ca;
700 
701 	sa = BITS_PER_UNIT;
702 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
703 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
704 
705 	if (INTVAL (c) == 0)
706 	  align = sa;
707 	else
708 	  {
709 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
710 	    align = MIN (sa, ca);
711 	  }
712       }
713 
714     if (align || (MEM_P (x) && MEM_POINTER (x)))
715       mark_reg_pointer (temp, align);
716   }
717 
718   return temp;
719 }
720 
721 /* If X is a memory ref, copy its contents to a new temp reg and return
722    that reg.  Otherwise, return X.  */
723 
724 rtx
force_not_mem(rtx x)725 force_not_mem (rtx x)
726 {
727   rtx temp;
728 
729   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
730     return x;
731 
732   temp = gen_reg_rtx (GET_MODE (x));
733 
734   if (MEM_POINTER (x))
735     REG_POINTER (temp) = 1;
736 
737   emit_move_insn (temp, x);
738   return temp;
739 }
740 
741 /* Copy X to TARGET (if it's nonzero and a reg)
742    or to a new temp reg and return that reg.
743    MODE is the mode to use for X in case it is a constant.  */
744 
745 rtx
copy_to_suggested_reg(rtx x,rtx target,machine_mode mode)746 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
747 {
748   rtx temp;
749 
750   if (target && REG_P (target))
751     temp = target;
752   else
753     temp = gen_reg_rtx (mode);
754 
755   emit_move_insn (temp, x);
756   return temp;
757 }
758 
759 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
760    PUNSIGNEDP points to the signedness of the type and may be adjusted
761    to show what signedness to use on extension operations.
762 
763    FOR_RETURN is nonzero if the caller is promoting the return value
764    of FNDECL, else it is for promoting args.  */
765 
766 machine_mode
promote_function_mode(const_tree type,machine_mode mode,int * punsignedp,const_tree funtype,int for_return)767 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
768 		       const_tree funtype, int for_return)
769 {
770   /* Called without a type node for a libcall.  */
771   if (type == NULL_TREE)
772     {
773       if (INTEGRAL_MODE_P (mode))
774 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
775 						    punsignedp, funtype,
776 						    for_return);
777       else
778 	return mode;
779     }
780 
781   switch (TREE_CODE (type))
782     {
783     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
784     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
785     case POINTER_TYPE:   case REFERENCE_TYPE:
786       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
787 						  for_return);
788 
789     default:
790       return mode;
791     }
792 }
793 /* Return the mode to use to store a scalar of TYPE and MODE.
794    PUNSIGNEDP points to the signedness of the type and may be adjusted
795    to show what signedness to use on extension operations.  */
796 
797 machine_mode
promote_mode(const_tree type ATTRIBUTE_UNUSED,machine_mode mode,int * punsignedp ATTRIBUTE_UNUSED)798 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
799 	      int *punsignedp ATTRIBUTE_UNUSED)
800 {
801 #ifdef PROMOTE_MODE
802   enum tree_code code;
803   int unsignedp;
804   scalar_mode smode;
805 #endif
806 
807   /* For libcalls this is invoked without TYPE from the backends
808      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
809      case.  */
810   if (type == NULL_TREE)
811     return mode;
812 
813   /* FIXME: this is the same logic that was there until GCC 4.4, but we
814      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
815      is not defined.  The affected targets are M32C, S390, SPARC.  */
816 #ifdef PROMOTE_MODE
817   code = TREE_CODE (type);
818   unsignedp = *punsignedp;
819 
820   switch (code)
821     {
822     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
823     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
824       /* Values of these types always have scalar mode.  */
825       smode = as_a <scalar_mode> (mode);
826       PROMOTE_MODE (smode, unsignedp, type);
827       *punsignedp = unsignedp;
828       return smode;
829 
830 #ifdef POINTERS_EXTEND_UNSIGNED
831     case REFERENCE_TYPE:
832     case POINTER_TYPE:
833       *punsignedp = POINTERS_EXTEND_UNSIGNED;
834       return targetm.addr_space.address_mode
835 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
836 #endif
837 
838     default:
839       return mode;
840     }
841 #else
842   return mode;
843 #endif
844 }
845 
846 
847 /* Use one of promote_mode or promote_function_mode to find the promoted
848    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
849    of DECL after promotion.  */
850 
851 machine_mode
promote_decl_mode(const_tree decl,int * punsignedp)852 promote_decl_mode (const_tree decl, int *punsignedp)
853 {
854   tree type = TREE_TYPE (decl);
855   int unsignedp = TYPE_UNSIGNED (type);
856   machine_mode mode = DECL_MODE (decl);
857   machine_mode pmode;
858 
859   if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
860     pmode = promote_function_mode (type, mode, &unsignedp,
861                                    TREE_TYPE (current_function_decl), 1);
862   else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
863     pmode = promote_function_mode (type, mode, &unsignedp,
864                                    TREE_TYPE (current_function_decl), 2);
865   else
866     pmode = promote_mode (type, mode, &unsignedp);
867 
868   if (punsignedp)
869     *punsignedp = unsignedp;
870   return pmode;
871 }
872 
873 /* Return the promoted mode for name.  If it is a named SSA_NAME, it
874    is the same as promote_decl_mode.  Otherwise, it is the promoted
875    mode of a temp decl of same type as the SSA_NAME, if we had created
876    one.  */
877 
878 machine_mode
promote_ssa_mode(const_tree name,int * punsignedp)879 promote_ssa_mode (const_tree name, int *punsignedp)
880 {
881   gcc_assert (TREE_CODE (name) == SSA_NAME);
882 
883   /* Partitions holding parms and results must be promoted as expected
884      by function.c.  */
885   if (SSA_NAME_VAR (name)
886       && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
887 	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
888     {
889       machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
890       if (mode != BLKmode)
891 	return mode;
892     }
893 
894   tree type = TREE_TYPE (name);
895   int unsignedp = TYPE_UNSIGNED (type);
896   machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
