1 //! A support library for macro authors when defining new macros.
2 //!
3 //! This library, provided by the standard distribution, provides the types
4 //! consumed in the interfaces of procedurally defined macro definitions such as
5 //! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
6 //! custom derive attributes`#[proc_macro_derive]`.
7 //!
8 //! See [the book] for more.
9 //!
10 //! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
11 
12 #[doc(hidden)]
13 pub mod bridge;
14 
15 mod diagnostic;
16 
17 pub use diagnostic::{Diagnostic, Level, MultiSpan};
18 
19 use std::cmp::Ordering;
20 use std::ops::{Bound, RangeBounds};
21 use std::path::PathBuf;
22 use std::str::FromStr;
23 use std::{error, fmt, iter, mem};
24 
25 /// Determines whether proc_macro has been made accessible to the currently
26 /// running program.
27 ///
28 /// The proc_macro crate is only intended for use inside the implementation of
29 /// procedural macros. All the functions in this crate panic if invoked from
30 /// outside of a procedural macro, such as from a build script or unit test or
31 /// ordinary Rust binary.
32 ///
33 /// With consideration for Rust libraries that are designed to support both
34 /// macro and non-macro use cases, `proc_macro::is_available()` provides a
35 /// non-panicking way to detect whether the infrastructure required to use the
36 /// API of proc_macro is presently available. Returns true if invoked from
37 /// inside of a procedural macro, false if invoked from any other binary.
is_available() -> bool38 pub fn is_available() -> bool {
39     bridge::Bridge::is_available()
40 }
41 
42 /// The main type provided by this crate, representing an abstract stream of
43 /// tokens, or, more specifically, a sequence of token trees.
44 /// The type provide interfaces for iterating over those token trees and, conversely,
45 /// collecting a number of token trees into one stream.
46 ///
47 /// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
48 /// and `#[proc_macro_derive]` definitions.
49 #[derive(Clone)]
50 pub struct TokenStream(bridge::client::TokenStream);
51 
52 /// Error returned from `TokenStream::from_str`.
53 #[non_exhaustive]
54 #[derive(Debug)]
55 pub struct LexError;
56 
57 impl LexError {
new() -> Self58     fn new() -> Self {
59         LexError
60     }
61 }
62 
63 impl fmt::Display for LexError {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result64     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
65         f.write_str("cannot parse string into token stream")
66     }
67 }
68 
69 impl error::Error for LexError {}
70 
71 impl TokenStream {
72     /// Returns an empty `TokenStream` containing no token trees.
new() -> TokenStream73     pub fn new() -> TokenStream {
74         TokenStream(bridge::client::TokenStream::new())
75     }
76 
77     /// Checks if this `TokenStream` is empty.
is_empty(&self) -> bool78     pub fn is_empty(&self) -> bool {
79         self.0.is_empty()
80     }
81 }
82 
83 /// Attempts to break the string into tokens and parse those tokens into a token stream.
84 /// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
85 /// or characters not existing in the language.
86 /// All tokens in the parsed stream get `Span::call_site()` spans.
87 ///
88 /// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
89 /// change these errors into `LexError`s later.
90 impl FromStr for TokenStream {
91     type Err = LexError;
92 
from_str(src: &str) -> Result<TokenStream, LexError>93     fn from_str(src: &str) -> Result<TokenStream, LexError> {
94         Ok(TokenStream(bridge::client::TokenStream::from_str(src)))
95     }
96 }
97 
98 /// Prints the token stream as a string that is supposed to be losslessly convertible back
99 /// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
100 /// with `Delimiter::None` delimiters and negative numeric literals.
101 impl fmt::Display for TokenStream {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result102     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
103         f.write_str(&self.to_string())
104     }
105 }
106 
107 /// Prints token in a form convenient for debugging.
108 impl fmt::Debug for TokenStream {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result109     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
110         f.write_str("TokenStream ")?;
111         f.debug_list().entries(self.clone()).finish()
112     }
113 }
114 
115 impl Default for TokenStream {
default() -> Self116     fn default() -> Self {
117         TokenStream::new()
118     }
119 }
120 
121 pub use quote::{quote, quote_span};
122 
123 /// Creates a token stream containing a single token tree.
124 impl From<TokenTree> for TokenStream {
from(tree: TokenTree) -> TokenStream125     fn from(tree: TokenTree) -> TokenStream {
126         TokenStream(bridge::client::TokenStream::from_token_tree(match tree {
127             TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
128             TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
129             TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
130             TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
131         }))
132     }
133 }
134 
135 /// Collects a number of token trees into a single stream.
