1;;  Mips.md	     Machine Description for MIPS based processors
2;;  Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3;;  1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4;;  Contributed by   A. Lichnewsky, lich@inria.inria.fr
5;;  Changes by       Michael Meissner, meissner@osf.org
6;;  64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
7;;  Brendan Eich, brendan@microunity.com.
8
9;; This file is part of GCC.
10
11;; GCC is free software; you can redistribute it and/or modify
12;; it under the terms of the GNU General Public License as published by
13;; the Free Software Foundation; either version 2, or (at your option)
14;; any later version.
15
16;; GCC is distributed in the hope that it will be useful,
17;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19;; GNU General Public License for more details.
20
21;; You should have received a copy of the GNU General Public License
22;; along with GCC; see the file COPYING.  If not, write to
23;; the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24;; Boston, MA 02110-1301, USA.
25
26(define_constants
27  [(UNSPEC_LOAD_DF_LOW		 0)
28   (UNSPEC_LOAD_DF_HIGH		 1)
29   (UNSPEC_STORE_DF_HIGH	 2)
30   (UNSPEC_GET_FNADDR		 3)
31   (UNSPEC_BLOCKAGE		 4)
32   (UNSPEC_CPRESTORE		 5)
33   (UNSPEC_EH_RECEIVER		 6)
34   (UNSPEC_EH_RETURN		 7)
35   (UNSPEC_CONSTTABLE_INT	 8)
36   (UNSPEC_CONSTTABLE_FLOAT	 9)
37   (UNSPEC_ALIGN		14)
38   (UNSPEC_HIGH			17)
39   (UNSPEC_LOAD_LEFT		18)
40   (UNSPEC_LOAD_RIGHT		19)
41   (UNSPEC_STORE_LEFT		20)
42   (UNSPEC_STORE_RIGHT		21)
43   (UNSPEC_LOADGP		22)
44   (UNSPEC_LOAD_CALL		23)
45   (UNSPEC_LOAD_GOT		24)
46   (UNSPEC_GP			25)
47   (UNSPEC_MFHILO		26)
48   (UNSPEC_TLS_LDM		27)
49   (UNSPEC_TLS_GET_TP		28)
50
51   (UNSPEC_ADDRESS_FIRST	100)
52
53   (FAKE_CALL_REGNO		79)
54
55   ;; For MIPS Paired-Singled Floating Point Instructions.
56
57   (UNSPEC_MOVE_TF_PS		200)
58   (UNSPEC_C			201)
59
60   ;; MIPS64/MIPS32R2 alnv.ps
61   (UNSPEC_ALNV_PS		202)
62
63   ;; MIPS-3D instructions
64   (UNSPEC_CABS			203)
65
66   (UNSPEC_ADDR_PS		204)
67   (UNSPEC_CVT_PW_PS		205)
68   (UNSPEC_CVT_PS_PW		206)
69   (UNSPEC_MULR_PS		207)
70
71   (UNSPEC_RSQRT1		208)
72   (UNSPEC_RSQRT2		209)
73   (UNSPEC_RECIP1		210)
74   (UNSPEC_RECIP2		211)
75
76   ;; MIPS DSP ASE Revision 0.98 3/24/2005
77   (UNSPEC_ADDQ			300)
78   (UNSPEC_ADDQ_S		301)
79   (UNSPEC_SUBQ			302)
80   (UNSPEC_SUBQ_S		303)
81   (UNSPEC_ADDSC		304)
82   (UNSPEC_ADDWC		305)
83   (UNSPEC_MODSUB		306)
84   (UNSPEC_RADDU_W_QB		307)
85   (UNSPEC_ABSQ_S		308)
86   (UNSPEC_PRECRQ_QB_PH		309)
87   (UNSPEC_PRECRQ_PH_W		310)
88   (UNSPEC_PRECRQ_RS_PH_W	311)
89   (UNSPEC_PRECRQU_S_QB_PH	312)
90   (UNSPEC_PRECEQ_W_PHL		313)
91   (UNSPEC_PRECEQ_W_PHR		314)
92   (UNSPEC_PRECEQU_PH_QBL	315)
93   (UNSPEC_PRECEQU_PH_QBR	316)
94   (UNSPEC_PRECEQU_PH_QBLA	317)
95   (UNSPEC_PRECEQU_PH_QBRA	318)
96   (UNSPEC_PRECEU_PH_QBL	319)
97   (UNSPEC_PRECEU_PH_QBR	320)
98   (UNSPEC_PRECEU_PH_QBLA	321)
99   (UNSPEC_PRECEU_PH_QBRA	322)
100   (UNSPEC_SHLL			323)
101   (UNSPEC_SHLL_S		324)
102   (UNSPEC_SHRL_QB		325)
103   (UNSPEC_SHRA_PH		326)
104   (UNSPEC_SHRA_R		327)
105   (UNSPEC_MULEU_S_PH_QBL	328)
106   (UNSPEC_MULEU_S_PH_QBR	329)
107   (UNSPEC_MULQ_RS_PH		330)
108   (UNSPEC_MULEQ_S_W_PHL	331)
109   (UNSPEC_MULEQ_S_W_PHR	332)
110   (UNSPEC_DPAU_H_QBL		333)
111   (UNSPEC_DPAU_H_QBR		334)
112   (UNSPEC_DPSU_H_QBL		335)
113   (UNSPEC_DPSU_H_QBR		336)
114   (UNSPEC_DPAQ_S_W_PH		337)
115   (UNSPEC_DPSQ_S_W_PH		338)
116   (UNSPEC_MULSAQ_S_W_PH	339)
117   (UNSPEC_DPAQ_SA_L_W		340)
118   (UNSPEC_DPSQ_SA_L_W		341)
119   (UNSPEC_MAQ_S_W_PHL		342)
120   (UNSPEC_MAQ_S_W_PHR		343)
121   (UNSPEC_MAQ_SA_W_PHL		344)
122   (UNSPEC_MAQ_SA_W_PHR		345)
123   (UNSPEC_BITREV		346)
124   (UNSPEC_INSV			347)
125   (UNSPEC_REPL_QB		348)
126   (UNSPEC_REPL_PH		349)
127   (UNSPEC_CMP_EQ		350)
128   (UNSPEC_CMP_LT		351)
129   (UNSPEC_CMP_LE		352)
130   (UNSPEC_CMPGU_EQ_QB		353)
131   (UNSPEC_CMPGU_LT_QB		354)
132   (UNSPEC_CMPGU_LE_QB		355)
133   (UNSPEC_PICK			356)
134   (UNSPEC_PACKRL_PH		357)
135   (UNSPEC_EXTR_W		358)
136   (UNSPEC_EXTR_R_W		359)
137   (UNSPEC_EXTR_RS_W		360)
138   (UNSPEC_EXTR_S_H		361)
139   (UNSPEC_EXTP			362)
140   (UNSPEC_EXTPDP		363)
141   (UNSPEC_SHILO		364)
142   (UNSPEC_MTHLIP		365)
143   (UNSPEC_WRDSP		366)
144   (UNSPEC_RDDSP		367)
145  ]
146)
147
148(include "predicates.md")
149
150;; ....................
151;;
152;;	Attributes
153;;
154;; ....................
155
156(define_attr "got" "unset,xgot_high,load"
157  (const_string "unset"))
158
159;; For jal instructions, this attribute is DIRECT when the target address
160;; is symbolic and INDIRECT when it is a register.
161(define_attr "jal" "unset,direct,indirect"
162  (const_string "unset"))
163
164;; This attribute is YES if the instruction is a jal macro (not a
165;; real jal instruction).
166;;
167;; jal is always a macro in SVR4 PIC since it includes an instruction to
168;; restore $gp.  Direct jals are also macros in NewABI PIC since they
169;; load the target address into $25.
170(define_attr "jal_macro" "no,yes"
171  (cond [(eq_attr "jal" "direct")
172	 (symbol_ref "TARGET_ABICALLS != 0")
173	 (eq_attr "jal" "indirect")
174	 (symbol_ref "(TARGET_ABICALLS && !TARGET_NEWABI) != 0")]
175	(const_string "no")))
176
177;; Classification of each insn.
178;; branch	conditional branch
179;; jump		unconditional jump
180;; call		unconditional call
181;; load		load instruction(s)
182;; fpload	floating point load
183;; fpidxload    floating point indexed load
184;; store	store instruction(s)
185;; fpstore	floating point store
186;; fpidxstore	floating point indexed store
187;; prefetch	memory prefetch (register + offset)
188;; prefetchx	memory indexed prefetch (register + register)
189;; condmove	conditional moves
190;; xfer		transfer to/from coprocessor
191;; mthilo	transfer to hi/lo registers
192;; mfhilo	transfer from hi/lo registers
193;; const	load constant
194;; arith	integer arithmetic and logical instructions
195;; shift	integer shift instructions
196;; slt		set less than instructions
197;; clz		the clz and clo instructions
198;; trap		trap if instructions
199;; imul		integer multiply 2 operands
200;; imul3	integer multiply 3 operands
201;; imadd	integer multiply-add
202;; idiv		integer divide
203;; fmove	floating point register move
204;; fadd		floating point add/subtract
205;; fmul		floating point multiply
206;; fmadd	floating point multiply-add
207;; fdiv		floating point divide
208;; frdiv	floating point reciprocal divide
209;; frdiv1	floating point reciprocal divide step 1
210;; frdiv2	floating point reciprocal divide step 2
211;; fabs		floating point absolute value
212;; fneg		floating point negation
213;; fcmp		floating point compare
214;; fcvt		floating point convert
215;; fsqrt	floating point square root
216;; frsqrt       floating point reciprocal square root
217;; frsqrt1      floating point reciprocal square root step1
218;; frsqrt2      floating point reciprocal square root step2
219;; multi	multiword sequence (or user asm statements)
220;; nop		no operation
221(define_attr "type"
222  "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,prefetch,prefetchx,condmove,xfer,mthilo,mfhilo,const,arith,shift,slt,clz,trap,imul,imul3,imadd,idiv,fmove,fadd,fmul,fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,frsqrt,frsqrt1,frsqrt2,multi,nop"
223  (cond [(eq_attr "jal" "!unset") (const_string "call")
224	 (eq_attr "got" "load") (const_string "load")]
225	(const_string "unknown")))
226
227;; Main data type used by the insn
228(define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,FPSW"
229  (const_string "unknown"))
230
231;; Mode for conversion types (fcvt)
232;; I2S          integer to float single (SI/DI to SF)
233;; I2D          integer to float double (SI/DI to DF)
234;; S2I          float to integer (SF to SI/DI)
235;; D2I          float to integer (DF to SI/DI)
236;; D2S          double to float single
237;; S2D          float single to double
238
239(define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D"
240  (const_string "unknown"))
241
242;; Is this an extended instruction in mips16 mode?
243(define_attr "extended_mips16" "no,yes"
244  (const_string "no"))
245
246;; Length of instruction in bytes.
247(define_attr "length" ""
248   (cond [;; Direct branch instructions have a range of [-0x40000,0x3fffc].
249	  ;; If a branch is outside this range, we have a choice of two
250	  ;; sequences.  For PIC, an out-of-range branch like:
251	  ;;
252	  ;;	bne	r1,r2,target
253	  ;;	dslot
254	  ;;
255	  ;; becomes the equivalent of:
256	  ;;
257	  ;;	beq	r1,r2,1f
258	  ;;	dslot
259	  ;;	la	$at,target
260	  ;;	jr	$at
261	  ;;	nop
262	  ;; 1:
263	  ;;
264	  ;; where the load address can be up to three instructions long
265	  ;; (lw, nop, addiu).
266	  ;;
267	  ;; The non-PIC case is similar except that we use a direct
268	  ;; jump instead of an la/jr pair.  Since the target of this
269	  ;; jump is an absolute 28-bit bit address (the other bits
270	  ;; coming from the address of the delay slot) this form cannot
271	  ;; cross a 256MB boundary.  We could provide the option of
272	  ;; using la/jr in this case too, but we do not do so at
273	  ;; present.
274	  ;;
275	  ;; Note that this value does not account for the delay slot
276	  ;; instruction, whose length is added separately.  If the RTL
277	  ;; pattern has no explicit delay slot, mips_adjust_insn_length
278	  ;; will add the length of the implicit nop.  The values for
279	  ;; forward and backward branches will be different as well.
280	  (eq_attr "type" "branch")
281	  (cond [(and (le (minus (match_dup 1) (pc)) (const_int 131064))
282                      (le (minus (pc) (match_dup 1)) (const_int 131068)))
283                  (const_int 4)
284		 (ne (symbol_ref "flag_pic") (const_int 0))
285		 (const_int 24)
286		 ] (const_int 12))
287
288	  (eq_attr "got" "load")
289	  (const_int 4)
290	  (eq_attr "got" "xgot_high")
291	  (const_int 8)
292
293	  (eq_attr "type" "const")
294	  (symbol_ref "mips_const_insns (operands[1]) * 4")
295	  (eq_attr "type" "load,fpload")
296	  (symbol_ref "mips_fetch_insns (operands[1]) * 4")
297	  (eq_attr "type" "store,fpstore")
298	  (symbol_ref "mips_fetch_insns (operands[0]) * 4")
299
300	  ;; In the worst case, a call macro will take 8 instructions:
301	  ;;
302	  ;;	 lui $25,%call_hi(FOO)
303	  ;;	 addu $25,$25,$28
304	  ;;     lw $25,%call_lo(FOO)($25)
305	  ;;	 nop
306	  ;;	 jalr $25
307	  ;;	 nop
308	  ;;	 lw $gp,X($sp)
309	  ;;	 nop
310	  (eq_attr "jal_macro" "yes")
311	  (const_int 32)
312
313	  (and (eq_attr "extended_mips16" "yes")
314	       (ne (symbol_ref "TARGET_MIPS16") (const_int 0)))
315	  (const_int 8)
316
317	  ;; Various VR4120 errata require a nop to be inserted after a macc
318	  ;; instruction.  The assembler does this for us, so account for
319	  ;; the worst-case length here.
320	  (and (eq_attr "type" "imadd")
321	       (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0)))
322	  (const_int 8)
323
324	  ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
325	  ;; the result of the second one is missed.  The assembler should work
326	  ;; around this by inserting a nop after the first dmult.
327	  (and (eq_attr "type" "imul,imul3")
328	       (and (eq_attr "mode" "DI")
329		    (ne (symbol_ref "TARGET_FIX_VR4120") (const_int 0))))
330	  (const_int 8)
331
332	  (eq_attr "type" "idiv")
333	  (symbol_ref "mips_idiv_insns () * 4")
334	  ] (const_int 4)))
335
336;; Attribute describing the processor.  This attribute must match exactly
337;; with the processor_type enumeration in mips.h.
338(define_attr "cpu"
339  "r3000,4kc,4kp,5kc,5kf,20kc,24k,24kx,m4k,r3900,r6000,r4000,r4100,r4111,r4120,r4130,r4300,r4600,r4650,r5000,r5400,r5500,r7000,r8000,r9000,sb1,sr71000"
340  (const (symbol_ref "mips_tune")))
341
342;; The type of hardware hazard associated with this instruction.
343;; DELAY means that the next instruction cannot read the result
344;; of this one.  HILO means that the next two instructions cannot
345;; write to HI or LO.
346(define_attr "hazard" "none,delay,hilo"
347  (cond [(and (eq_attr "type" "load,fpload,fpidxload")
348	      (ne (symbol_ref "ISA_HAS_LOAD_DELAY") (const_int 0)))
349	 (const_string "delay")
350
351	 (and (eq_attr "type" "xfer")
352	      (ne (symbol_ref "ISA_HAS_XFER_DELAY") (const_int 0)))
353	 (const_string "delay")
354
355	 (and (eq_attr "type" "fcmp")
356	      (ne (symbol_ref "ISA_HAS_FCMP_DELAY") (const_int 0)))
357	 (const_string "delay")
358
359	 ;; The r4000 multiplication patterns include an mflo instruction.
360	 (and (eq_attr "type" "imul")
361	      (ne (symbol_ref "TARGET_FIX_R4000") (const_int 0)))
362	 (const_string "hilo")
363
364	 (and (eq_attr "type" "mfhilo")
365	      (eq (symbol_ref "ISA_HAS_HILO_INTERLOCKS") (const_int 0)))
366	 (const_string "hilo")]
367	(const_string "none")))
368
369;; Is it a single instruction?
370(define_attr "single_insn" "no,yes"
371  (symbol_ref "get_attr_length (insn) == (TARGET_MIPS16 ? 2 : 4)"))
372
373;; Can the instruction be put into a delay slot?
374(define_attr "can_delay" "no,yes"
375  (if_then_else (and (eq_attr "type" "!branch,call,jump")
376		     (and (eq_attr "hazard" "none")
377			  (eq_attr "single_insn" "yes")))
378		(const_string "yes")
379		(const_string "no")))
380
381;; Attribute defining whether or not we can use the branch-likely instructions
382(define_attr "branch_likely" "no,yes"
383  (const
384   (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0))
385		 (const_string "yes")
386		 (const_string "no"))))
387
388;; True if an instruction might assign to hi or lo when reloaded.
389;; This is used by the TUNE_MACC_CHAINS code.
390(define_attr "may_clobber_hilo" "no,yes"
391  (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthilo")
392		(const_string "yes")
393		(const_string "no")))
394
395;; Describe a user's asm statement.
396(define_asm_attributes
397  [(set_attr "type" "multi")
398   (set_attr "can_delay" "no")])
399
400;; This mode macro allows 32-bit and 64-bit GPR patterns to be generated
401;; from the same template.
402(define_mode_macro GPR [SI (DI "TARGET_64BIT")])
403
404;; This mode macro allows :P to be used for patterns that operate on
405;; pointer-sized quantities.  Exactly one of the two alternatives will match.
406(define_mode_macro P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
407
408;; This mode macro allows :MOVECC to be used anywhere that a
409;; conditional-move-type condition is needed.
410(define_mode_macro MOVECC [SI (DI "TARGET_64BIT") (CC "TARGET_HARD_FLOAT")])
411
412;; This mode macro allows the QI and HI extension patterns to be defined from
413;; the same template.
414(define_mode_macro SHORT [QI HI])
415
416;; This mode macro allows :ANYF to be used wherever a scalar or vector
417;; floating-point mode is allowed.
418(define_mode_macro ANYF [(SF "TARGET_HARD_FLOAT")
419			 (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
420			 (V2SF "TARGET_PAIRED_SINGLE_FLOAT")])
421
422;; Like ANYF, but only applies to scalar modes.
423(define_mode_macro SCALARF [(SF "TARGET_HARD_FLOAT")
424			    (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
425
426;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
427;; 32-bit version and "dsubu" in the 64-bit version.
428(define_mode_attr d [(SI "") (DI "d")])
429
430;; This attribute gives the length suffix for a sign- or zero-extension
431;; instruction.
432(define_mode_attr size [(QI "b") (HI "h")])
433
434;; This attributes gives the mode mask of a SHORT.
435(define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
436
437;; Mode attributes for GPR loads and stores.
438(define_mode_attr load [(SI "lw") (DI "ld")])
439(define_mode_attr store [(SI "sw") (DI "sd")])
440
441;; Similarly for MIPS IV indexed FPR loads and stores.
442(define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
443(define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
444
445;; The unextended ranges of the MIPS16 addiu and daddiu instructions
446;; are different.  Some forms of unextended addiu have an 8-bit immediate
447;; field but the equivalent daddiu has only a 5-bit field.
448(define_mode_attr si8_di5 [(SI "8") (DI "5")])
449
450;; This attribute gives the best constraint to use for registers of
451;; a given mode.
452(define_mode_attr reg [(SI "d") (DI "d") (CC "z")])
453
454;; This attribute gives the format suffix for floating-point operations.
455(define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
456
457;; This attribute gives the upper-case mode name for one unit of a
458;; floating-point mode.
459(define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
460
461;; This attribute works around the early SB-1 rev2 core "F2" erratum:
462;;
463;; In certain cases, div.s and div.ps may have a rounding error
464;; and/or wrong inexact flag.
465;;
466;; Therefore, we only allow div.s if not working around SB-1 rev2
467;; errata or if a slight loss of precision is OK.
468(define_mode_attr divide_condition
469  [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
470   (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
471
472; This attribute gives the condition for which sqrt instructions exist.
473(define_mode_attr sqrt_condition
474  [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
475
476; This attribute gives the condition for which recip and rsqrt instructions
477; exist.
478(define_mode_attr recip_condition
479  [(SF "ISA_HAS_FP4") (DF "ISA_HAS_FP4") (V2SF "TARGET_SB1")])
480
481;; This code macro allows all branch instructions to be generated from
482;; a single define_expand template.
483(define_code_macro any_cond [unordered ordered unlt unge uneq ltgt unle ungt
484			     eq ne gt ge lt le gtu geu ltu leu])
485
486;; This code macro allows signed and unsigned widening multiplications
487;; to use the same template.
488(define_code_macro any_extend [sign_extend zero_extend])
489
490;; This code macro allows the three shift instructions to be generated
491;; from the same template.
492(define_code_macro any_shift [ashift ashiftrt lshiftrt])
493
494;; This code macro allows all native floating-point comparisons to be
495;; generated from the same template.
496(define_code_macro fcond [unordered uneq unlt unle eq lt le])
497
498;; This code macro is used for comparisons that can be implemented
499;; by swapping the operands.
500(define_code_macro swapped_fcond [ge gt unge ungt])
501
502;; <u> expands to an empty string when doing a signed operation and
503;; "u" when doing an unsigned operation.
504(define_code_attr u [(sign_extend "") (zero_extend "u")])
505
506;; <su> is like <u>, but the signed form expands to "s" rather than "".
507(define_code_attr su [(sign_extend "s") (zero_extend "u")])
508
509;; <optab> expands to the name of the optab for a particular code.
510(define_code_attr optab [(ashift "ashl")
511			 (ashiftrt "ashr")
512			 (lshiftrt "lshr")])
513
514;; <insn> expands to the name of the insn that implements a particular code.
515(define_code_attr insn [(ashift "sll")
516			(ashiftrt "sra")
517			(lshiftrt "srl")])
518
519;; <fcond> is the c.cond.fmt condition associated with a particular code.
520(define_code_attr fcond [(unordered "un")
521			 (uneq "ueq")
522			 (unlt "ult")
523			 (unle "ule")
524			 (eq "eq")
525			 (lt "lt")
526			 (le "le")])
527
528;; Similar, but for swapped conditions.
529(define_code_attr swapped_fcond [(ge "le")
530				 (gt "lt")
531				 (unge "ule")
532				 (ungt "ult")])
533
534;; .........................
535;;
536;;	Branch, call and jump delay slots
537;;
538;; .........................
539
540(define_delay (and (eq_attr "type" "branch")
541		   (eq (symbol_ref "TARGET_MIPS16") (const_int 0)))
542  [(eq_attr "can_delay" "yes")
543   (nil)
544   (and (eq_attr "branch_likely" "yes")
545	(eq_attr "can_delay" "yes"))])
546
547(define_delay (eq_attr "type" "jump")
548  [(eq_attr "can_delay" "yes")
549   (nil)
550   (nil)])
551
552(define_delay (and (eq_attr "type" "call")
553		   (eq_attr "jal_macro" "no"))
554  [(eq_attr "can_delay" "yes")
555   (nil)
556   (nil)])
557
558;; Pipeline descriptions.
559;;
560;; generic.md provides a fallback for processors without a specific
561;; pipeline description.  It is derived from the old define_function_unit
562;; version and uses the "alu" and "imuldiv" units declared below.
563;;
564;; Some of the processor-specific files are also derived from old
565;; define_function_unit descriptions and simply override the parts of
566;; generic.md that don't apply.  The other processor-specific files
567;; are self-contained.
568(define_automaton "alu,imuldiv")
569
570(define_cpu_unit "alu" "alu")
571(define_cpu_unit "imuldiv" "imuldiv")
572
573(include "4k.md")
574(include "5k.md")
575(include "24k.md")
576(include "3000.md")
577(include "4000.md")
578(include "4100.md")
579(include "4130.md")
580(include "4300.md")
581(include "4600.md")
582(include "5000.md")
583(include "5400.md")
584(include "5500.md")
585(include "6000.md")
586(include "7000.md")
587(include "9000.md")
588(include "sb1.md")
589(include "sr71k.md")
590(include "generic.md")
591
592;;
593;;  ....................
594;;
595;;	CONDITIONAL TRAPS
596;;
597;;  ....................
598;;
599
600(define_insn "trap"
601  [(trap_if (const_int 1) (const_int 0))]
602  ""
603{
604  if (ISA_HAS_COND_TRAP)
605    return "teq\t$0,$0";
606  else if (TARGET_MIPS16)
607    return "break 0";
608  else
609    return "break";
610}
611  [(set_attr "type" "trap")])
612
613(define_expand "conditional_trap"
614  [(trap_if (match_operator 0 "comparison_operator"
615			    [(match_dup 2) (match_dup 3)])
616	    (match_operand 1 "const_int_operand"))]
617  "ISA_HAS_COND_TRAP"
618{
619  if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT
620      && operands[1] == const0_rtx)
621    {
622      mips_gen_conditional_trap (operands);
623      DONE;
624    }
625  else
626    FAIL;
627})
628
629(define_insn "*conditional_trap<mode>"
630  [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
631				[(match_operand:GPR 1 "reg_or_0_operand" "dJ")
632				 (match_operand:GPR 2 "arith_operand" "dI")])
633	    (const_int 0))]
634  "ISA_HAS_COND_TRAP"
635  "t%C0\t%z1,%2"
636  [(set_attr "type" "trap")])
637
638;;
639;;  ....................
640;;
641;;	ADDITION
642;;
643;;  ....................
644;;
645
646(define_insn "add<mode>3"
647  [(set (match_operand:ANYF 0 "register_operand" "=f")
648	(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
649		   (match_operand:ANYF 2 "register_operand" "f")))]
650  ""
651  "add.<fmt>\t%0,%1,%2"
652  [(set_attr "type" "fadd")
653   (set_attr "mode" "<UNITMODE>")])
654
655(define_expand "add<mode>3"
656  [(set (match_operand:GPR 0 "register_operand")
657	(plus:GPR (match_operand:GPR 1 "register_operand")
658		  (match_operand:GPR 2 "arith_operand")))]
659  "")
660
661(define_insn "*add<mode>3"
662  [(set (match_operand:GPR 0 "register_operand" "=d,d")
663	(plus:GPR (match_operand:GPR 1 "register_operand" "d,d")
664		  (match_operand:GPR 2 "arith_operand" "d,Q")))]
665  "!TARGET_MIPS16"
666  "@
667    <d>addu\t%0,%1,%2
668    <d>addiu\t%0,%1,%2"
669  [(set_attr "type" "arith")
670   (set_attr "mode" "<MODE>")])
671
672;; We need to recognize MIPS16 stack pointer additions explicitly, since
673;; we don't have a constraint for $sp.  These insns will be generated by
674;; the save_restore_insns functions.