897   if (punsignedp)
898     *punsignedp = unsignedp;
899 
900   return pmode;
901 }
902 
903 
904 
905 /* Controls the behavior of {anti_,}adjust_stack.  */
906 static bool suppress_reg_args_size;
907 
908 /* A helper for adjust_stack and anti_adjust_stack.  */
909 
910 static void
adjust_stack_1(rtx adjust,bool anti_p)911 adjust_stack_1 (rtx adjust, bool anti_p)
912 {
913   rtx temp;
914   rtx_insn *insn;
915 
916   /* Hereafter anti_p means subtract_p.  */
917   if (!STACK_GROWS_DOWNWARD)
918     anti_p = !anti_p;
919 
920   temp = expand_binop (Pmode,
921 		       anti_p ? sub_optab : add_optab,
922 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
923 		       OPTAB_LIB_WIDEN);
924 
925   if (temp != stack_pointer_rtx)
926     insn = emit_move_insn (stack_pointer_rtx, temp);
927   else
928     {
929       insn = get_last_insn ();
930       temp = single_set (insn);
931       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
932     }
933 
934   if (!suppress_reg_args_size)
935     add_args_size_note (insn, stack_pointer_delta);
936 }
937 
938 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
939    This pops when ADJUST is positive.  ADJUST need not be constant.  */
940 
941 void
adjust_stack(rtx adjust)942 adjust_stack (rtx adjust)
943 {
944   if (adjust == const0_rtx)
945     return;
946 
947   /* We expect all variable sized adjustments to be multiple of
948      PREFERRED_STACK_BOUNDARY.  */
949   if (CONST_INT_P (adjust))
950     stack_pointer_delta -= INTVAL (adjust);
951 
952   adjust_stack_1 (adjust, false);
953 }
954 
955 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
956    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
957 
958 void
anti_adjust_stack(rtx adjust)959 anti_adjust_stack (rtx adjust)
960 {
961   if (adjust == const0_rtx)
962     return;
963 
964   /* We expect all variable sized adjustments to be multiple of
965      PREFERRED_STACK_BOUNDARY.  */
966   if (CONST_INT_P (adjust))
967     stack_pointer_delta += INTVAL (adjust);
968 
969   adjust_stack_1 (adjust, true);
970 }
971 
972 /* Round the size of a block to be pushed up to the boundary required
973    by this machine.  SIZE is the desired size, which need not be constant.  */
974 
975 static rtx
round_push(rtx size)976 round_push (rtx size)
977 {
978   rtx align_rtx, alignm1_rtx;
979 
980   if (!SUPPORTS_STACK_ALIGNMENT
981       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
982     {
983       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
984 
985       if (align == 1)
986 	return size;
987 
988       if (CONST_INT_P (size))
989 	{
990 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
991 
992 	  if (INTVAL (size) != new_size)
993 	    size = GEN_INT (new_size);
994 	  return size;
995 	}
996 
997       align_rtx = GEN_INT (align);
998       alignm1_rtx = GEN_INT (align - 1);
999     }
1000   else
1001     {
1002       /* If crtl->preferred_stack_boundary might still grow, use
1003 	 virtual_preferred_stack_boundary_rtx instead.  This will be
1004 	 substituted by the right value in vregs pass and optimized
1005 	 during combine.  */
1006       align_rtx = virtual_preferred_stack_boundary_rtx;
1007       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1008 				   NULL_RTX);
1009     }
1010 
1011   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1012      but we know it can't.  So add ourselves and then do
1013      TRUNC_DIV_EXPR.  */
1014   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1015 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
1016   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1017 			NULL_RTX, 1);
1018   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1019 
1020   return size;
1021 }
1022 
1023 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
1024    to a previously-created save area.  If no save area has been allocated,
1025    this function will allocate one.  If a save area is specified, it
1026    must be of the proper mode.  */
1027 
1028 void
emit_stack_save(enum save_level save_level,rtx * psave)1029 emit_stack_save (enum save_level save_level, rtx *psave)
1030 {
1031   rtx sa = *psave;
1032   /* The default is that we use a move insn and save in a Pmode object.  */
1033   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1034   machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1035 
1036   /* See if this machine has anything special to do for this kind of save.  */
1037   switch (save_level)
1038     {
1039     case SAVE_BLOCK:
1040       if (targetm.have_save_stack_block ())
1041 	fcn = targetm.gen_save_stack_block;
1042       break;
1043     case SAVE_FUNCTION:
1044       if (targetm.have_save_stack_function ())
1045 	fcn = targetm.gen_save_stack_function;
1046       break;
1047     case SAVE_NONLOCAL:
1048       if (targetm.have_save_stack_nonlocal ())
1049 	fcn = targetm.gen_save_stack_nonlocal;
1050       break;
1051     default:
1052       break;
1053     }
1054 
1055   /* If there is no save area and we have to allocate one, do so.  Otherwise
1056      verify the save area is the proper mode.  */
1057 
1058   if (sa == 0)
1059     {
1060       if (mode != VOIDmode)
1061 	{
1062 	  if (save_level == SAVE_NONLOCAL)
1063 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1064 	  else
1065 	    *psave = sa = gen_reg_rtx (mode);
1066 	}
1067     }
1068 
1069   do_pending_stack_adjust ();
1070   if (sa != 0)
1071     sa = validize_mem (sa);
1072   emit_insn (fcn (sa, stack_pointer_rtx));
1073 }
1074 
1075 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1076    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1077 
1078 void
emit_stack_restore(enum save_level save_level,rtx sa)1079 emit_stack_restore (enum save_level save_level, rtx sa)
1080 {
1081   /* The default is that we use a move insn.  */
1082   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1083 
1084   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1085      STACK_POINTER and HARD_FRAME_POINTER.
1086      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1087      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1088      aligned variables, which is reflected in ix86_can_eliminate.
1089      We normally still have the realigned STACK_POINTER that we can use.
1090      But if there is a stack restore still present at reload, it can trigger
1091      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1092      FRAME_POINTER into a hard reg.