136 impl iter::FromIterator<TokenTree> for TokenStream {
from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self137     fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
138         trees.into_iter().map(TokenStream::from).collect()
139     }
140 }
141 
142 /// A "flattening" operation on token streams, collects token trees
143 /// from multiple token streams into a single stream.
144 impl iter::FromIterator<TokenStream> for TokenStream {
from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self145     fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
146         let mut builder = bridge::client::TokenStreamBuilder::new();
147         streams.into_iter().for_each(|stream| builder.push(stream.0));
148         TokenStream(builder.build())
149     }
150 }
151 
152 impl Extend<TokenTree> for TokenStream {
extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I)153     fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
154         self.extend(trees.into_iter().map(TokenStream::from));
155     }
156 }
157 
158 impl Extend<TokenStream> for TokenStream {
extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I)159     fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
160         // FIXME(eddyb) Use an optimized implementation if/when possible.
161         *self = iter::once(mem::replace(self, Self::new())).chain(streams).collect();
162     }
163 }
164 
165 /// Public implementation details for the `TokenStream` type, such as iterators.
166 pub mod token_stream {
167     use super::{bridge, Group, Ident, Literal, Punct, TokenStream, TokenTree};
168 
169     /// An iterator over `TokenStream`'s `TokenTree`s.
170     /// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
171     /// and returns whole groups as token trees.
172     #[derive(Clone)]
173     pub struct IntoIter(bridge::client::TokenStreamIter);
174 
175     impl Iterator for IntoIter {
176         type Item = TokenTree;
177 
next(&mut self) -> Option<TokenTree>178         fn next(&mut self) -> Option<TokenTree> {
179             self.0.next().map(|tree| match tree {
180                 bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
181                 bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
182                 bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
183                 bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
184             })
185         }
186     }
187 
188     impl IntoIterator for TokenStream {
189         type Item = TokenTree;
190         type IntoIter = IntoIter;
191 
into_iter(self) -> IntoIter192         fn into_iter(self) -> IntoIter {
193             IntoIter(self.0.into_iter())
194         }
195     }
196 }
197 
198 #[doc(hidden)]
199 mod quote;
200 
201 /// A region of source code, along with macro expansion information.
202 #[derive(Copy, Clone)]
203 pub struct Span(bridge::client::Span);
204 
205 macro_rules! diagnostic_method {
206     ($name:ident, $level:expr) => {
207         /// Creates a new `Diagnostic` with the given `message` at the span
208         /// `self`.
209         pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
210             Diagnostic::spanned(self, $level, message)
211         }
212     };
213 }
214 
215 impl Span {
216     /// A span that resolves at the macro definition site.
def_site() -> Span217     pub fn def_site() -> Span {
218         Span(bridge::client::Span::def_site())
219     }
220 
221     /// The span of the invocation of the current procedural macro.
222     /// Identifiers created with this span will be resolved as if they were written
223     /// directly at the macro call location (call-site hygiene) and other code
224     /// at the macro call site will be able to refer to them as well.
call_site() -> Span225     pub fn call_site() -> Span {
226         Span(bridge::client::Span::call_site())
227     }
228 
229     /// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
230     /// definition site (local variables, labels, `$crate`) and sometimes at the macro
231     /// call site (everything else).
232     /// The span location is taken from the call-site.
mixed_site() -> Span233     pub fn mixed_site() -> Span {
234         Span(bridge::client::Span::mixed_site())
235     }
236 
237     /// The original source file into which this span points.
source_file(&self) -> SourceFile238     pub fn source_file(&self) -> SourceFile {
239         SourceFile(self.0.source_file())
240     }
241 
242     /// The `Span` for the tokens in the previous macro expansion from which
243     /// `self` was generated from, if any.
parent(&self) -> Option<Span>244     pub fn parent(&self) -> Option<Span> {
245         self.0.parent().map(Span)
246     }
247 
248     /// The span for the origin source code that `self` was generated from. If
249     /// this `Span` wasn't generated from other macro expansions then the return
250     /// value is the same as `*self`.
source(&self) -> Span251     pub fn source(&self) -> Span {
252         Span(self.0.source())
253     }
254 
255     /// Gets the starting line/column in the source file for this span.
start(&self) -> LineColumn256     pub fn start(&self) -> LineColumn {
257         self.0.start().add_1_to_column()
258     }
259 
260     /// Gets the ending line/column in the source file for this span.
end(&self) -> LineColumn261     pub fn end(&self) -> LineColumn {
262         self.0.end().add_1_to_column()
263     }
264 
265     /// Creates a new span encompassing `self` and `other`.