675
676(define_insn "*add<mode>3_sp1"
677  [(set (reg:GPR 29)
678	(plus:GPR (reg:GPR 29)
679		  (match_operand:GPR 0 "const_arith_operand" "")))]
680  "TARGET_MIPS16"
681  "<d>addiu\t%$,%$,%0"
682  [(set_attr "type" "arith")
683   (set_attr "mode" "<MODE>")
684   (set (attr "length") (if_then_else (match_operand 0 "m16_simm8_8")
685				      (const_int 4)
686				      (const_int 8)))])
687
688(define_insn "*add<mode>3_sp2"
689  [(set (match_operand:GPR 0 "register_operand" "=d")
690	(plus:GPR (reg:GPR 29)
691		  (match_operand:GPR 1 "const_arith_operand" "")))]
692  "TARGET_MIPS16"
693  "<d>addiu\t%0,%$,%1"
694  [(set_attr "type" "arith")
695   (set_attr "mode" "<MODE>")
696   (set (attr "length") (if_then_else (match_operand 1 "m16_uimm<si8_di5>_4")
697				      (const_int 4)
698				      (const_int 8)))])
699
700(define_insn "*add<mode>3_mips16"
701  [(set (match_operand:GPR 0 "register_operand" "=d,d,d")
702	(plus:GPR (match_operand:GPR 1 "register_operand" "0,d,d")
703		  (match_operand:GPR 2 "arith_operand" "Q,O,d")))]
704  "TARGET_MIPS16"
705  "@
706    <d>addiu\t%0,%2
707    <d>addiu\t%0,%1,%2
708    <d>addu\t%0,%1,%2"
709  [(set_attr "type" "arith")
710   (set_attr "mode" "<MODE>")
711   (set_attr_alternative "length"
712		[(if_then_else (match_operand 2 "m16_simm<si8_di5>_1")
713			       (const_int 4)
714			       (const_int 8))
715		 (if_then_else (match_operand 2 "m16_simm4_1")
716			       (const_int 4)
717			       (const_int 8))
718		 (const_int 4)])])
719
720
721;; On the mips16, we can sometimes split an add of a constant which is
722;; a 4 byte instruction into two adds which are both 2 byte
723;; instructions.  There are two cases: one where we are adding a
724;; constant plus a register to another register, and one where we are
725;; simply adding a constant to a register.
726
727(define_split
728  [(set (match_operand:SI 0 "register_operand")
729	(plus:SI (match_dup 0)
730		 (match_operand:SI 1 "const_int_operand")))]
731  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
732   && REG_P (operands[0])
733   && M16_REG_P (REGNO (operands[0]))
734   && GET_CODE (operands[1]) == CONST_INT
735   && ((INTVAL (operands[1]) > 0x7f
736	&& INTVAL (operands[1]) <= 0x7f + 0x7f)
737       || (INTVAL (operands[1]) < - 0x80
738	   && INTVAL (operands[1]) >= - 0x80 - 0x80))"
739  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
740   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
741{
742  HOST_WIDE_INT val = INTVAL (operands[1]);
743
744  if (val >= 0)
745    {
746      operands[1] = GEN_INT (0x7f);
747      operands[2] = GEN_INT (val - 0x7f);
748    }
749  else
750    {
751      operands[1] = GEN_INT (- 0x80);
752      operands[2] = GEN_INT (val + 0x80);
753    }
754})
755
756(define_split
757  [(set (match_operand:SI 0 "register_operand")
758	(plus:SI (match_operand:SI 1 "register_operand")
759		 (match_operand:SI 2 "const_int_operand")))]
760  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
761   && REG_P (operands[0])
762   && M16_REG_P (REGNO (operands[0]))
763   && REG_P (operands[1])
764   && M16_REG_P (REGNO (operands[1]))
765   && REGNO (operands[0]) != REGNO (operands[1])
766   && GET_CODE (operands[2]) == CONST_INT
767   && ((INTVAL (operands[2]) > 0x7
768	&& INTVAL (operands[2]) <= 0x7 + 0x7f)
769       || (INTVAL (operands[2]) < - 0x8
770	   && INTVAL (operands[2]) >= - 0x8 - 0x80))"
771  [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
772   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
773{
774  HOST_WIDE_INT val = INTVAL (operands[2]);
775
776  if (val >= 0)
777    {
778      operands[2] = GEN_INT (0x7);
779      operands[3] = GEN_INT (val - 0x7);
780    }
781  else
782    {
783      operands[2] = GEN_INT (- 0x8);
784      operands[3] = GEN_INT (val + 0x8);
785    }
786})
787
788(define_split
789  [(set (match_operand:DI 0 "register_operand")
790	(plus:DI (match_dup 0)
791		 (match_operand:DI 1 "const_int_operand")))]
792  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
793   && REG_P (operands[0])
794   && M16_REG_P (REGNO (operands[0]))
795   && GET_CODE (operands[1]) == CONST_INT
796   && ((INTVAL (operands[1]) > 0xf
797	&& INTVAL (operands[1]) <= 0xf + 0xf)
798       || (INTVAL (operands[1]) < - 0x10
799	   && INTVAL (operands[1]) >= - 0x10 - 0x10))"
800  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
801   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
802{
803  HOST_WIDE_INT val = INTVAL (operands[1]);
804
805  if (val >= 0)
806    {
807      operands[1] = GEN_INT (0xf);
808      operands[2] = GEN_INT (val - 0xf);
809    }
810  else
811    {
812      operands[1] = GEN_INT (- 0x10);
813      operands[2] = GEN_INT (val + 0x10);
814    }
815})
816
817(define_split
818  [(set (match_operand:DI 0 "register_operand")
819	(plus:DI (match_operand:DI 1 "register_operand")
820		 (match_operand:DI 2 "const_int_operand")))]
821  "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
822   && REG_P (operands[0])
823   && M16_REG_P (REGNO (operands[0]))
824   && REG_P (operands[1])
825   && M16_REG_P (REGNO (operands[1]))
826   && REGNO (operands[0]) != REGNO (operands[1])
827   && GET_CODE (operands[2]) == CONST_INT
828   && ((INTVAL (operands[2]) > 0x7
829	&& INTVAL (operands[2]) <= 0x7 + 0xf)
830       || (INTVAL (operands[2]) < - 0x8
831	   && INTVAL (operands[2]) >= - 0x8 - 0x10))"
832  [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
833   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
834{
835  HOST_WIDE_INT val = INTVAL (operands[2]);
836
837  if (val >= 0)
838    {
839      operands[2] = GEN_INT (0x7);
840      operands[3] = GEN_INT (val - 0x7);
841    }
842  else
843    {
844      operands[2] = GEN_INT (- 0x8);
845      operands[3] = GEN_INT (val + 0x8);
846    }
847})
848
849(define_insn "*addsi3_extended"
850  [(set (match_operand:DI 0 "register_operand" "=d,d")
851	(sign_extend:DI
852	     (plus:SI (match_operand:SI 1 "register_operand" "d,d")
853		      (match_operand:SI 2 "arith_operand" "d,Q"))))]
854  "TARGET_64BIT && !TARGET_MIPS16"
855  "@
856    addu\t%0,%1,%2
857    addiu\t%0,%1,%2"
858  [(set_attr "type" "arith")
859   (set_attr "mode" "SI")])
860
861;; Split this insn so that the addiu splitters can have a crack at it.
862;; Use a conservative length estimate until the split.
863(define_insn_and_split "*addsi3_extended_mips16"
864  [(set (match_operand:DI 0 "register_operand" "=d,d,d")
865	(sign_extend:DI
866	     (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
867		      (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
868  "TARGET_64BIT && TARGET_MIPS16"
869  "#"
870  "&& reload_completed"
871  [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
872  { operands[3] = gen_lowpart (SImode, operands[0]); }
873  [(set_attr "type" "arith")
874   (set_attr "mode" "SI")
875   (set_attr "extended_mips16" "yes")])
876
877;;
878;;  ....................
879;;
880;;	SUBTRACTION
881;;
882;;  ....................
883;;
884
885(define_insn "sub<mode>3"
886  [(set (match_operand:ANYF 0 "register_operand" "=f")
887	(minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
888		    (match_operand:ANYF 2 "register_operand" "f")))]
889  ""
890  "sub.<fmt>\t%0,%1,%2"
891  [(set_attr "type" "fadd")
892   (set_attr "mode" "<UNITMODE>")])
893
894(define_insn "sub<mode>3"
895  [(set (match_operand:GPR 0 "register_operand" "=d")
896	(minus:GPR (match_operand:GPR 1 "register_operand" "d")
897		   (match_operand:GPR 2 "register_operand" "d")))]
898  ""
899  "<d>subu\t%0,%1,%2"
900  [(set_attr "type" "arith")
901   (set_attr "mode" "<MODE>")])
902
903(define_insn "*subsi3_extended"
904  [(set (match_operand:DI 0 "register_operand" "=d")
905	(sign_extend:DI
906	    (minus:SI (match_operand:SI 1 "register_operand" "d")
907		      (match_operand:SI 2 "register_operand" "d"))))]
908  "TARGET_64BIT"
909  "subu\t%0,%1,%2"
910  [(set_attr "type" "arith")
911   (set_attr "mode" "DI")])
912
913;;
914;;  ....................
915;;
916;;	MULTIPLICATION
917;;
918;;  ....................
919;;
920
921(define_expand "mul<mode>3"
922  [(set (match_operand:SCALARF 0 "register_operand")
923	(mult:SCALARF (match_operand:SCALARF 1 "register_operand")
924		      (match_operand:SCALARF 2 "register_operand")))]
925  ""
926  "")
927
928(define_insn "*mul<mode>3"
929  [(set (match_operand:SCALARF 0 "register_operand" "=f")
930	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
931		      (match_operand:SCALARF 2 "register_operand" "f")))]
932  "!TARGET_4300_MUL_FIX"
933  "mul.<fmt>\t%0,%1,%2"
934  [(set_attr "type" "fmul")
935   (set_attr "mode" "<MODE>")])
936
937;; Early VR4300 silicon has a CPU bug where multiplies with certain
938;; operands may corrupt immediately following multiplies. This is a
939;; simple fix to insert NOPs.
940
941(define_insn "*mul<mode>3_r4300"
942  [(set (match_operand:SCALARF 0 "register_operand" "=f")
943	(mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
944		      (match_operand:SCALARF 2 "register_operand" "f")))]
945  "TARGET_4300_MUL_FIX"
946  "mul.<fmt>\t%0,%1,%2\;nop"
947  [(set_attr "type" "fmul")
948   (set_attr "mode" "<MODE>")
949   (set_attr "length" "8")])
950
951(define_insn "mulv2sf3"
952  [(set (match_operand:V2SF 0 "register_operand" "=f")
953	(mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
954		   (match_operand:V2SF 2 "register_operand" "f")))]
955  "TARGET_PAIRED_SINGLE_FLOAT"
956  "mul.ps\t%0,%1,%2"
957  [(set_attr "type" "fmul")
958   (set_attr "mode" "SF")])
959
960;; The original R4000 has a cpu bug.  If a double-word or a variable
961;; shift executes while an integer multiplication is in progress, the
962;; shift may give an incorrect result.  Avoid this by keeping the mflo
963;; with the mult on the R4000.
964;;
965;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
966;; (also valid for MIPS R4000MC processors):
967;;
968;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
969;;	this errata description.
970;;	The following code sequence causes the R4000 to incorrectly
971;;	execute the Double Shift Right Arithmetic 32 (dsra32)
972;;	instruction.  If the dsra32 instruction is executed during an
973;;	integer multiply, the dsra32 will only shift by the amount in
974;;	specified in the instruction rather than the amount plus 32
975;;	bits.
976;;	instruction 1:		mult	rs,rt		integer multiply
977;;	instruction 2-12:	dsra32	rd,rt,rs	doubleword shift
978;;							right arithmetic + 32
979;;	Workaround: A dsra32 instruction placed after an integer
980;;	multiply should not be one of the 11 instructions after the
981;;	multiply instruction."
982;;
983;; and:
984;;
985;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
986;;	the following description.
987;;	All extended shifts (shift by n+32) and variable shifts (32 and
988;;	64-bit versions) may produce incorrect results under the
989;;	following conditions:
990;;	1) An integer multiply is currently executing
991;;	2) These types of shift instructions are executed immediately
992;;	   following an integer divide instruction.
993;;	Workaround:
994;;	1) Make sure no integer multiply is running wihen these
995;;	   instruction are executed.  If this cannot be predicted at
996;;	   compile time, then insert a "mfhi" to R0 instruction
997;;	   immediately after the integer multiply instruction.  This
998;;	   will cause the integer multiply to complete before the shift
999;;	   is executed.
1000;;	2) Separate integer divide and these two classes of shift
1001;;	   instructions by another instruction or a noop."
1002;;
1003;; These processors have PRId values of 0x00004220 and 0x00004300,
1004;; respectively.
1005
1006(define_expand "mul<mode>3"
1007  [(set (match_operand:GPR 0 "register_operand")
1008	(mult:GPR (match_operand:GPR 1 "register_operand")
1009		  (match_operand:GPR 2 "register_operand")))]
1010  ""
1011{
1012  if (GENERATE_MULT3_<MODE>)
1013    emit_insn (gen_mul<mode>3_mult3 (operands[0], operands[1], operands[2]));
1014  else if (!TARGET_FIX_R4000)
1015    emit_insn (gen_mul<mode>3_internal (operands[0], operands[1],
1016					operands[2]));
1017  else
1018    emit_insn (gen_mul<mode>3_r4000 (operands[0], operands[1], operands[2]));
1019  DONE;
1020})
1021
1022(define_insn "mulsi3_mult3"
1023  [(set (match_operand:SI 0 "register_operand" "=d,l")
1024	(mult:SI (match_operand:SI 1 "register_operand" "d,d")
1025		 (match_operand:SI 2 "register_operand" "d,d")))
1026   (clobber (match_scratch:SI 3 "=h,h"))
1027   (clobber (match_scratch:SI 4 "=l,X"))]
1028  "GENERATE_MULT3_SI"
1029{
1030  if (which_alternative == 1)
1031    return "mult\t%1,%2";
1032  if (TARGET_MAD
1033      || TARGET_MIPS5400
1034      || TARGET_MIPS5500
1035      || TARGET_MIPS7000
1036      || TARGET_MIPS9000
1037      || ISA_MIPS32
1038      || ISA_MIPS32R2
1039      || ISA_MIPS64)
1040    return "mul\t%0,%1,%2";
1041  return "mult\t%0,%1,%2";
1042}
1043  [(set_attr "type" "imul3,imul")
1044   (set_attr "mode" "SI")])
1045
1046(define_insn "muldi3_mult3"
1047  [(set (match_operand:DI 0 "register_operand" "=d")
1048	(mult:DI (match_operand:DI 1 "register_operand" "d")
1049		 (match_operand:DI 2 "register_operand" "d")))
1050   (clobber (match_scratch:DI 3 "=h"))
1051   (clobber (match_scratch:DI 4 "=l"))]
1052  "TARGET_64BIT && GENERATE_MULT3_DI"
1053  "dmult\t%0,%1,%2"
1054  [(set_attr "type" "imul3")
1055   (set_attr "mode" "DI")])
1056
1057;; If a register gets allocated to LO, and we spill to memory, the reload
1058;; will include a move from LO to a GPR.  Merge it into the multiplication
1059;; if it can set the GPR directly.
1060;;
1061;; Operand 0: LO
1062;; Operand 1: GPR (1st multiplication operand)
1063;; Operand 2: GPR (2nd multiplication operand)
1064;; Operand 3: HI
1065;; Operand 4: GPR (destination)
1066(define_peephole2
1067  [(parallel
1068       [(set (match_operand:SI 0 "register_operand")
1069	     (mult:SI (match_operand:SI 1 "register_operand")
1070		      (match_operand:SI 2 "register_operand")))
1071        (clobber (match_operand:SI 3 "register_operand"))
1072        (clobber (scratch:SI))])
1073   (set (match_operand:SI 4 "register_operand")
1074	(unspec [(match_dup 0) (match_dup 3)] UNSPEC_MFHILO))]
1075  "GENERATE_MULT3_SI && peep2_reg_dead_p (2, operands[0])"
1076  [(parallel
1077       [(set (match_dup 4)
1078	     (mult:SI (match_dup 1)
1079		      (match_dup 2)))
1080        (clobber (match_dup 3))
1081        (clobber (match_dup 0))])])
1082
1083(define_insn "mul<mode>3_internal"
1084  [(set (match_operand:GPR 0 "register_operand" "=l")
1085	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1086		  (match_operand:GPR 2 "register_operand" "d")))
1087   (clobber (match_scratch:GPR 3 "=h"))]
1088  "!TARGET_FIX_R4000"
1089  "<d>mult\t%1,%2"
1090  [(set_attr "type" "imul")
1091   (set_attr "mode" "<MODE>")])
1092
1093(define_insn "mul<mode>3_r4000"
1094  [(set (match_operand:GPR 0 "register_operand" "=d")
1095	(mult:GPR (match_operand:GPR 1 "register_operand" "d")
1096		  (match_operand:GPR 2 "register_operand" "d")))
1097   (clobber (match_scratch:GPR 3 "=h"))
1098   (clobber (match_scratch:GPR 4 "=l"))]
1099  "TARGET_FIX_R4000"
1100  "<d>mult\t%1,%2\;mflo\t%0"
1101  [(set_attr "type" "imul")
1102   (set_attr "mode" "<MODE>")
1103   (set_attr "length" "8")])
1104
1105;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1106;; of "mult; mflo".  They have the same latency, but the first form gives
1107;; us an extra cycle to compute the operands.
1108
1109;; Operand 0: LO
1110;; Operand 1: GPR (1st multiplication operand)
1111;; Operand 2: GPR (2nd multiplication operand)
1112;; Operand 3: HI
1113;; Operand 4: GPR (destination)
1114(define_peephole2
1115  [(parallel
1116       [(set (match_operand:SI 0 "register_operand")
1117	     (mult:SI (match_operand:SI 1 "register_operand")
1118		      (match_operand:SI 2 "register_operand")))
1119        (clobber (match_operand:SI 3 "register_operand"))])
1120   (set (match_operand:SI 4 "register_operand")
1121	(unspec:SI [(match_dup 0) (match_dup 3)] UNSPEC_MFHILO))]
1122  "ISA_HAS_MACC && !GENERATE_MULT3_SI"
1123  [(set (match_dup 0)
1124	(const_int 0))
1125   (parallel
1126       [(set (match_dup 0)
1127	     (plus:SI (mult:SI (match_dup 1)
1128			       (match_dup 2))
1129		      (match_dup 0)))
1130	(set (match_dup 4)
1131	     (plus:SI (mult:SI (match_dup 1)
1132			       (match_dup 2))
1133		      (match_dup 0)))
1134        (clobber (match_dup 3))])])
1135
1136;; Multiply-accumulate patterns
1137
1138;; For processors that can copy the output to a general register:
1139;;
1140;; The all-d alternative is needed because the combiner will find this
1141;; pattern and then register alloc/reload will move registers around to
1142;; make them fit, and we don't want to trigger unnecessary loads to LO.
1143;;
1144;; The last alternative should be made slightly less desirable, but adding
1145;; "?" to the constraint is too strong, and causes values to be loaded into
1146;; LO even when that's more costly.  For now, using "*d" mostly does the
1147;; trick.
1148(define_insn "*mul_acc_si"
1149  [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1150	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1151			  (match_operand:SI 2 "register_operand" "d,d,d"))
1152		 (match_operand:SI 3 "register_operand" "0,l,*d")))
1153   (clobber (match_scratch:SI 4 "=h,h,h"))
1154   (clobber (match_scratch:SI 5 "=X,3,l"))
1155   (clobber (match_scratch:SI 6 "=X,X,&d"))]
1156  "(TARGET_MIPS3900
1157   || ISA_HAS_MADD_MSUB)
1158   && !TARGET_MIPS16"
1159{
1160  static const char *const madd[] = { "madd\t%1,%2", "madd\t%0,%1,%2" };
1161  if (which_alternative == 2)
1162    return "#";
1163  if (ISA_HAS_MADD_MSUB && which_alternative != 0)
1164    return "#";
1165  return madd[which_alternative];
1166}
1167  [(set_attr "type"	"imadd,imadd,multi")
1168   (set_attr "mode"	"SI")
1169   (set_attr "length"	"4,4,8")])
1170
1171;; Split the above insn if we failed to get LO allocated.
1172(define_split
1173  [(set (match_operand:SI 0 "register_operand")
1174	(plus:SI (mult:SI (match_operand:SI 1 "register_operand")
1175			  (match_operand:SI 2 "register_operand"))
1176		 (match_operand:SI 3 "register_operand")))
1177   (clobber (match_scratch:SI 4))
1178   (clobber (match_scratch:SI 5))
1179   (clobber (match_scratch:SI 6))]
1180  "reload_completed && !TARGET_DEBUG_D_MODE
1181   && GP_REG_P (true_regnum (operands[0]))
1182   && GP_REG_P (true_regnum (operands[3]))"
1183  [(parallel [(set (match_dup 6)
1184		   (mult:SI (match_dup 1) (match_dup 2)))
1185	      (clobber (match_dup 4))
1186	      (clobber (match_dup 5))])
1187   (set (match_dup 0) (plus:SI (match_dup 6) (match_dup 3)))]
1188  "")
1189
1190;; Splitter to copy result of MADD to a general register
1191(define_split
1192  [(set (match_operand:SI                   0 "register_operand")
1193        (plus:SI (mult:SI (match_operand:SI 1 "register_operand")
1194                          (match_operand:SI 2 "register_operand"))
1195                 (match_operand:SI          3 "register_operand")))
1196   (clobber (match_scratch:SI               4))
1197   (clobber (match_scratch:SI               5))
1198   (clobber (match_scratch:SI               6))]
1199  "reload_completed && !TARGET_DEBUG_D_MODE
1200   && GP_REG_P (true_regnum (operands[0]))
1201   && true_regnum (operands[3]) == LO_REGNUM"
1202  [(parallel [(set (match_dup 3)
1203                   (plus:SI (mult:SI (match_dup 1) (match_dup 2))
1204                            (match_dup 3)))
1205              (clobber (match_dup 4))
1206              (clobber (match_dup 5))
1207              (clobber (match_dup 6))])
1208   (set (match_dup 0) (unspec:SI [(match_dup 5) (match_dup 4)] UNSPEC_MFHILO))]
1209  "")
1210
1211(define_insn "*macc"
1212  [(set (match_operand:SI 0 "register_operand" "=l,d")
1213	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1214			  (match_operand:SI 2 "register_operand" "d,d"))
1215		 (match_operand:SI 3 "register_operand" "0,l")))
1216   (clobber (match_scratch:SI 4 "=h,h"))
1217   (clobber (match_scratch:SI 5 "=X,3"))]
1218  "ISA_HAS_MACC"
1219{
1220  if (which_alternative == 1)
1221    return "macc\t%0,%1,%2";
1222  else if (TARGET_MIPS5500)
1223    return "madd\t%1,%2";
1224  else
1225    /* The VR4130 assumes that there is a two-cycle latency between a macc
1226       that "writes" to $0 and an instruction that reads from it.  We avoid
1227       this by assigning to $1 instead.  */
1228    return "%[macc\t%@,%1,%2%]";
1229}
1230  [(set_attr "type" "imadd")
1231   (set_attr "mode" "SI")])
1232
1233(define_insn "*msac"
1234  [(set (match_operand:SI 0 "register_operand" "=l,d")
1235        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1236                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1237                           (match_operand:SI 3 "register_operand" "d,d"))))
1238   (clobber (match_scratch:SI 4 "=h,h"))
1239   (clobber (match_scratch:SI 5 "=X,1"))]
1240  "ISA_HAS_MSAC"
1241{
1242  if (which_alternative == 1)
1243    return "msac\t%0,%2,%3";
1244  else if (TARGET_MIPS5500)
1245    return "msub\t%2,%3";
1246  else
1247    return "msac\t$0,%2,%3";
1248}
1249  [(set_attr "type"     "imadd")
1250   (set_attr "mode"     "SI")])
1251
1252;; An msac-like instruction implemented using negation and a macc.
1253(define_insn_and_split "*msac_using_macc"
1254  [(set (match_operand:SI 0 "register_operand" "=l,d")
1255        (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1256                  (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1257                           (match_operand:SI 3 "register_operand" "d,d"))))
1258   (clobber (match_scratch:SI 4 "=h,h"))
1259   (clobber (match_scratch:SI 5 "=X,1"))
1260   (clobber (match_scratch:SI 6 "=d,d"))]
1261  "ISA_HAS_MACC && !ISA_HAS_MSAC"
1262  "#"
1263  "&& reload_completed"
1264  [(set (match_dup 6)
1265	(neg:SI (match_dup 3)))
1266   (parallel
1267       [(set (match_dup 0)
1268	     (plus:SI (mult:SI (match_dup 2)
1269			       (match_dup 6))
1270		      (match_dup 1)))
1271	(clobber (match_dup 4))
1272	(clobber (match_dup 5))])]
1273  ""
1274  [(set_attr "type"     "imadd")
1275   (set_attr "length"	"8")])
1276
1277;; Patterns generated by the define_peephole2 below.
1278
1279(define_insn "*macc2"
1280  [(set (match_operand:SI 0 "register_operand" "=l")
1281	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1282			  (match_operand:SI 2 "register_operand" "d"))
1283		 (match_dup 0)))
1284   (set (match_operand:SI 3 "register_operand" "=d")
1285	(plus:SI (mult:SI (match_dup 1)
1286			  (match_dup 2))
1287		 (match_dup 0)))
1288   (clobber (match_scratch:SI 4 "=h"))]
1289  "ISA_HAS_MACC && reload_completed"
1290  "macc\t%3,%1,%2"
1291  [(set_attr "type"	"imadd")
1292   (set_attr "mode"	"SI")])
1293
1294(define_insn "*msac2"
1295  [(set (match_operand:SI 0 "register_operand" "=l")
1296	(minus:SI (match_dup 0)
1297		  (mult:SI (match_operand:SI 1 "register_operand" "d")
1298			   (match_operand:SI 2 "register_operand" "d"))))
1299   (set (match_operand:SI 3 "register_operand" "=d")
1300	(minus:SI (match_dup 0)
1301		  (mult:SI (match_dup 1)
1302			   (match_dup 2))))
1303   (clobber (match_scratch:SI 4 "=h"))]
1304  "ISA_HAS_MSAC && reload_completed"
1305  "msac\t%3,%1,%2"
1306  [(set_attr "type"	"imadd")
1307   (set_attr "mode"	"SI")])
1308
1309;; Convert macc $0,<r1>,<r2> & mflo <r3> into macc <r3>,<r1>,<r2>
1310;; Similarly msac.