1093      To prevent this situation, we force need_drap if we emit a stack
1094      restore.  */
1095   if (SUPPORTS_STACK_ALIGNMENT)
1096     crtl->need_drap = true;
1097 
1098   /* See if this machine has anything special to do for this kind of save.  */
1099   switch (save_level)
1100     {
1101     case SAVE_BLOCK:
1102       if (targetm.have_restore_stack_block ())
1103 	fcn = targetm.gen_restore_stack_block;
1104       break;
1105     case SAVE_FUNCTION:
1106       if (targetm.have_restore_stack_function ())
1107 	fcn = targetm.gen_restore_stack_function;
1108       break;
1109     case SAVE_NONLOCAL:
1110       if (targetm.have_restore_stack_nonlocal ())
1111 	fcn = targetm.gen_restore_stack_nonlocal;
1112       break;
1113     default:
1114       break;
1115     }
1116 
1117   if (sa != 0)
1118     {
1119       sa = validize_mem (sa);
1120       /* These clobbers prevent the scheduler from moving
1121 	 references to variable arrays below the code
1122 	 that deletes (pops) the arrays.  */
1123       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1124       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1125     }
1126 
1127   discard_pending_stack_adjust ();
1128 
1129   emit_insn (fcn (stack_pointer_rtx, sa));
1130 }
1131 
1132 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1133    function.  This should be called whenever we allocate or deallocate
1134    dynamic stack space.  */
1135 
1136 void
update_nonlocal_goto_save_area(void)1137 update_nonlocal_goto_save_area (void)
1138 {
1139   tree t_save;
1140   rtx r_save;
1141 
1142   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1143      first one is used for the frame pointer save; the rest are sized by
1144      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1145      of the stack save area slots.  */
1146   t_save = build4 (ARRAY_REF,
1147 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1148 		   cfun->nonlocal_goto_save_area,
1149 		   integer_one_node, NULL_TREE, NULL_TREE);
1150   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1151 
1152   emit_stack_save (SAVE_NONLOCAL, &r_save);
1153 }
1154 
1155 /* Record a new stack level for the current function.  This should be called
1156    whenever we allocate or deallocate dynamic stack space.  */
1157 
1158 void
record_new_stack_level(void)1159 record_new_stack_level (void)
1160 {
1161   /* Record the new stack level for nonlocal gotos.  */
1162   if (cfun->nonlocal_goto_save_area)
1163     update_nonlocal_goto_save_area ();
1164 
1165   /* Record the new stack level for SJLJ exceptions.  */
1166   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1167     update_sjlj_context ();
1168 }
1169 
1170 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */
1171 static rtx
align_dynamic_address(rtx target,unsigned required_align)1172 align_dynamic_address (rtx target, unsigned required_align)
1173 {
1174   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1175      but we know it can't.  So add ourselves and then do
1176      TRUNC_DIV_EXPR.  */
1177   target = expand_binop (Pmode, add_optab, target,
1178 			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1179 				       Pmode),
1180 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1181   target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1182 			  gen_int_mode (required_align / BITS_PER_UNIT,
1183 					Pmode),
1184 			  NULL_RTX, 1);
1185   target = expand_mult (Pmode, target,
1186 			gen_int_mode (required_align / BITS_PER_UNIT,
1187 				      Pmode),
1188 			NULL_RTX, 1);
1189 
1190   return target;
1191 }
1192 
1193 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1194    be dynamically pushed on the stack.
1195 
1196    *PSIZE is an rtx representing the size of the area.
1197 
1198    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1199    parameter may be zero.  If so, a proper value will be extracted
1200    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1201 
1202    REQUIRED_ALIGN is the alignment (in bits) required for the region
1203    of memory.
1204 
1205    If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1206    the additional size returned.  */
1207 void
get_dynamic_stack_size(rtx * psize,unsigned size_align,unsigned required_align,HOST_WIDE_INT * pstack_usage_size)1208 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1209 			unsigned required_align,
1210 			HOST_WIDE_INT *pstack_usage_size)
1211 {
1212   rtx size = *psize;
1213 
1214   /* Ensure the size is in the proper mode.  */
1215   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1216     size = convert_to_mode (Pmode, size, 1);
1217 
1218   if (CONST_INT_P (size))
1219     {
1220       unsigned HOST_WIDE_INT lsb;
1221 
1222       lsb = INTVAL (size);
1223       lsb &= -lsb;
1224 
1225       /* Watch out for overflow truncating to "unsigned".  */
1226       if (lsb > UINT_MAX / BITS_PER_UNIT)
1227 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1228       else
1229 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1230     }
1231   else if (size_align < BITS_PER_UNIT)
1232     size_align = BITS_PER_UNIT;
1233 
1234   /* We can't attempt to minimize alignment necessary, because we don't
1235      know the final value of preferred_stack_boundary yet while executing
1236      this code.  */
1237   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1238     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1239 
1240   /* We will need to ensure that the address we return is aligned to
1241      REQUIRED_ALIGN.  At this point in the compilation, we don't always
1242      know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1243      (it might depend on the size of the outgoing parameter lists, for
1244      example), so we must preventively align the value.  We leave space
1245      in SIZE for the hole that might result from the alignment operation.  */
1246 
1247   unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1248   if (known_align == 0)
1249     known_align = BITS_PER_UNIT;
1250   if (required_align > known_align)
1251     {
1252       unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
1253       size = plus_constant (Pmode, size, extra);
1254       size = force_operand (size, NULL_RTX);
1255       if (size_align > known_align)
1256 	size_align = known_align;
1257 
1258       if (flag_stack_usage_info && pstack_usage_size)
1259 	*pstack_usage_size += extra;
1260     }
1261 
1262   /* Round the size to a multiple of the required stack alignment.
1263      Since the stack is presumed to be rounded before this allocation,
1264      this will maintain the required alignment.
1265 
1266      If the stack grows downward, we could save an insn by subtracting
1267      SIZE from the stack pointer and then aligning the stack pointer.
1268      The problem with this is that the stack pointer may be unaligned
1269      between the execution of the subtraction and alignment insns and
1270      some machines do not allow this.  Even on those that do, some
1271      signal handlers malfunction if a signal should occur between those
1272      insns.  Since this is an extremely rare event, we have no reliable
1273      way of knowing which systems have this problem.  So we avoid even
1274      momentarily mis-aligning the stack.  */
1275   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1276     {
1277       size = round_push (size);
1278 
1279       if (flag_stack_usage_info && pstack_usage_size)
1280 	{
1281 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1282 	  *pstack_usage_size =
1283 	    (*pstack_usage_size + align - 1) / align * align;
1284 	}
1285     }
1286 
1287   *psize = size;
1288 }
1289 
1290 /* Return the number of bytes to "protect" on the stack for -fstack-check.
1291 
1292    "protect" in the context of -fstack-check means how many bytes we
1293    should always ensure are available on the stack.  More importantly
1294    this is how many bytes are skipped when probing the stack.
1295 
1296    On some targets we want to reuse the -fstack-check prologue support
1297    to give a degree of protection against stack clashing style attacks.
1298 
1299    In that scenario we do not want to skip bytes before probing as that
1300    would render the stack clash protections useless.
1301 
1302    So we never use STACK_CHECK_PROTECT directly.  Instead we indirect though
1303    this helper which allows us to provide different values for
1304    -fstack-check and -fstack-clash-protection.  */
1305 HOST_WIDE_INT
get_stack_check_protect(void)1306 get_stack_check_protect (void)
1307 {
1308   if (flag_stack_clash_protection)
1309     return 0;
1310  return STACK_CHECK_PROTECT;
1311 }
1312 
1313 /* Return an rtx representing the address of an area of memory dynamically
1314    pushed on the stack.
