1 /* Analyze RTL for C-Compiler
2    Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 
40 /* Forward declarations */
41 static int global_reg_mentioned_p_1 (rtx *, void *);
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48 
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50                                                    rtx, enum machine_mode,
51                                                    unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53                                              enum machine_mode,
54                                              unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56                                                 enum machine_mode,
57                                                 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59                                           enum machine_mode, unsigned int);
60 
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62    -1 if a code has no such operand.  */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
64 
65 /* Bit flags that specify the machine subtype we are compiling for.
66    Bits are tested using macros TARGET_... defined in the tm.h file
67    and set by `-m...' switches.  Must be defined in rtlanal.c.  */
68 
69 int target_flags;
70 
71 /* Return 1 if the value of X is unstable
72    (would be different at a different point in the program).
73    The frame pointer, arg pointer, etc. are considered stable
74    (within one function) and so is anything marked `unchanging'.  */
75 
76 int
rtx_unstable_p(rtx x)77 rtx_unstable_p (rtx x)
78 {
79   RTX_CODE code = GET_CODE (x);
80   int i;
81   const char *fmt;
82 
83   switch (code)
84     {
85     case MEM:
86       return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
87 
88     case CONST:
89     case CONST_INT:
90     case CONST_DOUBLE:
91     case CONST_VECTOR:
92     case SYMBOL_REF:
93     case LABEL_REF:
94       return 0;
95 
96     case REG:
97       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
98       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 	  /* The arg pointer varies if it is not a fixed register.  */
100 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 	return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103       /* ??? When call-clobbered, the value is stable modulo the restore
104 	 that must happen after a call.  This currently screws up local-alloc
105 	 into believing that the restore is not needed.  */
106       if (x == pic_offset_table_rtx)
107 	return 0;
108 #endif
109       return 1;
110 
111     case ASM_OPERANDS:
112       if (MEM_VOLATILE_P (x))
113 	return 1;
114 
115       /* Fall through.  */
116 
117     default:
118       break;
119     }
120 
121   fmt = GET_RTX_FORMAT (code);
122   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123     if (fmt[i] == 'e')
124       {
125 	if (rtx_unstable_p (XEXP (x, i)))
126 	  return 1;
127       }
128     else if (fmt[i] == 'E')
129       {
130 	int j;
131 	for (j = 0; j < XVECLEN (x, i); j++)
132 	  if (rtx_unstable_p (XVECEXP (x, i, j)))
133 	    return 1;
134       }
135 
136   return 0;
137 }
138 
139 /* Return 1 if X has a value that can vary even between two
140    executions of the program.  0 means X can be compared reliably
141    against certain constants or near-constants.
142    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143    zero, we are slightly more conservative.
144    The frame pointer and the arg pointer are considered constant.  */
145 
146 int
rtx_varies_p(rtx x,int for_alias)147 rtx_varies_p (rtx x, int for_alias)
148 {
149   RTX_CODE code;
150   int i;
151   const char *fmt;
152 
153   if (!x)
154     return 0;
155 
156   code = GET_CODE (x);
157   switch (code)
158     {
159     case MEM:
160       return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
161 
162     case CONST:
163     case CONST_INT:
164     case CONST_DOUBLE:
165     case CONST_VECTOR:
166     case SYMBOL_REF:
167     case LABEL_REF:
168       return 0;
169 
170     case REG:
171       /* Note that we have to test for the actual rtx used for the frame
172 	 and arg pointers and not just the register number in case we have
173 	 eliminated the frame and/or arg pointer and are using it
174 	 for pseudos.  */
175       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 	  /* The arg pointer varies if it is not a fixed register.  */
177 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 	return 0;
179       if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 	  /* ??? When call-clobbered, the value is stable modulo the restore
182 	     that must happen after a call.  This currently screws up
183 	     local-alloc into believing that the restore is not needed, so we
184 	     must return 0 only if we are called from alias analysis.  */
185 	  && for_alias
186 #endif
187 	  )
188 	return 0;
189       return 1;
190 
191     case LO_SUM:
192       /* The operand 0 of a LO_SUM is considered constant
193 	 (in fact it is related specifically to operand 1)
194 	 during alias analysis.  */
195       return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 	     || rtx_varies_p (XEXP (x, 1), for_alias);
197 
198     case ASM_OPERANDS:
199       if (MEM_VOLATILE_P (x))
200 	return 1;
201 
202       /* Fall through.  */
203 
204     default:
205       break;
206     }
207 
208   fmt = GET_RTX_FORMAT (code);
209   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210     if (fmt[i] == 'e')
211       {
212 	if (rtx_varies_p (XEXP (x, i), for_alias))
213 	  return 1;
214       }
215     else if (fmt[i] == 'E')
216       {
217 	int j;
218 	for (j = 0; j < XVECLEN (x, i); j++)
219 	  if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 	    return 1;
