1 use crate::convert::*;
2 use crate::operations::folded_multiply;
3 use crate::operations::read_small;
4 use crate::random_state::PI;
5 use crate::RandomState;
6 use core::hash::Hasher;
7 
8 ///This constant come from Kunth's prng (Empirically it works better than those from splitmix32).
9 pub(crate) const MULTIPLE: u64 = 6364136223846793005;
10 const ROT: u32 = 23; //17
11 
12 /// A `Hasher` for hashing an arbitrary stream of bytes.
13 ///
14 /// Instances of [`AHasher`] represent state that is updated while hashing data.
15 ///
16 /// Each method updates the internal state based on the new data provided. Once
17 /// all of the data has been provided, the resulting hash can be obtained by calling
18 /// `finish()`
19 ///
20 /// [Clone] is also provided in case you wish to calculate hashes for two different items that
21 /// start with the same data.
22 ///
23 #[derive(Debug, Clone)]
24 pub struct AHasher {
25     buffer: u64,
26     pad: u64,
27     extra_keys: [u64; 2],
28 }
29 
30 impl AHasher {
31     /// Creates a new hasher keyed to the provided key.
32     #[inline]
33     #[allow(dead_code)] // Is not called if non-fallback hash is used.
new_with_keys(key1: u128, key2: u128) -> AHasher34     pub fn new_with_keys(key1: u128, key2: u128) -> AHasher {
35         let pi: [u128; 2] = PI.convert();
36         let key1: [u64; 2] = (key1 ^ pi[0]).convert();
37         let key2: [u64; 2] = (key2 ^ pi[1]).convert();
38         AHasher {
39             buffer: key1[0],
40             pad: key1[1],
41             extra_keys: key2,
42         }
43     }
44 
45     #[allow(unused)] // False positive
test_with_keys(key1: u128, key2: u128) -> Self46     pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self {
47         let key1: [u64; 2] = key1.convert();
48         let key2: [u64; 2] = key2.convert();
49         Self {
50             buffer: key1[0],
51             pad: key1[1],
52             extra_keys: key2,
53         }
54     }
55 
56     #[inline]
57     #[allow(dead_code)] // Is not called if non-fallback hash is used.
from_random_state(rand_state: &RandomState) -> AHasher58     pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher {
59         AHasher {
60             buffer: rand_state.k0,
61             pad: rand_state.k1,
62             extra_keys: [rand_state.k2, rand_state.k3],
63         }
64     }
65 
66     /// This update function has the goal of updating the buffer with a single multiply
67     /// FxHash does this but is vulnerable to attack. To avoid this input needs to be masked to with an
68     /// unpredictable value. Other hashes such as murmurhash have taken this approach but were found vulnerable
69     /// to attack. The attack was based on the idea of reversing the pre-mixing (Which is necessarily
70     /// reversible otherwise bits would be lost) then placing a difference in the highest bit before the
71     /// multiply used to mix the data. Because a multiply can never affect the bits to the right of it, a
72     /// subsequent update that also differed in this bit could result in a predictable collision.
73     ///
74     /// This version avoids this vulnerability while still only using a single multiply. It takes advantage
75     /// of the fact that when a 64 bit multiply is performed the upper 64 bits are usually computed and thrown
76     /// away. Instead it creates two 128 bit values where the upper 64 bits are zeros and multiplies them.
77     /// (The compiler is smart enough to turn this into a 64 bit multiplication in the assembly)
78     /// Then the upper bits are xored with the lower bits to produce a single 64 bit result.
79     ///
80     /// To understand why this is a good scrambling function it helps to understand multiply-with-carry PRNGs:
81     /// https://en.wikipedia.org/wiki/Multiply-with-carry_pseudorandom_number_generator
82     /// If the multiple is chosen well, this creates a long period, decent quality PRNG.
83     /// Notice that this function is equivalent to this except the `buffer`/`state` is being xored with each
84     /// new block of data. In the event that data is all zeros, it is exactly equivalent to a MWC PRNG.