1315 
1316    Any required stack pointer alignment is preserved.
1317 
1318    SIZE is an rtx representing the size of the area.
1319 
1320    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1321    parameter may be zero.  If so, a proper value will be extracted
1322    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1323 
1324    REQUIRED_ALIGN is the alignment (in bits) required for the region
1325    of memory.
1326 
1327    MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1328    no such upper bound is known.
1329 
1330    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1331    stack space allocated by the generated code cannot be added with itself
1332    in the course of the execution of the function.  It is always safe to
1333    pass FALSE here and the following criterion is sufficient in order to
1334    pass TRUE: every path in the CFG that starts at the allocation point and
1335    loops to it executes the associated deallocation code.  */
1336 
1337 rtx
allocate_dynamic_stack_space(rtx size,unsigned size_align,unsigned required_align,HOST_WIDE_INT max_size,bool cannot_accumulate)1338 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1339 			      unsigned required_align,
1340 			      HOST_WIDE_INT max_size,
1341 			      bool cannot_accumulate)
1342 {
1343   HOST_WIDE_INT stack_usage_size = -1;
1344   rtx_code_label *final_label;
1345   rtx final_target, target;
1346 
1347   /* If we're asking for zero bytes, it doesn't matter what we point
1348      to since we can't dereference it.  But return a reasonable
1349      address anyway.  */
1350   if (size == const0_rtx)
1351     return virtual_stack_dynamic_rtx;
1352 
1353   /* Otherwise, show we're calling alloca or equivalent.  */
1354   cfun->calls_alloca = 1;
1355 
1356   /* If stack usage info is requested, look into the size we are passed.
1357      We need to do so this early to avoid the obfuscation that may be
1358      introduced later by the various alignment operations.  */
1359   if (flag_stack_usage_info)
1360     {
1361       if (CONST_INT_P (size))
1362 	stack_usage_size = INTVAL (size);
1363       else if (REG_P (size))
1364         {
1365 	  /* Look into the last emitted insn and see if we can deduce
1366 	     something for the register.  */
1367 	  rtx_insn *insn;
1368 	  rtx set, note;
1369 	  insn = get_last_insn ();
1370 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1371 	    {
1372 	      if (CONST_INT_P (SET_SRC (set)))
1373 		stack_usage_size = INTVAL (SET_SRC (set));
1374 	      else if ((note = find_reg_equal_equiv_note (insn))
1375 		       && CONST_INT_P (XEXP (note, 0)))
1376 		stack_usage_size = INTVAL (XEXP (note, 0));
1377 	    }
1378 	}
1379 
1380       /* If the size is not constant, try the maximum size.  */
1381       if (stack_usage_size < 0)
1382 	stack_usage_size = max_size;
1383 
1384       /* If the size is still not constant, we can't say anything.  */
1385       if (stack_usage_size < 0)
1386 	{
1387 	  current_function_has_unbounded_dynamic_stack_size = 1;
1388 	  stack_usage_size = 0;
1389 	}
1390     }
1391 
1392   get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1393 
1394   target = gen_reg_rtx (Pmode);
1395 
1396   /* The size is supposed to be fully adjusted at this point so record it
1397      if stack usage info is requested.  */
1398   if (flag_stack_usage_info)
1399     {
1400       current_function_dynamic_stack_size += stack_usage_size;
1401 
1402       /* ??? This is gross but the only safe stance in the absence
1403 	 of stack usage oriented flow analysis.  */
1404       if (!cannot_accumulate)
1405 	current_function_has_unbounded_dynamic_stack_size = 1;
1406     }
1407 
1408   do_pending_stack_adjust ();
1409 
1410   final_label = NULL;
1411   final_target = NULL_RTX;
1412 
1413   /* If we are splitting the stack, we need to ask the backend whether
1414      there is enough room on the current stack.  If there isn't, or if
1415      the backend doesn't know how to tell is, then we need to call a
1416      function to allocate memory in some other way.  This memory will
1417      be released when we release the current stack segment.  The
1418      effect is that stack allocation becomes less efficient, but at
1419      least it doesn't cause a stack overflow.  */
1420   if (flag_split_stack)
1421     {
1422       rtx_code_label *available_label;
1423       rtx ask, space, func;
1424 
1425       available_label = NULL;
1426 
1427       if (targetm.have_split_stack_space_check ())
1428 	{
1429 	  available_label = gen_label_rtx ();
1430 
1431 	  /* This instruction will branch to AVAILABLE_LABEL if there
1432 	     are SIZE bytes available on the stack.  */
1433 	  emit_insn (targetm.gen_split_stack_space_check
1434 		     (size, available_label));
1435 	}
1436 
1437       /* The __morestack_allocate_stack_space function will allocate
1438 	 memory using malloc.  If the alignment of the memory returned
1439 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1440 	 make sure we allocate enough space.  */
1441       if (MALLOC_ABI_ALIGNMENT >= required_align)
1442 	ask = size;
1443       else
1444 	ask = expand_binop (Pmode, add_optab, size,
1445 			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
1446 					  Pmode),
1447 			    NULL_RTX, 1, OPTAB_LIB_WIDEN);
1448 
1449       func = init_one_libfunc ("__morestack_allocate_stack_space");
1450 
1451       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1452 				       ask, Pmode);
1453 
1454       if (available_label == NULL_RTX)
1455 	return space;
1456 
1457       final_target = gen_reg_rtx (Pmode);
1458 
1459       emit_move_insn (final_target, space);
1460 
1461       final_label = gen_label_rtx ();
1462       emit_jump (final_label);
1463 
1464       emit_label (available_label);
1465     }
1466 
1467  /* We ought to be called always on the toplevel and stack ought to be aligned
1468     properly.  */
1469   gcc_assert (multiple_p (stack_pointer_delta,
1470 			  PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1471 
1472   /* If needed, check that we have the required amount of stack.  Take into
1473      account what has already been checked.  */
1474   if (STACK_CHECK_MOVING_SP)
1475     ;
1476   else if (flag_stack_check == GENERIC_STACK_CHECK)
1477     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1478 		       size);
1479   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1480     probe_stack_range (get_stack_check_protect (), size);
1481 
1482   /* Don't let anti_adjust_stack emit notes.  */
1483   suppress_reg_args_size = true;
1484 
1485   /* Perform the required allocation from the stack.  Some systems do
1486      this differently than simply incrementing/decrementing from the
1487      stack pointer, such as acquiring the space by calling malloc().  */
1488   if (targetm.have_allocate_stack ())
1489     {
1490       struct expand_operand ops[2];
1491       /* We don't have to check against the predicate for operand 0 since
1492 	 TARGET is known to be a pseudo of the proper mode, which must
1493 	 be valid for the operand.  */
1494       create_fixed_operand (&ops[0], target);
1495       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1496       expand_insn (targetm.code_for_allocate_stack, 2, ops);
1497     }
1498   else
1499     {
1500       poly_int64 saved_stack_pointer_delta;
1501 
1502       if (!STACK_GROWS_DOWNWARD)
1503 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1504 
1505       /* Check stack bounds if necessary.  */
1506       if (crtl->limit_stack)
1507 	{
1508 	  rtx available;
1509 	  rtx_code_label *space_available = gen_label_rtx ();
1510 	  if (STACK_GROWS_DOWNWARD)
1511 	    available = expand_binop (Pmode, sub_optab,
1512 				      stack_pointer_rtx, stack_limit_rtx,
1513 				      NULL_RTX, 1, OPTAB_WIDEN);
1514 	  else
1515 	    available = expand_binop (Pmode, sub_optab,
1516 				      stack_limit_rtx, stack_pointer_rtx,
1517 				      NULL_RTX, 1, OPTAB_WIDEN);
1518 
1519 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1520 				   space_available);
1521 	  if (targetm.have_trap ())
1522 	    emit_insn (targetm.gen_trap ());
1523 	  else
1524 	    error ("stack limits not supported on this target");
1525 	  emit_barrier ();
1526 	  emit_label (space_available);
1527 	}
1528 
1529       saved_stack_pointer_delta = stack_pointer_delta;
1530 
1531       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1532 	anti_adjust_stack_and_probe (size, false);
1533       else if (flag_stack_clash_protection)
1534 	anti_adjust_stack_and_probe_stack_clash (size);
1535       else
1536 	anti_adjust_stack (size);
1537 
1538       /* Even if size is constant, don't modify stack_pointer_delta.