221       }
222 
223   return 0;
224 }
225 
226 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
227    MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228    whether nonzero is returned for unaligned memory accesses on strict
229    alignment machines.  */
230 
231 static int
rtx_addr_can_trap_p_1(rtx x,enum machine_mode mode,bool unaligned_mems)232 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
233 {
234   enum rtx_code code = GET_CODE (x);
235 
236   switch (code)
237     {
238     case SYMBOL_REF:
239       return SYMBOL_REF_WEAK (x);
240 
241     case LABEL_REF:
242       return 0;
243 
244     case REG:
245       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
246       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247 	  || x == stack_pointer_rtx
248 	  /* The arg pointer varies if it is not a fixed register.  */
249 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250 	return 0;
251       /* All of the virtual frame registers are stack references.  */
252       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254 	return 0;
255       return 1;
256 
257     case CONST:
258       return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
259 
260     case PLUS:
261       /* An address is assumed not to trap if:
262 	 - it is an address that can't trap plus a constant integer,
263 	   with the proper remainder modulo the mode size if we are
264 	   considering unaligned memory references.  */
265       if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266 	  && GET_CODE (XEXP (x, 1)) == CONST_INT)
267 	{
268 	  HOST_WIDE_INT offset;
269 
270 	  if (!STRICT_ALIGNMENT
271 	      || !unaligned_mems
272 	      || GET_MODE_SIZE (mode) == 0)
273 	    return 0;
274 
275 	  offset = INTVAL (XEXP (x, 1));
276 
277 #ifdef SPARC_STACK_BOUNDARY_HACK
278 	  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279 	     the real alignment of %sp.  However, when it does this, the
280 	     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
281 	  if (SPARC_STACK_BOUNDARY_HACK
282 	      && (XEXP (x, 0) == stack_pointer_rtx
283 		  || XEXP (x, 0) == hard_frame_pointer_rtx))
284 	    offset -= STACK_POINTER_OFFSET;
285 #endif
286 
287 	  return offset % GET_MODE_SIZE (mode) != 0;
288 	}
289 
290       /* - or it is the pic register plus a constant.  */
291       if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292 	return 0;
293 
294       return 1;
295 
296     case LO_SUM:
297     case PRE_MODIFY:
298       return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
299 
300     case PRE_DEC:
301     case PRE_INC:
302     case POST_DEC:
303     case POST_INC:
304     case POST_MODIFY:
305       return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
306 
307     default:
308       break;
309     }
310 
311   /* If it isn't one of the case above, it can cause a trap.  */
312   return 1;
313 }
314 
315 /* Return nonzero if the use of X as an address in a MEM can cause a trap.  */
316 
317 int
rtx_addr_can_trap_p(rtx x)318 rtx_addr_can_trap_p (rtx x)
319 {
320   return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
321 }
322 
323 /* Return true if X is an address that is known to not be zero.  */
324 
325 bool
nonzero_address_p(rtx x)326 nonzero_address_p (rtx x)
327 {
328   enum rtx_code code = GET_CODE (x);
329 
330   switch (code)
331     {
332     case SYMBOL_REF:
333       return !SYMBOL_REF_WEAK (x);
334 
335     case LABEL_REF:
336       return true;
337 
338     case REG:
339       /* As in rtx_varies_p, we have to use the actual rtx, not reg number.  */
340       if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341 	  || x == stack_pointer_rtx
342 	  || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343 	return true;
344       /* All of the virtual frame registers are stack references.  */
345       if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346 	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347 	return true;
348       return false;
349 
350     case CONST:
351       return nonzero_address_p (XEXP (x, 0));
352 
353     case PLUS:
354       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
355 	{
356 	  /* Pointers aren't allowed to wrap.  If we've got a register
357 	     that is known to be a pointer, and a positive offset, then
358 	     the composite can't be zero.  */
359 	  if (INTVAL (XEXP (x, 1)) > 0
360 	      && REG_P (XEXP (x, 0))
361 	      && REG_POINTER (XEXP (x, 0)))
362 	    return true;
363 
364 	  return nonzero_address_p (XEXP (x, 0));
365 	}
366       /* Handle PIC references.  */
367       else if (XEXP (x, 0) == pic_offset_table_rtx
368 	       && CONSTANT_P (XEXP (x, 1)))
369 	return true;
370       return false;
371 
372     case PRE_MODIFY:
373       /* Similar to the above; allow positive offsets.  Further, since
374 	 auto-inc is only allowed in memories, the register must be a
375 	 pointer.  */
376       if (GET_CODE (XEXP (x, 1)) == CONST_INT
377 	  && INTVAL (XEXP (x, 1)) > 0)
378 	return true;
379       return nonzero_address_p (XEXP (x, 0));
380 
381     case PRE_INC:
382       /* Similarly.  Further, the offset is always positive.  */
383       return true;
384 
385     case PRE_DEC:
386     case POST_DEC:
387     case POST_INC:
388     case POST_MODIFY:
389       return nonzero_address_p (XEXP (x, 0));
390 
391     case LO_SUM:
392       return nonzero_address_p (XEXP (x, 1));
393 
394     default:
395       break;
396     }
397 
398   /* If it isn't one of the case above, might be zero.  */
399   return false;
400 }
401 
402 /* Return 1 if X refers to a memory location whose address
403    cannot be compared reliably with constant addresses,
404    or if X refers to a BLKmode memory object.