85     ///
86     /// This is impervious to attack because every bit buffer at the end is dependent on every bit in
87     /// `new_data ^ buffer`. For example suppose two inputs differed in only the 5th bit. Then when the
88     /// multiplication is performed the `result` will differ in bits 5-69. More specifically it will differ by
89     /// 2^5 * MULTIPLE. However in the next step bits 65-128 are turned into a separate 64 bit value. So the
90     /// differing bits will be in the lower 6 bits of this value. The two intermediate values that differ in
91     /// bits 5-63 and in bits 0-5 respectively get added together. Producing an output that differs in every
92     /// bit. The addition carries in the multiplication and at the end additionally mean that the even if an
93     /// attacker somehow knew part of (but not all) the contents of the buffer before hand,
94     /// they would not be able to predict any of the bits in the buffer at the end.
95     #[inline(always)]
96     #[cfg(feature = "folded_multiply")]
update(&mut self, new_data: u64)97     fn update(&mut self, new_data: u64) {
98         self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
99     }
100 
101     #[inline(always)]
102     #[cfg(not(feature = "folded_multiply"))]
update(&mut self, new_data: u64)103     fn update(&mut self, new_data: u64) {
104         let d1 = (new_data ^ self.buffer).wrapping_mul(MULTIPLE);
105         self.pad = (self.pad ^ d1).rotate_left(8).wrapping_mul(MULTIPLE);
106         self.buffer = (self.buffer ^ self.pad).rotate_left(24);
107     }
108 
109     /// Similar to the above this function performs an update using a "folded multiply".
110     /// However it takes in 128 bits of data instead of 64. Both halves must be masked.
111     ///
112     /// This makes it impossible for an attacker to place a single bit difference between
113     /// two blocks so as to cancel each other.
114     ///
115     /// However this is not sufficient. to prevent (a,b) from hashing the same as (b,a) the buffer itself must
116     /// be updated between calls in a way that does not commute. To achieve this XOR and Rotate are used.
117     /// Add followed by xor is not the same as xor followed by add, and rotate ensures that the same out bits
118     /// can't be changed by the same set of input bits. To cancel this sequence with subsequent input would require
119     /// knowing the keys.
120     #[inline(always)]
121     #[cfg(feature = "folded_multiply")]
large_update(&mut self, new_data: u128)122     fn large_update(&mut self, new_data: u128) {
123         let block: [u64; 2] = new_data.convert();
124         let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
125         self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT);
126     }
127 
128     #[inline(always)]
129     #[cfg(not(feature = "folded_multiply"))]
large_update(&mut self, new_data: u128)130     fn large_update(&mut self, new_data: u128) {
131         let block: [u64; 2] = new_data.convert();
132         self.update(block[0] ^ self.extra_keys[0]);
133         self.update(block[1] ^ self.extra_keys[1]);
134     }
135 
136     #[inline]
137     #[cfg(feature = "specialize")]
short_finish(&self) -> u64138     fn short_finish(&self) -> u64 {
139         self.buffer.wrapping_add(self.pad)
140     }
141 }
142 
143 /// Provides [Hasher] methods to hash all of the primitive types.
144 ///
145 /// [Hasher]: core::hash::Hasher
146 impl Hasher for AHasher {
147     #[inline]
write_u8(&mut self, i: u8)148     fn write_u8(&mut self, i: u8) {
149         self.update(i as u64);
150     }
151 
152     #[inline]
write_u16(&mut self, i: u16)153     fn write_u16(&mut self, i: u16) {
154         self.update(i as u64);
155     }
156 
157     #[inline]
write_u32(&mut self, i: u32)158     fn write_u32(&mut self, i: u32) {
159         self.update(i as u64);
160     }
161 
162     #[inline]
write_u64(&mut self, i: u64)163     fn write_u64(&mut self, i: u64) {
164         self.update(i as u64);
165     }
166 
167     #[inline]
write_u128(&mut self, i: u128)168     fn write_u128(&mut self, i: u128) {
169         self.large_update(i);
170     }
171 
172     #[inline]
173     #[cfg(any(target_pointer_width = "64", target_pointer_width = "32", target_pointer_width = "16"))]
write_usize(&mut self, i: usize)174     fn write_usize(&mut self, i: usize) {
175         self.write_u64(i as u64);
176     }
177 
178     #[inline]
179     #[cfg(target_pointer_width = "128")]
write_usize(&mut self, i: usize)180     fn write_usize(&mut self, i: usize) {
181         self.write_u128(i as u128);
182     }
183 
184     #[inline]
185     #[allow(clippy::collapsible_if)]
write(&mut self, input: &[u8])186     fn write(&mut self, input: &[u8]) {
187         let mut data = input;
188         let length = data.len() as u64;
189         //Needs to be an add rather than an xor because otherwise it could be canceled with carefully formed input.