1539 	 The constant size alloca should preserve
1540 	 crtl->preferred_stack_boundary alignment.  */
1541       stack_pointer_delta = saved_stack_pointer_delta;
1542 
1543       if (STACK_GROWS_DOWNWARD)
1544 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1545     }
1546 
1547   suppress_reg_args_size = false;
1548 
1549   /* Finish up the split stack handling.  */
1550   if (final_label != NULL_RTX)
1551     {
1552       gcc_assert (flag_split_stack);
1553       emit_move_insn (final_target, target);
1554       emit_label (final_label);
1555       target = final_target;
1556     }
1557 
1558   target = align_dynamic_address (target, required_align);
1559 
1560   /* Now that we've committed to a return value, mark its alignment.  */
1561   mark_reg_pointer (target, required_align);
1562 
1563   /* Record the new stack level.  */
1564   record_new_stack_level ();
1565 
1566   return target;
1567 }
1568 
1569 /* Return an rtx representing the address of an area of memory already
1570    statically pushed onto the stack in the virtual stack vars area.  (It is
1571    assumed that the area is allocated in the function prologue.)
1572 
1573    Any required stack pointer alignment is preserved.
1574 
1575    OFFSET is the offset of the area into the virtual stack vars area.
1576 
1577    REQUIRED_ALIGN is the alignment (in bits) required for the region
1578    of memory.  */
1579 
1580 rtx
get_dynamic_stack_base(poly_int64 offset,unsigned required_align)1581 get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
1582 {
1583   rtx target;
1584 
1585   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1586     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1587 
1588   target = gen_reg_rtx (Pmode);
1589   emit_move_insn (target, virtual_stack_vars_rtx);
1590   target = expand_binop (Pmode, add_optab, target,
1591 			 gen_int_mode (offset, Pmode),
1592 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1593   target = align_dynamic_address (target, required_align);
1594 
1595   /* Now that we've committed to a return value, mark its alignment.  */
1596   mark_reg_pointer (target, required_align);
1597 
1598   return target;
1599 }
1600 
1601 /* A front end may want to override GCC's stack checking by providing a
1602    run-time routine to call to check the stack, so provide a mechanism for
1603    calling that routine.  */
1604 
1605 static GTY(()) rtx stack_check_libfunc;
1606 
1607 void
set_stack_check_libfunc(const char * libfunc_name)1608 set_stack_check_libfunc (const char *libfunc_name)
1609 {
1610   gcc_assert (stack_check_libfunc == NULL_RTX);
1611   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1612 }
1613 
1614 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1615 
1616 void
emit_stack_probe(rtx address)1617 emit_stack_probe (rtx address)
1618 {
1619   if (targetm.have_probe_stack_address ())
1620     {
1621       struct expand_operand ops[1];
1622       insn_code icode = targetm.code_for_probe_stack_address;
1623       create_address_operand (ops, address);
1624       maybe_legitimize_operands (icode, 0, 1, ops);
1625       expand_insn (icode, 1, ops);
1626     }
1627   else
1628     {
1629       rtx memref = gen_rtx_MEM (word_mode, address);
1630 
1631       MEM_VOLATILE_P (memref) = 1;
1632       memref = validize_mem (memref);
1633 
1634       /* See if we have an insn to probe the stack.  */
1635       if (targetm.have_probe_stack ())
1636 	emit_insn (targetm.gen_probe_stack (memref));
1637       else
1638 	emit_move_insn (memref, const0_rtx);
1639     }
1640 }
1641 
1642 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1643    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1644    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1645    or subtract them from the stack pointer.  */
1646 
1647 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1648 
1649 #if STACK_GROWS_DOWNWARD
1650 #define STACK_GROW_OP MINUS
1651 #define STACK_GROW_OPTAB sub_optab
1652 #define STACK_GROW_OFF(off) -(off)
1653 #else
1654 #define STACK_GROW_OP PLUS
1655 #define STACK_GROW_OPTAB add_optab
1656 #define STACK_GROW_OFF(off) (off)
1657 #endif
1658 
1659 void
probe_stack_range(HOST_WIDE_INT first,rtx size)1660 probe_stack_range (HOST_WIDE_INT first, rtx size)
1661 {
1662   /* First ensure SIZE is Pmode.  */
1663   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1664     size = convert_to_mode (Pmode, size, 1);
1665 
1666   /* Next see if we have a function to check the stack.  */
1667   if (stack_check_libfunc)
1668     {
1669       rtx addr = memory_address (Pmode,
1670 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1671 					         stack_pointer_rtx,
1672 					         plus_constant (Pmode,
1673 								size, first)));
1674       emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1675 			 addr, Pmode);
1676     }
1677 
1678   /* Next see if we have an insn to check the stack.  */
1679   else if (targetm.have_check_stack ())
1680     {
1681       struct expand_operand ops[1];
1682       rtx addr = memory_address (Pmode,
1683 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1684 					         stack_pointer_rtx,
1685 					         plus_constant (Pmode,
1686 								size, first)));
1687       bool success;
1688       create_input_operand (&ops[0], addr, Pmode);
1689       success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1690       gcc_assert (success);
1691     }
1692 
1693   /* Otherwise we have to generate explicit probes.  If we have a constant
1694      small number of them to generate, that's the easy case.  */
1695   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1696     {
1697       HOST_WIDE_INT isize = INTVAL (size), i;
1698       rtx addr;
1699 
1700       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1701 	 it exceeds SIZE.  If only one probe is needed, this will not
1702 	 generate any code.  Then probe at FIRST + SIZE.  */
1703       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1704 	{
1705 	  addr = memory_address (Pmode,
1706 				 plus_constant (Pmode, stack_pointer_rtx,
1707 				 		STACK_GROW_OFF (first + i)));
1708 	  emit_stack_probe (addr);
1709 	}