405    FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406    zero, we are slightly more conservative.  */
407 
408 int
rtx_addr_varies_p(rtx x,int for_alias)409 rtx_addr_varies_p (rtx x, int for_alias)
410 {
411   enum rtx_code code;
412   int i;
413   const char *fmt;
414 
415   if (x == 0)
416     return 0;
417 
418   code = GET_CODE (x);
419   if (code == MEM)
420     return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
421 
422   fmt = GET_RTX_FORMAT (code);
423   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424     if (fmt[i] == 'e')
425       {
426 	if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427 	  return 1;
428       }
429     else if (fmt[i] == 'E')
430       {
431 	int j;
432 	for (j = 0; j < XVECLEN (x, i); j++)
433 	  if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434 	    return 1;
435       }
436   return 0;
437 }
438 
439 /* Return the value of the integer term in X, if one is apparent;
440    otherwise return 0.
441    Only obvious integer terms are detected.
442    This is used in cse.c with the `related_value' field.  */
443 
444 HOST_WIDE_INT
get_integer_term(rtx x)445 get_integer_term (rtx x)
446 {
447   if (GET_CODE (x) == CONST)
448     x = XEXP (x, 0);
449 
450   if (GET_CODE (x) == MINUS
451       && GET_CODE (XEXP (x, 1)) == CONST_INT)
452     return - INTVAL (XEXP (x, 1));
453   if (GET_CODE (x) == PLUS
454       && GET_CODE (XEXP (x, 1)) == CONST_INT)
455     return INTVAL (XEXP (x, 1));
456   return 0;
457 }
458 
459 /* If X is a constant, return the value sans apparent integer term;
460    otherwise return 0.
461    Only obvious integer terms are detected.  */
462 
463 rtx
get_related_value(rtx x)464 get_related_value (rtx x)
465 {
466   if (GET_CODE (x) != CONST)
467     return 0;
468   x = XEXP (x, 0);
469   if (GET_CODE (x) == PLUS
470       && GET_CODE (XEXP (x, 1)) == CONST_INT)
471     return XEXP (x, 0);
472   else if (GET_CODE (x) == MINUS
473 	   && GET_CODE (XEXP (x, 1)) == CONST_INT)
474     return XEXP (x, 0);
475   return 0;
476 }
477 
478 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
479    a global register.  */
480 
481 static int
global_reg_mentioned_p_1(rtx * loc,void * data ATTRIBUTE_UNUSED)482 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
483 {
484   int regno;
485   rtx x = *loc;
486 
487   if (! x)
488     return 0;
489 
490   switch (GET_CODE (x))
491     {
492     case SUBREG:
493       if (REG_P (SUBREG_REG (x)))
494 	{
495 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
496 	      && global_regs[subreg_regno (x)])
497 	    return 1;
498 	  return 0;
499 	}
500       break;
501 
502     case REG:
503       regno = REGNO (x);
504       if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
505 	return 1;
506       return 0;
507 
508     case SCRATCH:
509     case PC:
510     case CC0:
511     case CONST_INT:
512     case CONST_DOUBLE:
513     case CONST:
514     case LABEL_REF:
515       return 0;
516 
517     case CALL:
518       /* A non-constant call might use a global register.  */
519       return 1;
520 
521     default:
522       break;
523     }
524 
525   return 0;
526 }
527 
528 /* Returns nonzero if X mentions a global register.  */
529 
530 int
global_reg_mentioned_p(rtx x)531 global_reg_mentioned_p (rtx x)
532 {
533   if (INSN_P (x))
534     {
535       if (CALL_P (x))
536 	{
537 	  if (! CONST_OR_PURE_CALL_P (x))
538 	    return 1;
539 	  x = CALL_INSN_FUNCTION_USAGE (x);
540 	  if (x == 0)
541 	    return 0;
542 	}
543       else
544 	x = PATTERN (x);
545     }
546 
547   return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
548 }
549 
550 /* Return the number of places FIND appears within X.  If COUNT_DEST is
551    zero, we do not count occurrences inside the destination of a SET.  */
552 
553 int
count_occurrences(rtx x,rtx find,int count_dest)554 count_occurrences (rtx x, rtx find, int count_dest)
555 {
556   int i, j;
557   enum rtx_code code;
558   const char *format_ptr;
559   int count;
560 
561   if (x == find)
562     return 1;
563 
564   code = GET_CODE (x);
565 
566   switch (code)
567     {
568     case REG:
569     case CONST_INT:
570     case CONST_DOUBLE:
571     case CONST_VECTOR:
572     case SYMBOL_REF:
573     case CODE_LABEL:
574     case PC:
575     case CC0:
576       return 0;
577 
578     case MEM:
579       if (MEM_P (find) && rtx_equal_p (x, find))
580 	return 1;
581       break;
582 
583     case SET:
584       if (SET_DEST (x) == find && ! count_dest)
585 	return count_occurrences (SET_SRC (x), find, count_dest);
586       break;
587 
588     default:
589       break;
590     }
591 
592   format_ptr = GET_RTX_FORMAT (code);
593   count = 0;
594 
595   for (i = 0; i < GET_RTX_LENGTH (code); i++)
596     {
597       switch (*format_ptr++)
598 	{
599 	case 'e':
600 	  count += count_occurrences (XEXP (x, i), find, count_dest);
601 	  break;
602 
603 	case 'E':
604 	  for (j = 0; j < XVECLEN (x, i); j++)
605 	    count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
606 	  break;
607 	}
608     }
609   return count;
610 }
611 
612 /* Nonzero if register REG appears somewhere within IN.