1311;;
1312;; Operand 0: LO
1313;; Operand 1: macc/msac
1314;; Operand 2: HI
1315;; Operand 3: GPR (destination)
1316(define_peephole2
1317  [(parallel
1318       [(set (match_operand:SI 0 "register_operand")
1319	     (match_operand:SI 1 "macc_msac_operand"))
1320	(clobber (match_operand:SI 2 "register_operand"))
1321	(clobber (scratch:SI))])
1322   (set (match_operand:SI 3 "register_operand")
1323	(unspec:SI [(match_dup 0) (match_dup 2)] UNSPEC_MFHILO))]
1324  ""
1325  [(parallel [(set (match_dup 0)
1326		   (match_dup 1))
1327	      (set (match_dup 3)
1328		   (match_dup 1))
1329	      (clobber (match_dup 2))])]
1330  "")
1331
1332;; When we have a three-address multiplication instruction, it should
1333;; be faster to do a separate multiply and add, rather than moving
1334;; something into LO in order to use a macc instruction.
1335;;
1336;; This peephole needs a scratch register to cater for the case when one
1337;; of the multiplication operands is the same as the destination.
1338;;
1339;; Operand 0: GPR (scratch)
1340;; Operand 1: LO
1341;; Operand 2: GPR (addend)
1342;; Operand 3: GPR (destination)
1343;; Operand 4: macc/msac
1344;; Operand 5: HI
1345;; Operand 6: new multiplication
1346;; Operand 7: new addition/subtraction
1347(define_peephole2
1348  [(match_scratch:SI 0 "d")
1349   (set (match_operand:SI 1 "register_operand")
1350	(match_operand:SI 2 "register_operand"))
1351   (match_dup 0)
1352   (parallel
1353       [(set (match_operand:SI 3 "register_operand")
1354	     (match_operand:SI 4 "macc_msac_operand"))
1355	(clobber (match_operand:SI 5 "register_operand"))
1356	(clobber (match_dup 1))])]
1357  "GENERATE_MULT3_SI
1358   && true_regnum (operands[1]) == LO_REGNUM
1359   && peep2_reg_dead_p (2, operands[1])
1360   && GP_REG_P (true_regnum (operands[3]))"
1361  [(parallel [(set (match_dup 0)
1362		   (match_dup 6))
1363	      (clobber (match_dup 5))
1364	      (clobber (match_dup 1))])
1365   (set (match_dup 3)
1366	(match_dup 7))]
1367{
1368  operands[6] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1369  operands[7] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1370				operands[2], operands[0]);
1371})
1372
1373;; Same as above, except LO is the initial target of the macc.
1374;;
1375;; Operand 0: GPR (scratch)
1376;; Operand 1: LO
1377;; Operand 2: GPR (addend)
1378;; Operand 3: macc/msac
1379;; Operand 4: HI
1380;; Operand 5: GPR (destination)
1381;; Operand 6: new multiplication
1382;; Operand 7: new addition/subtraction
1383(define_peephole2
1384  [(match_scratch:SI 0 "d")
1385   (set (match_operand:SI 1 "register_operand")
1386	(match_operand:SI 2 "register_operand"))
1387   (match_dup 0)
1388   (parallel
1389       [(set (match_dup 1)
1390	     (match_operand:SI 3 "macc_msac_operand"))
1391	(clobber (match_operand:SI 4 "register_operand"))
1392	(clobber (scratch:SI))])
1393   (match_dup 0)
1394   (set (match_operand:SI 5 "register_operand")
1395	(unspec:SI [(match_dup 1) (match_dup 4)] UNSPEC_MFHILO))]
1396  "GENERATE_MULT3_SI && peep2_reg_dead_p (3, operands[1])"
1397  [(parallel [(set (match_dup 0)
1398		   (match_dup 6))
1399	      (clobber (match_dup 4))
1400	      (clobber (match_dup 1))])
1401   (set (match_dup 5)
1402	(match_dup 7))]
1403{
1404  operands[6] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1405  operands[7] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1406				operands[2], operands[0]);
1407})
1408
1409(define_insn "*mul_sub_si"
1410  [(set (match_operand:SI 0 "register_operand" "=l,*d,*d")
1411        (minus:SI (match_operand:SI 1 "register_operand" "0,l,*d")
1412                  (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
1413                           (match_operand:SI 3 "register_operand" "d,d,d"))))
1414   (clobber (match_scratch:SI 4 "=h,h,h"))
1415   (clobber (match_scratch:SI 5 "=X,1,l"))
1416   (clobber (match_scratch:SI 6 "=X,X,&d"))]
1417  "ISA_HAS_MADD_MSUB"
1418  "@
1419   msub\t%2,%3
1420   #
1421   #"
1422  [(set_attr "type"     "imadd,multi,multi")
1423   (set_attr "mode"     "SI")
1424   (set_attr "length"   "4,8,8")])
1425
1426;; Split the above insn if we failed to get LO allocated.
1427(define_split
1428  [(set (match_operand:SI 0 "register_operand")
1429        (minus:SI (match_operand:SI 1 "register_operand")
1430                  (mult:SI (match_operand:SI 2 "register_operand")
1431                           (match_operand:SI 3 "register_operand"))))
1432   (clobber (match_scratch:SI 4))
1433   (clobber (match_scratch:SI 5))
1434   (clobber (match_scratch:SI 6))]
1435  "reload_completed && !TARGET_DEBUG_D_MODE
1436   && GP_REG_P (true_regnum (operands[0]))
1437   && GP_REG_P (true_regnum (operands[1]))"
1438  [(parallel [(set (match_dup 6)
1439                   (mult:SI (match_dup 2) (match_dup 3)))
1440              (clobber (match_dup 4))
1441              (clobber (match_dup 5))])
1442   (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 6)))]
1443  "")
1444
1445;; Splitter to copy result of MSUB to a general register
1446(define_split
1447  [(set (match_operand:SI 0 "register_operand")
1448        (minus:SI (match_operand:SI 1 "register_operand")
1449                  (mult:SI (match_operand:SI 2 "register_operand")
1450                           (match_operand:SI 3 "register_operand"))))
1451   (clobber (match_scratch:SI 4))
1452   (clobber (match_scratch:SI 5))
1453   (clobber (match_scratch:SI 6))]
1454  "reload_completed && !TARGET_DEBUG_D_MODE
1455   && GP_REG_P (true_regnum (operands[0]))
1456   && true_regnum (operands[1]) == LO_REGNUM"
1457  [(parallel [(set (match_dup 1)
1458                   (minus:SI (match_dup 1)
1459                             (mult:SI (match_dup 2) (match_dup 3))))
1460              (clobber (match_dup 4))
1461              (clobber (match_dup 5))
1462              (clobber (match_dup 6))])
1463   (set (match_dup 0) (unspec:SI [(match_dup 5) (match_dup 4)] UNSPEC_MFHILO))]
1464  "")
1465
1466(define_insn "*muls"
1467  [(set (match_operand:SI                  0 "register_operand" "=l,d")
1468        (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1469                         (match_operand:SI 2 "register_operand" "d,d"))))
1470   (clobber (match_scratch:SI              3                    "=h,h"))
1471   (clobber (match_scratch:SI              4                    "=X,l"))]
1472  "ISA_HAS_MULS"
1473  "@
1474   muls\t$0,%1,%2
1475   muls\t%0,%1,%2"
1476  [(set_attr "type"     "imul,imul3")
1477   (set_attr "mode"     "SI")])
1478
1479;; ??? We could define a mulditi3 pattern when TARGET_64BIT.
1480
1481(define_expand "<u>mulsidi3"
1482  [(parallel
1483      [(set (match_operand:DI 0 "register_operand")
1484	    (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1485		     (any_extend:DI (match_operand:SI 2 "register_operand"))))
1486       (clobber (scratch:DI))
1487       (clobber (scratch:DI))
1488       (clobber (scratch:DI))])]
1489  "!TARGET_64BIT || !TARGET_FIX_R4000"
1490{
1491  if (!TARGET_64BIT)
1492    {
1493      if (!TARGET_FIX_R4000)
1494	emit_insn (gen_<u>mulsidi3_32bit_internal (operands[0], operands[1],
1495						   operands[2]));
1496      else
1497	emit_insn (gen_<u>mulsidi3_32bit_r4000 (operands[0], operands[1],
1498					        operands[2]));
1499      DONE;
1500    }
1501})
1502
1503(define_insn "<u>mulsidi3_32bit_internal"
1504  [(set (match_operand:DI 0 "register_operand" "=x")
1505	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1506		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
1507  "!TARGET_64BIT && !TARGET_FIX_R4000"
1508  "mult<u>\t%1,%2"
1509  [(set_attr "type" "imul")
1510   (set_attr "mode" "SI")])
1511
1512(define_insn "<u>mulsidi3_32bit_r4000"
1513  [(set (match_operand:DI 0 "register_operand" "=d")
1514	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1515		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1516   (clobber (match_scratch:DI 3 "=x"))]
1517  "!TARGET_64BIT && TARGET_FIX_R4000"
1518  "mult<u>\t%1,%2\;mflo\t%L0;mfhi\t%M0"
1519  [(set_attr "type" "imul")
1520   (set_attr "mode" "SI")
1521   (set_attr "length" "12")])
1522
1523(define_insn_and_split "*<u>mulsidi3_64bit"
1524  [(set (match_operand:DI 0 "register_operand" "=d")
1525	(mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1526		 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
1527   (clobber (match_scratch:DI 3 "=l"))
1528   (clobber (match_scratch:DI 4 "=h"))
1529   (clobber (match_scratch:DI 5 "=d"))]
1530  "TARGET_64BIT && !TARGET_FIX_R4000"
1531  "#"
1532  "&& reload_completed"
1533  [(parallel
1534       [(set (match_dup 3)
1535	     (sign_extend:DI
1536		(mult:SI (match_dup 1)
1537			 (match_dup 2))))
1538	(set (match_dup 4)
1539	     (ashiftrt:DI
1540		(mult:DI (any_extend:DI (match_dup 1))
1541			 (any_extend:DI (match_dup 2)))
1542		(const_int 32)))])
1543
1544   ;; OP5 <- LO, OP0 <- HI
1545   (set (match_dup 5) (unspec:DI [(match_dup 3) (match_dup 4)] UNSPEC_MFHILO))
1546   (set (match_dup 0) (unspec:DI [(match_dup 4) (match_dup 3)] UNSPEC_MFHILO))
1547
1548   ;; Zero-extend OP5.
1549   (set (match_dup 5)
1550	(ashift:DI (match_dup 5)
1551		   (const_int 32)))
1552   (set (match_dup 5)
1553	(lshiftrt:DI (match_dup 5)
1554		     (const_int 32)))
1555
1556   ;; Shift OP0 into place.
1557   (set (match_dup 0)
1558	(ashift:DI (match_dup 0)
1559		   (const_int 32)))
1560
1561   ;; OR the two halves together
1562   (set (match_dup 0)
1563	(ior:DI (match_dup 0)
1564		(match_dup 5)))]
1565  ""
1566  [(set_attr "type" "imul")
1567   (set_attr "mode" "SI")
1568   (set_attr "length" "24")])
1569
1570(define_insn "*<u>mulsidi3_64bit_parts"
1571  [(set (match_operand:DI 0 "register_operand" "=l")
1572	(sign_extend:DI
1573	   (mult:SI (match_operand:SI 2 "register_operand" "d")
1574		    (match_operand:SI 3 "register_operand" "d"))))
1575   (set (match_operand:DI 1 "register_operand" "=h")
1576	(ashiftrt:DI
1577	   (mult:DI (any_extend:DI (match_dup 2))
1578		    (any_extend:DI (match_dup 3)))
1579	   (const_int 32)))]
1580  "TARGET_64BIT && !TARGET_FIX_R4000"
1581  "mult<u>\t%2,%3"
1582  [(set_attr "type" "imul")
1583   (set_attr "mode" "SI")])
1584
1585;; Widening multiply with negation.
1586(define_insn "*muls<u>_di"
1587  [(set (match_operand:DI 0 "register_operand" "=x")
1588        (neg:DI
1589	 (mult:DI
1590	  (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1591	  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1592  "!TARGET_64BIT && ISA_HAS_MULS"
1593  "muls<u>\t$0,%1,%2"
1594  [(set_attr "type" "imul")
1595   (set_attr "mode" "SI")])
1596
1597(define_insn "*msac<u>_di"
1598  [(set (match_operand:DI 0 "register_operand" "=x")
1599        (minus:DI
1600	   (match_operand:DI 3 "register_operand" "0")
1601	   (mult:DI
1602	      (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1603	      (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
1604  "!TARGET_64BIT && ISA_HAS_MSAC"
1605{
1606  if (TARGET_MIPS5500)
1607    return "msub<u>\t%1,%2";
1608  else
1609    return "msac<u>\t$0,%1,%2";
1610}
1611  [(set_attr "type" "imadd")
1612   (set_attr "mode" "SI")])
1613
1614;; _highpart patterns
1615
1616(define_expand "<su>mulsi3_highpart"
1617  [(set (match_operand:SI 0 "register_operand")
1618	(truncate:SI
1619	 (lshiftrt:DI
1620	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1621		   (any_extend:DI (match_operand:SI 2 "register_operand")))
1622	  (const_int 32))))]
1623  "ISA_HAS_MULHI || !TARGET_FIX_R4000"
1624{
1625  if (ISA_HAS_MULHI)
1626    emit_insn (gen_<su>mulsi3_highpart_mulhi_internal (operands[0],
1627						       operands[1],
1628						       operands[2]));
1629  else
1630    emit_insn (gen_<su>mulsi3_highpart_internal (operands[0], operands[1],
1631					         operands[2]));
1632  DONE;
1633})
1634
1635(define_insn "<su>mulsi3_highpart_internal"
1636  [(set (match_operand:SI 0 "register_operand" "=h")
1637	(truncate:SI
1638	 (lshiftrt:DI
1639	  (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1640		   (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1641	  (const_int 32))))
1642   (clobber (match_scratch:SI 3 "=l"))]
1643  "!ISA_HAS_MULHI && !TARGET_FIX_R4000"
1644  "mult<u>\t%1,%2"
1645  [(set_attr "type" "imul")
1646   (set_attr "mode" "SI")])
1647
1648(define_insn "<su>mulsi3_highpart_mulhi_internal"
1649  [(set (match_operand:SI 0 "register_operand" "=h,d")
1650        (truncate:SI
1651	 (lshiftrt:DI
1652	  (mult:DI
1653	   (any_extend:DI (match_operand:SI 1 "register_operand" "d,d"))
1654	   (any_extend:DI (match_operand:SI 2 "register_operand" "d,d")))
1655	  (const_int 32))))
1656   (clobber (match_scratch:SI 3 "=l,l"))
1657   (clobber (match_scratch:SI 4 "=X,h"))]
1658  "ISA_HAS_MULHI"
1659  "@
1660   mult<u>\t%1,%2
1661   mulhi<u>\t%0,%1,%2"
1662  [(set_attr "type" "imul,imul3")
1663   (set_attr "mode" "SI")])
1664
1665(define_insn "*<su>mulsi3_highpart_neg_mulhi_internal"
1666  [(set (match_operand:SI 0 "register_operand" "=h,d")
1667        (truncate:SI
1668	 (lshiftrt:DI
1669	  (neg:DI
1670	   (mult:DI
1671	    (any_extend:DI (match_operand:SI 1 "register_operand" "d,d"))
1672	    (any_extend:DI (match_operand:SI 2 "register_operand" "d,d"))))
1673	  (const_int 32))))
1674   (clobber (match_scratch:SI 3 "=l,l"))
1675   (clobber (match_scratch:SI 4 "=X,h"))]
1676  "ISA_HAS_MULHI"
1677  "@
1678   mulshi<u>\t%.,%1,%2
1679   mulshi<u>\t%0,%1,%2"
1680  [(set_attr "type" "imul,imul3")
1681   (set_attr "mode" "SI")])
1682
1683;; Disable unsigned multiplication for -mfix-vr4120.  This is for VR4120
1684;; errata MD(0), which says that dmultu does not always produce the
1685;; correct result.
1686(define_insn "<su>muldi3_highpart"
1687  [(set (match_operand:DI 0 "register_operand" "=h")
1688	(truncate:DI
1689	 (lshiftrt:TI
1690	  (mult:TI
1691	   (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
1692	   (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
1693	  (const_int 64))))
1694   (clobber (match_scratch:DI 3 "=l"))]
1695  "TARGET_64BIT && !TARGET_FIX_R4000
1696   && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
1697  "dmult<u>\t%1,%2"
1698  [(set_attr "type" "imul")
1699   (set_attr "mode" "DI")])
1700
1701;; The R4650 supports a 32 bit multiply/ 64 bit accumulate
1702;; instruction.  The HI/LO registers are used as a 64 bit accumulator.
1703
1704(define_insn "madsi"
1705  [(set (match_operand:SI 0 "register_operand" "+l")
1706	(plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1707			  (match_operand:SI 2 "register_operand" "d"))
1708		 (match_dup 0)))
1709   (clobber (match_scratch:SI 3 "=h"))]
1710  "TARGET_MAD"
1711  "mad\t%1,%2"
1712  [(set_attr "type"	"imadd")
1713   (set_attr "mode"	"SI")])
1714
1715(define_insn "*<su>mul_acc_di"
1716  [(set (match_operand:DI 0 "register_operand" "=x")
1717	(plus:DI
1718	 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
1719		  (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
1720	 (match_operand:DI 3 "register_operand" "0")))]
1721  "(TARGET_MAD || ISA_HAS_MACC)
1722   && !TARGET_64BIT"
1723{
1724  if (TARGET_MAD)
1725    return "mad<u>\t%1,%2";
1726  else if (TARGET_MIPS5500)
1727    return "madd<u>\t%1,%2";
1728  else
1729    /* See comment in *macc.  */
1730    return "%[macc<u>\t%@,%1,%2%]";
1731}
1732  [(set_attr "type" "imadd")
1733   (set_attr "mode" "SI")])
1734
1735;; Floating point multiply accumulate instructions.
1736
1737(define_insn "*madd<mode>"
1738  [(set (match_operand:ANYF 0 "register_operand" "=f")
1739	(plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1740			      (match_operand:ANYF 2 "register_operand" "f"))
1741		   (match_operand:ANYF 3 "register_operand" "f")))]
1742  "ISA_HAS_FP4 && TARGET_FUSED_MADD"
1743  "madd.<fmt>\t%0,%3,%1,%2"
1744  [(set_attr "type" "fmadd")
1745   (set_attr "mode" "<UNITMODE>")])
1746
1747(define_insn "*msub<mode>"
1748  [(set (match_operand:ANYF 0 "register_operand" "=f")
1749	(minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1750			       (match_operand:ANYF 2 "register_operand" "f"))
1751		    (match_operand:ANYF 3 "register_operand" "f")))]
1752  "ISA_HAS_FP4 && TARGET_FUSED_MADD"
1753  "msub.<fmt>\t%0,%3,%1,%2"
1754  [(set_attr "type" "fmadd")
1755   (set_attr "mode" "<UNITMODE>")])
1756
1757(define_insn "*nmadd<mode>"
1758  [(set (match_operand:ANYF 0 "register_operand" "=f")
1759	(neg:ANYF (plus:ANYF
1760		   (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
1761			      (match_operand:ANYF 2 "register_operand" "f"))
1762		   (match_operand:ANYF 3 "register_operand" "f"))))]
1763  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1764   && HONOR_SIGNED_ZEROS (<MODE>mode)"
1765  "nmadd.<fmt>\t%0,%3,%1,%2"
1766  [(set_attr "type" "fmadd")
1767   (set_attr "mode" "<UNITMODE>")])
1768
1769(define_insn "*nmadd<mode>_fastmath"
1770  [(set (match_operand:ANYF 0 "register_operand" "=f")
1771	(minus:ANYF
1772	 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
1773		    (match_operand:ANYF 2 "register_operand" "f"))
1774	 (match_operand:ANYF 3 "register_operand" "f")))]
1775  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1776   && !HONOR_SIGNED_ZEROS (<MODE>mode)"
1777  "nmadd.<fmt>\t%0,%3,%1,%2"
1778  [(set_attr "type" "fmadd")
1779   (set_attr "mode" "<UNITMODE>")])
1780
1781(define_insn "*nmsub<mode>"
1782  [(set (match_operand:ANYF 0 "register_operand" "=f")
1783	(neg:ANYF (minus:ANYF
1784		   (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
1785			      (match_operand:ANYF 3 "register_operand" "f"))
1786		   (match_operand:ANYF 1 "register_operand" "f"))))]
1787  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1788   && HONOR_SIGNED_ZEROS (<MODE>mode)"
1789  "nmsub.<fmt>\t%0,%1,%2,%3"
1790  [(set_attr "type" "fmadd")
1791   (set_attr "mode" "<UNITMODE>")])
1792
1793(define_insn "*nmsub<mode>_fastmath"
1794  [(set (match_operand:ANYF 0 "register_operand" "=f")
1795	(minus:ANYF
1796	 (match_operand:ANYF 1 "register_operand" "f")
1797	 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
1798		    (match_operand:ANYF 3 "register_operand" "f"))))]
1799  "ISA_HAS_NMADD_NMSUB && TARGET_FUSED_MADD
1800   && !HONOR_SIGNED_ZEROS (<MODE>mode)"
1801  "nmsub.<fmt>\t%0,%1,%2,%3"
1802  [(set_attr "type" "fmadd")
1803   (set_attr "mode" "<UNITMODE>")])
1804
1805;;
1806;;  ....................
1807;;
1808;;	DIVISION and REMAINDER
1809;;
1810;;  ....................
1811;;
1812
1813(define_expand "div<mode>3"
1814  [(set (match_operand:ANYF 0 "register_operand")
1815	(div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
1816		  (match_operand:ANYF 2 "register_operand")))]
1817  "<divide_condition>"
1818{
1819  if (const_1_operand (operands[1], <MODE>mode))
1820    if (!(ISA_HAS_FP4 && flag_unsafe_math_optimizations))
1821      operands[1] = force_reg (<MODE>mode, operands[1]);
1822})
1823
1824;; These patterns work around the early SB-1 rev2 core "F1" erratum:
1825;;
1826;; If an mfc1 or dmfc1 happens to access the floating point register
1827;; file at the same time a long latency operation (div, sqrt, recip,
1828;; sqrt) iterates an intermediate result back through the floating
1829;; point register file bypass, then instead returning the correct
1830;; register value the mfc1 or dmfc1 operation returns the intermediate
1831;; result of the long latency operation.
1832;;
1833;; The workaround is to insert an unconditional 'mov' from/to the
1834;; long latency op destination register.
1835
1836(define_insn "*div<mode>3"
1837  [(set (match_operand:ANYF 0 "register_operand" "=f")
1838	(div:ANYF (match_operand:ANYF 1 "register_operand" "f")
1839		  (match_operand:ANYF 2 "register_operand" "f")))]
1840  "<divide_condition>"
1841{
1842  if (TARGET_FIX_SB1)
1843    return "div.<fmt>\t%0,%1,%2\;mov.<fmt>\t%0,%0";
1844  else
1845    return "div.<fmt>\t%0,%1,%2";
1846}
1847  [(set_attr "type" "fdiv")
1848   (set_attr "mode" "<UNITMODE>")
1849   (set (attr "length")
1850        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1851                      (const_int 8)
1852                      (const_int 4)))])
1853
1854(define_insn "*recip<mode>3"
1855  [(set (match_operand:ANYF 0 "register_operand" "=f")
1856	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1857		  (match_operand:ANYF 2 "register_operand" "f")))]
1858  "<recip_condition> && flag_unsafe_math_optimizations"
1859{
1860  if (TARGET_FIX_SB1)
1861    return "recip.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
1862  else
1863    return "recip.<fmt>\t%0,%2";
1864}
1865  [(set_attr "type" "frdiv")
1866   (set_attr "mode" "<UNITMODE>")
1867   (set (attr "length")
1868        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1869                      (const_int 8)
1870                      (const_int 4)))])
1871
1872;; VR4120 errata MD(A1): signed division instructions do not work correctly
1873;; with negative operands.  We use special libgcc functions instead.
1874(define_insn "divmod<mode>4"
1875  [(set (match_operand:GPR 0 "register_operand" "=l")
1876	(div:GPR (match_operand:GPR 1 "register_operand" "d")
1877		 (match_operand:GPR 2 "register_operand" "d")))
1878   (set (match_operand:GPR 3 "register_operand" "=h")
1879	(mod:GPR (match_dup 1)
1880		 (match_dup 2)))]
1881  "!TARGET_FIX_VR4120"
1882  { return mips_output_division ("<d>div\t$0,%1,%2", operands); }
1883  [(set_attr "type" "idiv")
1884   (set_attr "mode" "<MODE>")])
1885
1886(define_insn "udivmod<mode>4"
1887  [(set (match_operand:GPR 0 "register_operand" "=l")
1888	(udiv:GPR (match_operand:GPR 1 "register_operand" "d")
1889		  (match_operand:GPR 2 "register_operand" "d")))
1890   (set (match_operand:GPR 3 "register_operand" "=h")
1891	(umod:GPR (match_dup 1)
1892		  (match_dup 2)))]
1893  ""
1894  { return mips_output_division ("<d>divu\t$0,%1,%2", operands); }
1895  [(set_attr "type" "idiv")
1896   (set_attr "mode" "<MODE>")])
1897
1898;;
1899;;  ....................
1900;;
1901;;	SQUARE ROOT
1902;;
1903;;  ....................
1904
1905;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
1906;; "*div[sd]f3" comment for details).
1907
1908(define_insn "sqrt<mode>2"
1909  [(set (match_operand:ANYF 0 "register_operand" "=f")
1910	(sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
1911  "<sqrt_condition>"
1912{
1913  if (TARGET_FIX_SB1)
1914    return "sqrt.<fmt>\t%0,%1\;mov.<fmt>\t%0,%0";
1915  else
1916    return "sqrt.<fmt>\t%0,%1";
1917}
1918  [(set_attr "type" "fsqrt")
1919   (set_attr "mode" "<UNITMODE>")
1920   (set (attr "length")
1921        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1922                      (const_int 8)
1923                      (const_int 4)))])
1924
1925(define_insn "*rsqrt<mode>a"
1926  [(set (match_operand:ANYF 0 "register_operand" "=f")
1927	(div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1928		  (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
1929  "<recip_condition> && flag_unsafe_math_optimizations"
1930{
1931  if (TARGET_FIX_SB1)
1932    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
1933  else
1934    return "rsqrt.<fmt>\t%0,%2";
1935}
1936  [(set_attr "type" "frsqrt")
1937   (set_attr "mode" "<UNITMODE>")
1938   (set (attr "length")
1939        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1940                      (const_int 8)
1941                      (const_int 4)))])
1942
1943(define_insn "*rsqrt<mode>b"
1944  [(set (match_operand:ANYF 0 "register_operand" "=f")
1945	(sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
1946			     (match_operand:ANYF 2 "register_operand" "f"))))]
1947  "<recip_condition> && flag_unsafe_math_optimizations"
1948{
1949  if (TARGET_FIX_SB1)
1950    return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
1951  else
1952    return "rsqrt.<fmt>\t%0,%2";
1953}
1954  [(set_attr "type" "frsqrt")
1955   (set_attr "mode" "<UNITMODE>")
1956   (set (attr "length")
1957        (if_then_else (ne (symbol_ref "TARGET_FIX_SB1") (const_int 0))
1958                      (const_int 8)
1959                      (const_int 4)))])
1960
1961;;
1962;;  ....................