1710 
1711       addr = memory_address (Pmode,
1712 			     plus_constant (Pmode, stack_pointer_rtx,
1713 					    STACK_GROW_OFF (first + isize)));
1714       emit_stack_probe (addr);
1715     }
1716 
1717   /* In the variable case, do the same as above, but in a loop.  Note that we
1718      must be extra careful with variables wrapping around because we might be
1719      at the very top (or the very bottom) of the address space and we have to
1720      be able to handle this case properly; in particular, we use an equality
1721      test for the loop condition.  */
1722   else
1723     {
1724       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1725       rtx_code_label *loop_lab = gen_label_rtx ();
1726       rtx_code_label *end_lab = gen_label_rtx ();
1727 
1728       /* Step 1: round SIZE to the previous multiple of the interval.  */
1729 
1730       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1731       rounded_size
1732 	= simplify_gen_binary (AND, Pmode, size,
1733 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1734       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1735 
1736 
1737       /* Step 2: compute initial and final value of the loop counter.  */
1738 
1739       /* TEST_ADDR = SP + FIRST.  */
1740       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1741 					 	 stack_pointer_rtx,
1742 						 gen_int_mode (first, Pmode)),
1743 				 NULL_RTX);
1744 
1745       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1746       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1747 						 test_addr,
1748 						 rounded_size_op), NULL_RTX);
1749 
1750 
1751       /* Step 3: the loop
1752 
1753 	 while (TEST_ADDR != LAST_ADDR)
1754 	   {
1755 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1756 	     probe at TEST_ADDR
1757 	   }
1758 
1759 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1760 	 until it is equal to ROUNDED_SIZE.  */
1761 
1762       emit_label (loop_lab);
1763 
1764       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1765       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1766 			       end_lab);
1767 
1768       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1769       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1770 			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1771 			   1, OPTAB_WIDEN);
1772 
1773       gcc_assert (temp == test_addr);
1774 
1775       /* Probe at TEST_ADDR.  */
1776       emit_stack_probe (test_addr);
1777 
1778       emit_jump (loop_lab);
1779 
1780       emit_label (end_lab);
1781 
1782 
1783       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1784 	 that SIZE is equal to ROUNDED_SIZE.  */
1785 
1786       /* TEMP = SIZE - ROUNDED_SIZE.  */
1787       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1788       if (temp != const0_rtx)
1789 	{
1790 	  rtx addr;
1791 
1792 	  if (CONST_INT_P (temp))
1793 	    {
1794 	      /* Use [base + disp} addressing mode if supported.  */
1795 	      HOST_WIDE_INT offset = INTVAL (temp);
1796 	      addr = memory_address (Pmode,
1797 				     plus_constant (Pmode, last_addr,
1798 						    STACK_GROW_OFF (offset)));
1799 	    }
1800 	  else
1801 	    {
1802 	      /* Manual CSE if the difference is not known at compile-time.  */
1803 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1804 	      addr = memory_address (Pmode,
1805 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1806 						     last_addr, temp));
1807 	    }
1808 
1809 	  emit_stack_probe (addr);
1810 	}
1811     }
1812 
1813   /* Make sure nothing is scheduled before we are done.  */
1814   emit_insn (gen_blockage ());
1815 }
1816 
1817 /* Compute parameters for stack clash probing a dynamic stack
1818    allocation of SIZE bytes.
1819 
1820    We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1821 
1822    Additionally we conditionally dump the type of probing that will
1823    be needed given the values computed.  */
1824 
1825 void
compute_stack_clash_protection_loop_data(rtx * rounded_size,rtx * last_addr,rtx * residual,HOST_WIDE_INT * probe_interval,rtx size)1826 compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1827 					  rtx *residual,
1828 					  HOST_WIDE_INT *probe_interval,
1829 					  rtx size)
1830 {
1831   /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1832   *probe_interval
1833     = 1 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL);
1834   *rounded_size = simplify_gen_binary (AND, Pmode, size,
1835 				        GEN_INT (-*probe_interval));
1836 
1837   /* Compute the value of the stack pointer for the last iteration.
1838      It's just SP + ROUNDED_SIZE.  */
1839   rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1840   *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1841 					      stack_pointer_rtx,
1842 					      rounded_size_op),
1843 			      NULL_RTX);
1844 
1845   /* Compute any residuals not allocated by the loop above.  Residuals
1846      are just the ROUNDED_SIZE - SIZE.  */
1847   *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1848 
1849   /* Dump key information to make writing tests easy.  */
1850   if (dump_file)
1851     {
1852       if (*rounded_size == CONST0_RTX (Pmode))
1853 	fprintf (dump_file,
1854 		 "Stack clash skipped dynamic allocation and probing loop.\n");
1855       else if (CONST_INT_P (*rounded_size)
1856 	       && INTVAL (*rounded_size) <= 4 * *probe_interval)
1857 	fprintf (dump_file,
1858 		 "Stack clash dynamic allocation and probing inline.\n");
1859       else if (CONST_INT_P (*rounded_size))
1860 	fprintf (dump_file,
1861 		 "Stack clash dynamic allocation and probing in "
1862 		 "rotated loop.\n");
1863       else
1864 	fprintf (dump_file,
1865 		 "Stack clash dynamic allocation and probing in loop.\n");
1866 
1867       if (*residual != CONST0_RTX (Pmode))
1868 	fprintf (dump_file,
1869 		 "Stack clash dynamic allocation and probing residuals.\n");
1870       else
1871 	fprintf (dump_file,
1872 		 "Stack clash skipped dynamic allocation and "
1873 		 "probing residuals.\n");
1874     }
1875 }
1876 
1877 /* Emit the start of an allocate/probe loop for stack
1878    clash protection.