613    Also works if REG is not a register; in this case it checks
614    for a subexpression of IN that is Lisp "equal" to REG.  */
615 
616 int
reg_mentioned_p(rtx reg,rtx in)617 reg_mentioned_p (rtx reg, rtx in)
618 {
619   const char *fmt;
620   int i;
621   enum rtx_code code;
622 
623   if (in == 0)
624     return 0;
625 
626   if (reg == in)
627     return 1;
628 
629   if (GET_CODE (in) == LABEL_REF)
630     return reg == XEXP (in, 0);
631 
632   code = GET_CODE (in);
633 
634   switch (code)
635     {
636       /* Compare registers by number.  */
637     case REG:
638       return REG_P (reg) && REGNO (in) == REGNO (reg);
639 
640       /* These codes have no constituent expressions
641 	 and are unique.  */
642     case SCRATCH:
643     case CC0:
644     case PC:
645       return 0;
646 
647     case CONST_INT:
648     case CONST_VECTOR:
649     case CONST_DOUBLE:
650       /* These are kept unique for a given value.  */
651       return 0;
652 
653     default:
654       break;
655     }
656 
657   if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
658     return 1;
659 
660   fmt = GET_RTX_FORMAT (code);
661 
662   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
663     {
664       if (fmt[i] == 'E')
665 	{
666 	  int j;
667 	  for (j = XVECLEN (in, i) - 1; j >= 0; j--)
668 	    if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
669 	      return 1;
670 	}
671       else if (fmt[i] == 'e'
672 	       && reg_mentioned_p (reg, XEXP (in, i)))
673 	return 1;
674     }
675   return 0;
676 }
677 
678 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
679    no CODE_LABEL insn.  */
680 
681 int
no_labels_between_p(rtx beg,rtx end)682 no_labels_between_p (rtx beg, rtx end)
683 {
684   rtx p;
685   if (beg == end)
686     return 0;
687   for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
688     if (LABEL_P (p))
689       return 0;
690   return 1;
691 }
692 
693 /* Nonzero if register REG is used in an insn between
694    FROM_INSN and TO_INSN (exclusive of those two).  */
695 
696 int
reg_used_between_p(rtx reg,rtx from_insn,rtx to_insn)697 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
698 {
699   rtx insn;
700 
701   if (from_insn == to_insn)
702     return 0;
703 
704   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
705     if (INSN_P (insn)
706 	&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
707 	   || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
708       return 1;
709   return 0;
710 }
711 
712 /* Nonzero if the old value of X, a register, is referenced in BODY.  If X
713    is entirely replaced by a new value and the only use is as a SET_DEST,
714    we do not consider it a reference.  */
715 
716 int
reg_referenced_p(rtx x,rtx body)717 reg_referenced_p (rtx x, rtx body)
718 {
719   int i;
720 
721   switch (GET_CODE (body))
722     {
723     case SET:
724       if (reg_overlap_mentioned_p (x, SET_SRC (body)))
725 	return 1;
726 
727       /* If the destination is anything other than CC0, PC, a REG or a SUBREG
728 	 of a REG that occupies all of the REG, the insn references X if
729 	 it is mentioned in the destination.  */
730       if (GET_CODE (SET_DEST (body)) != CC0
731 	  && GET_CODE (SET_DEST (body)) != PC
732 	  && !REG_P (SET_DEST (body))
733 	  && ! (GET_CODE (SET_DEST (body)) == SUBREG
734 		&& REG_P (SUBREG_REG (SET_DEST (body)))
735 		&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
736 		      + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
737 		    == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
738 			 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
739 	  && reg_overlap_mentioned_p (x, SET_DEST (body)))
740 	return 1;
741       return 0;
742 
743     case ASM_OPERANDS:
744       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
745 	if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
746 	  return 1;
747       return 0;
748 
749     case CALL:
750     case USE:
751     case IF_THEN_ELSE:
752       return reg_overlap_mentioned_p (x, body);
753 
754     case TRAP_IF:
755       return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
756 
757     case PREFETCH:
758       return reg_overlap_mentioned_p (x, XEXP (body, 0));
759 
760     case UNSPEC:
761     case UNSPEC_VOLATILE:
762       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
763 	if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
764 	  return 1;
765       return 0;
766 
767     case PARALLEL:
768       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
769 	if (reg_referenced_p (x, XVECEXP (body, 0, i)))
770 	  return 1;
771       return 0;
772 
773     case CLOBBER:
774       if (MEM_P (XEXP (body, 0)))
775 	if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
776 	  return 1;
777       return 0;
778 
779     case COND_EXEC:
780       if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
781 	return 1;
782       return reg_referenced_p (x, COND_EXEC_CODE (body));
783 
784     default:
785       return 0;
786     }
787 }
788 