1963;;
1964;;	ABSOLUTE VALUE
1965;;
1966;;  ....................
1967
1968;; Do not use the integer abs macro instruction, since that signals an
1969;; exception on -2147483648 (sigh).
1970
1971(define_insn "abs<mode>2"
1972  [(set (match_operand:ANYF 0 "register_operand" "=f")
1973	(abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
1974  ""
1975  "abs.<fmt>\t%0,%1"
1976  [(set_attr "type" "fabs")
1977   (set_attr "mode" "<UNITMODE>")])
1978
1979;;
1980;;  ...................
1981;;
1982;;  Count leading zeroes.
1983;;
1984;;  ...................
1985;;
1986
1987(define_insn "clz<mode>2"
1988  [(set (match_operand:GPR 0 "register_operand" "=d")
1989	(clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
1990  "ISA_HAS_CLZ_CLO"
1991  "<d>clz\t%0,%1"
1992  [(set_attr "type" "clz")
1993   (set_attr "mode" "<MODE>")])
1994
1995;;
1996;;  ....................
1997;;
1998;;	NEGATION and ONE'S COMPLEMENT
1999;;
2000;;  ....................
2001
2002(define_insn "negsi2"
2003  [(set (match_operand:SI 0 "register_operand" "=d")
2004	(neg:SI (match_operand:SI 1 "register_operand" "d")))]
2005  ""
2006{
2007  if (TARGET_MIPS16)
2008    return "neg\t%0,%1";
2009  else
2010    return "subu\t%0,%.,%1";
2011}
2012  [(set_attr "type"	"arith")
2013   (set_attr "mode"	"SI")])
2014
2015(define_insn "negdi2"
2016  [(set (match_operand:DI 0 "register_operand" "=d")
2017	(neg:DI (match_operand:DI 1 "register_operand" "d")))]
2018  "TARGET_64BIT && !TARGET_MIPS16"
2019  "dsubu\t%0,%.,%1"
2020  [(set_attr "type"	"arith")
2021   (set_attr "mode"	"DI")])
2022
2023(define_insn "neg<mode>2"
2024  [(set (match_operand:ANYF 0 "register_operand" "=f")
2025	(neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2026  ""
2027  "neg.<fmt>\t%0,%1"
2028  [(set_attr "type" "fneg")
2029   (set_attr "mode" "<UNITMODE>")])
2030
2031(define_insn "one_cmpl<mode>2"
2032  [(set (match_operand:GPR 0 "register_operand" "=d")
2033	(not:GPR (match_operand:GPR 1 "register_operand" "d")))]
2034  ""
2035{
2036  if (TARGET_MIPS16)
2037    return "not\t%0,%1";
2038  else
2039    return "nor\t%0,%.,%1";
2040}
2041  [(set_attr "type" "arith")
2042   (set_attr "mode" "<MODE>")])
2043
2044;;
2045;;  ....................
2046;;
2047;;	LOGICAL
2048;;
2049;;  ....................
2050;;
2051
2052;; Many of these instructions use trivial define_expands, because we
2053;; want to use a different set of constraints when TARGET_MIPS16.
2054
2055(define_expand "and<mode>3"
2056  [(set (match_operand:GPR 0 "register_operand")
2057	(and:GPR (match_operand:GPR 1 "register_operand")
2058		 (match_operand:GPR 2 "uns_arith_operand")))]
2059  ""
2060{
2061  if (TARGET_MIPS16)
2062    operands[2] = force_reg (<MODE>mode, operands[2]);
2063})
2064
2065(define_insn "*and<mode>3"
2066  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2067	(and:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2068		 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2069  "!TARGET_MIPS16"
2070  "@
2071   and\t%0,%1,%2
2072   andi\t%0,%1,%x2"
2073  [(set_attr "type" "arith")
2074   (set_attr "mode" "<MODE>")])
2075
2076(define_insn "*and<mode>3_mips16"
2077  [(set (match_operand:GPR 0 "register_operand" "=d")
2078	(and:GPR (match_operand:GPR 1 "register_operand" "%0")
2079		 (match_operand:GPR 2 "register_operand" "d")))]
2080  "TARGET_MIPS16"
2081  "and\t%0,%2"
2082  [(set_attr "type" "arith")
2083   (set_attr "mode" "<MODE>")])
2084
2085(define_expand "ior<mode>3"
2086  [(set (match_operand:GPR 0 "register_operand")
2087	(ior:GPR (match_operand:GPR 1 "register_operand")
2088		 (match_operand:GPR 2 "uns_arith_operand")))]
2089  ""
2090{
2091  if (TARGET_MIPS16)
2092    operands[2] = force_reg (<MODE>mode, operands[2]);
2093})
2094
2095(define_insn "*ior<mode>3"
2096  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2097	(ior:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2098		 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2099  "!TARGET_MIPS16"
2100  "@
2101   or\t%0,%1,%2
2102   ori\t%0,%1,%x2"
2103  [(set_attr "type" "arith")
2104   (set_attr "mode" "<MODE>")])
2105
2106(define_insn "*ior<mode>3_mips16"
2107  [(set (match_operand:GPR 0 "register_operand" "=d")
2108	(ior:GPR (match_operand:GPR 1 "register_operand" "%0")
2109		 (match_operand:GPR 2 "register_operand" "d")))]
2110  "TARGET_MIPS16"
2111  "or\t%0,%2"
2112  [(set_attr "type" "arith")
2113   (set_attr "mode" "<MODE>")])
2114
2115(define_expand "xor<mode>3"
2116  [(set (match_operand:GPR 0 "register_operand")
2117	(xor:GPR (match_operand:GPR 1 "register_operand")
2118		 (match_operand:GPR 2 "uns_arith_operand")))]
2119  ""
2120  "")
2121
2122(define_insn ""
2123  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2124	(xor:GPR (match_operand:GPR 1 "register_operand" "%d,d")
2125		 (match_operand:GPR 2 "uns_arith_operand" "d,K")))]
2126  "!TARGET_MIPS16"
2127  "@
2128   xor\t%0,%1,%2
2129   xori\t%0,%1,%x2"
2130  [(set_attr "type" "arith")
2131   (set_attr "mode" "<MODE>")])
2132
2133(define_insn ""
2134  [(set (match_operand:GPR 0 "register_operand" "=d,t,t")
2135	(xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
2136		 (match_operand:GPR 2 "uns_arith_operand" "d,K,d")))]
2137  "TARGET_MIPS16"
2138  "@
2139   xor\t%0,%2
2140   cmpi\t%1,%2
2141   cmp\t%1,%2"
2142  [(set_attr "type" "arith")
2143   (set_attr "mode" "<MODE>")
2144   (set_attr_alternative "length"
2145		[(const_int 4)
2146		 (if_then_else (match_operand:VOID 2 "m16_uimm8_1")
2147			       (const_int 4)
2148			       (const_int 8))
2149		 (const_int 4)])])
2150
2151(define_insn "*nor<mode>3"
2152  [(set (match_operand:GPR 0 "register_operand" "=d")
2153	(and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
2154		 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
2155  "!TARGET_MIPS16"
2156  "nor\t%0,%1,%2"
2157  [(set_attr "type" "arith")
2158   (set_attr "mode" "<MODE>")])
2159
2160;;
2161;;  ....................
2162;;
2163;;	TRUNCATION
2164;;
2165;;  ....................
2166
2167
2168
2169(define_insn "truncdfsf2"
2170  [(set (match_operand:SF 0 "register_operand" "=f")
2171	(float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
2172  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2173  "cvt.s.d\t%0,%1"
2174  [(set_attr "type"	"fcvt")
2175   (set_attr "cnv_mode"	"D2S")
2176   (set_attr "mode"	"SF")])
2177
2178;; Integer truncation patterns.  Truncating SImode values to smaller
2179;; modes is a no-op, as it is for most other GCC ports.  Truncating
2180;; DImode values to SImode is not a no-op for TARGET_64BIT since we
2181;; need to make sure that the lower 32 bits are properly sign-extended
2182;; (see TRULY_NOOP_TRUNCATION).  Truncating DImode values into modes
2183;; smaller than SImode is equivalent to two separate truncations:
2184;;
2185;;                        A       B
2186;;    DI ---> HI  ==  DI ---> SI ---> HI
2187;;    DI ---> QI  ==  DI ---> SI ---> QI
2188;;
2189;; Step A needs a real instruction but step B does not.
2190
2191(define_insn "truncdisi2"
2192  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,m")
2193        (truncate:SI (match_operand:DI 1 "register_operand" "d,d")))]
2194  "TARGET_64BIT"
2195  "@
2196    sll\t%0,%1,0
2197    sw\t%1,%0"
2198  [(set_attr "type" "shift,store")
2199   (set_attr "mode" "SI")
2200   (set_attr "extended_mips16" "yes,*")])
2201
2202(define_insn "truncdihi2"
2203  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,m")
2204        (truncate:HI (match_operand:DI 1 "register_operand" "d,d")))]
2205  "TARGET_64BIT"
2206  "@
2207    sll\t%0,%1,0
2208    sh\t%1,%0"
2209  [(set_attr "type" "shift,store")
2210   (set_attr "mode" "SI")
2211   (set_attr "extended_mips16" "yes,*")])
2212
2213(define_insn "truncdiqi2"
2214  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,m")
2215        (truncate:QI (match_operand:DI 1 "register_operand" "d,d")))]
2216  "TARGET_64BIT"
2217  "@
2218    sll\t%0,%1,0
2219    sb\t%1,%0"
2220  [(set_attr "type" "shift,store")
2221   (set_attr "mode" "SI")
2222   (set_attr "extended_mips16" "yes,*")])
2223
2224;; Combiner patterns to optimize shift/truncate combinations.
2225
2226(define_insn ""
2227  [(set (match_operand:SI 0 "register_operand" "=d")
2228        (truncate:SI
2229	  (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
2230                       (match_operand:DI 2 "const_arith_operand" ""))))]
2231  "TARGET_64BIT && !TARGET_MIPS16 && INTVAL (operands[2]) >= 32"
2232  "dsra\t%0,%1,%2"
2233  [(set_attr "type" "shift")
2234   (set_attr "mode" "SI")])
2235
2236(define_insn ""
2237  [(set (match_operand:SI 0 "register_operand" "=d")
2238        (truncate:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
2239                                  (const_int 32))))]
2240  "TARGET_64BIT && !TARGET_MIPS16"
2241  "dsra\t%0,%1,32"
2242  [(set_attr "type" "shift")
2243   (set_attr "mode" "SI")])
2244
2245
2246;; Combiner patterns for truncate/sign_extend combinations.  They use
2247;; the shift/truncate patterns above.
2248
2249(define_insn_and_split ""
2250  [(set (match_operand:SI 0 "register_operand" "=d")
2251	(sign_extend:SI
2252	    (truncate:HI (match_operand:DI 1 "register_operand" "d"))))]
2253  "TARGET_64BIT && !TARGET_MIPS16"
2254  "#"
2255  "&& reload_completed"
2256  [(set (match_dup 2)
2257	(ashift:DI (match_dup 1)
2258		   (const_int 48)))
2259   (set (match_dup 0)
2260	(truncate:SI (ashiftrt:DI (match_dup 2)
2261				  (const_int 48))))]
2262  { operands[2] = gen_lowpart (DImode, operands[0]); })
2263
2264(define_insn_and_split ""
2265  [(set (match_operand:SI 0 "register_operand" "=d")
2266	(sign_extend:SI
2267	    (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
2268  "TARGET_64BIT && !TARGET_MIPS16"
2269  "#"
2270  "&& reload_completed"
2271  [(set (match_dup 2)
2272	(ashift:DI (match_dup 1)
2273		   (const_int 56)))
2274   (set (match_dup 0)
2275	(truncate:SI (ashiftrt:DI (match_dup 2)
2276				  (const_int 56))))]
2277  { operands[2] = gen_lowpart (DImode, operands[0]); })
2278
2279
2280;; Combiner patterns to optimize truncate/zero_extend combinations.
2281
2282(define_insn ""
2283  [(set (match_operand:SI 0 "register_operand" "=d")
2284        (zero_extend:SI (truncate:HI
2285                         (match_operand:DI 1 "register_operand" "d"))))]
2286  "TARGET_64BIT && !TARGET_MIPS16"
2287  "andi\t%0,%1,0xffff"
2288  [(set_attr "type"     "arith")
2289   (set_attr "mode"     "SI")])
2290
2291(define_insn ""
2292  [(set (match_operand:SI 0 "register_operand" "=d")
2293        (zero_extend:SI (truncate:QI
2294                         (match_operand:DI 1 "register_operand" "d"))))]
2295  "TARGET_64BIT && !TARGET_MIPS16"
2296  "andi\t%0,%1,0xff"
2297  [(set_attr "type"     "arith")
2298   (set_attr "mode"     "SI")])
2299
2300(define_insn ""
2301  [(set (match_operand:HI 0 "register_operand" "=d")
2302        (zero_extend:HI (truncate:QI
2303                         (match_operand:DI 1 "register_operand" "d"))))]
2304  "TARGET_64BIT && !TARGET_MIPS16"
2305  "andi\t%0,%1,0xff"
2306  [(set_attr "type"     "arith")
2307   (set_attr "mode"     "HI")])
2308
2309;;
2310;;  ....................
2311;;
2312;;	ZERO EXTENSION
2313;;
2314;;  ....................
2315
2316;; Extension insns.
2317
2318(define_insn_and_split "zero_extendsidi2"
2319  [(set (match_operand:DI 0 "register_operand" "=d,d")
2320        (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
2321  "TARGET_64BIT"
2322  "@
2323   #
2324   lwu\t%0,%1"
2325  "&& reload_completed && REG_P (operands[1])"
2326  [(set (match_dup 0)
2327        (ashift:DI (match_dup 1) (const_int 32)))
2328   (set (match_dup 0)
2329        (lshiftrt:DI (match_dup 0) (const_int 32)))]
2330  { operands[1] = gen_lowpart (DImode, operands[1]); }
2331  [(set_attr "type" "multi,load")
2332   (set_attr "mode" "DI")
2333   (set_attr "length" "8,*")])
2334
2335(define_expand "zero_extend<SHORT:mode><GPR:mode>2"
2336  [(set (match_operand:GPR 0 "register_operand")
2337        (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2338  ""
2339{
2340  if (TARGET_MIPS16 && !GENERATE_MIPS16E
2341      && !memory_operand (operands[1], <SHORT:MODE>mode))
2342    {
2343      emit_insn (gen_and<GPR:mode>3 (operands[0],
2344				     gen_lowpart (<GPR:MODE>mode, operands[1]),
2345				     force_reg (<GPR:MODE>mode,
2346						GEN_INT (<SHORT:mask>))));
2347      DONE;
2348    }
2349})
2350
2351(define_insn "*zero_extend<SHORT:mode><GPR:mode>2"
2352  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2353        (zero_extend:GPR
2354	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2355  "!TARGET_MIPS16"
2356  "@
2357   andi\t%0,%1,<SHORT:mask>
2358   l<SHORT:size>u\t%0,%1"
2359  [(set_attr "type" "arith,load")
2360   (set_attr "mode" "<GPR:MODE>")])
2361
2362(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16e"
2363  [(set (match_operand:GPR 0 "register_operand" "=d")
2364        (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
2365  "GENERATE_MIPS16E"
2366  "ze<SHORT:size>\t%0"
2367  [(set_attr "type" "arith")
2368   (set_attr "mode" "<GPR:MODE>")])
2369
2370(define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16"
2371  [(set (match_operand:GPR 0 "register_operand" "=d")
2372        (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
2373  "TARGET_MIPS16"
2374  "l<SHORT:size>u\t%0,%1"
2375  [(set_attr "type" "load")
2376   (set_attr "mode" "<GPR:MODE>")])
2377
2378(define_expand "zero_extendqihi2"
2379  [(set (match_operand:HI 0 "register_operand")
2380	(zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
2381  ""
2382{
2383  if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
2384    {
2385      emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
2386				       operands[1]));
2387      DONE;
2388    }
2389})
2390
2391(define_insn "*zero_extendqihi2"
2392  [(set (match_operand:HI 0 "register_operand" "=d,d")
2393        (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2394  "!TARGET_MIPS16"
2395  "@
2396   andi\t%0,%1,0x00ff
2397   lbu\t%0,%1"
2398  [(set_attr "type" "arith,load")
2399   (set_attr "mode" "HI")])
2400
2401(define_insn "*zero_extendqihi2_mips16"
2402  [(set (match_operand:HI 0 "register_operand" "=d")
2403        (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
2404  "TARGET_MIPS16"
2405  "lbu\t%0,%1"
2406  [(set_attr "type" "load")
2407   (set_attr "mode" "HI")])
2408
2409;;
2410;;  ....................
2411;;
2412;;	SIGN EXTENSION
2413;;
2414;;  ....................
2415
2416;; Extension insns.
2417;; Those for integer source operand are ordered widest source type first.
2418
2419;; When TARGET_64BIT, all SImode integer registers should already be in
2420;; sign-extended form (see TRULY_NOOP_TRUNCATION and truncdisi2).  We can
2421;; therefore get rid of register->register instructions if we constrain
2422;; the source to be in the same register as the destination.
2423;;
2424;; The register alternative has type "arith" so that the pre-reload
2425;; scheduler will treat it as a move.  This reflects what happens if
2426;; the register alternative needs a reload.
2427(define_insn_and_split "extendsidi2"
2428  [(set (match_operand:DI 0 "register_operand" "=d,d")
2429        (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,m")))]
2430  "TARGET_64BIT"
2431  "@
2432   #
2433   lw\t%0,%1"
2434  "&& reload_completed && register_operand (operands[1], VOIDmode)"
2435  [(const_int 0)]
2436{
2437  emit_note (NOTE_INSN_DELETED);
2438  DONE;
2439}
2440  [(set_attr "type" "arith,load")
2441   (set_attr "mode" "DI")])
2442
2443(define_expand "extend<SHORT:mode><GPR:mode>2"
2444  [(set (match_operand:GPR 0 "register_operand")
2445        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
2446  "")
2447
2448(define_insn "*extend<SHORT:mode><GPR:mode>2_mips16e"
2449  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2450        (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
2451  "GENERATE_MIPS16E"
2452  "@
2453   se<SHORT:size>\t%0
2454   l<SHORT:size>\t%0,%1"
2455  [(set_attr "type" "arith,load")
2456   (set_attr "mode" "<GPR:MODE>")])
2457
2458(define_insn_and_split "*extend<SHORT:mode><GPR:mode>2"
2459  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2460        (sign_extend:GPR
2461	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2462  "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
2463  "@
2464   #
2465   l<SHORT:size>\t%0,%1"
2466  "&& reload_completed && REG_P (operands[1])"
2467  [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
2468   (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
2469{
2470  operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]);
2471  operands[2] = GEN_INT (GET_MODE_BITSIZE (<GPR:MODE>mode)
2472			 - GET_MODE_BITSIZE (<SHORT:MODE>mode));
2473}
2474  [(set_attr "type" "arith,load")
2475   (set_attr "mode" "<GPR:MODE>")
2476   (set_attr "length" "8,*")])
2477
2478(define_insn "*extend<SHORT:mode><GPR:mode>2_se<SHORT:size>"
2479  [(set (match_operand:GPR 0 "register_operand" "=d,d")
2480        (sign_extend:GPR
2481	     (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
2482  "ISA_HAS_SEB_SEH"
2483  "@
2484   se<SHORT:size>\t%0,%1
2485   l<SHORT:size>\t%0,%1"
2486  [(set_attr "type" "arith,load")
2487   (set_attr "mode" "<GPR:MODE>")])
2488
2489;; This pattern generates the same code as extendqisi2; split it into
2490;; that form after reload.
2491(define_insn_and_split "extendqihi2"
2492  [(set (match_operand:HI 0 "register_operand" "=d,d")
2493        (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
2494  ""
2495  "#"
2496  "reload_completed"
2497  [(set (match_dup 0) (sign_extend:SI (match_dup 1)))]
2498  { operands[0] = gen_lowpart (SImode, operands[0]); }
2499  [(set_attr "type" "arith,load")
2500   (set_attr "mode" "SI")
2501   (set_attr "length" "8,*")])
2502
2503(define_insn "extendsfdf2"
2504  [(set (match_operand:DF 0 "register_operand" "=f")
2505	(float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
2506  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2507  "cvt.d.s\t%0,%1"
2508  [(set_attr "type"	"fcvt")
2509   (set_attr "cnv_mode"	"S2D")
2510   (set_attr "mode"	"DF")])
2511
2512;;
2513;;  ....................
2514;;
2515;;	CONVERSIONS
2516;;
2517;;  ....................