1879 
1880    LOOP_LAB and END_LAB are returned for use when we emit the
1881    end of the loop.
1882 
1883    LAST addr is the value for SP which stops the loop.  */
1884 void
emit_stack_clash_protection_probe_loop_start(rtx * loop_lab,rtx * end_lab,rtx last_addr,bool rotated)1885 emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1886 					      rtx *end_lab,
1887 					      rtx last_addr,
1888 					      bool rotated)
1889 {
1890   /* Essentially we want to emit any setup code, the top of loop
1891      label and the comparison at the top of the loop.  */
1892   *loop_lab = gen_label_rtx ();
1893   *end_lab = gen_label_rtx ();
1894 
1895   emit_label (*loop_lab);
1896   if (!rotated)
1897     emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1898 			     Pmode, 1, *end_lab);
1899 }
1900 
1901 /* Emit the end of a stack clash probing loop.
1902 
1903    This consists of just the jump back to LOOP_LAB and
1904    emitting END_LOOP after the loop.  */
1905 
1906 void
emit_stack_clash_protection_probe_loop_end(rtx loop_lab,rtx end_loop,rtx last_addr,bool rotated)1907 emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1908 					    rtx last_addr, bool rotated)
1909 {
1910   if (rotated)
1911     emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1912 			     Pmode, 1, loop_lab);
1913   else
1914     emit_jump (loop_lab);
1915 
1916   emit_label (end_loop);
1917 
1918 }
1919 
1920 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1921    while probing it.  This pushes when SIZE is positive.  SIZE need not
1922    be constant.
1923 
1924    This is subtly different than anti_adjust_stack_and_probe to try and
1925    prevent stack-clash attacks
1926 
1927      1. It must assume no knowledge of the probing state, any allocation
1928 	must probe.
1929 
1930 	Consider the case of a 1 byte alloca in a loop.  If the sum of the
1931 	allocations is large, then this could be used to jump the guard if
1932 	probes were not emitted.
1933 
1934      2. It never skips probes, whereas anti_adjust_stack_and_probe will
1935 	skip probes on the first couple PROBE_INTERVALs on the assumption
1936 	they're done elsewhere.
1937 
1938      3. It only allocates and probes SIZE bytes, it does not need to
1939 	allocate/probe beyond that because this probing style does not
1940 	guarantee signal handling capability if the guard is hit.  */
1941 
1942 static void
anti_adjust_stack_and_probe_stack_clash(rtx size)1943 anti_adjust_stack_and_probe_stack_clash (rtx size)
1944 {
1945   /* First ensure SIZE is Pmode.  */
1946   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1947     size = convert_to_mode (Pmode, size, 1);
1948 
1949   /* We can get here with a constant size on some targets.  */
1950   rtx rounded_size, last_addr, residual;
1951   HOST_WIDE_INT probe_interval;
1952   compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1953 					    &residual, &probe_interval, size);
1954 
1955   if (rounded_size != CONST0_RTX (Pmode))
1956     {
1957       if (CONST_INT_P (rounded_size)
1958 	  && INTVAL (rounded_size) <= 4 * probe_interval)
1959 	{
1960 	  for (HOST_WIDE_INT i = 0;
1961 	       i < INTVAL (rounded_size);
1962 	       i += probe_interval)
1963 	    {
1964 	      anti_adjust_stack (GEN_INT (probe_interval));
1965 
1966 	      /* The prologue does not probe residuals.  Thus the offset
1967 		 here to probe just beyond what the prologue had already
1968 		 allocated.  */
1969 	      emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1970 					       (probe_interval
1971 						- GET_MODE_SIZE (word_mode))));
1972 	      emit_insn (gen_blockage ());
1973 	    }
1974 	}
1975       else
1976 	{
1977 	  rtx loop_lab, end_loop;
1978 	  bool rotate_loop = CONST_INT_P (rounded_size);
1979 	  emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
1980 							last_addr, rotate_loop);
1981 
1982 	  anti_adjust_stack (GEN_INT (probe_interval));
1983 
1984 	  /* The prologue does not probe residuals.  Thus the offset here
1985 	     to probe just beyond what the prologue had already allocated.  */
1986 	  emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1987 					   (probe_interval
1988 					    - GET_MODE_SIZE (word_mode))));
1989 
1990 	  emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
1991 						      last_addr, rotate_loop);
1992 	  emit_insn (gen_blockage ());
1993 	}
1994     }
1995 
1996   if (residual != CONST0_RTX (Pmode))
1997     {
1998       rtx label = NULL_RTX;
1999       /* RESIDUAL could be zero at runtime and in that case *sp could
2000 	 hold live data.  Furthermore, we do not want to probe into the
2001 	 red zone.
2002 
2003 	 Go ahead and just guard the probe at *sp on RESIDUAL != 0 at
2004 	 runtime if RESIDUAL is not a compile time constant.  */
2005       if (!CONST_INT_P (residual))
2006 	{
2007 	  label = gen_label_rtx ();
2008 	  emit_cmp_and_jump_insns (residual, CONST0_RTX (GET_MODE (residual)),
2009 				   EQ, NULL_RTX, Pmode, 1, label);
2010 	}
2011 
2012       rtx x = force_reg (Pmode, plus_constant (Pmode, residual,
2013 					       -GET_MODE_SIZE (word_mode)));
2014       anti_adjust_stack (residual);
2015       emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2016       emit_insn (gen_blockage ());
2017       if (!CONST_INT_P (residual))
2018 	emit_label (label);
2019     }
2020 
2021   /* Some targets make optimistic assumptions in their prologues about
2022      how the caller may have probed the stack.  Make sure we honor
2023      those assumptions when needed.  */
2024   if (size != CONST0_RTX (Pmode)
2025       && targetm.stack_clash_protection_final_dynamic_probe (residual))
2026     {
2027       /* SIZE could be zero at runtime and in that case *sp could hold
2028 	 live data.  Furthermore, we don't want to probe into the red
2029 	 zone.