789 /* Nonzero if register REG is set or clobbered in an insn between
790    FROM_INSN and TO_INSN (exclusive of those two).  */
791 
792 int
reg_set_between_p(rtx reg,rtx from_insn,rtx to_insn)793 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
794 {
795   rtx insn;
796 
797   if (from_insn == to_insn)
798     return 0;
799 
800   for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
801     if (INSN_P (insn) && reg_set_p (reg, insn))
802       return 1;
803   return 0;
804 }
805 
806 /* Internals of reg_set_between_p.  */
807 int
reg_set_p(rtx reg,rtx insn)808 reg_set_p (rtx reg, rtx insn)
809 {
810   /* We can be passed an insn or part of one.  If we are passed an insn,
811      check if a side-effect of the insn clobbers REG.  */
812   if (INSN_P (insn)
813       && (FIND_REG_INC_NOTE (insn, reg)
814 	  || (CALL_P (insn)
815 	      && ((REG_P (reg)
816 		   && REGNO (reg) < FIRST_PSEUDO_REGISTER
817 		   && TEST_HARD_REG_BIT (regs_invalidated_by_call,
818 					 REGNO (reg)))
819 		  || MEM_P (reg)
820 		  || find_reg_fusage (insn, CLOBBER, reg)))))
821     return 1;
822 
823   return set_of (reg, insn) != NULL_RTX;
824 }
825 
826 /* Similar to reg_set_between_p, but check all registers in X.  Return 0
827    only if none of them are modified between START and END.  Return 1 if
828    X contains a MEM; this routine does usememory aliasing.  */
829 
830 int
modified_between_p(rtx x,rtx start,rtx end)831 modified_between_p (rtx x, rtx start, rtx end)
832 {
833   enum rtx_code code = GET_CODE (x);
834   const char *fmt;
835   int i, j;
836   rtx insn;
837 
838   if (start == end)
839     return 0;
840 
841   switch (code)
842     {
843     case CONST_INT:
844     case CONST_DOUBLE:
845     case CONST_VECTOR:
846     case CONST:
847     case SYMBOL_REF:
848     case LABEL_REF:
849       return 0;
850 
851     case PC:
852     case CC0:
853       return 1;
854 
855     case MEM:
856       if (modified_between_p (XEXP (x, 0), start, end))
857 	return 1;
858       if (MEM_READONLY_P (x))
859 	return 0;
860       for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
861 	if (memory_modified_in_insn_p (x, insn))
862 	  return 1;
863       return 0;
864       break;
865 
866     case REG:
867       return reg_set_between_p (x, start, end);
868 
869     default:
870       break;
871     }
872 
873   fmt = GET_RTX_FORMAT (code);
874   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
875     {
876       if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
877 	return 1;
878 
879       else if (fmt[i] == 'E')
880 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
881 	  if (modified_between_p (XVECEXP (x, i, j), start, end))
882 	    return 1;
883     }
884 
885   return 0;
886 }
887 
888 /* Similar to reg_set_p, but check all registers in X.  Return 0 only if none
889    of them are modified in INSN.  Return 1 if X contains a MEM; this routine
890    does use memory aliasing.  */
891 
892 int
modified_in_p(rtx x,rtx insn)893 modified_in_p (rtx x, rtx insn)
894 {
895   enum rtx_code code = GET_CODE (x);
896   const char *fmt;
897   int i, j;
898 
899   switch (code)
900     {
901     case CONST_INT:
902     case CONST_DOUBLE:
903     case CONST_VECTOR:
904     case CONST:
905     case SYMBOL_REF:
906     case LABEL_REF:
907       return 0;
908 
909     case PC:
910     case CC0:
911       return 1;
912 
913     case MEM:
914       if (modified_in_p (XEXP (x, 0), insn))
915 	return 1;
916       if (MEM_READONLY_P (x))
917 	return 0;
918       if (memory_modified_in_insn_p (x, insn))
919 	return 1;
920       return 0;
921       break;
922 
923     case REG:
924       return reg_set_p (x, insn);
925 
926     default:
927       break;
928     }
929 
930   fmt = GET_RTX_FORMAT (code);
931   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
932     {
933       if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
934 	return 1;
935 
936       else if (fmt[i] == 'E')
937 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
938 	  if (modified_in_p (XVECEXP (x, i, j), insn))
939 	    return 1;
940     }
941 
942   return 0;
943 }
944 
945 /* Helper function for set_of.  */
946 struct set_of_data
947   {
948     rtx found;
949     rtx pat;
950   };
951 
952 static void
set_of_1(rtx x,rtx pat,void * data1)953 set_of_1 (rtx x, rtx pat, void *data1)
954 {
955    struct set_of_data *data = (struct set_of_data *) (data1);
956    if (rtx_equal_p (x, data->pat)
957        || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
958      data->found = pat;
959 }
960 
961 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
962    (either directly or via STRICT_LOW_PART and similar modifiers).  */
963 rtx
set_of(rtx pat,rtx insn)964 set_of (rtx pat, rtx insn)
965 {
966   struct set_of_data data;
967   data.found = NULL_RTX;
968   data.pat = pat;
969   note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
970   return data.found;
971 }
972 
973 /* Given an INSN, return a SET expression if this insn has only a single SET.