266     ///
267     /// Returns `None` if `self` and `other` are from different files.
join(&self, other: Span) -> Option<Span>268     pub fn join(&self, other: Span) -> Option<Span> {
269         self.0.join(other.0).map(Span)
270     }
271 
272     /// Creates a new span with the same line/column information as `self` but
273     /// that resolves symbols as though it were at `other`.
resolved_at(&self, other: Span) -> Span274     pub fn resolved_at(&self, other: Span) -> Span {
275         Span(self.0.resolved_at(other.0))
276     }
277 
278     /// Creates a new span with the same name resolution behavior as `self` but
279     /// with the line/column information of `other`.
located_at(&self, other: Span) -> Span280     pub fn located_at(&self, other: Span) -> Span {
281         other.resolved_at(*self)
282     }
283 
284     /// Compares to spans to see if they're equal.
eq(&self, other: &Span) -> bool285     pub fn eq(&self, other: &Span) -> bool {
286         self.0 == other.0
287     }
288 
289     /// Returns the source text behind a span. This preserves the original source
290     /// code, including spaces and comments. It only returns a result if the span
291     /// corresponds to real source code.
292     ///
293     /// Note: The observable result of a macro should only rely on the tokens and
294     /// not on this source text. The result of this function is a best effort to
295     /// be used for diagnostics only.
source_text(&self) -> Option<String>296     pub fn source_text(&self) -> Option<String> {
297         self.0.source_text()
298     }
299 
300     // Used by the implementation of `Span::quote`
301     #[doc(hidden)]
save_span(&self) -> usize302     pub fn save_span(&self) -> usize {
303         self.0.save_span()
304     }
305 
306     // Used by the implementation of `Span::quote`
307     #[doc(hidden)]
recover_proc_macro_span(id: usize) -> Span308     pub fn recover_proc_macro_span(id: usize) -> Span {
309         Span(bridge::client::Span::recover_proc_macro_span(id))
310     }
311 
312     diagnostic_method!(error, Level::Error);
313     diagnostic_method!(warning, Level::Warning);
314     diagnostic_method!(note, Level::Note);
315     diagnostic_method!(help, Level::Help);
316 }
317 
318 /// Prints a span in a form convenient for debugging.
319 impl fmt::Debug for Span {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result320     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
321         self.0.fmt(f)
322     }
323 }
324 
325 /// A line-column pair representing the start or end of a `Span`.
326 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
327 pub struct LineColumn {
328     /// The 1-indexed line in the source file on which the span starts or ends (inclusive).
329     pub line: usize,
330     /// The 1-indexed column (number of bytes in UTF-8 encoding) in the source
331     /// file on which the span starts or ends (inclusive).
332     pub column: usize,
333 }
334 
335 impl LineColumn {
add_1_to_column(self) -> Self336     fn add_1_to_column(self) -> Self {
337         LineColumn { line: self.line, column: self.column + 1 }
338     }
339 }
340 
341 impl Ord for LineColumn {
cmp(&self, other: &Self) -> Ordering342     fn cmp(&self, other: &Self) -> Ordering {
343         self.line.cmp(&other.line).then(self.column.cmp(&other.column))
344     }
345 }
346 
347 impl PartialOrd for LineColumn {
partial_cmp(&self, other: &Self) -> Option<Ordering>348     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
349         Some(self.cmp(other))
350     }
351 }
352 
353 /// The source file of a given `Span`.
354 #[derive(Clone)]
355 pub struct SourceFile(bridge::client::SourceFile);
356 
357 impl SourceFile {
358     /// Gets the path to this source file.
359     ///
360     /// ### Note
361     /// If the code span associated with this `SourceFile` was generated by an external macro, this
362     /// macro, this might not be an actual path on the filesystem. Use [`is_real`] to check.
363     ///
364     /// Also note that even if `is_real` returns `true`, if `--remap-path-prefix` was passed on
365     /// the command line, the path as given might not actually be valid.
366     ///
367     /// [`is_real`]: Self::is_real
path(&self) -> PathBuf368     pub fn path(&self) -> PathBuf {
369         PathBuf::from(self.0.path())
370     }
371 
372     /// Returns `true` if this source file is a real source file, and not generated by an external
373     /// macro's expansion.
is_real(&self) -> bool374     pub fn is_real(&self) -> bool {
375         // This is a hack until intercrate spans are implemented and we can have real source files
376         // for spans generated in external macros.