2518
2519(define_expand "fix_truncdfsi2"
2520  [(set (match_operand:SI 0 "register_operand")
2521	(fix:SI (match_operand:DF 1 "register_operand")))]
2522  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2523{
2524  if (!ISA_HAS_TRUNC_W)
2525    {
2526      emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
2527      DONE;
2528    }
2529})
2530
2531(define_insn "fix_truncdfsi2_insn"
2532  [(set (match_operand:SI 0 "register_operand" "=f")
2533	(fix:SI (match_operand:DF 1 "register_operand" "f")))]
2534  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
2535  "trunc.w.d %0,%1"
2536  [(set_attr "type"	"fcvt")
2537   (set_attr "mode"	"DF")
2538   (set_attr "cnv_mode"	"D2I")
2539   (set_attr "length"	"4")])
2540
2541(define_insn "fix_truncdfsi2_macro"
2542  [(set (match_operand:SI 0 "register_operand" "=f")
2543	(fix:SI (match_operand:DF 1 "register_operand" "f")))
2544   (clobber (match_scratch:DF 2 "=d"))]
2545  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
2546{
2547  if (set_nomacro)
2548    return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
2549  else
2550    return "trunc.w.d %0,%1,%2";
2551}
2552  [(set_attr "type"	"fcvt")
2553   (set_attr "mode"	"DF")
2554   (set_attr "cnv_mode"	"D2I")
2555   (set_attr "length"	"36")])
2556
2557(define_expand "fix_truncsfsi2"
2558  [(set (match_operand:SI 0 "register_operand")
2559	(fix:SI (match_operand:SF 1 "register_operand")))]
2560  "TARGET_HARD_FLOAT"
2561{
2562  if (!ISA_HAS_TRUNC_W)
2563    {
2564      emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
2565      DONE;
2566    }
2567})
2568
2569(define_insn "fix_truncsfsi2_insn"
2570  [(set (match_operand:SI 0 "register_operand" "=f")
2571	(fix:SI (match_operand:SF 1 "register_operand" "f")))]
2572  "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
2573  "trunc.w.s %0,%1"
2574  [(set_attr "type"	"fcvt")
2575   (set_attr "mode"	"SF")
2576   (set_attr "cnv_mode"	"S2I")
2577   (set_attr "length"	"4")])
2578
2579(define_insn "fix_truncsfsi2_macro"
2580  [(set (match_operand:SI 0 "register_operand" "=f")
2581	(fix:SI (match_operand:SF 1 "register_operand" "f")))
2582   (clobber (match_scratch:SF 2 "=d"))]
2583  "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
2584{
2585  if (set_nomacro)
2586    return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
2587  else
2588    return "trunc.w.s %0,%1,%2";
2589}
2590  [(set_attr "type"	"fcvt")
2591   (set_attr "mode"	"SF")
2592   (set_attr "cnv_mode"	"S2I")
2593   (set_attr "length"	"36")])
2594
2595
2596(define_insn "fix_truncdfdi2"
2597  [(set (match_operand:DI 0 "register_operand" "=f")
2598	(fix:DI (match_operand:DF 1 "register_operand" "f")))]
2599  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2600  "trunc.l.d %0,%1"
2601  [(set_attr "type"	"fcvt")
2602   (set_attr "mode"	"DF")
2603   (set_attr "cnv_mode"	"D2I")
2604   (set_attr "length"	"4")])
2605
2606
2607(define_insn "fix_truncsfdi2"
2608  [(set (match_operand:DI 0 "register_operand" "=f")
2609	(fix:DI (match_operand:SF 1 "register_operand" "f")))]
2610  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2611  "trunc.l.s %0,%1"
2612  [(set_attr "type"	"fcvt")
2613   (set_attr "mode"	"SF")
2614   (set_attr "cnv_mode"	"S2I")
2615   (set_attr "length"	"4")])
2616
2617
2618(define_insn "floatsidf2"
2619  [(set (match_operand:DF 0 "register_operand" "=f")
2620	(float:DF (match_operand:SI 1 "register_operand" "f")))]
2621  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2622  "cvt.d.w\t%0,%1"
2623  [(set_attr "type"	"fcvt")
2624   (set_attr "mode"	"DF")
2625   (set_attr "cnv_mode"	"I2D")
2626   (set_attr "length"	"4")])
2627
2628
2629(define_insn "floatdidf2"
2630  [(set (match_operand:DF 0 "register_operand" "=f")
2631	(float:DF (match_operand:DI 1 "register_operand" "f")))]
2632  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2633  "cvt.d.l\t%0,%1"
2634  [(set_attr "type"	"fcvt")
2635   (set_attr "mode"	"DF")
2636   (set_attr "cnv_mode"	"I2D")
2637   (set_attr "length"	"4")])
2638
2639
2640(define_insn "floatsisf2"
2641  [(set (match_operand:SF 0 "register_operand" "=f")
2642	(float:SF (match_operand:SI 1 "register_operand" "f")))]
2643  "TARGET_HARD_FLOAT"
2644  "cvt.s.w\t%0,%1"
2645  [(set_attr "type"	"fcvt")
2646   (set_attr "mode"	"SF")
2647   (set_attr "cnv_mode"	"I2S")
2648   (set_attr "length"	"4")])
2649
2650
2651(define_insn "floatdisf2"
2652  [(set (match_operand:SF 0 "register_operand" "=f")
2653	(float:SF (match_operand:DI 1 "register_operand" "f")))]
2654  "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
2655  "cvt.s.l\t%0,%1"
2656  [(set_attr "type"	"fcvt")
2657   (set_attr "mode"	"SF")
2658   (set_attr "cnv_mode"	"I2S")
2659   (set_attr "length"	"4")])
2660
2661
2662(define_expand "fixuns_truncdfsi2"
2663  [(set (match_operand:SI 0 "register_operand")
2664	(unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
2665  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
2666{
2667  rtx reg1 = gen_reg_rtx (DFmode);
2668  rtx reg2 = gen_reg_rtx (DFmode);
2669  rtx reg3 = gen_reg_rtx (SImode);
2670  rtx label1 = gen_label_rtx ();
2671  rtx label2 = gen_label_rtx ();
2672  REAL_VALUE_TYPE offset;
2673
2674  real_2expN (&offset, 31);
2675
2676  if (reg1)			/* Turn off complaints about unreached code.  */
2677    {
2678      emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
2679      do_pending_stack_adjust ();
2680
2681      emit_insn (gen_cmpdf (operands[1], reg1));
2682      emit_jump_insn (gen_bge (label1));
2683
2684      emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
2685      emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2686				   gen_rtx_LABEL_REF (VOIDmode, label2)));
2687      emit_barrier ();
2688
2689      emit_label (label1);
2690      emit_move_insn (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
2691      emit_move_insn (reg3, GEN_INT (trunc_int_for_mode
2692				     (BITMASK_HIGH, SImode)));
2693
2694      emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
2695      emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
2696
2697      emit_label (label2);
2698
2699      /* Allow REG_NOTES to be set on last insn (labels don't have enough
2700	 fields, and can't be used for REG_NOTES anyway).  */
2701      emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2702      DONE;
2703    }
2704})
2705
2706
2707(define_expand "fixuns_truncdfdi2"
2708  [(set (match_operand:DI 0 "register_operand")
2709	(unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
2710  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
2711{
2712  rtx reg1 = gen_reg_rtx (DFmode);
2713  rtx reg2 = gen_reg_rtx (DFmode);
2714  rtx reg3 = gen_reg_rtx (DImode);
2715  rtx label1 = gen_label_rtx ();
2716  rtx label2 = gen_label_rtx ();
2717  REAL_VALUE_TYPE offset;
2718
2719  real_2expN (&offset, 63);
2720
2721  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
2722  do_pending_stack_adjust ();
2723
2724  emit_insn (gen_cmpdf (operands[1], reg1));
2725  emit_jump_insn (gen_bge (label1));
2726
2727  emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
2728  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2729			       gen_rtx_LABEL_REF (VOIDmode, label2)));
2730  emit_barrier ();
2731
2732  emit_label (label1);
2733  emit_move_insn (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
2734  emit_move_insn (reg3, GEN_INT (BITMASK_HIGH));
2735  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
2736
2737  emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
2738  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
2739
2740  emit_label (label2);
2741
2742  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2743     fields, and can't be used for REG_NOTES anyway).  */
2744  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2745  DONE;
2746})
2747
2748
2749(define_expand "fixuns_truncsfsi2"
2750  [(set (match_operand:SI 0 "register_operand")
2751	(unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
2752  "TARGET_HARD_FLOAT"
2753{
2754  rtx reg1 = gen_reg_rtx (SFmode);
2755  rtx reg2 = gen_reg_rtx (SFmode);
2756  rtx reg3 = gen_reg_rtx (SImode);
2757  rtx label1 = gen_label_rtx ();
2758  rtx label2 = gen_label_rtx ();
2759  REAL_VALUE_TYPE offset;
2760
2761  real_2expN (&offset, 31);
2762
2763  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
2764  do_pending_stack_adjust ();
2765
2766  emit_insn (gen_cmpsf (operands[1], reg1));
2767  emit_jump_insn (gen_bge (label1));
2768
2769  emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
2770  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2771			       gen_rtx_LABEL_REF (VOIDmode, label2)));
2772  emit_barrier ();
2773
2774  emit_label (label1);
2775  emit_move_insn (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
2776  emit_move_insn (reg3, GEN_INT (trunc_int_for_mode
2777				 (BITMASK_HIGH, SImode)));
2778
2779  emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
2780  emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
2781
2782  emit_label (label2);
2783
2784  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2785     fields, and can't be used for REG_NOTES anyway).  */
2786  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2787  DONE;
2788})
2789
2790
2791(define_expand "fixuns_truncsfdi2"
2792  [(set (match_operand:DI 0 "register_operand")
2793	(unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
2794  "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
2795{
2796  rtx reg1 = gen_reg_rtx (SFmode);
2797  rtx reg2 = gen_reg_rtx (SFmode);
2798  rtx reg3 = gen_reg_rtx (DImode);
2799  rtx label1 = gen_label_rtx ();
2800  rtx label2 = gen_label_rtx ();
2801  REAL_VALUE_TYPE offset;
2802
2803  real_2expN (&offset, 63);
2804
2805  emit_move_insn (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
2806  do_pending_stack_adjust ();
2807
2808  emit_insn (gen_cmpsf (operands[1], reg1));
2809  emit_jump_insn (gen_bge (label1));
2810
2811  emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
2812  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
2813			       gen_rtx_LABEL_REF (VOIDmode, label2)));
2814  emit_barrier ();
2815
2816  emit_label (label1);
2817  emit_move_insn (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
2818  emit_move_insn (reg3, GEN_INT (BITMASK_HIGH));
2819  emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
2820
2821  emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
2822  emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
2823
2824  emit_label (label2);
2825
2826  /* Allow REG_NOTES to be set on last insn (labels don't have enough
2827     fields, and can't be used for REG_NOTES anyway).  */
2828  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
2829  DONE;
2830})
2831
2832;;
2833;;  ....................
2834;;
2835;;	DATA MOVEMENT
2836;;
2837;;  ....................
2838
2839;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
2840
2841(define_expand "extv"
2842  [(set (match_operand 0 "register_operand")
2843	(sign_extract (match_operand:QI 1 "memory_operand")
2844		      (match_operand 2 "immediate_operand")
2845		      (match_operand 3 "immediate_operand")))]
2846  "!TARGET_MIPS16"
2847{
2848  if (mips_expand_unaligned_load (operands[0], operands[1],
2849				  INTVAL (operands[2]),
2850				  INTVAL (operands[3])))
2851    DONE;
2852  else
2853    FAIL;
2854})
2855
2856(define_expand "extzv"
2857  [(set (match_operand 0 "register_operand")
2858	(zero_extract (match_operand 1 "nonimmediate_operand")
2859		      (match_operand 2 "immediate_operand")
2860		      (match_operand 3 "immediate_operand")))]
2861  "!TARGET_MIPS16"
2862{
2863  if (mips_expand_unaligned_load (operands[0], operands[1],
2864				  INTVAL (operands[2]),
2865				  INTVAL (operands[3])))
2866    DONE;
2867  else if (mips_use_ins_ext_p (operands[1], operands[2], operands[3]))
2868    {
2869      if (GET_MODE (operands[0]) == DImode)
2870        emit_insn (gen_extzvdi (operands[0], operands[1], operands[2],
2871				operands[3]));
2872      else
2873        emit_insn (gen_extzvsi (operands[0], operands[1], operands[2],
2874				operands[3]));
2875      DONE;
2876    }
2877  else
2878    FAIL;
2879})
2880
2881(define_insn "extzv<mode>"
2882  [(set (match_operand:GPR 0 "register_operand" "=d")
2883	(zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
2884			  (match_operand:SI 2 "immediate_operand" "I")
2885			  (match_operand:SI 3 "immediate_operand" "I")))]
2886  "mips_use_ins_ext_p (operands[1], operands[2], operands[3])"
2887  "<d>ext\t%0,%1,%3,%2"
2888  [(set_attr "type"	"arith")
2889   (set_attr "mode"	"<MODE>")])
2890
2891
2892(define_expand "insv"
2893  [(set (zero_extract (match_operand 0 "nonimmediate_operand")
2894		      (match_operand 1 "immediate_operand")
2895		      (match_operand 2 "immediate_operand"))
2896	(match_operand 3 "reg_or_0_operand"))]
2897  "!TARGET_MIPS16"
2898{
2899  if (mips_expand_unaligned_store (operands[0], operands[3],
2900				   INTVAL (operands[1]),
2901				   INTVAL (operands[2])))
2902    DONE;
2903  else if (mips_use_ins_ext_p (operands[0], operands[1], operands[2]))
2904    {
2905      if (GET_MODE (operands[0]) == DImode)
2906        emit_insn (gen_insvdi (operands[0], operands[1], operands[2],
2907			       operands[3]));
2908      else
2909        emit_insn (gen_insvsi (operands[0], operands[1], operands[2],
2910			       operands[3]));
2911      DONE;
2912   }
2913   else
2914     FAIL;
2915})
2916
2917(define_insn "insv<mode>"
2918  [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
2919			  (match_operand:SI 1 "immediate_operand" "I")
2920			  (match_operand:SI 2 "immediate_operand" "I"))
2921	(match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
2922  "mips_use_ins_ext_p (operands[0], operands[1], operands[2])"
2923  "<d>ins\t%0,%z3,%2,%1"
2924  [(set_attr "type"	"arith")
2925   (set_attr "mode"	"<MODE>")])
2926
2927;; Unaligned word moves generated by the bit field patterns.
2928;;
2929;; As far as the rtl is concerned, both the left-part and right-part
2930;; instructions can access the whole field.  However, the real operand
2931;; refers to just the first or the last byte (depending on endianness).
2932;; We therefore use two memory operands to each instruction, one to
2933;; describe the rtl effect and one to use in the assembly output.
2934;;
2935;; Operands 0 and 1 are the rtl-level target and source respectively.
2936;; This allows us to use the standard length calculations for the "load"
2937;; and "store" type attributes.
2938
2939(define_insn "mov_<load>l"
2940  [(set (match_operand:GPR 0 "register_operand" "=d")
2941	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
2942		     (match_operand:QI 2 "memory_operand" "m")]
2943		    UNSPEC_LOAD_LEFT))]
2944  "!TARGET_MIPS16"
2945  "<load>l\t%0,%2"
2946  [(set_attr "type" "load")
2947   (set_attr "mode" "<MODE>")])
2948
2949(define_insn "mov_<load>r"
2950  [(set (match_operand:GPR 0 "register_operand" "=d")
2951	(unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
2952		     (match_operand:QI 2 "memory_operand" "m")
2953		     (match_operand:GPR 3 "register_operand" "0")]
2954		    UNSPEC_LOAD_RIGHT))]
2955  "!TARGET_MIPS16"
2956  "<load>r\t%0,%2"
2957  [(set_attr "type" "load")
2958   (set_attr "mode" "<MODE>")])
2959
2960(define_insn "mov_<store>l"
2961  [(set (match_operand:BLK 0 "memory_operand" "=m")
2962	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
2963		     (match_operand:QI 2 "memory_operand" "m")]
2964		    UNSPEC_STORE_LEFT))]
2965  "!TARGET_MIPS16"
2966  "<store>l\t%z1,%2"
2967  [(set_attr "type" "store")
2968   (set_attr "mode" "<MODE>")])
2969
2970(define_insn "mov_<store>r"
2971  [(set (match_operand:BLK 0 "memory_operand" "+m")
2972	(unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
2973		     (match_operand:QI 2 "memory_operand" "m")
2974		     (match_dup 0)]
2975		    UNSPEC_STORE_RIGHT))]
2976  "!TARGET_MIPS16"
2977  "<store>r\t%z1,%2"
2978  [(set_attr "type" "store")
2979   (set_attr "mode" "<MODE>")])
2980
2981;; An instruction to calculate the high part of a 64-bit SYMBOL_GENERAL.
2982;; The required value is:
2983;;
2984;;	(%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
2985;;
2986;; which translates to:
2987;;
2988;;	lui	op0,%highest(op1)
2989;;	daddiu	op0,op0,%higher(op1)
2990;;	dsll	op0,op0,16
2991;;	daddiu	op0,op0,%hi(op1)
2992;;	dsll	op0,op0,16
2993;;
2994;; The split is deferred until after flow2 to allow the peephole2 below
2995;; to take effect.
2996(define_insn_and_split "*lea_high64"
2997  [(set (match_operand:DI 0 "register_operand" "=d")
2998	(high:DI (match_operand:DI 1 "general_symbolic_operand" "")))]
2999  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3000  "#"
3001  "&& flow2_completed"
3002  [(set (match_dup 0) (high:DI (match_dup 2)))
3003   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
3004   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
3005   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3006   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
3007{
3008  operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3009  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
3010}
3011  [(set_attr "length" "20")])
3012
3013;; Use a scratch register to reduce the latency of the above pattern
3014;; on superscalar machines.  The optimized sequence is:
3015;;
3016;;	lui	op1,%highest(op2)
3017;;	lui	op0,%hi(op2)
3018;;	daddiu	op1,op1,%higher(op2)
3019;;	dsll32	op1,op1,0
3020;;	daddu	op1,op1,op0
3021(define_peephole2
3022  [(set (match_operand:DI 1 "register_operand")
3023	(high:DI (match_operand:DI 2 "general_symbolic_operand")))
3024   (match_scratch:DI 0 "d")]
3025  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
3026  [(set (match_dup 1) (high:DI (match_dup 3)))
3027   (set (match_dup 0) (high:DI (match_dup 4)))
3028   (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
3029   (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
3030   (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
3031{
3032  operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
3033  operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
3034})
3035
3036;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
3037;; SYMBOL_GENERAL X will take 6 cycles.  This next pattern allows combine
3038;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
3039;; used once.  We can then use the sequence:
3040;;
3041;;	lui	op0,%highest(op1)
3042;;	lui	op2,%hi(op1)
3043;;	daddiu	op0,op0,%higher(op1)
3044;;	daddiu	op2,op2,%lo(op1)
3045;;	dsll32	op0,op0,0
3046;;	daddu	op0,op0,op2
3047;;
3048;; which takes 4 cycles on most superscalar targets.
3049(define_insn_and_split "*lea64"
3050  [(set (match_operand:DI 0 "register_operand" "=d")
3051	(match_operand:DI 1 "general_symbolic_operand" ""))
3052   (clobber (match_scratch:DI 2 "=&d"))]
3053  "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS && cse_not_expected"
3054  "#"
3055  "&& reload_completed"
3056  [(set (match_dup 0) (high:DI (match_dup 3)))
3057   (set (match_dup 2) (high:DI (match_dup 4)))
3058   (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
3059   (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
3060   (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
3061   (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
3062{
3063  operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
3064  operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
3065}
3066  [(set_attr "length" "24")])
3067
3068;; Insns to fetch a global symbol from a big GOT.
3069
3070(define_insn_and_split "*xgot_hi<mode>"
3071  [(set (match_operand:P 0 "register_operand" "=d")
3072	(high:P (match_operand:P 1 "global_got_operand" "")))]
3073  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3074  "#"
3075  "&& reload_completed"
3076  [(set (match_dup 0) (high:P (match_dup 2)))
3077   (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
3078{
3079  operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_GLOBAL);
3080  operands[3] = pic_offset_table_rtx;
3081}
3082  [(set_attr "got" "xgot_high")
3083   (set_attr "mode" "<MODE>")])
3084
3085(define_insn_and_split "*xgot_lo<mode>"
3086  [(set (match_operand:P 0 "register_operand" "=d")
3087	(lo_sum:P (match_operand:P 1 "register_operand" "d")
3088		  (match_operand:P 2 "global_got_operand" "")))]
3089  "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
3090  "#"
3091  "&& reload_completed"
3092  [(set (match_dup 0)
3093	(unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
3094  { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_GLOBAL); }
3095  [(set_attr "got" "load")
3096   (set_attr "mode" "<MODE>")])
3097
3098;; Insns to fetch a global symbol from a normal GOT.
3099
3100(define_insn_and_split "*got_disp<mode>"
3101  [(set (match_operand:P 0 "register_operand" "=d")
3102	(match_operand:P 1 "global_got_operand" ""))]
3103  "TARGET_EXPLICIT_RELOCS && !TARGET_XGOT"
3104  "#"
3105  "&& reload_completed"
3106  [(set (match_dup 0)
3107	(unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3108{
3109  operands[2] = pic_offset_table_rtx;
3110  operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_GLOBAL);
3111}
3112  [(set_attr "got" "load")
3113   (set_attr "mode" "<MODE>")])
3114
3115;; Insns for loading the high part of a local symbol.
3116
3117(define_insn_and_split "*got_page<mode>"
3118  [(set (match_operand:P 0 "register_operand" "=d")
3119	(high:P (match_operand:P 1 "local_got_operand" "")))]
3120  "TARGET_EXPLICIT_RELOCS"
3121  "#"
3122  "&& reload_completed"
3123  [(set (match_dup 0)
3124	(unspec:P [(match_dup 2) (match_dup 3)] UNSPEC_LOAD_GOT))]
3125{
3126  operands[2] = pic_offset_table_rtx;
3127  operands[3] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_PAGE);
3128}
3129  [(set_attr "got" "load")
3130   (set_attr "mode" "<MODE>")])
3131
3132;; Lower-level instructions for loading an address from the GOT.
3133;; We could use MEMs, but an unspec gives more optimization
3134;; opportunities.
3135
3136(define_insn "load_got<mode>"
3137  [(set (match_operand:P 0 "register_operand" "=d")
3138	(unspec:P [(match_operand:P 1 "register_operand" "d")
3139		   (match_operand:P 2 "immediate_operand" "")]
3140		  UNSPEC_LOAD_GOT))]
3141  ""
3142  "<load>\t%0,%R2(%1)"
3143  [(set_attr "type" "load")
3144   (set_attr "mode" "<MODE>")
3145   (set_attr "length" "4")])
3146
3147;; Instructions for adding the low 16 bits of an address to a register.
3148;; Operand 2 is the address: print_operand works out which relocation
3149;; should be applied.
3150
3151(define_insn "*low<mode>"
3152  [(set (match_operand:P 0 "register_operand" "=d")
3153	(lo_sum:P (match_operand:P 1 "register_operand" "d")
3154		  (match_operand:P 2 "immediate_operand" "")))]
3155  "!TARGET_MIPS16"
3156  "<d>addiu\t%0,%1,%R2"
3157  [(set_attr "type" "arith")
3158   (set_attr "mode" "<MODE>")])
3159
3160(define_insn "*low<mode>_mips16"
3161  [(set (match_operand:P 0 "register_operand" "=d")
3162	(lo_sum:P (match_operand:P 1 "register_operand" "0")
3163		  (match_operand:P 2 "immediate_operand" "")))]
3164  "TARGET_MIPS16"
3165  "<d>addiu\t%0,%R2"
3166  [(set_attr "type" "arith")
3167   (set_attr "mode" "<MODE>")
3168   (set_attr "length" "8")])
3169
3170;; 64-bit integer moves
3171
3172;; Unlike most other insns, the move insns can't be split with
3173;; different predicates, because register spilling and other parts of
3174;; the compiler, have memoized the insn number already.
3175
3176(define_expand "movdi"
3177  [(set (match_operand:DI 0 "")
3178	(match_operand:DI 1 ""))]
3179  ""
3180{
3181  if (mips_legitimize_move (DImode, operands[0], operands[1]))
3182    DONE;
3183})
3184
3185;; For mips16, we need a special case to handle storing $31 into
3186;; memory, since we don't have a constraint to match $31.  This
3187;; instruction can be generated by save_restore_insns.
3188
3189(define_insn "*mov<mode>_ra"
3190  [(set (match_operand:GPR 0 "stack_operand" "=m")
3191	(reg:GPR 31))]
3192  "TARGET_MIPS16"
3193  "<store>\t$31,%0"
3194  [(set_attr "type" "store")
3195   (set_attr "mode" "<MODE>")])
3196
3197(define_insn "*movdi_32bit"
3198  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*d,*B*C*D,*B*C*D,*d,*m")
3199	(match_operand:DI 1 "move_operand" "d,i,m,d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
3200  "!TARGET_64BIT && !TARGET_MIPS16
3201   && (register_operand (operands[0], DImode)
3202       || reg_or_0_operand (operands[1], DImode))"
3203  { return mips_output_move (operands[0], operands[1]); }
3204  [(set_attr "type"	"arith,arith,load,store,mthilo,mfhilo,xfer,load,xfer,store")
3205   (set_attr "mode"	"DI")
3206   (set_attr "length"   "8,16,*,*,8,8,8,*,8,*")])
3207
3208(define_insn "*movdi_32bit_mips16"
3209  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
3210	(match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
3211  "!TARGET_64BIT && TARGET_MIPS16
3212   && (register_operand (operands[0], DImode)
3213       || register_operand (operands[1], DImode))"
3214  { return mips_output_move (operands[0], operands[1]); }
3215  [(set_attr "type"	"arith,arith,arith,arith,arith,load,store,mfhilo")
3216   (set_attr "mode"	"DI")
3217   (set_attr "length"	"8,8,8,8,12,*,*,8")])
3218
3219(define_insn "*movdi_64bit"
3220  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*f,*d,*m,*x,*B*C*D,*B*C*D,*d,*m")
3221	(match_operand:DI 1 "move_operand" "d,U,T,m,dJ,*f,*d*J,*m,*f,*f,*J*d,*d,*m,*B*C*D,*B*C*D"))]
3222  "TARGET_64BIT && !TARGET_MIPS16
3223   && (register_operand (operands[0], DImode)
3224       || reg_or_0_operand (operands[1], DImode))"
3225  { return mips_output_move (operands[0], operands[1]); }
3226  [(set_attr "type"	"arith,const,const,load,store,fmove,xfer,fpload,xfer,fpstore,mthilo,xfer,load,xfer,store")
3227   (set_attr "mode"	"DI")
3228   (set_attr "length"	"4,*,*,*,*,4,4,*,4,*,4,8,*,8,*")])
3229
3230(define_insn "*movdi_64bit_mips16"
3231  [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,m")
3232	(match_operand:DI 1 "move_operand" "d,d,y,K,N,U,m,d"))]
3233  "TARGET_64BIT && TARGET_MIPS16
3234   && (register_operand (operands[0], DImode)
3235       || register_operand (operands[1], DImode))"
3236  { return mips_output_move (operands[0], operands[1]); }
3237  [(set_attr "type"	"arith,arith,arith,arith,arith,const,load,store")
3238   (set_attr "mode"	"DI")
3239   (set_attr_alternative "length"
3240		[(const_int 4)
3241		 (const_int 4)
3242		 (const_int 4)
3243		 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3244			       (const_int 4)
3245			       (const_int 8))
3246		 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3247			       (const_int 8)
3248			       (const_int 12))
3249		 (const_string "*")
3250		 (const_string "*")
3251		 (const_string "*")])])
3252
3253
3254;; On the mips16, we can split ld $r,N($r) into an add and a load,
3255;; when the original load is a 4 byte instruction but the add and the
3256;; load are 2 2 byte instructions.
3257
3258(define_split
3259  [(set (match_operand:DI 0 "register_operand")
3260	(mem:DI (plus:DI (match_dup 0)
3261			 (match_operand:DI 1 "const_int_operand"))))]
3262  "TARGET_64BIT && TARGET_MIPS16 && reload_completed
3263   && !TARGET_DEBUG_D_MODE
3264   && REG_P (operands[0])
3265   && M16_REG_P (REGNO (operands[0]))
3266   && GET_CODE (operands[1]) == CONST_INT
3267   && ((INTVAL (operands[1]) < 0
3268	&& INTVAL (operands[1]) >= -0x10)
3269       || (INTVAL (operands[1]) >= 32 * 8
3270	   && INTVAL (operands[1]) <= 31 * 8 + 0x8)
3271       || (INTVAL (operands[1]) >= 0
3272	   && INTVAL (operands[1]) < 32 * 8
3273	   && (INTVAL (operands[1]) & 7) != 0))"
3274  [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
3275   (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
3276{
3277  HOST_WIDE_INT val = INTVAL (operands[1]);
3278
3279  if (val < 0)
3280    operands[2] = const0_rtx;
3281  else if (val >= 32 * 8)
3282    {
3283      int off = val & 7;
3284
3285      operands[1] = GEN_INT (0x8 + off);
3286      operands[2] = GEN_INT (val - off - 0x8);
3287    }
3288  else
3289    {
3290      int off = val & 7;
3291
3292      operands[1] = GEN_INT (off);
3293      operands[2] = GEN_INT (val - off);
3294    }
3295})
3296
3297;; 32-bit Integer moves
3298
3299;; Unlike most other insns, the move insns can't be split with
3300;; different predicates, because register spilling and other parts of
3301;; the compiler, have memoized the insn number already.
3302
3303(define_expand "movsi"
3304  [(set (match_operand:SI 0 "")
3305	(match_operand:SI 1 ""))]
3306  ""
3307{
3308  if (mips_legitimize_move (SImode, operands[0], operands[1]))
3309    DONE;
3310})
3311
3312;; The difference between these two is whether or not ints are allowed
3313;; in FP registers (off by default, use -mdebugh to enable).
3314
3315(define_insn "*movsi_internal"
3316  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
3317	(match_operand:SI 1 "move_operand" "d,U,T,m,dJ,*f,*d*J,*m,*f,*f,*z,*d,*J*d,*A,*d,*m,*B*C*D,*B*C*D"))]
3318  "!TARGET_MIPS16
3319   && (register_operand (operands[0], SImode)
3320       || reg_or_0_operand (operands[1], SImode))"
3321  { return mips_output_move (operands[0], operands[1]); }
3322  [(set_attr "type"	"arith,const,const,load,store,fmove,xfer,fpload,xfer,fpstore,xfer,xfer,mthilo,mfhilo,xfer,load,xfer,store")
3323   (set_attr "mode"	"SI")
3324   (set_attr "length"	"4,*,*,*,*,4,4,*,4,*,4,4,4,4,4,*,4,*")])
3325
3326(define_insn "*movsi_mips16"
3327  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,m")
3328	(match_operand:SI 1 "move_operand" "d,d,y,K,N,U,m,d"))]
3329  "TARGET_MIPS16
3330   && (register_operand (operands[0], SImode)
3331       || register_operand (operands[1], SImode))"
3332  { return mips_output_move (operands[0], operands[1]); }
3333  [(set_attr "type"	"arith,arith,arith,arith,arith,const,load,store")
3334   (set_attr "mode"	"SI")
3335   (set_attr_alternative "length"
3336		[(const_int 4)
3337		 (const_int 4)
3338		 (const_int 4)
3339		 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3340			       (const_int 4)
3341			       (const_int 8))
3342		 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3343			       (const_int 8)
3344			       (const_int 12))
3345		 (const_string "*")
3346		 (const_string "*")
3347		 (const_string "*")])])
3348
3349;; On the mips16, we can split lw $r,N($r) into an add and a load,
3350;; when the original load is a 4 byte instruction but the add and the
3351;; load are 2 2 byte instructions.