974    It may also have CLOBBERs, USEs, or SET whose output
975    will not be used, which we ignore.  */
976 
977 rtx
single_set_2(rtx insn,rtx pat)978 single_set_2 (rtx insn, rtx pat)
979 {
980   rtx set = NULL;
981   int set_verified = 1;
982   int i;
983 
984   if (GET_CODE (pat) == PARALLEL)
985     {
986       for (i = 0; i < XVECLEN (pat, 0); i++)
987 	{
988 	  rtx sub = XVECEXP (pat, 0, i);
989 	  switch (GET_CODE (sub))
990 	    {
991 	    case USE:
992 	    case CLOBBER:
993 	      break;
994 
995 	    case SET:
996 	      /* We can consider insns having multiple sets, where all
997 		 but one are dead as single set insns.  In common case
998 		 only single set is present in the pattern so we want
999 		 to avoid checking for REG_UNUSED notes unless necessary.
1000 
1001 		 When we reach set first time, we just expect this is
1002 		 the single set we are looking for and only when more
1003 		 sets are found in the insn, we check them.  */
1004 	      if (!set_verified)
1005 		{
1006 		  if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1007 		      && !side_effects_p (set))
1008 		    set = NULL;
1009 		  else
1010 		    set_verified = 1;
1011 		}
1012 	      if (!set)
1013 		set = sub, set_verified = 0;
1014 	      else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1015 		       || side_effects_p (sub))
1016 		return NULL_RTX;
1017 	      break;
1018 
1019 	    default:
1020 	      return NULL_RTX;
1021 	    }
1022 	}
1023     }
1024   return set;
1025 }
1026 
1027 /* Given an INSN, return nonzero if it has more than one SET, else return
1028    zero.  */
1029 
1030 int
multiple_sets(rtx insn)1031 multiple_sets (rtx insn)
1032 {
1033   int found;
1034   int i;
1035 
1036   /* INSN must be an insn.  */
1037   if (! INSN_P (insn))
1038     return 0;
1039 
1040   /* Only a PARALLEL can have multiple SETs.  */
1041   if (GET_CODE (PATTERN (insn)) == PARALLEL)
1042     {
1043       for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1044 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1045 	  {
1046 	    /* If we have already found a SET, then return now.  */
1047 	    if (found)
1048 	      return 1;
1049 	    else
1050 	      found = 1;
1051 	  }
1052     }
1053 
1054   /* Either zero or one SET.  */
1055   return 0;
1056 }
1057 
1058 /* Return nonzero if the destination of SET equals the source
1059    and there are no side effects.  */
1060 
1061 int
set_noop_p(rtx set)1062 set_noop_p (rtx set)
1063 {
1064   rtx src = SET_SRC (set);
1065   rtx dst = SET_DEST (set);
1066 
1067   if (dst == pc_rtx && src == pc_rtx)
1068     return 1;
1069 
1070   if (MEM_P (dst) && MEM_P (src))
1071     return rtx_equal_p (dst, src) && !side_effects_p (dst);
1072 
1073   if (GET_CODE (dst) == ZERO_EXTRACT)
1074     return rtx_equal_p (XEXP (dst, 0), src)
1075 	   && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1076 	   && !side_effects_p (src);
1077 
1078   if (GET_CODE (dst) == STRICT_LOW_PART)
1079     dst = XEXP (dst, 0);
1080 
1081   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1082     {
1083       if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1084 	return 0;
1085       src = SUBREG_REG (src);
1086       dst = SUBREG_REG (dst);
1087     }
1088 
1089   return (REG_P (src) && REG_P (dst)
1090 	  && REGNO (src) == REGNO (dst));
1091 }
1092 
1093 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1094    value to itself.  */
1095 
1096 int
noop_move_p(rtx insn)1097 noop_move_p (rtx insn)
1098 {
1099   rtx pat = PATTERN (insn);
1100 
1101   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1102     return 1;
1103 
1104   /* Insns carrying these notes are useful later on.  */
1105   if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1106     return 0;
1107 
1108   /* For now treat an insn with a REG_RETVAL note as a
1109      a special insn which should not be considered a no-op.  */
1110   if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1111     return 0;
1112 
1113   if (GET_CODE (pat) == SET && set_noop_p (pat))
1114     return 1;
1115 
1116   if (GET_CODE (pat) == PARALLEL)
1117     {
1118       int i;
1119       /* If nothing but SETs of registers to themselves,
1120 	 this insn can also be deleted.  */
1121       for (i = 0; i < XVECLEN (pat, 0); i++)
1122 	{
1123 	  rtx tem = XVECEXP (pat, 0, i);
1124 
1125 	  if (GET_CODE (tem) == USE
1126 	      || GET_CODE (tem) == CLOBBER)
1127 	    continue;
1128 
1129 	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1130 	    return 0;
1131 	}
1132 
1133       return 1;
1134     }
1135   return 0;
1136 }
1137 
1138 
1139 /* Return the last thing that X was assigned from before *PINSN.  If VALID_TO
1140    is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1141    If the object was modified, if we hit a partial assignment to X, or hit a
1142    CODE_LABEL first, return X.  If we found an assignment, update *PINSN to
1143    point to it.  ALLOW_HWREG is set to 1 if hardware registers are allowed to
1144    be the src.  */
1145 
1146 rtx
find_last_value(rtx x,rtx * pinsn,rtx valid_to,int allow_hwreg)1147 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1148 {
1149   rtx p;
1150 
1151   for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1152        p = PREV_INSN (p))
1153     if (INSN_P (p))
1154       {
1155 	rtx set = single_set (p);
1156 	rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1157 
1158 	if (set && rtx_equal_p (x, SET_DEST (set)))
1159 	  {
1160 	    rtx src = SET_SRC (set);
1161 
1162 	    if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1163 	      src = XEXP (note, 0);
1164 
1165 	    if ((valid_to == NULL_RTX
1166 		 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1167 		/* Reject hard registers because we don't usually want
1168 		   to use them; we'd rather use a pseudo.  */
1169 		&& (! (REG_P (src)
1170 		      && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1171 	      {
1172 		*pinsn = p;
1173 		return src;
1174 	      }
1175 	  }
1176 
1177 	/* If set in non-simple way, we don't have a value.  */
1178 	if (reg_set_p (x, p))
1179 	  break;
1180       }
1181 
1182   return x;
1183 }
1184 
1185 /* Return nonzero if register in range [REGNO, ENDREGNO)
1186    appears either explicitly or implicitly in X
1187    other than being stored into.