377         // https://github.com/rust-lang/rust/pull/43604#issuecomment-333334368
378         self.0.is_real()
379     }
380 }
381 
382 impl fmt::Debug for SourceFile {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result383     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
384         f.debug_struct("SourceFile")
385             .field("path", &self.path())
386             .field("is_real", &self.is_real())
387             .finish()
388     }
389 }
390 
391 impl PartialEq for SourceFile {
eq(&self, other: &Self) -> bool392     fn eq(&self, other: &Self) -> bool {
393         self.0.eq(&other.0)
394     }
395 }
396 
397 impl Eq for SourceFile {}
398 
399 /// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
400 #[derive(Clone)]
401 pub enum TokenTree {
402     /// A token stream surrounded by bracket delimiters.
403     Group(Group),
404     /// An identifier.
405     Ident(Ident),
406     /// A single punctuation character (`+`, `,`, `$`, etc.).
407     Punct(Punct),
408     /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
409     Literal(Literal),
410 }
411 
412 impl TokenTree {
413     /// Returns the span of this tree, delegating to the `span` method of
414     /// the contained token or a delimited stream.
span(&self) -> Span415     pub fn span(&self) -> Span {
416         match *self {
417             TokenTree::Group(ref t) => t.span(),
418             TokenTree::Ident(ref t) => t.span(),
419             TokenTree::Punct(ref t) => t.span(),
420             TokenTree::Literal(ref t) => t.span(),
421         }
422     }
423 
424     /// Configures the span for *only this token*.
425     ///
426     /// Note that if this token is a `Group` then this method will not configure
427     /// the span of each of the internal tokens, this will simply delegate to
428     /// the `set_span` method of each variant.
set_span(&mut self, span: Span)429     pub fn set_span(&mut self, span: Span) {
430         match *self {
431             TokenTree::Group(ref mut t) => t.set_span(span),
432             TokenTree::Ident(ref mut t) => t.set_span(span),
433             TokenTree::Punct(ref mut t) => t.set_span(span),
434             TokenTree::Literal(ref mut t) => t.set_span(span),
435         }
436     }
437 }
438 
439 /// Prints token tree in a form convenient for debugging.
440 impl fmt::Debug for TokenTree {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result441     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
442         // Each of these has the name in the struct type in the derived debug,
443         // so don't bother with an extra layer of indirection
444         match *self {
445             TokenTree::Group(ref tt) => tt.fmt(f),
446             TokenTree::Ident(ref tt) => tt.fmt(f),
447             TokenTree::Punct(ref tt) => tt.fmt(f),
448             TokenTree::Literal(ref tt) => tt.fmt(f),
449         }
450     }
451 }
452 
453 impl From<Group> for TokenTree {
from(g: Group) -> TokenTree454     fn from(g: Group) -> TokenTree {
455         TokenTree::Group(g)
456     }
457 }
458 
459 impl From<Ident> for TokenTree {
from(g: Ident) -> TokenTree460     fn from(g: Ident) -> TokenTree {
461         TokenTree::Ident(g)
462     }
463 }
464 
465 impl From<Punct> for TokenTree {
from(g: Punct) -> TokenTree466     fn from(g: Punct) -> TokenTree {
467         TokenTree::Punct(g)
468     }
469 }
470 
471 impl From<Literal> for TokenTree {
from(g: Literal) -> TokenTree472     fn from(g: Literal) -> TokenTree {
473         TokenTree::Literal(g)
474     }
475 }
476 
477 /// Prints the token tree as a string that is supposed to be losslessly convertible back
478 /// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
479 /// with `Delimiter::None` delimiters and negative numeric literals.
480 impl fmt::Display for TokenTree {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result481     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
482         f.write_str(&self.to_string())
483     }
484 }
485 
486 /// A delimited token stream.
487 ///
488 /// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
489 #[derive(Clone)]
490 pub struct Group(bridge::client::Group);
491 
492 /// Describes how a sequence of token trees is delimited.
493 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
494 pub enum Delimiter {
495     /// `( ... )`
496     Parenthesis,
497     /// `{ ... }`
498     Brace,
499     /// `[ ... ]`
500     Bracket,
501     /// `Ø ... Ø`
502     /// An implicit delimiter, that may, for example, appear around tokens coming from a
503     /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
504     /// `$var * 3` where `$var` is `1 + 2`.
505     /// Implicit delimiters might not survive roundtrip of a token stream through a string.
506     None,
507 }
508 
509 impl Group {
510     /// Creates a new `Group` with the given delimiter and token stream.
511     ///
512     /// This constructor will set the span for this group to
513     /// `Span::call_site()`. To change the span you can use the `set_span`
514     /// method below.
new(delimiter: Delimiter, stream: TokenStream) -> Group515     pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
516         Group(bridge::client::Group::new(delimiter, stream.0))
517     }
518 
519     /// Returns the delimiter of this `Group`
delimiter(&self) -> Delimiter520     pub fn delimiter(&self) -> Delimiter {
521         self.0.delimiter()
522     }
523 
524     /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
525     ///
526     /// Note that the returned token stream does not include the delimiter
527     /// returned above.
stream(&self) -> TokenStream528     pub fn stream(&self) -> TokenStream {
529         TokenStream(self.0.stream())
530     }
531 
532     /// Returns the span for the delimiters of this token stream, spanning the
533     /// entire `Group`.