190         self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
191         //A 'binary search' on sizes reduces the number of comparisons.
192         if data.len() > 8 {
193             if data.len() > 16 {
194                 let tail = data.read_last_u128();
195                 self.large_update(tail);
196                 while data.len() > 16 {
197                     let (block, rest) = data.read_u128();
198                     self.large_update(block);
199                     data = rest;
200                 }
201             } else {
202                 self.large_update([data.read_u64().0, data.read_last_u64()].convert());
203             }
204         } else {
205             let value = read_small(data);
206             self.large_update(value.convert());
207         }
208     }
209 
210     #[inline]
211     #[cfg(feature = "folded_multiply")]
finish(&self) -> u64212     fn finish(&self) -> u64 {
213         let rot = (self.buffer & 63) as u32;
214         folded_multiply(self.buffer, self.pad).rotate_left(rot)
215     }
216 
217     #[inline]
218     #[cfg(not(feature = "folded_multiply"))]
finish(&self) -> u64219     fn finish(&self) -> u64 {
220         let rot = (self.buffer & 63) as u32;
221         (self.buffer.wrapping_mul(MULTIPLE) ^ self.pad).rotate_left(rot)
222     }
223 }
224 
225 #[cfg(feature = "specialize")]
226 pub(crate) struct AHasherU64 {
227     pub(crate) buffer: u64,
228     pub(crate) pad: u64,
229 }
230 
231 /// A specialized hasher for only primitives under 64 bits.
232 #[cfg(feature = "specialize")]
233 impl Hasher for AHasherU64 {
234     #[inline]
finish(&self) -> u64235     fn finish(&self) -> u64 {
236         let rot = (self.pad & 64) as u32;
237         self.buffer.rotate_left(rot)
238     }
239 
240     #[inline]
write(&mut self, _bytes: &[u8])241     fn write(&mut self, _bytes: &[u8]) {
242         unreachable!("This should never be called")
243     }
244 
245     #[inline]
write_u8(&mut self, i: u8)246     fn write_u8(&mut self, i: u8) {
247         self.write_u64(i as u64);
248     }
249 
250     #[inline]
write_u16(&mut self, i: u16)251     fn write_u16(&mut self, i: u16) {
252         self.write_u64(i as u64);
253     }
254 
255     #[inline]
write_u32(&mut self, i: u32)256     fn write_u32(&mut self, i: u32) {
257         self.write_u64(i as u64);
258     }
259 
260     #[inline]
write_u64(&mut self, i: u64)261     fn write_u64(&mut self, i: u64) {
262         self.buffer = folded_multiply(i ^ self.buffer, MULTIPLE);
263     }
264 
265     #[inline]
write_u128(&mut self, _i: u128)266     fn write_u128(&mut self, _i: u128) {
267         unreachable!("This should never be called")
268     }
269 
270     #[inline]
write_usize(&mut self, _i: usize)271     fn write_usize(&mut self, _i: usize) {
272         unimplemented!()
273     }
274 }
275 
276 #[cfg(feature = "specialize")]
277 pub(crate) struct AHasherFixed(pub AHasher);
278 
279 /// A specialized hasher for fixed size primitives larger than 64 bits.
