1 /* Setting LOGICAL_OP_NON_SHORT_CIRCUIT to 0 inhibits the setcc
2    optimizations that expose the VRP opportunity.  */
3 /* Skip on S/390.  Lower values in BRANCH_COST lead to two conditional
4    jumps when evaluating an && condition.  VRP is not able to optimize
5    this.  */
6 /* { dg-do compile { target { ! { logical_op_short_circuit || { s390*-*-* mn10300-*-* hppa*-*-* m68k*-*-* } } } } } */
7 /* { dg-options "-O2 -fdump-tree-vrp1 -fdump-tree-dom2 -fdump-tree-vrp2" } */
8 /* { dg-additional-options "-march=i586" { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
9 
h(int x,int y)10 int h(int x, int y)
11 {
12   if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
13     return x && y;
14   else
15     return -1;
16 }
17 
g(int x,int y)18 int g(int x, int y)
19 {
20   if ((x >= 0 && x <= 1) && (y >= 0 && y <= 1))
21     return x || y;
22   else
23     return -1;
24 }
25 
f(int x)26 int f(int x)
27 {
28   if (x != 0 && x != 1)
29     return -2;
30 
31   else
32     return !x;
33 }
34 
35 /* Test that x and y are never compared to 0 -- they're always known to be
36    0 or 1.  */
37 /* { dg-final { scan-tree-dump-times "\[xy\]\[^ \]* !=" 0 "vrp1" } } */
38 
39 /* These two are fully simplified by VRP1.  */
40 /* { dg-final { scan-tree-dump-times "x\[^ \]* \[|\] y" 1 "vrp1" } } */
41 /* { dg-final { scan-tree-dump-times "x\[^ \]* \\^ 1" 1 "vrp1" } } */
42 
43 /* VRP2 gets rid of the remaining & 1 operations, x and y are always
44    either 0 or 1.  */
45 /* { dg-final { scan-tree-dump-times " & 1;" 0 "vrp2" } } */
46 
47