534     ///
535     /// ```text
536     /// pub fn span(&self) -> Span {
537     ///            ^^^^^^^
538     /// ```
span(&self) -> Span539     pub fn span(&self) -> Span {
540         Span(self.0.span())
541     }
542 
543     /// Returns the span pointing to the opening delimiter of this group.
544     ///
545     /// ```text
546     /// pub fn span_open(&self) -> Span {
547     ///                 ^
548     /// ```
span_open(&self) -> Span549     pub fn span_open(&self) -> Span {
550         Span(self.0.span_open())
551     }
552 
553     /// Returns the span pointing to the closing delimiter of this group.
554     ///
555     /// ```text
556     /// pub fn span_close(&self) -> Span {
557     ///                        ^
558     /// ```
span_close(&self) -> Span559     pub fn span_close(&self) -> Span {
560         Span(self.0.span_close())
561     }
562 
563     /// Configures the span for this `Group`'s delimiters, but not its internal
564     /// tokens.
565     ///
566     /// This method will **not** set the span of all the internal tokens spanned
567     /// by this group, but rather it will only set the span of the delimiter
568     /// tokens at the level of the `Group`.
set_span(&mut self, span: Span)569     pub fn set_span(&mut self, span: Span) {
570         self.0.set_span(span.0);
571     }
572 }
573 
574 /// Prints the group as a string that should be losslessly convertible back
575 /// into the same group (modulo spans), except for possibly `TokenTree::Group`s
576 /// with `Delimiter::None` delimiters.
577 impl fmt::Display for Group {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result578     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
579         f.write_str(&self.to_string())
580     }
581 }
582 
583 impl fmt::Debug for Group {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result584     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
585         f.debug_struct("Group")
586             .field("delimiter", &self.delimiter())
587             .field("stream", &self.stream())
588             .field("span", &self.span())
589             .finish()
590     }
591 }
592 
593 /// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
594 ///
595 /// Multi-character operators like `+=` are represented as two instances of `Punct` with different
596 /// forms of `Spacing` returned.
597 #[derive(Clone)]
598 pub struct Punct(bridge::client::Punct);
599 
600 /// Describes whether a `Punct` is followed immediately by another `Punct` ([`Spacing::Joint`]) or
601 /// by a different token or whitespace ([`Spacing::Alone`]).
602 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
603 pub enum Spacing {
604     /// A `Punct` is not immediately followed by another `Punct`.
605     /// E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`.
606     Alone,
607     /// A `Punct` is immediately followed by another `Punct`.
608     /// E.g. `+` is `Joint` in `+=` and `++`.
609     ///
610     /// Additionally, single quote `'` can join with identifiers to form lifetimes: `'ident`.
611     Joint,
612 }
613 
614 impl Punct {
615     /// Creates a new `Punct` from the given character and spacing.
616     /// The `ch` argument must be a valid punctuation character permitted by the language,
617     /// otherwise the function will panic.
618     ///
619     /// The returned `Punct` will have the default span of `Span::call_site()`
620     /// which can be further configured with the `set_span` method below.
new(ch: char, spacing: Spacing) -> Punct621     pub fn new(ch: char, spacing: Spacing) -> Punct {
622         Punct(bridge::client::Punct::new(ch, spacing))
623     }
624 
625     /// Returns the value of this punctuation character as `char`.
as_char(&self) -> char626     pub fn as_char(&self) -> char {
627         self.0.as_char()
628     }
629 
630     /// Returns the spacing of this punctuation character, indicating whether it's immediately
631     /// followed by another `Punct` in the token stream, so they can potentially be combined into
632     /// a multi-character operator (`Joint`), or it's followed by some other token or whitespace
633     /// (`Alone`) so the operator has certainly ended.
spacing(&self) -> Spacing634     pub fn spacing(&self) -> Spacing {
635         self.0.spacing()
636     }
637 
638     /// Returns the span for this punctuation character.
span(&self) -> Span639     pub fn span(&self) -> Span {
640         Span(self.0.span())
641     }
642 
643     /// Configure the span for this punctuation character.
set_span(&mut self, span: Span)644     pub fn set_span(&mut self, span: Span) {
645         self.0 = self.0.with_span(span.0);
646     }
647 }
648 
649 /// Prints the punctuation character as a string that should be losslessly convertible
650 /// back into the same character.