3352
3353(define_split
3354  [(set (match_operand:SI 0 "register_operand")
3355	(mem:SI (plus:SI (match_dup 0)
3356			 (match_operand:SI 1 "const_int_operand"))))]
3357  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3358   && REG_P (operands[0])
3359   && M16_REG_P (REGNO (operands[0]))
3360   && GET_CODE (operands[1]) == CONST_INT
3361   && ((INTVAL (operands[1]) < 0
3362	&& INTVAL (operands[1]) >= -0x80)
3363       || (INTVAL (operands[1]) >= 32 * 4
3364	   && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
3365       || (INTVAL (operands[1]) >= 0
3366	   && INTVAL (operands[1]) < 32 * 4
3367	   && (INTVAL (operands[1]) & 3) != 0))"
3368  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3369   (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
3370{
3371  HOST_WIDE_INT val = INTVAL (operands[1]);
3372
3373  if (val < 0)
3374    operands[2] = const0_rtx;
3375  else if (val >= 32 * 4)
3376    {
3377      int off = val & 3;
3378
3379      operands[1] = GEN_INT (0x7c + off);
3380      operands[2] = GEN_INT (val - off - 0x7c);
3381    }
3382  else
3383    {
3384      int off = val & 3;
3385
3386      operands[1] = GEN_INT (off);
3387      operands[2] = GEN_INT (val - off);
3388    }
3389})
3390
3391;; On the mips16, we can split a load of certain constants into a load
3392;; and an add.  This turns a 4 byte instruction into 2 2 byte
3393;; instructions.
3394
3395(define_split
3396  [(set (match_operand:SI 0 "register_operand")
3397	(match_operand:SI 1 "const_int_operand"))]
3398  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3399   && REG_P (operands[0])
3400   && M16_REG_P (REGNO (operands[0]))
3401   && GET_CODE (operands[1]) == CONST_INT
3402   && INTVAL (operands[1]) >= 0x100
3403   && INTVAL (operands[1]) <= 0xff + 0x7f"
3404  [(set (match_dup 0) (match_dup 1))
3405   (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
3406{
3407  int val = INTVAL (operands[1]);
3408
3409  operands[1] = GEN_INT (0xff);
3410  operands[2] = GEN_INT (val - 0xff);
3411})
3412
3413;; This insn handles moving CCmode values.  It's really just a
3414;; slightly simplified copy of movsi_internal2, with additional cases
3415;; to move a condition register to a general register and to move
3416;; between the general registers and the floating point registers.
3417
3418(define_insn "movcc"
3419  [(set (match_operand:CC 0 "nonimmediate_operand" "=d,*d,*d,*m,*d,*f,*f,*f,*m")
3420	(match_operand:CC 1 "general_operand" "z,*d,*m,*d,*f,*d,*f,*m,*f"))]
3421  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3422  { return mips_output_move (operands[0], operands[1]); }
3423  [(set_attr "type"	"xfer,arith,load,store,xfer,xfer,fmove,fpload,fpstore")
3424   (set_attr "mode"	"SI")
3425   (set_attr "length"	"8,4,*,*,4,4,4,*,*")])
3426
3427;; Reload condition code registers.  reload_incc and reload_outcc
3428;; both handle moves from arbitrary operands into condition code
3429;; registers.  reload_incc handles the more common case in which
3430;; a source operand is constrained to be in a condition-code
3431;; register, but has not been allocated to one.
3432;;
3433;; Sometimes, such as in movcc, we have a CCmode destination whose
3434;; constraints do not include 'z'.  reload_outcc handles the case
3435;; when such an operand is allocated to a condition-code register.
3436;;
3437;; Note that reloads from a condition code register to some
3438;; other location can be done using ordinary moves.  Moving
3439;; into a GPR takes a single movcc, moving elsewhere takes
3440;; two.  We can leave these cases to the generic reload code.
3441(define_expand "reload_incc"
3442  [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3443	(match_operand:CC 1 "general_operand" ""))
3444   (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3445  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3446{
3447  mips_emit_fcc_reload (operands[0], operands[1], operands[2]);
3448  DONE;
3449})
3450
3451(define_expand "reload_outcc"
3452  [(set (match_operand:CC 0 "fcc_reload_operand" "=z")
3453	(match_operand:CC 1 "register_operand" ""))
3454   (clobber (match_operand:TF 2 "register_operand" "=&f"))]
3455  "ISA_HAS_8CC && TARGET_HARD_FLOAT"
3456{
3457  mips_emit_fcc_reload (operands[0], operands[1], operands[2]);
3458  DONE;
3459})
3460
3461;; MIPS4 supports loading and storing a floating point register from
3462;; the sum of two general registers.  We use two versions for each of
3463;; these four instructions: one where the two general registers are
3464;; SImode, and one where they are DImode.  This is because general
3465;; registers will be in SImode when they hold 32 bit values, but,
3466;; since the 32 bit values are always sign extended, the [ls][wd]xc1
3467;; instructions will still work correctly.
3468
3469;; ??? Perhaps it would be better to support these instructions by
3470;; modifying GO_IF_LEGITIMATE_ADDRESS and friends.  However, since
3471;; these instructions can only be used to load and store floating
3472;; point registers, that would probably cause trouble in reload.
3473
3474(define_insn "*<ANYF:loadx>_<P:mode>"
3475  [(set (match_operand:ANYF 0 "register_operand" "=f")
3476	(mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3477			  (match_operand:P 2 "register_operand" "d"))))]
3478  "ISA_HAS_FP4"
3479  "<ANYF:loadx>\t%0,%1(%2)"
3480  [(set_attr "type" "fpidxload")
3481   (set_attr "mode" "<ANYF:UNITMODE>")])
3482
3483(define_insn "*<ANYF:storex>_<P:mode>"
3484  [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
3485			  (match_operand:P 2 "register_operand" "d")))
3486	(match_operand:ANYF 0 "register_operand" "f"))]
3487  "ISA_HAS_FP4"
3488  "<ANYF:storex>\t%0,%1(%2)"
3489  [(set_attr "type" "fpidxstore")
3490   (set_attr "mode" "<ANYF:UNITMODE>")])
3491
3492;; 16-bit Integer moves
3493
3494;; Unlike most other insns, the move insns can't be split with
3495;; different predicates, because register spilling and other parts of
3496;; the compiler, have memoized the insn number already.
3497;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
3498
3499(define_expand "movhi"
3500  [(set (match_operand:HI 0 "")
3501	(match_operand:HI 1 ""))]
3502  ""
3503{
3504  if (mips_legitimize_move (HImode, operands[0], operands[1]))
3505    DONE;
3506})
3507
3508(define_insn "*movhi_internal"
3509  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,d,d,m,*d,*f,*f,*x")
3510	(match_operand:HI 1 "move_operand"         "d,I,m,dJ,*f,*d,*f,*d"))]
3511  "!TARGET_MIPS16
3512   && (register_operand (operands[0], HImode)
3513       || reg_or_0_operand (operands[1], HImode))"
3514  "@
3515    move\t%0,%1
3516    li\t%0,%1
3517    lhu\t%0,%1
3518    sh\t%z1,%0
3519    mfc1\t%0,%1
3520    mtc1\t%1,%0
3521    mov.s\t%0,%1
3522    mt%0\t%1"
3523  [(set_attr "type"	"arith,arith,load,store,xfer,xfer,fmove,mthilo")
3524   (set_attr "mode"	"HI")
3525   (set_attr "length"	"4,4,*,*,4,4,4,4")])
3526
3527(define_insn "*movhi_mips16"
3528  [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m")
3529	(match_operand:HI 1 "move_operand"         "d,d,y,K,N,m,d"))]
3530  "TARGET_MIPS16
3531   && (register_operand (operands[0], HImode)
3532       || register_operand (operands[1], HImode))"
3533  "@
3534    move\t%0,%1
3535    move\t%0,%1
3536    move\t%0,%1
3537    li\t%0,%1
3538    #
3539    lhu\t%0,%1
3540    sh\t%1,%0"
3541  [(set_attr "type"	"arith,arith,arith,arith,arith,load,store")
3542   (set_attr "mode"	"HI")
3543   (set_attr_alternative "length"
3544		[(const_int 4)
3545		 (const_int 4)
3546		 (const_int 4)
3547		 (if_then_else (match_operand:VOID 1 "m16_uimm8_1")
3548			       (const_int 4)
3549			       (const_int 8))
3550		 (if_then_else (match_operand:VOID 1 "m16_nuimm8_1")
3551			       (const_int 8)
3552			       (const_int 12))
3553		 (const_string "*")
3554		 (const_string "*")])])
3555
3556
3557;; On the mips16, we can split lh $r,N($r) into an add and a load,
3558;; when the original load is a 4 byte instruction but the add and the
3559;; load are 2 2 byte instructions.
3560
3561(define_split
3562  [(set (match_operand:HI 0 "register_operand")
3563	(mem:HI (plus:SI (match_dup 0)
3564			 (match_operand:SI 1 "const_int_operand"))))]
3565  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3566   && REG_P (operands[0])
3567   && M16_REG_P (REGNO (operands[0]))
3568   && GET_CODE (operands[1]) == CONST_INT
3569   && ((INTVAL (operands[1]) < 0
3570	&& INTVAL (operands[1]) >= -0x80)
3571       || (INTVAL (operands[1]) >= 32 * 2
3572	   && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
3573       || (INTVAL (operands[1]) >= 0
3574	   && INTVAL (operands[1]) < 32 * 2
3575	   && (INTVAL (operands[1]) & 1) != 0))"
3576  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3577   (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
3578{
3579  HOST_WIDE_INT val = INTVAL (operands[1]);
3580
3581  if (val < 0)
3582    operands[2] = const0_rtx;
3583  else if (val >= 32 * 2)
3584    {
3585      int off = val & 1;
3586
3587      operands[1] = GEN_INT (0x7e + off);
3588      operands[2] = GEN_INT (val - off - 0x7e);
3589    }
3590  else
3591    {
3592      int off = val & 1;
3593
3594      operands[1] = GEN_INT (off);
3595      operands[2] = GEN_INT (val - off);
3596    }
3597})
3598
3599;; 8-bit Integer moves
3600
3601;; Unlike most other insns, the move insns can't be split with
3602;; different predicates, because register spilling and other parts of
3603;; the compiler, have memoized the insn number already.
3604;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
3605
3606(define_expand "movqi"
3607  [(set (match_operand:QI 0 "")
3608	(match_operand:QI 1 ""))]
3609  ""
3610{
3611  if (mips_legitimize_move (QImode, operands[0], operands[1]))
3612    DONE;
3613})
3614
3615(define_insn "*movqi_internal"
3616  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,d,d,m,*d,*f,*f,*x")
3617	(match_operand:QI 1 "move_operand"         "d,I,m,dJ,*f,*d,*f,*d"))]
3618  "!TARGET_MIPS16
3619   && (register_operand (operands[0], QImode)
3620       || reg_or_0_operand (operands[1], QImode))"
3621  "@
3622    move\t%0,%1
3623    li\t%0,%1
3624    lbu\t%0,%1
3625    sb\t%z1,%0
3626    mfc1\t%0,%1
3627    mtc1\t%1,%0
3628    mov.s\t%0,%1
3629    mt%0\t%1"
3630  [(set_attr "type"	"arith,arith,load,store,xfer,xfer,fmove,mthilo")
3631   (set_attr "mode"	"QI")
3632   (set_attr "length"	"4,4,*,*,4,4,4,4")])
3633
3634(define_insn "*movqi_mips16"
3635  [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m")
3636	(match_operand:QI 1 "move_operand"         "d,d,y,K,N,m,d"))]
3637  "TARGET_MIPS16
3638   && (register_operand (operands[0], QImode)
3639       || register_operand (operands[1], QImode))"
3640  "@
3641    move\t%0,%1
3642    move\t%0,%1
3643    move\t%0,%1
3644    li\t%0,%1
3645    #
3646    lbu\t%0,%1
3647    sb\t%1,%0"
3648  [(set_attr "type"	"arith,arith,arith,arith,arith,load,store")
3649   (set_attr "mode"	"QI")
3650   (set_attr "length"	"4,4,4,4,8,*,*")])
3651
3652;; On the mips16, we can split lb $r,N($r) into an add and a load,
3653;; when the original load is a 4 byte instruction but the add and the
3654;; load are 2 2 byte instructions.
3655
3656(define_split
3657  [(set (match_operand:QI 0 "register_operand")
3658	(mem:QI (plus:SI (match_dup 0)
3659			 (match_operand:SI 1 "const_int_operand"))))]
3660  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
3661   && REG_P (operands[0])
3662   && M16_REG_P (REGNO (operands[0]))
3663   && GET_CODE (operands[1]) == CONST_INT
3664   && ((INTVAL (operands[1]) < 0
3665	&& INTVAL (operands[1]) >= -0x80)
3666       || (INTVAL (operands[1]) >= 32
3667	   && INTVAL (operands[1]) <= 31 + 0x7f))"
3668  [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
3669   (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
3670{
3671  HOST_WIDE_INT val = INTVAL (operands[1]);
3672
3673  if (val < 0)
3674    operands[2] = const0_rtx;
3675  else
3676    {
3677      operands[1] = GEN_INT (0x7f);
3678      operands[2] = GEN_INT (val - 0x7f);
3679    }
3680})
3681
3682;; 32-bit floating point moves
3683
3684(define_expand "movsf"
3685  [(set (match_operand:SF 0 "")
3686	(match_operand:SF 1 ""))]
3687  ""
3688{
3689  if (mips_legitimize_move (SFmode, operands[0], operands[1]))
3690    DONE;
3691})
3692
3693(define_insn "*movsf_hardfloat"
3694  [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3695	(match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
3696  "TARGET_HARD_FLOAT
3697   && (register_operand (operands[0], SFmode)
3698       || reg_or_0_operand (operands[1], SFmode))"
3699  { return mips_output_move (operands[0], operands[1]); }
3700  [(set_attr "type"	"fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3701   (set_attr "mode"	"SF")
3702   (set_attr "length"	"4,4,*,*,*,4,4,4,*,*")])
3703
3704(define_insn "*movsf_softfloat"
3705  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
3706	(match_operand:SF 1 "move_operand" "Gd,m,d"))]
3707  "TARGET_SOFT_FLOAT && !TARGET_MIPS16
3708   && (register_operand (operands[0], SFmode)
3709       || reg_or_0_operand (operands[1], SFmode))"
3710  { return mips_output_move (operands[0], operands[1]); }
3711  [(set_attr "type"	"arith,load,store")
3712   (set_attr "mode"	"SF")
3713   (set_attr "length"	"4,*,*")])
3714
3715(define_insn "*movsf_mips16"
3716  [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
3717	(match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
3718  "TARGET_MIPS16
3719   && (register_operand (operands[0], SFmode)
3720       || register_operand (operands[1], SFmode))"
3721  { return mips_output_move (operands[0], operands[1]); }
3722  [(set_attr "type"	"arith,arith,arith,load,store")
3723   (set_attr "mode"	"SF")
3724   (set_attr "length"	"4,4,4,*,*")])
3725
3726
3727;; 64-bit floating point moves
3728
3729(define_expand "movdf"
3730  [(set (match_operand:DF 0 "")
3731	(match_operand:DF 1 ""))]
3732  ""
3733{
3734  if (mips_legitimize_move (DFmode, operands[0], operands[1]))
3735    DONE;
3736})
3737
3738(define_insn "*movdf_hardfloat_64bit"
3739  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3740	(match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
3741  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && TARGET_64BIT
3742   && (register_operand (operands[0], DFmode)
3743       || reg_or_0_operand (operands[1], DFmode))"
3744  { return mips_output_move (operands[0], operands[1]); }
3745  [(set_attr "type"	"fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3746   (set_attr "mode"	"DF")
3747   (set_attr "length"	"4,4,*,*,*,4,4,4,*,*")])
3748
3749(define_insn "*movdf_hardfloat_32bit"
3750  [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3751	(match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
3752  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT
3753   && (register_operand (operands[0], DFmode)
3754       || reg_or_0_operand (operands[1], DFmode))"
3755  { return mips_output_move (operands[0], operands[1]); }
3756  [(set_attr "type"	"fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3757   (set_attr "mode"	"DF")
3758   (set_attr "length"	"4,8,*,*,*,8,8,8,*,*")])
3759
3760(define_insn "*movdf_softfloat"
3761  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m,d,f,f")
3762	(match_operand:DF 1 "move_operand" "dG,m,dG,f,d,f"))]
3763  "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
3764   && (register_operand (operands[0], DFmode)
3765       || reg_or_0_operand (operands[1], DFmode))"
3766  { return mips_output_move (operands[0], operands[1]); }
3767  [(set_attr "type"	"arith,load,store,xfer,xfer,fmove")
3768   (set_attr "mode"	"DF")
3769   (set_attr "length"	"8,*,*,4,4,4")])
3770
3771(define_insn "*movdf_mips16"
3772  [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
3773	(match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
3774  "TARGET_MIPS16
3775   && (register_operand (operands[0], DFmode)
3776       || register_operand (operands[1], DFmode))"
3777  { return mips_output_move (operands[0], operands[1]); }
3778  [(set_attr "type"	"arith,arith,arith,load,store")
3779   (set_attr "mode"	"DF")
3780   (set_attr "length"	"8,8,8,*,*")])
3781
3782(define_split
3783  [(set (match_operand:DI 0 "nonimmediate_operand")
3784	(match_operand:DI 1 "move_operand"))]
3785  "reload_completed && !TARGET_64BIT
3786   && mips_split_64bit_move_p (operands[0], operands[1])"
3787  [(const_int 0)]
3788{
3789  mips_split_64bit_move (operands[0], operands[1]);
3790  DONE;
3791})
3792
3793(define_split
3794  [(set (match_operand:DF 0 "nonimmediate_operand")
3795	(match_operand:DF 1 "move_operand"))]
3796  "reload_completed && !TARGET_64BIT
3797   && mips_split_64bit_move_p (operands[0], operands[1])"
3798  [(const_int 0)]
3799{
3800  mips_split_64bit_move (operands[0], operands[1]);
3801  DONE;
3802})
3803
3804;; When generating mips16 code, split moves of negative constants into
3805;; a positive "li" followed by a negation.
3806(define_split
3807  [(set (match_operand 0 "register_operand")
3808	(match_operand 1 "const_int_operand"))]
3809  "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
3810  [(set (match_dup 2)
3811	(match_dup 3))
3812   (set (match_dup 2)
3813	(neg:SI (match_dup 2)))]
3814{
3815  operands[2] = gen_lowpart (SImode, operands[0]);
3816  operands[3] = GEN_INT (-INTVAL (operands[1]));
3817})
3818
3819;; 64-bit paired-single floating point moves
3820
3821(define_expand "movv2sf"
3822  [(set (match_operand:V2SF 0)
3823	(match_operand:V2SF 1))]
3824  "TARGET_PAIRED_SINGLE_FLOAT"
3825{
3826  if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
3827    DONE;
3828})
3829
3830(define_insn "movv2sf_hardfloat_64bit"
3831  [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
3832	(match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
3833  "TARGET_PAIRED_SINGLE_FLOAT
3834   && TARGET_64BIT
3835   && (register_operand (operands[0], V2SFmode)
3836       || reg_or_0_operand (operands[1], V2SFmode))"
3837  { return mips_output_move (operands[0], operands[1]); }
3838  [(set_attr "type" "fmove,xfer,fpload,fpstore,store,xfer,xfer,arith,load,store")
3839   (set_attr "mode" "SF")
3840   (set_attr "length" "4,4,*,*,*,4,4,4,*,*")])
3841
3842;; The HI and LO registers are not truly independent.  If we move an mthi
3843;; instruction before an mflo instruction, it will make the result of the
3844;; mflo unpredictable.  The same goes for mtlo and mfhi.
3845;;
3846;; We cope with this by making the mflo and mfhi patterns use both HI and LO.
3847;; Operand 1 is the register we want, operand 2 is the other one.
3848;;
3849;; When generating VR4120 or VR4130 code, we use macc{,hi} and
3850;; dmacc{,hi} instead of mfhi and mflo.  This avoids both the normal
3851;; MIPS III hi/lo hazards and the errata related to -mfix-vr4130.
3852
3853(define_expand "mfhilo_<mode>"
3854  [(set (match_operand:GPR 0 "register_operand")
3855	(unspec:GPR [(match_operand:GPR 1 "register_operand")
3856		     (match_operand:GPR 2 "register_operand")]
3857		    UNSPEC_MFHILO))])
3858
3859(define_insn "*mfhilo_<mode>"
3860  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3861	(unspec:GPR [(match_operand:GPR 1 "register_operand" "h,l")
3862		     (match_operand:GPR 2 "register_operand" "l,h")]
3863		    UNSPEC_MFHILO))]
3864  "!ISA_HAS_MACCHI"
3865  "mf%1\t%0"
3866  [(set_attr "type" "mfhilo")
3867   (set_attr "mode" "<MODE>")])
3868
3869(define_insn "*mfhilo_<mode>_macc"
3870  [(set (match_operand:GPR 0 "register_operand" "=d,d")
3871	(unspec:GPR [(match_operand:GPR 1 "register_operand" "h,l")
3872		     (match_operand:GPR 2 "register_operand" "l,h")]
3873		    UNSPEC_MFHILO))]
3874  "ISA_HAS_MACCHI"
3875{
3876  if (REGNO (operands[1]) == HI_REGNUM)
3877    return "<d>macchi\t%0,%.,%.";
3878  else
3879    return "<d>macc\t%0,%.,%.";
3880}
3881  [(set_attr "type" "mfhilo")
3882   (set_attr "mode" "<MODE>")])
3883
3884;; Patterns for loading or storing part of a paired floating point
3885;; register.  We need them because odd-numbered floating-point registers
3886;; are not fully independent: see mips_split_64bit_move.
3887
3888;; Load the low word of operand 0 with operand 1.
3889(define_insn "load_df_low"
3890  [(set (match_operand:DF 0 "register_operand" "=f,f")
3891	(unspec:DF [(match_operand:SI 1 "general_operand" "dJ,m")]
3892		   UNSPEC_LOAD_DF_LOW))]
3893  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3894{
3895  operands[0] = mips_subword (operands[0], 0);
3896  return mips_output_move (operands[0], operands[1]);
3897}
3898  [(set_attr "type"	"xfer,fpload")
3899   (set_attr "mode"	"SF")])
3900
3901;; Load the high word of operand 0 from operand 1, preserving the value
3902;; in the low word.
3903(define_insn "load_df_high"
3904  [(set (match_operand:DF 0 "register_operand" "=f,f")
3905	(unspec:DF [(match_operand:SI 1 "general_operand" "dJ,m")
3906		    (match_operand:DF 2 "register_operand" "0,0")]
3907		   UNSPEC_LOAD_DF_HIGH))]
3908  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3909{
3910  operands[0] = mips_subword (operands[0], 1);
3911  return mips_output_move (operands[0], operands[1]);
3912}
3913  [(set_attr "type"	"xfer,fpload")
3914   (set_attr "mode"	"SF")])
3915
3916;; Store the high word of operand 1 in operand 0.  The corresponding
3917;; low-word move is done in the normal way.
3918(define_insn "store_df_high"
3919  [(set (match_operand:SI 0 "nonimmediate_operand" "=d,m")
3920	(unspec:SI [(match_operand:DF 1 "register_operand" "f,f")]
3921		   UNSPEC_STORE_DF_HIGH))]
3922  "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !TARGET_64BIT"
3923{
3924  operands[1] = mips_subword (operands[1], 1);
3925  return mips_output_move (operands[0], operands[1]);
3926}
3927  [(set_attr "type"	"xfer,fpstore")
3928   (set_attr "mode"	"SF")])
3929
3930;; Insn to initialize $gp for n32/n64 abicalls.  Operand 0 is the offset
3931;; of _gp from the start of this function.  Operand 1 is the incoming
3932;; function address.
3933(define_insn_and_split "loadgp"
3934  [(unspec_volatile [(match_operand 0 "" "")
3935		     (match_operand 1 "register_operand" "")] UNSPEC_LOADGP)]
3936  "TARGET_ABICALLS && TARGET_NEWABI"
3937  "#"
3938  ""
3939  [(set (match_dup 2) (match_dup 3))
3940   (set (match_dup 2) (match_dup 4))
3941   (set (match_dup 2) (match_dup 5))]
3942{
3943  operands[2] = pic_offset_table_rtx;
3944  operands[3] = gen_rtx_HIGH (Pmode, operands[0]);
3945  operands[4] = gen_rtx_PLUS (Pmode, operands[2], operands[1]);
3946  operands[5] = gen_rtx_LO_SUM (Pmode, operands[2], operands[0]);
3947}
3948  [(set_attr "length" "12")])
3949
3950;; The use of gp is hidden when not using explicit relocations.
3951;; This blockage instruction prevents the gp load from being
3952;; scheduled after an implicit use of gp.  It also prevents
3953;; the load from being deleted as dead.
3954(define_insn "loadgp_blockage"
3955  [(unspec_volatile [(reg:DI 28)] UNSPEC_BLOCKAGE)]
3956  ""
3957  ""
3958  [(set_attr "type"	"unknown")
3959   (set_attr "mode"	"none")
3960   (set_attr "length"	"0")])
3961
3962;; Emit a .cprestore directive, which normally expands to a single store
3963;; instruction.  Note that we continue to use .cprestore for explicit reloc
3964;; code so that jals inside inline asms will work correctly.
3965(define_insn "cprestore"
3966  [(unspec_volatile [(match_operand 0 "const_int_operand" "I,i")]
3967		    UNSPEC_CPRESTORE)]
3968  ""
3969{
3970  if (set_nomacro && which_alternative == 1)
3971    return ".set\tmacro\;.cprestore\t%0\;.set\tnomacro";
3972  else
3973    return ".cprestore\t%0";
3974}
3975  [(set_attr "type" "store")
3976   (set_attr "length" "4,12")])
3977
3978;; Block moves, see mips.c for more details.
3979;; Argument 0 is the destination
3980;; Argument 1 is the source
3981;; Argument 2 is the length
3982;; Argument 3 is the alignment
3983
3984(define_expand "movmemsi"
3985  [(parallel [(set (match_operand:BLK 0 "general_operand")
3986		   (match_operand:BLK 1 "general_operand"))
3987	      (use (match_operand:SI 2 ""))
3988	      (use (match_operand:SI 3 "const_int_operand"))])]
3989  "!TARGET_MIPS16 && !TARGET_MEMCPY"
3990{
3991  if (mips_expand_block_move (operands[0], operands[1], operands[2]))
3992    DONE;
3993  else
3994    FAIL;
3995})
3996
3997;;
3998;;  ....................
3999;;
4000;;	SHIFTS
4001;;
4002;;  ....................