2030 
2031 	 Go ahead and just guard the probe at *sp on SIZE != 0 at runtime
2032 	 if SIZE is not a compile time constant.  */
2033       rtx label = NULL_RTX;
2034       if (!CONST_INT_P (size))
2035 	{
2036 	  label = gen_label_rtx ();
2037 	  emit_cmp_and_jump_insns (size, CONST0_RTX (GET_MODE (size)),
2038 				   EQ, NULL_RTX, Pmode, 1, label);
2039 	}
2040 
2041       emit_stack_probe (stack_pointer_rtx);
2042       emit_insn (gen_blockage ());
2043       if (!CONST_INT_P (size))
2044 	emit_label (label);
2045     }
2046 }
2047 
2048 
2049 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2050    while probing it.  This pushes when SIZE is positive.  SIZE need not
2051    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
2052    by plus SIZE at the end.  */
2053 
2054 void
anti_adjust_stack_and_probe(rtx size,bool adjust_back)2055 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
2056 {
2057   /* We skip the probe for the first interval + a small dope of 4 words and
2058      probe that many bytes past the specified size to maintain a protection
2059      area at the botton of the stack.  */
2060   const int dope = 4 * UNITS_PER_WORD;
2061 
2062   /* First ensure SIZE is Pmode.  */
2063   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2064     size = convert_to_mode (Pmode, size, 1);
2065 
2066   /* If we have a constant small number of probes to generate, that's the
2067      easy case.  */
2068   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
2069     {
2070       HOST_WIDE_INT isize = INTVAL (size), i;
2071       bool first_probe = true;
2072 
2073       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
2074 	 values of N from 1 until it exceeds SIZE.  If only one probe is
2075 	 needed, this will not generate any code.  Then adjust and probe
2076 	 to PROBE_INTERVAL + SIZE.  */
2077       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2078 	{
2079 	  if (first_probe)
2080 	    {
2081 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2082 	      first_probe = false;
2083 	    }
2084 	  else
2085 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2086 	  emit_stack_probe (stack_pointer_rtx);
2087 	}
2088 
2089       if (first_probe)
2090 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2091       else
2092 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
2093       emit_stack_probe (stack_pointer_rtx);
2094     }
2095 
2096   /* In the variable case, do the same as above, but in a loop.  Note that we
2097      must be extra careful with variables wrapping around because we might be
2098      at the very top (or the very bottom) of the address space and we have to
2099      be able to handle this case properly; in particular, we use an equality
2100      test for the loop condition.  */
2101   else
2102     {
2103       rtx rounded_size, rounded_size_op, last_addr, temp;
2104       rtx_code_label *loop_lab = gen_label_rtx ();
2105       rtx_code_label *end_lab = gen_label_rtx ();
2106 
2107 
2108       /* Step 1: round SIZE to the previous multiple of the interval.  */
2109 
2110       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
2111       rounded_size
2112 	= simplify_gen_binary (AND, Pmode, size,
2113 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
2114       rounded_size_op = force_operand (rounded_size, NULL_RTX);
2115 
2116 
2117       /* Step 2: compute initial and final value of the loop counter.  */
2118 
2119       /* SP = SP_0 + PROBE_INTERVAL.  */
2120       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2121 
2122       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
2123       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2124 						 stack_pointer_rtx,
2125 						 rounded_size_op), NULL_RTX);
2126 
2127 
2128       /* Step 3: the loop
2129 
2130 	 while (SP != LAST_ADDR)
2131 	   {
2132 	     SP = SP + PROBE_INTERVAL
2133 	     probe at SP
2134 	   }
2135 
2136 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
2137 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
2138 
2139       emit_label (loop_lab);
2140 
2141       /* Jump to END_LAB if SP == LAST_ADDR.  */
2142       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2143 			       Pmode, 1, end_lab);
2144 
2145       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
2146       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2147       emit_stack_probe (stack_pointer_rtx);
2148 
2149       emit_jump (loop_lab);
2150 
2151       emit_label (end_lab);
2152 
2153 
2154       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
2155 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
2156 
2157       /* TEMP = SIZE - ROUNDED_SIZE.  */
2158       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2159       if (temp != const0_rtx)
2160 	{
2161 	  /* Manual CSE if the difference is not known at compile-time.  */
2162 	  if (GET_CODE (temp) != CONST_INT)
2163 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2164 	  anti_adjust_stack (temp);
2165 	  emit_stack_probe (stack_pointer_rtx);
2166 	}
2167     }
2168 
2169   /* Adjust back and account for the additional first interval.  */
2170   if (adjust_back)
2171     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
2172   else
2173     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2174 }
2175 
2176 /* Return an rtx representing the register or memory location
2177    in which a scalar value of data type VALTYPE
2178    was returned by a function call to function FUNC.
2179    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2180    function is known, otherwise 0.
2181    OUTGOING is 1 if on a machine with register windows this function
2182    should return the register in which the function will put its result
2183    and 0 otherwise.  */
2184 
2185 rtx
hard_function_value(const_tree valtype,const_tree func,const_tree fntype,int outgoing ATTRIBUTE_UNUSED)2186 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
2187 		     int outgoing ATTRIBUTE_UNUSED)
2188 {
2189   rtx val;
2190 
2191   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
2192 
2193   if (REG_P (val)
2194       && GET_MODE (val) == BLKmode)
2195     {
2196       unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
2197       opt_scalar_int_mode tmpmode;
2198 
2199       /* int_size_in_bytes can return -1.  We don't need a check here
2200 	 since the value of bytes will then be large enough that no
2201 	 mode will match anyway.  */
2202 
2203       FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
2204 	{
2205 	  /* Have we found a large enough mode?  */
2206 	  if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
2207 	    break;
2208 	}
2209 
2210       PUT_MODE (val, tmpmode.require ());
2211     }
2212   return val;
2213 }
2214 
2215 /* Return an rtx representing the register or memory location
2216    in which a scalar value of mode MODE was returned by a library call.  */
2217 
2218 rtx
hard_libcall_value(machine_mode mode,rtx fun)2219 hard_libcall_value (machine_mode mode, rtx fun)
2220 {
2221   return targetm.calls.libcall_value (mode, fun);
2222 }
2223 
2224 /* Look up the tree code for a given rtx code
2225    to provide the arithmetic operation for real_arithmetic.
2226    The function returns an int because the caller may not know
2227    what `enum tree_code' means.  */
2228 
2229 int
rtx_to_tree_code(enum rtx_code code)2230 rtx_to_tree_code (enum rtx_code code)
2231 {
2232   enum tree_code tcode;
2233 
2234   switch (code)
2235     {
2236     case PLUS:
2237       tcode = PLUS_EXPR;
2238       break;
2239     case MINUS:
2240       tcode = MINUS_EXPR;
2241       break;
2242     case MULT:
2243       tcode = MULT_EXPR;
2244       break;
2245     case DIV:
2246       tcode = RDIV_EXPR;
2247       break;
2248     case SMIN:
2249       tcode = MIN_EXPR;
2250       break;
2251     case SMAX:
2252       tcode = MAX_EXPR;
2253       break;
2254     default:
2255       tcode = LAST_AND_UNUSED_TREE_CODE;
2256       break;
2257     }
2258   return ((int) tcode);
2259 }
2260 
2261 #include "gt-explow.h"
2262