651 impl fmt::Display for Punct {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result652     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
653         f.write_str(&self.to_string())
654     }
655 }
656 
657 impl fmt::Debug for Punct {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result658     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
659         f.debug_struct("Punct")
660             .field("ch", &self.as_char())
661             .field("spacing", &self.spacing())
662             .field("span", &self.span())
663             .finish()
664     }
665 }
666 
667 impl PartialEq<char> for Punct {
eq(&self, rhs: &char) -> bool668     fn eq(&self, rhs: &char) -> bool {
669         self.as_char() == *rhs
670     }
671 }
672 
673 impl PartialEq<Punct> for char {
eq(&self, rhs: &Punct) -> bool674     fn eq(&self, rhs: &Punct) -> bool {
675         *self == rhs.as_char()
676     }
677 }
678 
679 /// An identifier (`ident`).
680 #[derive(Clone)]
681 pub struct Ident(bridge::client::Ident);
682 
683 impl Ident {
684     /// Creates a new `Ident` with the given `string` as well as the specified
685     /// `span`.
686     /// The `string` argument must be a valid identifier permitted by the
687     /// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
688     ///
689     /// Note that `span`, currently in rustc, configures the hygiene information
690     /// for this identifier.
691     ///
692     /// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
693     /// meaning that identifiers created with this span will be resolved as if they were written
694     /// directly at the location of the macro call, and other code at the macro call site will be
695     /// able to refer to them as well.
696     ///
697     /// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
698     /// meaning that identifiers created with this span will be resolved at the location of the
699     /// macro definition and other code at the macro call site will not be able to refer to them.
700     ///
701     /// Due to the current importance of hygiene this constructor, unlike other
702     /// tokens, requires a `Span` to be specified at construction.
new(string: &str, span: Span) -> Ident703     pub fn new(string: &str, span: Span) -> Ident {
704         Ident(bridge::client::Ident::new(string, span.0, false))
705     }
706 
707     /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
708     /// The `string` argument be a valid identifier permitted by the language
709     /// (including keywords, e.g. `fn`). Keywords which are usable in path segments
710     /// (e.g. `self`, `super`) are not supported, and will cause a panic.
new_raw(string: &str, span: Span) -> Ident711     pub fn new_raw(string: &str, span: Span) -> Ident {
712         Ident(bridge::client::Ident::new(string, span.0, true))
713     }
714 
715     /// Returns the span of this `Ident`, encompassing the entire string returned
716     /// by [`to_string`](Self::to_string).
span(&self) -> Span717     pub fn span(&self) -> Span {
718         Span(self.0.span())
719     }
720 
721     /// Configures the span of this `Ident`, possibly changing its hygiene context.
set_span(&mut self, span: Span)722     pub fn set_span(&mut self, span: Span) {
723         self.0 = self.0.with_span(span.0);
724     }
725 }
726 
727 /// Prints the identifier as a string that should be losslessly convertible
728 /// back into the same identifier.
729 impl fmt::Display for Ident {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result730     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
731         f.write_str(&self.to_string())
732     }
733 }
734 
735 impl fmt::Debug for Ident {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result736     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
737         f.debug_struct("Ident")
738             .field("ident", &self.to_string())
739             .field("span", &self.span())
740             .finish()
741     }
742 }
743 
744 /// A literal string (`"hello"`), byte string (`b"hello"`),
745 /// character (`'a'`), byte character (`b'a'`), an integer or floating point number
746 /// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
747 /// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
748 #[derive(Clone)]
749 pub struct Literal(bridge::client::Literal);
750 
751 macro_rules! suffixed_int_literals {
752     ($($name:ident => $kind:ident,)*) => ($(
753         /// Creates a new suffixed integer literal with the specified value.
754         ///
755         /// This function will create an integer like `1u32` where the integer
756         /// value specified is the first part of the token and the integral is
757         /// also suffixed at the end.
758         /// Literals created from negative numbers might not survive round-trips through
759         /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
760         ///
761         /// Literals created through this method have the `Span::call_site()`
762         /// span by default, which can be configured with the `set_span` method
763         /// below.
764         pub fn $name(n: $kind) -> Literal {
765             Literal(bridge::client::Literal::typed_integer(&n.to_string(), stringify!($kind)))
766         }
767     )*)
768 }
769 
770 macro_rules! unsuffixed_int_literals {
771     ($($name:ident => $kind:ident,)*) => ($(
772         /// Creates a new unsuffixed integer literal with the specified value.