4003
4004(define_expand "<optab><mode>3"
4005  [(set (match_operand:GPR 0 "register_operand")
4006	(any_shift:GPR (match_operand:GPR 1 "register_operand")
4007		       (match_operand:SI 2 "arith_operand")))]
4008  ""
4009{
4010  /* On the mips16, a shift of more than 8 is a four byte instruction,
4011     so, for a shift between 8 and 16, it is just as fast to do two
4012     shifts of 8 or less.  If there is a lot of shifting going on, we
4013     may win in CSE.  Otherwise combine will put the shifts back
4014     together again.  This can be called by function_arg, so we must
4015     be careful not to allocate a new register if we've reached the
4016     reload pass.  */
4017  if (TARGET_MIPS16
4018      && optimize
4019      && GET_CODE (operands[2]) == CONST_INT
4020      && INTVAL (operands[2]) > 8
4021      && INTVAL (operands[2]) <= 16
4022      && !reload_in_progress
4023      && !reload_completed)
4024    {
4025      rtx temp = gen_reg_rtx (<MODE>mode);
4026
4027      emit_insn (gen_<optab><mode>3 (temp, operands[1], GEN_INT (8)));
4028      emit_insn (gen_<optab><mode>3 (operands[0], temp,
4029				     GEN_INT (INTVAL (operands[2]) - 8)));
4030      DONE;
4031    }
4032})
4033
4034(define_insn "*<optab><mode>3"
4035  [(set (match_operand:GPR 0 "register_operand" "=d")
4036	(any_shift:GPR (match_operand:GPR 1 "register_operand" "d")
4037		       (match_operand:SI 2 "arith_operand" "dI")))]
4038  "!TARGET_MIPS16"
4039{
4040  if (GET_CODE (operands[2]) == CONST_INT)
4041    operands[2] = GEN_INT (INTVAL (operands[2])
4042			   & (GET_MODE_BITSIZE (<MODE>mode) - 1));
4043
4044  return "<d><insn>\t%0,%1,%2";
4045}
4046  [(set_attr "type" "shift")
4047   (set_attr "mode" "<MODE>")])
4048
4049(define_insn "*<optab>si3_extend"
4050  [(set (match_operand:DI 0 "register_operand" "=d")
4051	(sign_extend:DI
4052	   (any_shift:SI (match_operand:SI 1 "register_operand" "d")
4053			 (match_operand:SI 2 "arith_operand" "dI"))))]
4054  "TARGET_64BIT && !TARGET_MIPS16"
4055{
4056  if (GET_CODE (operands[2]) == CONST_INT)
4057    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
4058
4059  return "<insn>\t%0,%1,%2";
4060}
4061  [(set_attr "type" "shift")
4062   (set_attr "mode" "SI")])
4063
4064(define_insn "*<optab>si3_mips16"
4065  [(set (match_operand:SI 0 "register_operand" "=d,d")
4066	(any_shift:SI (match_operand:SI 1 "register_operand" "0,d")
4067		      (match_operand:SI 2 "arith_operand" "d,I")))]
4068  "TARGET_MIPS16"
4069{
4070  if (which_alternative == 0)
4071    return "<insn>\t%0,%2";
4072
4073  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
4074  return "<insn>\t%0,%1,%2";
4075}
4076  [(set_attr "type" "shift")
4077   (set_attr "mode" "SI")
4078   (set_attr_alternative "length"
4079		[(const_int 4)
4080		 (if_then_else (match_operand 2 "m16_uimm3_b")
4081			       (const_int 4)
4082			       (const_int 8))])])
4083
4084;; We need separate DImode MIPS16 patterns because of the irregularity
4085;; of right shifts.
4086(define_insn "*ashldi3_mips16"
4087  [(set (match_operand:DI 0 "register_operand" "=d,d")
4088	(ashift:DI (match_operand:DI 1 "register_operand" "0,d")
4089		   (match_operand:SI 2 "arith_operand" "d,I")))]
4090  "TARGET_64BIT && TARGET_MIPS16"
4091{
4092  if (which_alternative == 0)
4093    return "dsll\t%0,%2";
4094
4095  operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4096  return "dsll\t%0,%1,%2";
4097}
4098  [(set_attr "type" "shift")
4099   (set_attr "mode" "DI")
4100   (set_attr_alternative "length"
4101		[(const_int 4)
4102		 (if_then_else (match_operand 2 "m16_uimm3_b")
4103			       (const_int 4)
4104			       (const_int 8))])])
4105
4106(define_insn "*ashrdi3_mips16"
4107  [(set (match_operand:DI 0 "register_operand" "=d,d")
4108	(ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
4109		     (match_operand:SI 2 "arith_operand" "d,I")))]
4110  "TARGET_64BIT && TARGET_MIPS16"
4111{
4112  if (GET_CODE (operands[2]) == CONST_INT)
4113    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4114
4115  return "dsra\t%0,%2";
4116}
4117  [(set_attr "type" "shift")
4118   (set_attr "mode" "DI")
4119   (set_attr_alternative "length"
4120		[(const_int 4)
4121		 (if_then_else (match_operand 2 "m16_uimm3_b")
4122			       (const_int 4)
4123			       (const_int 8))])])
4124
4125(define_insn "*lshrdi3_mips16"
4126  [(set (match_operand:DI 0 "register_operand" "=d,d")
4127	(lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0")
4128		     (match_operand:SI 2 "arith_operand" "d,I")))]
4129  "TARGET_64BIT && TARGET_MIPS16"
4130{
4131  if (GET_CODE (operands[2]) == CONST_INT)
4132    operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
4133
4134  return "dsrl\t%0,%2";
4135}
4136  [(set_attr "type" "shift")
4137   (set_attr "mode" "DI")
4138   (set_attr_alternative "length"
4139		[(const_int 4)
4140		 (if_then_else (match_operand 2 "m16_uimm3_b")
4141			       (const_int 4)
4142			       (const_int 8))])])
4143
4144;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
4145
4146(define_split
4147  [(set (match_operand:GPR 0 "register_operand")
4148	(any_shift:GPR (match_operand:GPR 1 "register_operand")
4149		       (match_operand:GPR 2 "const_int_operand")))]
4150  "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4151   && GET_CODE (operands[2]) == CONST_INT
4152   && INTVAL (operands[2]) > 8
4153   && INTVAL (operands[2]) <= 16"
4154  [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
4155   (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
4156  { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
4157
4158;; If we load a byte on the mips16 as a bitfield, the resulting
4159;; sequence of instructions is too complicated for combine, because it
4160;; involves four instructions: a load, a shift, a constant load into a
4161;; register, and an and (the key problem here is that the mips16 does
4162;; not have and immediate).  We recognize a shift of a load in order
4163;; to make it simple enough for combine to understand.
4164;;
4165;; The length here is the worst case: the length of the split version
4166;; will be more accurate.
4167(define_insn_and_split ""
4168  [(set (match_operand:SI 0 "register_operand" "=d")
4169	(lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
4170		     (match_operand:SI 2 "immediate_operand" "I")))]
4171  "TARGET_MIPS16"
4172  "#"
4173  ""
4174  [(set (match_dup 0) (match_dup 1))
4175   (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
4176  ""
4177  [(set_attr "type"	"load")
4178   (set_attr "mode"	"SI")
4179   (set_attr "length"	"16")])
4180
4181(define_insn "rotr<mode>3"
4182  [(set (match_operand:GPR 0 "register_operand" "=d")
4183	(rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
4184		      (match_operand:SI 2 "arith_operand" "dI")))]
4185  "ISA_HAS_ROTR_<MODE>"
4186{
4187  if (GET_CODE (operands[2]) == CONST_INT)
4188    gcc_assert (INTVAL (operands[2]) >= 0
4189		&& INTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode));
4190
4191  return "<d>ror\t%0,%1,%2";
4192}
4193  [(set_attr "type" "shift")
4194   (set_attr "mode" "<MODE>")])
4195
4196;;
4197;;  ....................
4198;;
4199;;	COMPARISONS
4200;;
4201;;  ....................
4202
4203;; Flow here is rather complex:
4204;;
4205;;  1)	The cmp{si,di,sf,df} routine is called.  It deposits the arguments
4206;;	into cmp_operands[] but generates no RTL.
4207;;
4208;;  2)	The appropriate branch define_expand is called, which then
4209;;	creates the appropriate RTL for the comparison and branch.
4210;;	Different CC modes are used, based on what type of branch is
4211;;	done, so that we can constrain things appropriately.  There
4212;;	are assumptions in the rest of GCC that break if we fold the
4213;;	operands into the branches for integer operations, and use cc0
4214;;	for floating point, so we use the fp status register instead.
4215;;	If needed, an appropriate temporary is created to hold the
4216;;	of the integer compare.
4217
4218(define_expand "cmp<mode>"
4219  [(set (cc0)
4220	(compare:CC (match_operand:GPR 0 "register_operand")
4221		    (match_operand:GPR 1 "nonmemory_operand")))]
4222  ""
4223{
4224  cmp_operands[0] = operands[0];
4225  cmp_operands[1] = operands[1];
4226  DONE;
4227})
4228
4229(define_expand "cmp<mode>"
4230  [(set (cc0)
4231	(compare:CC (match_operand:SCALARF 0 "register_operand")
4232		    (match_operand:SCALARF 1 "register_operand")))]
4233  ""
4234{
4235  cmp_operands[0] = operands[0];
4236  cmp_operands[1] = operands[1];
4237  DONE;
4238})
4239
4240;;
4241;;  ....................
4242;;
4243;;	CONDITIONAL BRANCHES
4244;;
4245;;  ....................
4246
4247;; Conditional branches on floating-point equality tests.
4248
4249(define_insn "branch_fp"
4250  [(set (pc)
4251        (if_then_else
4252         (match_operator:CC 0 "comparison_operator"
4253                            [(match_operand:CC 2 "register_operand" "z")
4254			     (const_int 0)])
4255         (label_ref (match_operand 1 "" ""))
4256         (pc)))]
4257  "TARGET_HARD_FLOAT"
4258{
4259  return mips_output_conditional_branch (insn,
4260					 operands,
4261					 /*two_operands_p=*/0,
4262					 /*float_p=*/1,
4263					 /*inverted_p=*/0,
4264					 get_attr_length (insn));
4265}
4266  [(set_attr "type"	"branch")
4267   (set_attr "mode"	"none")])
4268
4269(define_insn "branch_fp_inverted"
4270  [(set (pc)
4271        (if_then_else
4272         (match_operator:CC 0 "comparison_operator"
4273                            [(match_operand:CC 2 "register_operand" "z")
4274			     (const_int 0)])
4275         (pc)
4276         (label_ref (match_operand 1 "" ""))))]
4277  "TARGET_HARD_FLOAT"
4278{
4279  return mips_output_conditional_branch (insn,
4280					 operands,
4281					 /*two_operands_p=*/0,
4282					 /*float_p=*/1,
4283					 /*inverted_p=*/1,
4284					 get_attr_length (insn));
4285}
4286  [(set_attr "type"	"branch")
4287   (set_attr "mode"	"none")])
4288
4289;; Conditional branches on comparisons with zero.
4290
4291(define_insn "*branch_zero<mode>"
4292  [(set (pc)
4293	(if_then_else
4294	 (match_operator:GPR 0 "comparison_operator"
4295			     [(match_operand:GPR 2 "register_operand" "d")
4296			      (const_int 0)])
4297	 (label_ref (match_operand 1 "" ""))
4298	 (pc)))]
4299  "!TARGET_MIPS16"
4300{
4301  return mips_output_conditional_branch (insn,
4302					 operands,
4303					 /*two_operands_p=*/0,
4304					 /*float_p=*/0,
4305					 /*inverted_p=*/0,
4306					 get_attr_length (insn));
4307}
4308  [(set_attr "type" "branch")
4309   (set_attr "mode" "none")])
4310
4311(define_insn "*branch_zero<mode>_inverted"
4312  [(set (pc)
4313	(if_then_else
4314	 (match_operator:GPR 0 "comparison_operator"
4315			     [(match_operand:GPR 2 "register_operand" "d")
4316			      (const_int 0)])
4317	 (pc)
4318	 (label_ref (match_operand 1 "" ""))))]
4319  "!TARGET_MIPS16"
4320{
4321  return mips_output_conditional_branch (insn,
4322					 operands,
4323					 /*two_operands_p=*/0,
4324					 /*float_p=*/0,
4325					 /*inverted_p=*/1,
4326					 get_attr_length (insn));
4327}
4328  [(set_attr "type" "branch")
4329   (set_attr "mode" "none")])
4330
4331;; Conditional branch on equality comparison.
4332
4333(define_insn "*branch_equality<mode>"
4334  [(set (pc)
4335	(if_then_else
4336	 (match_operator:GPR 0 "equality_operator"
4337			     [(match_operand:GPR 2 "register_operand" "d")
4338			      (match_operand:GPR 3 "register_operand" "d")])
4339	 (label_ref (match_operand 1 "" ""))
4340	 (pc)))]
4341  "!TARGET_MIPS16"
4342{
4343  return mips_output_conditional_branch (insn,
4344					 operands,
4345					 /*two_operands_p=*/1,
4346					 /*float_p=*/0,
4347					 /*inverted_p=*/0,
4348					 get_attr_length (insn));
4349}
4350  [(set_attr "type" "branch")
4351   (set_attr "mode" "none")])
4352
4353(define_insn "*branch_equality<mode>_inverted"
4354  [(set (pc)
4355	(if_then_else
4356	 (match_operator:GPR 0 "equality_operator"
4357			     [(match_operand:GPR 2 "register_operand" "d")
4358			      (match_operand:GPR 3 "register_operand" "d")])
4359	 (pc)
4360	 (label_ref (match_operand 1 "" ""))))]
4361  "!TARGET_MIPS16"
4362{
4363  return mips_output_conditional_branch (insn,
4364					 operands,
4365					 /*two_operands_p=*/1,
4366					 /*float_p=*/0,
4367					 /*inverted_p=*/1,
4368					 get_attr_length (insn));
4369}
4370  [(set_attr "type" "branch")
4371   (set_attr "mode" "none")])
4372
4373;; MIPS16 branches
4374
4375(define_insn "*branch_equality<mode>_mips16"
4376  [(set (pc)
4377	(if_then_else
4378	 (match_operator:GPR 0 "equality_operator"
4379			     [(match_operand:GPR 1 "register_operand" "d,t")
4380			      (const_int 0)])
4381	 (match_operand 2 "pc_or_label_operand" "")
4382	 (match_operand 3 "pc_or_label_operand" "")))]
4383  "TARGET_MIPS16"
4384{
4385  if (operands[2] != pc_rtx)
4386    {
4387      if (which_alternative == 0)
4388	return "b%C0z\t%1,%2";
4389      else
4390	return "bt%C0z\t%2";
4391    }
4392  else
4393    {
4394      if (which_alternative == 0)
4395	return "b%N0z\t%1,%3";
4396      else
4397	return "bt%N0z\t%3";
4398    }
4399}
4400  [(set_attr "type" "branch")
4401   (set_attr "mode" "none")
4402   (set_attr "length" "8")])
4403
4404(define_expand "b<code>"
4405  [(set (pc)
4406	(if_then_else (any_cond:CC (cc0)
4407				   (const_int 0))
4408		      (label_ref (match_operand 0 ""))
4409		      (pc)))]
4410  ""
4411{
4412  gen_conditional_branch (operands, <CODE>);
4413  DONE;
4414})
4415
4416;;
4417;;  ....................
4418;;
4419;;	SETTING A REGISTER FROM A COMPARISON
4420;;
4421;;  ....................
4422
4423(define_expand "seq"
4424  [(set (match_operand:SI 0 "register_operand")
4425	(eq:SI (match_dup 1)
4426	       (match_dup 2)))]
4427  ""
4428  { if (mips_emit_scc (EQ, operands[0])) DONE; else FAIL; })
4429
4430(define_insn "*seq_<mode>"
4431  [(set (match_operand:GPR 0 "register_operand" "=d")
4432	(eq:GPR (match_operand:GPR 1 "register_operand" "d")
4433		(const_int 0)))]
4434  "!TARGET_MIPS16"
4435  "sltu\t%0,%1,1"
4436  [(set_attr "type" "slt")
4437   (set_attr "mode" "<MODE>")])
4438
4439(define_insn "*seq_<mode>_mips16"
4440  [(set (match_operand:GPR 0 "register_operand" "=t")
4441	(eq:GPR (match_operand:GPR 1 "register_operand" "d")
4442		(const_int 0)))]
4443  "TARGET_MIPS16"
4444  "sltu\t%1,1"
4445  [(set_attr "type" "slt")
4446   (set_attr "mode" "<MODE>")])
4447
4448;; "sne" uses sltu instructions in which the first operand is $0.
4449;; This isn't possible in mips16 code.
4450
4451(define_expand "sne"
4452  [(set (match_operand:SI 0 "register_operand")
4453	(ne:SI (match_dup 1)
4454	       (match_dup 2)))]
4455  "!TARGET_MIPS16"
4456  { if (mips_emit_scc (NE, operands[0])) DONE; else FAIL; })
4457
4458(define_insn "*sne_<mode>"
4459  [(set (match_operand:GPR 0 "register_operand" "=d")
4460	(ne:GPR (match_operand:GPR 1 "register_operand" "d")
4461		(const_int 0)))]
4462  "!TARGET_MIPS16"
4463  "sltu\t%0,%.,%1"
4464  [(set_attr "type" "slt")
4465   (set_attr "mode" "<MODE>")])
4466
4467(define_expand "sgt"
4468  [(set (match_operand:SI 0 "register_operand")
4469	(gt:SI (match_dup 1)
4470	       (match_dup 2)))]
4471  ""
4472  { if (mips_emit_scc (GT, operands[0])) DONE; else FAIL; })
4473
4474(define_insn "*sgt_<mode>"
4475  [(set (match_operand:GPR 0 "register_operand" "=d")
4476	(gt:GPR (match_operand:GPR 1 "register_operand" "d")
4477		(match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
4478  "!TARGET_MIPS16"
4479  "slt\t%0,%z2,%1"
4480  [(set_attr "type" "slt")
4481   (set_attr "mode" "<MODE>")])
4482
4483(define_insn "*sgt_<mode>_mips16"
4484  [(set (match_operand:GPR 0 "register_operand" "=t")
4485	(gt:GPR (match_operand:GPR 1 "register_operand" "d")
4486		(match_operand:GPR 2 "register_operand" "d")))]
4487  "TARGET_MIPS16"
4488  "slt\t%2,%1"
4489  [(set_attr "type" "slt")
4490   (set_attr "mode" "<MODE>")])
4491
4492(define_expand "sge"
4493  [(set (match_operand:SI 0 "register_operand")
4494	(ge:SI (match_dup 1)
4495	       (match_dup 2)))]
4496  ""
4497  { if (mips_emit_scc (GE, operands[0])) DONE; else FAIL; })
4498
4499(define_insn "*sge_<mode>"
4500  [(set (match_operand:GPR 0 "register_operand" "=d")
4501	(ge:GPR (match_operand:GPR 1 "register_operand" "d")
4502		(const_int 1)))]
4503  "!TARGET_MIPS16"
4504  "slt\t%0,%.,%1"
4505  [(set_attr "type" "slt")
4506   (set_attr "mode" "<MODE>")])
4507
4508(define_expand "slt"
4509  [(set (match_operand:SI 0 "register_operand")
4510	(lt:SI (match_dup 1)
4511	       (match_dup 2)))]
4512  ""
4513  { if (mips_emit_scc (LT, operands[0])) DONE; else FAIL; })
4514
4515(define_insn "*slt_<mode>"
4516  [(set (match_operand:GPR 0 "register_operand" "=d")
4517	(lt:GPR (match_operand:GPR 1 "register_operand" "d")
4518		(match_operand:GPR 2 "arith_operand" "dI")))]
4519  "!TARGET_MIPS16"
4520  "slt\t%0,%1,%2"
4521  [(set_attr "type" "slt")
4522   (set_attr "mode" "<MODE>")])
4523
4524(define_insn "*slt_<mode>_mips16"
4525  [(set (match_operand:GPR 0 "register_operand" "=t,t")
4526	(lt:GPR (match_operand:GPR 1 "register_operand" "d,d")
4527		(match_operand:GPR 2 "arith_operand" "d,I")))]
4528  "TARGET_MIPS16"
4529  "slt\t%1,%2"
4530  [(set_attr "type" "slt")
4531   (set_attr "mode" "<MODE>")
4532   (set_attr_alternative "length"
4533		[(const_int 4)
4534		 (if_then_else (match_operand 2 "m16_uimm8_1")
4535			       (const_int 4)
4536			       (const_int 8))])])
4537
4538(define_expand "sle"
4539  [(set (match_operand:SI 0 "register_operand")
4540	(le:SI (match_dup 1)
4541	       (match_dup 2)))]
4542  ""
4543  { if (mips_emit_scc (LE, operands[0])) DONE; else FAIL; })
4544
4545(define_insn "*sle_<mode>"
4546  [(set (match_operand:GPR 0 "register_operand" "=d")
4547	(le:GPR (match_operand:GPR 1 "register_operand" "d")
4548		(match_operand:GPR 2 "sle_operand" "")))]
4549  "!TARGET_MIPS16"
4550{
4551  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4552  return "slt\t%0,%1,%2";
4553}
4554  [(set_attr "type" "slt")
4555   (set_attr "mode" "<MODE>")])
4556
4557(define_insn "*sle_<mode>_mips16"
4558  [(set (match_operand:GPR 0 "register_operand" "=t")
4559	(le:GPR (match_operand:GPR 1 "register_operand" "d")
4560		(match_operand:GPR 2 "sle_operand" "")))]
4561  "TARGET_MIPS16"
4562{
4563  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4564  return "slt\t%1,%2";
4565}
4566  [(set_attr "type" "slt")
4567   (set_attr "mode" "<MODE>")
4568   (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
4569				      (const_int 4)
4570				      (const_int 8)))])
4571
4572(define_expand "sgtu"
4573  [(set (match_operand:SI 0 "register_operand")
4574	(gtu:SI (match_dup 1)
4575		(match_dup 2)))]
4576  ""
4577  { if (mips_emit_scc (GTU, operands[0])) DONE; else FAIL; })
4578
4579(define_insn "*sgtu_<mode>"
4580  [(set (match_operand:GPR 0 "register_operand" "=d")
4581	(gtu:GPR (match_operand:GPR 1 "register_operand" "d")
4582		 (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
4583  "!TARGET_MIPS16"
4584  "sltu\t%0,%z2,%1"
4585  [(set_attr "type" "slt")
4586   (set_attr "mode" "<MODE>")])
4587
4588(define_insn "*sgtu_<mode>_mips16"
4589  [(set (match_operand:GPR 0 "register_operand" "=t")
4590	(gtu:GPR (match_operand:GPR 1 "register_operand" "d")
4591		 (match_operand:GPR 2 "register_operand" "d")))]
4592  "TARGET_MIPS16"
4593  "sltu\t%2,%1"
4594  [(set_attr "type" "slt")
4595   (set_attr "mode" "<MODE>")])
4596
4597(define_expand "sgeu"
4598  [(set (match_operand:SI 0 "register_operand")
4599        (geu:SI (match_dup 1)
4600                (match_dup 2)))]
4601  ""
4602  { if (mips_emit_scc (GEU, operands[0])) DONE; else FAIL; })
4603
4604(define_insn "*sge_<mode>"
4605  [(set (match_operand:GPR 0 "register_operand" "=d")
4606	(geu:GPR (match_operand:GPR 1 "register_operand" "d")
4607	         (const_int 1)))]
4608  "!TARGET_MIPS16"
4609  "sltu\t%0,%.,%1"
4610  [(set_attr "type" "slt")
4611   (set_attr "mode" "<MODE>")])
4612
4613(define_expand "sltu"
4614  [(set (match_operand:SI 0 "register_operand")
4615	(ltu:SI (match_dup 1)
4616		(match_dup 2)))]
4617  ""
4618  { if (mips_emit_scc (LTU, operands[0])) DONE; else FAIL; })
4619
4620(define_insn "*sltu_<mode>"
4621  [(set (match_operand:GPR 0 "register_operand" "=d")
4622	(ltu:GPR (match_operand:GPR 1 "register_operand" "d")
4623		 (match_operand:GPR 2 "arith_operand" "dI")))]
4624  "!TARGET_MIPS16"
4625  "sltu\t%0,%1,%2"
4626  [(set_attr "type" "slt")
4627   (set_attr "mode" "<MODE>")])
4628
4629(define_insn "*sltu_<mode>_mips16"
4630  [(set (match_operand:GPR 0 "register_operand" "=t,t")
4631	(ltu:GPR (match_operand:GPR 1 "register_operand" "d,d")
4632		 (match_operand:GPR 2 "arith_operand" "d,I")))]
4633  "TARGET_MIPS16"
4634  "sltu\t%1,%2"
4635  [(set_attr "type" "slt")
4636   (set_attr "mode" "<MODE>")
4637   (set_attr_alternative "length"
4638		[(const_int 4)
4639		 (if_then_else (match_operand 2 "m16_uimm8_1")
4640			       (const_int 4)
4641			       (const_int 8))])])
4642
4643(define_expand "sleu"
4644  [(set (match_operand:SI 0 "register_operand")
4645	(leu:SI (match_dup 1)
4646		(match_dup 2)))]
4647  ""
4648  { if (mips_emit_scc (LEU, operands[0])) DONE; else FAIL; })
4649
4650(define_insn "*sleu_<mode>"
4651  [(set (match_operand:GPR 0 "register_operand" "=d")
4652	(leu:GPR (match_operand:GPR 1 "register_operand" "d")
4653	         (match_operand:GPR 2 "sleu_operand" "")))]
4654  "!TARGET_MIPS16"
4655{
4656  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4657  return "sltu\t%0,%1,%2";
4658}
4659  [(set_attr "type" "slt")
4660   (set_attr "mode" "<MODE>")])
4661
4662(define_insn "*sleu_<mode>_mips16"
4663  [(set (match_operand:GPR 0 "register_operand" "=t")
4664	(leu:GPR (match_operand:GPR 1 "register_operand" "d")
4665	         (match_operand:GPR 2 "sleu_operand" "")))]
4666  "TARGET_MIPS16"
4667{
4668  operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
4669  return "sltu\t%1,%2";
4670}
4671  [(set_attr "type" "slt")
4672   (set_attr "mode" "<MODE>")
4673   (set (attr "length") (if_then_else (match_operand 2 "m16_uimm8_m1_1")
4674				      (const_int 4)
4675				      (const_int 8)))])
4676
4677;;
4678;;  ....................
4679;;
4680;;	FLOATING POINT COMPARISONS
4681;;
4682;;  ....................