280 #[cfg(feature = "specialize")]
281 impl Hasher for AHasherFixed {
282     #[inline]
finish(&self) -> u64283     fn finish(&self) -> u64 {
284         self.0.short_finish()
285     }
286 
287     #[inline]
write(&mut self, bytes: &[u8])288     fn write(&mut self, bytes: &[u8]) {
289         self.0.write(bytes)
290     }
291 
292     #[inline]
write_u8(&mut self, i: u8)293     fn write_u8(&mut self, i: u8) {
294         self.write_u64(i as u64);
295     }
296 
297     #[inline]
write_u16(&mut self, i: u16)298     fn write_u16(&mut self, i: u16) {
299         self.write_u64(i as u64);
300     }
301 
302     #[inline]
write_u32(&mut self, i: u32)303     fn write_u32(&mut self, i: u32) {
304         self.write_u64(i as u64);
305     }
306 
307     #[inline]
write_u64(&mut self, i: u64)308     fn write_u64(&mut self, i: u64) {
309         self.0.write_u64(i);
310     }
311 
312     #[inline]
write_u128(&mut self, i: u128)313     fn write_u128(&mut self, i: u128) {
314         self.0.write_u128(i);
315     }
316 
317     #[inline]
write_usize(&mut self, i: usize)318     fn write_usize(&mut self, i: usize) {
319         self.0.write_usize(i);
320     }
321 }
322 
323 #[cfg(feature = "specialize")]
324 pub(crate) struct AHasherStr(pub AHasher);
325 
326 /// A specialized hasher for a single string
327 /// Note that the other types don't panic because the hash impl for String tacks on an unneeded call. (As does vec)
328 #[cfg(feature = "specialize")]
329 impl Hasher for AHasherStr {
330     #[inline]
finish(&self) -> u64331     fn finish(&self) -> u64 {
332         self.0.finish()
333     }
334 
335     #[inline]
write(&mut self, bytes: &[u8])336     fn write(&mut self, bytes: &[u8]) {
337         if bytes.len() > 8 {
338             self.0.write(bytes)
339         } else {
340             let value = read_small(bytes);
341             self.0.buffer = folded_multiply(value[0] ^ self.0.buffer,
342                                            value[1] ^ self.0.extra_keys[1]);
343             self.0.pad = self.0.pad.wrapping_add(bytes.len() as u64);
344         }
345     }
346 
347     #[inline]
write_u8(&mut self, _i: u8)348     fn write_u8(&mut self, _i: u8) {}
349 
350     #[inline]
write_u16(&mut self, _i: u16)351     fn write_u16(&mut self, _i: u16) {}
352 
353     #[inline]
write_u32(&mut self, _i: u32)354     fn write_u32(&mut self, _i: u32) {}
355 
356     #[inline]
write_u64(&mut self, _i: u64)357     fn write_u64(&mut self, _i: u64) {}
358 
359     #[inline]
write_u128(&mut self, _i: u128)360     fn write_u128(&mut self, _i: u128) {}
361 
362     #[inline]
write_usize(&mut self, _i: usize)363     fn write_usize(&mut self, _i: usize) {}
364 }
365 
366 #[cfg(test)]
367 mod tests {
368     use crate::convert::Convert;
369     use crate::fallback_hash::*;
370 
371     #[test]
test_hash()372     fn test_hash() {
373         let mut hasher = AHasher::new_with_keys(0, 0);
374         let value: u64 = 1 << 32;
375         hasher.update(value);
376         let result = hasher.buffer;
377         let mut hasher = AHasher::new_with_keys(0, 0);
378         let value2: u64 = 1;
379         hasher.update(value2);
380         let result2 = hasher.buffer;
381         let result: [u8; 8] = result.convert();
382         let result2: [u8; 8] = result2.convert();
383         assert_ne!(hex::encode(result), hex::encode(result2));
384     }
385 
386     #[test]
test_conversion()387     fn test_conversion() {
388         let input: &[u8] = "dddddddd".as_bytes();
389         let bytes: u64 = as_array!(input, 8).convert();
390         assert_eq!(bytes, 0x6464646464646464);
391     }
392 }
393