1188 
1189    References contained within the substructure at LOC do not count.
1190    LOC may be zero, meaning don't ignore anything.  */
1191 
1192 int
refers_to_regno_p(unsigned int regno,unsigned int endregno,rtx x,rtx * loc)1193 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1194 		   rtx *loc)
1195 {
1196   int i;
1197   unsigned int x_regno;
1198   RTX_CODE code;
1199   const char *fmt;
1200 
1201  repeat:
1202   /* The contents of a REG_NONNEG note is always zero, so we must come here
1203      upon repeat in case the last REG_NOTE is a REG_NONNEG note.  */
1204   if (x == 0)
1205     return 0;
1206 
1207   code = GET_CODE (x);
1208 
1209   switch (code)
1210     {
1211     case REG:
1212       x_regno = REGNO (x);
1213 
1214       /* If we modifying the stack, frame, or argument pointer, it will
1215 	 clobber a virtual register.  In fact, we could be more precise,
1216 	 but it isn't worth it.  */
1217       if ((x_regno == STACK_POINTER_REGNUM
1218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219 	   || x_regno == ARG_POINTER_REGNUM
1220 #endif
1221 	   || x_regno == FRAME_POINTER_REGNUM)
1222 	  && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1223 	return 1;
1224 
1225       return (endregno > x_regno
1226 	      && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1227 				    ? hard_regno_nregs[x_regno][GET_MODE (x)]
1228 			      : 1));
1229 
1230     case SUBREG:
1231       /* If this is a SUBREG of a hard reg, we can see exactly which
1232 	 registers are being modified.  Otherwise, handle normally.  */
1233       if (REG_P (SUBREG_REG (x))
1234 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1235 	{
1236 	  unsigned int inner_regno = subreg_regno (x);
1237 	  unsigned int inner_endregno
1238 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1239 			     ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1240 
1241 	  return endregno > inner_regno && regno < inner_endregno;
1242 	}
1243       break;
1244 
1245     case CLOBBER:
1246     case SET:
1247       if (&SET_DEST (x) != loc
1248 	  /* Note setting a SUBREG counts as referring to the REG it is in for
1249 	     a pseudo but not for hard registers since we can
1250 	     treat each word individually.  */
1251 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
1252 	       && loc != &SUBREG_REG (SET_DEST (x))
1253 	       && REG_P (SUBREG_REG (SET_DEST (x)))
1254 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1255 	       && refers_to_regno_p (regno, endregno,
1256 				     SUBREG_REG (SET_DEST (x)), loc))
1257 	      || (!REG_P (SET_DEST (x))
1258 		  && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1259 	return 1;
1260 
1261       if (code == CLOBBER || loc == &SET_SRC (x))
1262 	return 0;
1263       x = SET_SRC (x);
1264       goto repeat;
1265 
1266     default:
1267       break;
1268     }
1269 
1270   /* X does not match, so try its subexpressions.  */
1271 
1272   fmt = GET_RTX_FORMAT (code);
1273   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1274     {
1275       if (fmt[i] == 'e' && loc != &XEXP (x, i))
1276 	{
1277 	  if (i == 0)
1278 	    {
1279 	      x = XEXP (x, 0);
1280 	      goto repeat;
1281 	    }
1282 	  else
1283 	    if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1284 	      return 1;
1285 	}
1286       else if (fmt[i] == 'E')
1287 	{
1288 	  int j;
1289 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1290 	    if (loc != &XVECEXP (x, i, j)
1291 		&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1292 	      return 1;
1293 	}
1294     }
1295   return 0;
1296 }
1297 
1298 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
1299    we check if any register number in X conflicts with the relevant register
1300    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
1301    contains a MEM (we don't bother checking for memory addresses that can't
1302    conflict because we expect this to be a rare case.  */
1303 
1304 int
reg_overlap_mentioned_p(rtx x,rtx in)1305 reg_overlap_mentioned_p (rtx x, rtx in)
1306 {
1307   unsigned int regno, endregno;
1308 
1309   /* If either argument is a constant, then modifying X can not
1310      affect IN.  Here we look at IN, we can profitably combine
1311      CONSTANT_P (x) with the switch statement below.  */
1312   if (CONSTANT_P (in))
1313     return 0;
1314 
1315  recurse:
1316   switch (GET_CODE (x))
1317     {
1318     case STRICT_LOW_PART:
1319     case ZERO_EXTRACT:
1320     case SIGN_EXTRACT:
1321       /* Overly conservative.  */
1322       x = XEXP (x, 0);
1323       goto recurse;
1324 
1325     case SUBREG:
1326       regno = REGNO (SUBREG_REG (x));
1327       if (regno < FIRST_PSEUDO_REGISTER)
1328 	regno = subreg_regno (x);
1329       goto do_reg;