4683
4684(define_insn "s<code>_<mode>"
4685  [(set (match_operand:CC 0 "register_operand" "=z")
4686	(fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
4687		  (match_operand:SCALARF 2 "register_operand" "f")))]
4688  ""
4689  "c.<fcond>.<fmt>\t%Z0%1,%2"
4690  [(set_attr "type" "fcmp")
4691   (set_attr "mode" "FPSW")])
4692
4693(define_insn "s<code>_<mode>"
4694  [(set (match_operand:CC 0 "register_operand" "=z")
4695	(swapped_fcond:CC (match_operand:SCALARF 1 "register_operand" "f")
4696		          (match_operand:SCALARF 2 "register_operand" "f")))]
4697  ""
4698  "c.<swapped_fcond>.<fmt>\t%Z0%2,%1"
4699  [(set_attr "type" "fcmp")
4700   (set_attr "mode" "FPSW")])
4701
4702;;
4703;;  ....................
4704;;
4705;;	UNCONDITIONAL BRANCHES
4706;;
4707;;  ....................
4708
4709;; Unconditional branches.
4710
4711(define_insn "jump"
4712  [(set (pc)
4713	(label_ref (match_operand 0 "" "")))]
4714  "!TARGET_MIPS16"
4715{
4716  if (flag_pic)
4717    {
4718      if (get_attr_length (insn) <= 8)
4719	return "%*b\t%l0%/";
4720      else
4721	{
4722	  output_asm_insn (mips_output_load_label (), operands);
4723	  return "%*jr\t%@%/%]";
4724	}
4725    }
4726  else
4727    return "%*j\t%l0%/";
4728}
4729  [(set_attr "type"	"jump")
4730   (set_attr "mode"	"none")
4731   (set (attr "length")
4732	;; We can't use `j' when emitting PIC.  Emit a branch if it's
4733	;; in range, otherwise load the address of the branch target into
4734	;; $at and then jump to it.
4735	(if_then_else
4736	 (ior (eq (symbol_ref "flag_pic") (const_int 0))
4737	      (lt (abs (minus (match_dup 0)
4738			      (plus (pc) (const_int 4))))
4739		  (const_int 131072)))
4740	 (const_int 4) (const_int 16)))])
4741
4742;; We need a different insn for the mips16, because a mips16 branch
4743;; does not have a delay slot.
4744
4745(define_insn ""
4746  [(set (pc)
4747	(label_ref (match_operand 0 "" "")))]
4748  "TARGET_MIPS16"
4749  "b\t%l0"
4750  [(set_attr "type"	"branch")
4751   (set_attr "mode"	"none")
4752   (set_attr "length"	"8")])
4753
4754(define_expand "indirect_jump"
4755  [(set (pc) (match_operand 0 "register_operand"))]
4756  ""
4757{
4758  operands[0] = force_reg (Pmode, operands[0]);
4759  if (Pmode == SImode)
4760    emit_jump_insn (gen_indirect_jumpsi (operands[0]));
4761  else
4762    emit_jump_insn (gen_indirect_jumpdi (operands[0]));
4763  DONE;
4764})
4765
4766(define_insn "indirect_jump<mode>"
4767  [(set (pc) (match_operand:P 0 "register_operand" "d"))]
4768  ""
4769  "%*j\t%0%/"
4770  [(set_attr "type" "jump")
4771   (set_attr "mode" "none")])
4772
4773(define_expand "tablejump"
4774  [(set (pc)
4775	(match_operand 0 "register_operand"))
4776   (use (label_ref (match_operand 1 "")))]
4777  ""
4778{
4779  if (TARGET_MIPS16)
4780    operands[0] = expand_binop (Pmode, add_optab,
4781				convert_to_mode (Pmode, operands[0], false),
4782				gen_rtx_LABEL_REF (Pmode, operands[1]),
4783				0, 0, OPTAB_WIDEN);
4784  else if (TARGET_GPWORD)
4785    operands[0] = expand_binop (Pmode, add_optab, operands[0],
4786				pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
4787
4788  if (Pmode == SImode)
4789    emit_jump_insn (gen_tablejumpsi (operands[0], operands[1]));
4790  else
4791    emit_jump_insn (gen_tablejumpdi (operands[0], operands[1]));
4792  DONE;
4793})
4794
4795(define_insn "tablejump<mode>"
4796  [(set (pc)
4797	(match_operand:P 0 "register_operand" "d"))
4798   (use (label_ref (match_operand 1 "" "")))]
4799  ""
4800  "%*j\t%0%/"
4801  [(set_attr "type" "jump")
4802   (set_attr "mode" "none")])
4803
4804;; For TARGET_ABICALLS, we save the gp in the jmp_buf as well.
4805;; While it is possible to either pull it off the stack (in the
4806;; o32 case) or recalculate it given t9 and our target label,
4807;; it takes 3 or 4 insns to do so.
4808
4809(define_expand "builtin_setjmp_setup"
4810  [(use (match_operand 0 "register_operand"))]
4811  "TARGET_ABICALLS"
4812{
4813  rtx addr;
4814
4815  addr = plus_constant (operands[0], GET_MODE_SIZE (Pmode) * 3);
4816  emit_move_insn (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
4817  DONE;
4818})
4819
4820;; Restore the gp that we saved above.  Despite the earlier comment, it seems
4821;; that older code did recalculate the gp from $25.  Continue to jump through
4822;; $25 for compatibility (we lose nothing by doing so).
4823
4824(define_expand "builtin_longjmp"
4825  [(use (match_operand 0 "register_operand"))]
4826  "TARGET_ABICALLS"
4827{
4828  /* The elements of the buffer are, in order:  */
4829  int W = GET_MODE_SIZE (Pmode);
4830  rtx fp = gen_rtx_MEM (Pmode, operands[0]);
4831  rtx lab = gen_rtx_MEM (Pmode, plus_constant (operands[0], 1*W));
4832  rtx stack = gen_rtx_MEM (Pmode, plus_constant (operands[0], 2*W));
4833  rtx gpv = gen_rtx_MEM (Pmode, plus_constant (operands[0], 3*W));
4834  rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
4835  /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
4836     The target is bound to be using $28 as the global pointer
4837     but the current function might not be.  */
4838  rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
4839
4840  /* This bit is similar to expand_builtin_longjmp except that it
4841     restores $gp as well.  */
4842  emit_move_insn (hard_frame_pointer_rtx, fp);
4843  emit_move_insn (pv, lab);
4844  emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
4845  emit_move_insn (gp, gpv);
4846  emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
4847  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
4848  emit_insn (gen_rtx_USE (VOIDmode, gp));
4849  emit_indirect_jump (pv);
4850  DONE;
4851})
4852
4853;;
4854;;  ....................
4855;;
4856;;	Function prologue/epilogue
4857;;
4858;;  ....................
4859;;
4860
4861(define_expand "prologue"
4862  [(const_int 1)]
4863  ""
4864{
4865  mips_expand_prologue ();
4866  DONE;
4867})
4868
4869;; Block any insns from being moved before this point, since the
4870;; profiling call to mcount can use various registers that aren't
4871;; saved or used to pass arguments.
4872
4873(define_insn "blockage"
4874  [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
4875  ""
4876  ""
4877  [(set_attr "type"	"unknown")
4878   (set_attr "mode"	"none")
4879   (set_attr "length"	"0")])
4880
4881(define_expand "epilogue"
4882  [(const_int 2)]
4883  ""
4884{
4885  mips_expand_epilogue (false);
4886  DONE;
4887})
4888
4889(define_expand "sibcall_epilogue"
4890  [(const_int 2)]
4891  ""
4892{
4893  mips_expand_epilogue (true);
4894  DONE;
4895})
4896
4897;; Trivial return.  Make it look like a normal return insn as that
4898;; allows jump optimizations to work better.
4899
4900(define_insn "return"
4901  [(return)]
4902  "mips_can_use_return_insn ()"
4903  "%*j\t$31%/"
4904  [(set_attr "type"	"jump")
4905   (set_attr "mode"	"none")])
4906
4907;; Normal return.
4908
4909(define_insn "return_internal"
4910  [(return)
4911   (use (match_operand 0 "pmode_register_operand" ""))]
4912  ""
4913  "%*j\t%0%/"
4914  [(set_attr "type"	"jump")
4915   (set_attr "mode"	"none")])
4916
4917;; This is used in compiling the unwind routines.
4918(define_expand "eh_return"
4919  [(use (match_operand 0 "general_operand"))]
4920  ""
4921{
4922  enum machine_mode gpr_mode = TARGET_64BIT ? DImode : SImode;
4923
4924  if (GET_MODE (operands[0]) != gpr_mode)
4925    operands[0] = convert_to_mode (gpr_mode, operands[0], 0);
4926  if (TARGET_64BIT)
4927    emit_insn (gen_eh_set_lr_di (operands[0]));
4928  else
4929    emit_insn (gen_eh_set_lr_si (operands[0]));
4930
4931  DONE;
4932})
4933
4934;; Clobber the return address on the stack.  We can't expand this
4935;; until we know where it will be put in the stack frame.
4936
4937(define_insn "eh_set_lr_si"
4938  [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
4939   (clobber (match_scratch:SI 1 "=&d"))]
4940  "! TARGET_64BIT"
4941  "#")
4942
4943(define_insn "eh_set_lr_di"
4944  [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
4945   (clobber (match_scratch:DI 1 "=&d"))]
4946  "TARGET_64BIT"
4947  "#")
4948
4949(define_split
4950  [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
4951   (clobber (match_scratch 1))]
4952  "reload_completed && !TARGET_DEBUG_D_MODE"
4953  [(const_int 0)]
4954{
4955  mips_set_return_address (operands[0], operands[1]);
4956  DONE;
4957})
4958
4959(define_insn_and_split "exception_receiver"
4960  [(set (reg:SI 28)
4961	(unspec_volatile:SI [(const_int 0)] UNSPEC_EH_RECEIVER))]
4962  "TARGET_ABICALLS && TARGET_OLDABI"
4963  "#"
4964  "&& reload_completed"
4965  [(const_int 0)]
4966{
4967  mips_restore_gp ();
4968  DONE;
4969}
4970  [(set_attr "type"   "load")
4971   (set_attr "length" "12")])
4972
4973;;
4974;;  ....................
4975;;
4976;;	FUNCTION CALLS
4977;;
4978;;  ....................
4979
4980;; Instructions to load a call address from the GOT.  The address might
4981;; point to a function or to a lazy binding stub.  In the latter case,
4982;; the stub will use the dynamic linker to resolve the function, which
4983;; in turn will change the GOT entry to point to the function's real
4984;; address.
4985;;
4986;; This means that every call, even pure and constant ones, can
4987;; potentially modify the GOT entry.  And once a stub has been called,
4988;; we must not call it again.
4989;;
4990;; We represent this restriction using an imaginary fixed register that
4991;; acts like a GOT version number.  By making the register call-clobbered,
4992;; we tell the target-independent code that the address could be changed
4993;; by any call insn.
4994(define_insn "load_call<mode>"
4995  [(set (match_operand:P 0 "register_operand" "=c")
4996	(unspec:P [(match_operand:P 1 "register_operand" "r")
4997		   (match_operand:P 2 "immediate_operand" "")
4998		   (reg:P FAKE_CALL_REGNO)]
4999		  UNSPEC_LOAD_CALL))]
5000  "TARGET_ABICALLS"
5001  "<load>\t%0,%R2(%1)"
5002  [(set_attr "type" "load")
5003   (set_attr "mode" "<MODE>")
5004   (set_attr "length" "4")])
5005
5006;; Sibling calls.  All these patterns use jump instructions.
5007
5008;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
5009;; addresses if a direct jump is acceptable.  Since the 'S' constraint
5010;; is defined in terms of call_insn_operand, the same is true of the
5011;; constraints.
5012
5013;; When we use an indirect jump, we need a register that will be
5014;; preserved by the epilogue.  Since TARGET_ABICALLS forces us to
5015;; use $25 for this purpose -- and $25 is never clobbered by the
5016;; epilogue -- we might as well use it for !TARGET_ABICALLS as well.
5017
5018(define_expand "sibcall"
5019  [(parallel [(call (match_operand 0 "")
5020		    (match_operand 1 ""))
5021	      (use (match_operand 2 ""))	;; next_arg_reg
5022	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
5023  "TARGET_SIBCALLS"
5024{
5025  mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], true);
5026  DONE;
5027})
5028
5029(define_insn "sibcall_internal"
5030  [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
5031	 (match_operand 1 "" ""))]
5032  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5033  "@
5034    %*jr\t%0%/
5035    %*j\t%0%/"
5036  [(set_attr "type" "call")])
5037
5038(define_expand "sibcall_value"
5039  [(parallel [(set (match_operand 0 "")
5040		   (call (match_operand 1 "")
5041			 (match_operand 2 "")))
5042	      (use (match_operand 3 ""))])]		;; next_arg_reg
5043  "TARGET_SIBCALLS"
5044{
5045  mips_expand_call (operands[0], XEXP (operands[1], 0),
5046		    operands[2], operands[3], true);
5047  DONE;
5048})
5049
5050(define_insn "sibcall_value_internal"
5051  [(set (match_operand 0 "register_operand" "=df,df")
5052        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
5053              (match_operand 2 "" "")))]
5054  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5055  "@
5056    %*jr\t%1%/
5057    %*j\t%1%/"
5058  [(set_attr "type" "call")])
5059
5060(define_insn "sibcall_value_multiple_internal"
5061  [(set (match_operand 0 "register_operand" "=df,df")
5062        (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
5063              (match_operand 2 "" "")))
5064   (set (match_operand 3 "register_operand" "=df,df")
5065	(call (mem:SI (match_dup 1))
5066	      (match_dup 2)))]
5067  "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
5068  "@
5069    %*jr\t%1%/
5070    %*j\t%1%/"
5071  [(set_attr "type" "call")])
5072
5073(define_expand "call"
5074  [(parallel [(call (match_operand 0 "")
5075		    (match_operand 1 ""))
5076	      (use (match_operand 2 ""))	;; next_arg_reg
5077	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
5078  ""
5079{
5080  mips_expand_call (0, XEXP (operands[0], 0), operands[1], operands[2], false);
5081  DONE;
5082})
5083
5084;; This instruction directly corresponds to an assembly-language "jal".
5085;; There are four cases:
5086;;
5087;;    - -mno-abicalls:
5088;;	  Both symbolic and register destinations are OK.  The pattern
5089;;	  always expands to a single mips instruction.
5090;;
5091;;    - -mabicalls/-mno-explicit-relocs:
5092;;	  Again, both symbolic and register destinations are OK.
5093;;	  The call is treated as a multi-instruction black box.
5094;;
5095;;    - -mabicalls/-mexplicit-relocs with n32 or n64:
5096;;	  Only "jal $25" is allowed.  This expands to a single "jalr $25"
5097;;	  instruction.
5098;;
5099;;    - -mabicalls/-mexplicit-relocs with o32 or o64:
5100;;	  Only "jal $25" is allowed.  The call is actually two instructions:
5101;;	  "jalr $25" followed by an insn to reload $gp.
5102;;
5103;; In the last case, we can generate the individual instructions with
5104;; a define_split.  There are several things to be wary of:
5105;;
5106;;   - We can't expose the load of $gp before reload.  If we did,
5107;;     it might get removed as dead, but reload can introduce new
5108;;     uses of $gp by rematerializing constants.
5109;;
5110;;   - We shouldn't restore $gp after calls that never return.
5111;;     It isn't valid to insert instructions between a noreturn
5112;;     call and the following barrier.
5113;;
5114;;   - The splitter deliberately changes the liveness of $gp.  The unsplit
5115;;     instruction preserves $gp and so have no effect on its liveness.
5116;;     But once we generate the separate insns, it becomes obvious that
5117;;     $gp is not live on entry to the call.
5118;;
5119;; ??? The operands[2] = insn check is a hack to make the original insn
5120;; available to the splitter.
5121(define_insn_and_split "call_internal"
5122  [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
5123	 (match_operand 1 "" ""))
5124   (clobber (reg:SI 31))]
5125  ""
5126  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%0%/"; }
5127  "reload_completed && TARGET_SPLIT_CALLS && (operands[2] = insn)"
5128  [(const_int 0)]
5129{
5130  emit_call_insn (gen_call_split (operands[0], operands[1]));
5131  if (!find_reg_note (operands[2], REG_NORETURN, 0))
5132    mips_restore_gp ();
5133  DONE;
5134}
5135  [(set_attr "jal" "indirect,direct")
5136   (set_attr "extended_mips16" "no,yes")])
5137
5138(define_insn "call_split"
5139  [(call (mem:SI (match_operand 0 "call_insn_operand" "c"))
5140	 (match_operand 1 "" ""))
5141   (clobber (reg:SI 31))
5142   (clobber (reg:SI 28))]
5143  "TARGET_SPLIT_CALLS"
5144  "%*jalr\t%0%/"
5145  [(set_attr "type" "call")])
5146
5147(define_expand "call_value"
5148  [(parallel [(set (match_operand 0 "")
5149		   (call (match_operand 1 "")
5150			 (match_operand 2 "")))
5151	      (use (match_operand 3 ""))])]		;; next_arg_reg
5152  ""
5153{
5154  mips_expand_call (operands[0], XEXP (operands[1], 0),
5155		    operands[2], operands[3], false);
5156  DONE;
5157})
5158
5159;; See comment for call_internal.
5160(define_insn_and_split "call_value_internal"
5161  [(set (match_operand 0 "register_operand" "=df,df")
5162        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
5163              (match_operand 2 "" "")))
5164   (clobber (reg:SI 31))]
5165  ""
5166  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%1%/"; }
5167  "reload_completed && TARGET_SPLIT_CALLS && (operands[3] = insn)"
5168  [(const_int 0)]
5169{
5170  emit_call_insn (gen_call_value_split (operands[0], operands[1],
5171					operands[2]));
5172  if (!find_reg_note (operands[3], REG_NORETURN, 0))
5173    mips_restore_gp ();
5174  DONE;
5175}
5176  [(set_attr "jal" "indirect,direct")
5177   (set_attr "extended_mips16" "no,yes")])
5178
5179(define_insn "call_value_split"
5180  [(set (match_operand 0 "register_operand" "=df")
5181        (call (mem:SI (match_operand 1 "call_insn_operand" "c"))
5182              (match_operand 2 "" "")))
5183   (clobber (reg:SI 31))
5184   (clobber (reg:SI 28))]
5185  "TARGET_SPLIT_CALLS"
5186  "%*jalr\t%1%/"
5187  [(set_attr "type" "call")])
5188
5189;; See comment for call_internal.
5190(define_insn_and_split "call_value_multiple_internal"
5191  [(set (match_operand 0 "register_operand" "=df,df")
5192        (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
5193              (match_operand 2 "" "")))
5194   (set (match_operand 3 "register_operand" "=df,df")
5195	(call (mem:SI (match_dup 1))
5196	      (match_dup 2)))
5197   (clobber (reg:SI 31))]
5198  ""
5199  { return TARGET_SPLIT_CALLS ? "#" : "%*jal\t%1%/"; }
5200  "reload_completed && TARGET_SPLIT_CALLS && (operands[4] = insn)"
5201  [(const_int 0)]
5202{
5203  emit_call_insn (gen_call_value_multiple_split (operands[0], operands[1],
5204						 operands[2], operands[3]));
5205  if (!find_reg_note (operands[4], REG_NORETURN, 0))
5206    mips_restore_gp ();
5207  DONE;
5208}
5209  [(set_attr "jal" "indirect,direct")
5210   (set_attr "extended_mips16" "no,yes")])
5211
5212(define_insn "call_value_multiple_split"
5213  [(set (match_operand 0 "register_operand" "=df")
5214        (call (mem:SI (match_operand 1 "call_insn_operand" "c"))
5215              (match_operand 2 "" "")))
5216   (set (match_operand 3 "register_operand" "=df")
5217	(call (mem:SI (match_dup 1))
5218	      (match_dup 2)))
5219   (clobber (reg:SI 31))
5220   (clobber (reg:SI 28))]
5221  "TARGET_SPLIT_CALLS"
5222  "%*jalr\t%1%/"
5223  [(set_attr "type" "call")])
5224
5225;; Call subroutine returning any type.
5226
5227(define_expand "untyped_call"
5228  [(parallel [(call (match_operand 0 "")
5229		    (const_int 0))
5230	      (match_operand 1 "")
5231	      (match_operand 2 "")])]
5232  ""
5233{
5234  int i;
5235
5236  emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
5237
5238  for (i = 0; i < XVECLEN (operands[2], 0); i++)
5239    {
5240      rtx set = XVECEXP (operands[2], 0, i);
5241      emit_move_insn (SET_DEST (set), SET_SRC (set));
5242    }
5243
5244  emit_insn (gen_blockage ());
5245  DONE;
5246})
5247
5248;;
5249;;  ....................
5250;;
5251;;	MISC.
5252;;
5253;;  ....................
5254;;
5255
5256
5257(define_insn "prefetch"
5258  [(prefetch (match_operand:QI 0 "address_operand" "p")
5259	     (match_operand 1 "const_int_operand" "n")
5260	     (match_operand 2 "const_int_operand" "n"))]
5261  "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
5262{
5263  operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
5264  return "pref\t%1,%a0";
5265}
5266  [(set_attr "type" "prefetch")])
5267
5268(define_insn "*prefetch_indexed_<mode>"
5269  [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
5270		     (match_operand:P 1 "register_operand" "d"))
5271	     (match_operand 2 "const_int_operand" "n")
5272	     (match_operand 3 "const_int_operand" "n"))]
5273  "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
5274{
5275  operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
5276  return "prefx\t%2,%1(%0)";
5277}
5278  [(set_attr "type" "prefetchx")])
5279
5280(define_insn "nop"
5281  [(const_int 0)]
5282  ""
5283  "%(nop%)"
5284  [(set_attr "type"	"nop")
5285   (set_attr "mode"	"none")])
5286
5287;; Like nop, but commented out when outside a .set noreorder block.
5288(define_insn "hazard_nop"
5289  [(const_int 1)]
5290  ""
5291  {
5292    if (set_noreorder)
5293      return "nop";
5294    else
5295      return "#nop";
5296  }
5297  [(set_attr "type"	"nop")])
5298
5299;; MIPS4 Conditional move instructions.
5300
5301(define_insn "*mov<GPR:mode>_on_<MOVECC:mode>"
5302  [(set (match_operand:GPR 0 "register_operand" "=d,d")
5303	(if_then_else:GPR
5304	 (match_operator:MOVECC 4 "equality_operator"
5305		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
5306		 (const_int 0)])
5307	 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
5308	 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
5309  "ISA_HAS_CONDMOVE"
5310  "@
5311    mov%T4\t%0,%z2,%1
5312    mov%t4\t%0,%z3,%1"
5313  [(set_attr "type" "condmove")
5314   (set_attr "mode" "<GPR:MODE>")])
5315
5316(define_insn "*mov<SCALARF:mode>_on_<MOVECC:mode>"
5317  [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
5318	(if_then_else:SCALARF
5319	 (match_operator:MOVECC 4 "equality_operator"
5320		[(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
5321		 (const_int 0)])
5322	 (match_operand:SCALARF 2 "register_operand" "f,0")
5323	 (match_operand:SCALARF 3 "register_operand" "0,f")))]
5324  "ISA_HAS_CONDMOVE"
5325  "@
5326    mov%T4.<fmt>\t%0,%2,%1
5327    mov%t4.<fmt>\t%0,%3,%1"
5328  [(set_attr "type" "condmove")
5329   (set_attr "mode" "<SCALARF:MODE>")])
5330
5331;; These are the main define_expand's used to make conditional moves.
5332
5333(define_expand "mov<mode>cc"
5334  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
5335   (set (match_operand:GPR 0 "register_operand")
5336	(if_then_else:GPR (match_dup 5)
5337			  (match_operand:GPR 2 "reg_or_0_operand")
5338			  (match_operand:GPR 3 "reg_or_0_operand")))]
5339  "ISA_HAS_CONDMOVE"
5340{
5341  gen_conditional_move (operands);
5342  DONE;
5343})
5344
5345(define_expand "mov<mode>cc"
5346  [(set (match_dup 4) (match_operand 1 "comparison_operator"))
5347   (set (match_operand:SCALARF 0 "register_operand")
5348	(if_then_else:SCALARF (match_dup 5)
5349			      (match_operand:SCALARF 2 "register_operand")
5350			      (match_operand:SCALARF 3 "register_operand")))]
5351  "ISA_HAS_CONDMOVE"
5352{
5353  gen_conditional_move (operands);
5354  DONE;
5355})
5356
5357;;
5358;;  ....................
5359;;
5360;;	mips16 inline constant tables
5361;;
5362;;  ....................
5363;;
5364
5365(define_insn "consttable_int"
5366  [(unspec_volatile [(match_operand 0 "consttable_operand" "")
5367		     (match_operand 1 "const_int_operand" "")]
5368		    UNSPEC_CONSTTABLE_INT)]
5369  "TARGET_MIPS16"
5370{
5371  assemble_integer (operands[0], INTVAL (operands[1]),
5372		    BITS_PER_UNIT * INTVAL (operands[1]), 1);
5373  return "";
5374}
5375  [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
5376
5377(define_insn "consttable_float"
5378  [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
5379		    UNSPEC_CONSTTABLE_FLOAT)]
5380  "TARGET_MIPS16"
5381{
5382  REAL_VALUE_TYPE d;
5383
5384  gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
5385  REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
5386  assemble_real (d, GET_MODE (operands[0]),
5387		 GET_MODE_BITSIZE (GET_MODE (operands[0])));
5388  return "";
5389}
5390  [(set (attr "length")
5391	(symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
5392
5393(define_insn "align"
5394  [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
5395  ""
5396  ".align\t%0"
5397  [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
5398
5399(define_split
5400  [(match_operand 0 "small_data_pattern")]
5401  "reload_completed"
5402  [(match_dup 0)]
5403  { operands[0] = mips_rewrite_small_data (operands[0]); })
5404
5405; Thread-Local Storage
5406
5407; The TLS base pointer is accessed via "rdhwr $v1, $29".  No current
5408; MIPS architecture defines this register, and no current
5409; implementation provides it; instead, any OS which supports TLS is
5410; expected to trap and emulate this instruction.  rdhwr is part of the
5411; MIPS 32r2 specification, but we use it on any architecture because
5412; we expect it to be emulated.  Use .set to force the assembler to
5413; accept it.
5414
5415(define_insn "tls_get_tp_<mode>"
5416  [(set (match_operand:P 0 "register_operand" "=v")
5417	(unspec:P [(const_int 0)]
5418		  UNSPEC_TLS_GET_TP))]
5419  "HAVE_AS_TLS && !TARGET_MIPS16"
5420  ".set\tpush\;.set\tmips32r2\t\;rdhwr\t%0,$29\;.set\tpop"
5421  [(set_attr "type" "unknown")
5422   (set_attr "mode" "<MODE>")])
5423
5424; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
5425
5426(include "mips-ps-3d.md")
5427
5428; The MIPS DSP Instructions.
5429
5430(include "mips-dsp.md")
5431