773         ///
774         /// This function will create an integer like `1` where the integer
775         /// value specified is the first part of the token. No suffix is
776         /// specified on this token, meaning that invocations like
777         /// `Literal::i8_unsuffixed(1)` are equivalent to
778         /// `Literal::u32_unsuffixed(1)`.
779         /// Literals created from negative numbers might not survive rountrips through
780         /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
781         ///
782         /// Literals created through this method have the `Span::call_site()`
783         /// span by default, which can be configured with the `set_span` method
784         /// below.
785         pub fn $name(n: $kind) -> Literal {
786             Literal(bridge::client::Literal::integer(&n.to_string()))
787         }
788     )*)
789 }
790 
791 impl Literal {
792     suffixed_int_literals! {
793         u8_suffixed => u8,
794         u16_suffixed => u16,
795         u32_suffixed => u32,
796         u64_suffixed => u64,
797         u128_suffixed => u128,
798         usize_suffixed => usize,
799         i8_suffixed => i8,
800         i16_suffixed => i16,
801         i32_suffixed => i32,
802         i64_suffixed => i64,
803         i128_suffixed => i128,
804         isize_suffixed => isize,
805     }
806 
807     unsuffixed_int_literals! {
808         u8_unsuffixed => u8,
809         u16_unsuffixed => u16,
810         u32_unsuffixed => u32,
811         u64_unsuffixed => u64,
812         u128_unsuffixed => u128,
813         usize_unsuffixed => usize,
814         i8_unsuffixed => i8,
815         i16_unsuffixed => i16,
816         i32_unsuffixed => i32,
817         i64_unsuffixed => i64,
818         i128_unsuffixed => i128,
819         isize_unsuffixed => isize,
820     }
821 
822     /// Creates a new unsuffixed floating-point literal.
823     ///
824     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
825     /// the float's value is emitted directly into the token but no suffix is
826     /// used, so it may be inferred to be a `f64` later in the compiler.
827     /// Literals created from negative numbers might not survive rountrips through
828     /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
829     ///
830     /// # Panics
831     ///
832     /// This function requires that the specified float is finite, for
833     /// example if it is infinity or NaN this function will panic.
f32_unsuffixed(n: f32) -> Literal834     pub fn f32_unsuffixed(n: f32) -> Literal {
835         if !n.is_finite() {
836             panic!("Invalid float literal {}", n);
837         }
838         Literal(bridge::client::Literal::float(&n.to_string()))
839     }
840 
841     /// Creates a new suffixed floating-point literal.
842     ///
843     /// This constructor will create a literal like `1.0f32` where the value
844     /// specified is the preceding part of the token and `f32` is the suffix of
845     /// the token. This token will always be inferred to be an `f32` in the
846     /// compiler.
847     /// Literals created from negative numbers might not survive rountrips through
848     /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
849     ///
850     /// # Panics
851     ///
852     /// This function requires that the specified float is finite, for
853     /// example if it is infinity or NaN this function will panic.
f32_suffixed(n: f32) -> Literal854     pub fn f32_suffixed(n: f32) -> Literal {
855         if !n.is_finite() {
856             panic!("Invalid float literal {}", n);
857         }
858         Literal(bridge::client::Literal::f32(&n.to_string()))
859     }
860 
861     /// Creates a new unsuffixed floating-point literal.
862     ///
863     /// This constructor is similar to those like `Literal::i8_unsuffixed` where
864     /// the float's value is emitted directly into the token but no suffix is
865     /// used, so it may be inferred to be a `f64` later in the compiler.
866     /// Literals created from negative numbers might not survive rountrips through
867     /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
868     ///
869     /// # Panics
870     ///
871     /// This function requires that the specified float is finite, for
872     /// example if it is infinity or NaN this function will panic.
f64_unsuffixed(n: f64) -> Literal873     pub fn f64_unsuffixed(n: f64) -> Literal {
874         if !n.is_finite() {
875             panic!("Invalid float literal {}", n);
876         }
877         Literal(bridge::client::Literal::float(&n.to_string()))
878     }
879 
880     /// Creates a new suffixed floating-point literal.
881     ///
882     /// This constructor will create a literal like `1.0f64` where the value
883     /// specified is the preceding part of the token and `f64` is the suffix of
884     /// the token. This token will always be inferred to be an `f64` in the
885     /// compiler.
