1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package math 6 7// Exp returns e**x, the base-e exponential of x. 8// 9// Special cases are: 10// Exp(+Inf) = +Inf 11// Exp(NaN) = NaN 12// Very large values overflow to 0 or +Inf. 13// Very small values underflow to 1. 14 15//extern exp 16func libc_exp(float64) float64 17 18func Exp(x float64) float64 { 19 return libc_exp(x) 20} 21 22// The original C code, the long comment, and the constants 23// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c 24// and came with this notice. The go code is a simplified 25// version of the original C. 26// 27// ==================================================== 28// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 29// 30// Permission to use, copy, modify, and distribute this 31// software is freely granted, provided that this notice 32// is preserved. 33// ==================================================== 34// 35// 36// exp(x) 37// Returns the exponential of x. 38// 39// Method 40// 1. Argument reduction: 41// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. 42// Given x, find r and integer k such that 43// 44// x = k*ln2 + r, |r| <= 0.5*ln2. 45// 46// Here r will be represented as r = hi-lo for better 47// accuracy. 48// 49// 2. Approximation of exp(r) by a special rational function on 50// the interval [0,0.34658]: 51// Write 52// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... 53// We use a special Remez algorithm on [0,0.34658] to generate 54// a polynomial of degree 5 to approximate R. The maximum error 55// of this polynomial approximation is bounded by 2**-59. In 56// other words, 57// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 58// (where z=r*r, and the values of P1 to P5 are listed below) 59// and 60// | 5 | -59 61// | 2.0+P1*z+...+P5*z - R(z) | <= 2 62// | | 63// The computation of exp(r) thus becomes 64// 2*r 65// exp(r) = 1 + ------- 66// R - r 67// r*R1(r) 68// = 1 + r + ----------- (for better accuracy) 69// 2 - R1(r) 70// where 71// 2 4 10 72// R1(r) = r - (P1*r + P2*r + ... + P5*r ). 73// 74// 3. Scale back to obtain exp(x): 75// From step 1, we have 76// exp(x) = 2**k * exp(r) 77// 78// Special cases: 79// exp(INF) is INF, exp(NaN) is NaN; 80// exp(-INF) is 0, and 81// for finite argument, only exp(0)=1 is exact. 82// 83// Accuracy: 84// according to an error analysis, the error is always less than 85// 1 ulp (unit in the last place). 86// 87// Misc. info. 88// For IEEE double 89// if x > 7.09782712893383973096e+02 then exp(x) overflow 90// if x < -7.45133219101941108420e+02 then exp(x) underflow 91// 92// Constants: 93// The hexadecimal values are the intended ones for the following 94// constants. The decimal values may be used, provided that the 95// compiler will convert from decimal to binary accurately enough 96// to produce the hexadecimal values shown. 97 98func exp(x float64) float64 { 99 const ( 100 Ln2Hi = 6.93147180369123816490e-01 101 Ln2Lo = 1.90821492927058770002e-10 102 Log2e = 1.44269504088896338700e+00 103 104 Overflow = 7.09782712893383973096e+02 105 Underflow = -7.45133219101941108420e+02 106 NearZero = 1.0 / (1 << 28) // 2**-28 107 ) 108 109 // special cases 110 switch { 111 case IsNaN(x) || IsInf(x, 1): 112 return x 113 case IsInf(x, -1): 114 return 0 115 case x > Overflow: 116 return Inf(1) 117 case x < Underflow: 118 return 0 119 case -NearZero < x && x < NearZero: 120 return 1 + x 121 } 122 123 // reduce; computed as r = hi - lo for extra precision. 124 var k int 125 switch { 126 case x < 0: 127 k = int(Log2e*x - 0.5) 128 case x > 0: 129 k = int(Log2e*x + 0.5) 130 } 131 hi := x - float64(k)*Ln2Hi 132 lo := float64(k) * Ln2Lo 133 134 // compute 135 return expmulti(hi, lo, k) 136} 137 138// Exp2 returns 2**x, the base-2 exponential of x. 139// 140// Special cases are the same as Exp. 141func Exp2(x float64) float64 { 142 return exp2(x) 143} 144 145func exp2(x float64) float64 { 146 const ( 147 Ln2Hi = 6.93147180369123816490e-01 148 Ln2Lo = 1.90821492927058770002e-10 149 150 Overflow = 1.0239999999999999e+03 151 Underflow = -1.0740e+03 152 ) 153 154 // special cases 155 switch { 156 case IsNaN(x) || IsInf(x, 1): 157 return x 158 case IsInf(x, -1): 159 return 0 160 case x > Overflow: 161 return Inf(1) 162 case x < Underflow: 163 return 0 164 } 165 166 // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2. 167 // computed as r = hi - lo for extra precision. 168 var k int 169 switch { 170 case x > 0: 171 k = int(x + 0.5) 172 case x < 0: 173 k = int(x - 0.5) 174 } 175 t := x - float64(k) 176 hi := t * Ln2Hi 177 lo := -t * Ln2Lo 178 179 // compute 180 return expmulti(hi, lo, k) 181} 182 183// exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2. 184func expmulti(hi, lo float64, k int) float64 { 185 const ( 186 P1 = 1.66666666666666657415e-01 /* 0x3FC55555; 0x55555555 */ 187 P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ 188 P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */ 189 P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ 190 P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */ 191 ) 192 193 r := hi - lo 194 t := r * r 195 c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) 196 y := 1 - ((lo - (r*c)/(2-c)) - hi) 197 // TODO(rsc): make sure Ldexp can handle boundary k 198 return Ldexp(y, k) 199} 200