886     /// Literals created from negative numbers might not survive rountrips through
887     /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
888     ///
889     /// # Panics
890     ///
891     /// This function requires that the specified float is finite, for
892     /// example if it is infinity or NaN this function will panic.
f64_suffixed(n: f64) -> Literal893     pub fn f64_suffixed(n: f64) -> Literal {
894         if !n.is_finite() {
895             panic!("Invalid float literal {}", n);
896         }
897         Literal(bridge::client::Literal::f64(&n.to_string()))
898     }
899 
900     /// String literal.
string(string: &str) -> Literal901     pub fn string(string: &str) -> Literal {
902         Literal(bridge::client::Literal::string(string))
903     }
904 
905     /// Character literal.
character(ch: char) -> Literal906     pub fn character(ch: char) -> Literal {
907         Literal(bridge::client::Literal::character(ch))
908     }
909 
910     /// Byte string literal.
byte_string(bytes: &[u8]) -> Literal911     pub fn byte_string(bytes: &[u8]) -> Literal {
912         Literal(bridge::client::Literal::byte_string(bytes))
913     }
914 
915     /// Returns the span encompassing this literal.
span(&self) -> Span916     pub fn span(&self) -> Span {
917         Span(self.0.span())
918     }
919 
920     /// Configures the span associated for this literal.
set_span(&mut self, span: Span)921     pub fn set_span(&mut self, span: Span) {
922         self.0.set_span(span.0);
923     }
924 
925     /// Returns a `Span` that is a subset of `self.span()` containing only the
926     /// source bytes in range `range`. Returns `None` if the would-be trimmed
927     /// span is outside the bounds of `self`.
928     // FIXME(SergioBenitez): check that the byte range starts and ends at a
929     // UTF-8 boundary of the source. otherwise, it's likely that a panic will
930     // occur elsewhere when the source text is printed.
931     // FIXME(SergioBenitez): there is no way for the user to know what
932     // `self.span()` actually maps to, so this method can currently only be
933     // called blindly. For example, `to_string()` for the character 'c' returns
934     // "'\u{63}'"; there is no way for the user to know whether the source text
935     // was 'c' or whether it was '\u{63}'.
subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span>936     pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
937         // HACK(eddyb) something akin to `Option::cloned`, but for `Bound<&T>`.
938         fn cloned_bound<T: Clone>(bound: Bound<&T>) -> Bound<T> {
939             match bound {
940                 Bound::Included(x) => Bound::Included(x.clone()),
941                 Bound::Excluded(x) => Bound::Excluded(x.clone()),
942                 Bound::Unbounded => Bound::Unbounded,
943             }
944         }
945 
946         self.0.subspan(cloned_bound(range.start_bound()), cloned_bound(range.end_bound())).map(Span)
947     }
948 }
949 
950 /// Parse a single literal from its stringified representation.
951 ///
952 /// In order to parse successfully, the input string must not contain anything
953 /// but the literal token. Specifically, it must not contain whitespace or
954 /// comments in addition to the literal.
955 ///
956 /// The resulting literal token will have a `Span::call_site()` span.
957 ///
958 /// NOTE: some errors may cause panics instead of returning `LexError`. We
959 /// reserve the right to change these errors into `LexError`s later.
960 impl FromStr for Literal {
961     type Err = LexError;
962 
from_str(src: &str) -> Result<Self, LexError>963     fn from_str(src: &str) -> Result<Self, LexError> {
964         match bridge::client::Literal::from_str(src) {
965             Ok(literal) => Ok(Literal(literal)),
966             Err(()) => Err(LexError::new()),
967         }
968     }
969 }
970 
971 /// Prints the literal as a string that should be losslessly convertible
972 /// back into the same literal (except for possible rounding for floating point literals).
973 impl fmt::Display for Literal {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result974     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
975         f.write_str(&self.to_string())
976     }
977 }
978 
979 impl fmt::Debug for Literal {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result980     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
981         self.0.fmt(f)
982     }
983 }
984 
985 /// Tracked access to environment variables.
986 pub mod tracked_env {
987     use std::env::{self, VarError};
988     use std::ffi::OsStr;
989 
990     /// Retrieve an environment variable and add it to build dependency info.
991     /// Build system executing the compiler will know that the variable was accessed during
992     /// compilation, and will be able to rerun the build when the value of that variable changes.
993     /// Besides the dependency tracking this function should be equivalent to `env::var` from the
994     /// standard library, except that the argument must be UTF-8.
var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError>995     pub fn var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
996         let key: &str = key.as_ref();
997         let value = env::var(key);
998         super::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
999         value
1000     }
1001 }
1002 
1003 /// Tracked access to additional files.
1004 pub mod tracked_path {
1005 
1006     /// Track a file explicitly.
1007     ///
1008     /// Commonly used for tracking asset preprocessing.
path<P: AsRef<str>>(path: P)1009     pub fn path<P: AsRef<str>>(path: P) {
1010         let path: &str = path.as_ref();
1011         super::bridge::client::FreeFunctions::track_path(path);
1012     }
1013 }
1014