1330 
1331     case REG:
1332       regno = REGNO (x);
1333     do_reg:
1334       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1335 			  ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1336       return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1337 
1338     case MEM:
1339       {
1340 	const char *fmt;
1341 	int i;
1342 
1343 	if (MEM_P (in))
1344 	  return 1;
1345 
1346 	fmt = GET_RTX_FORMAT (GET_CODE (in));
1347 	for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1348 	  if (fmt[i] == 'e')
1349 	    {
1350 	      if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1351 		return 1;
1352 	    }
1353 	  else if (fmt[i] == 'E')
1354 	    {
1355 	      int j;
1356 	      for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1357 		if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1358 		  return 1;
1359 	    }
1360 
1361 	return 0;
1362       }
1363 
1364     case SCRATCH:
1365     case PC:
1366     case CC0:
1367       return reg_mentioned_p (x, in);
1368 
1369     case PARALLEL:
1370       {
1371 	int i;
1372 
1373 	/* If any register in here refers to it we return true.  */
1374 	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1375 	  if (XEXP (XVECEXP (x, 0, i), 0) != 0
1376 	      && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1377 	    return 1;
1378 	return 0;
1379       }
1380 
1381     default:
1382       gcc_assert (CONSTANT_P (x));
1383       return 0;
1384     }
1385 }
1386 
1387 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1388    (X would be the pattern of an insn).
1389    FUN receives two arguments:
1390      the REG, MEM, CC0 or PC being stored in or clobbered,
1391      the SET or CLOBBER rtx that does the store.
1392 
1393   If the item being stored in or clobbered is a SUBREG of a hard register,
1394   the SUBREG will be passed.  */
1395 
1396 void
note_stores(rtx x,void (* fun)(rtx,rtx,void *),void * data)1397 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1398 {
1399   int i;
1400 
1401   if (GET_CODE (x) == COND_EXEC)
1402     x = COND_EXEC_CODE (x);
1403 
1404   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1405     {
1406       rtx dest = SET_DEST (x);
1407 
1408       while ((GET_CODE (dest) == SUBREG
1409 	      && (!REG_P (SUBREG_REG (dest))
1410 		  || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1411 	     || GET_CODE (dest) == ZERO_EXTRACT
1412 	     || GET_CODE (dest) == STRICT_LOW_PART)
1413 	dest = XEXP (dest, 0);
1414 
1415       /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1416 	 each of whose first operand is a register.  */
1417       if (GET_CODE (dest) == PARALLEL)
1418 	{
1419 	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1420 	    if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1421 	      (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1422 	}
1423       else
1424 	(*fun) (dest, x, data);
1425     }
1426 
1427   else if (GET_CODE (x) == PARALLEL)
1428     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1429       note_stores (XVECEXP (x, 0, i), fun, data);
1430 }
1431 
1432 /* Like notes_stores, but call FUN for each expression that is being
1433    referenced in PBODY, a pointer to the PATTERN of an insn.  We only call
1434    FUN for each expression, not any interior subexpressions.  FUN receives a
1435    pointer to the expression and the DATA passed to this function.
1436 
1437    Note that this is not quite the same test as that done in reg_referenced_p
1438    since that considers something as being referenced if it is being
1439    partially set, while we do not.  */
1440 
1441 void
note_uses(rtx * pbody,void (* fun)(rtx *,void *),void * data)1442 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1443 {
1444   rtx body = *pbody;
1445   int i;
1446 
1447   switch (GET_CODE (body))
1448     {
1449     case COND_EXEC:
1450       (*fun) (&COND_EXEC_TEST (body), data);
1451       note_uses (&COND_EXEC_CODE (body), fun, data);
1452       return;
1453 
1454     case PARALLEL:
1455       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1456 	note_uses (&XVECEXP (body, 0, i), fun, data);
1457       return;
1458 
1459     case USE:
1460       (*fun) (&XEXP (body, 0), data);
1461       return;
1462 
1463     case ASM_OPERANDS:
1464       for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1465 	(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1466       return;
1467 
1468     case TRAP_IF:
1469       (*fun) (&TRAP_CONDITION (body), data);
1470       return;
1471 
1472     case PREFETCH:
1473       (*fun) (&XEXP (body, 0), data);
1474       return;
1475 
1476     case UNSPEC:
1477     case UNSPEC_VOLATILE:
1478       for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1479 	(*fun) (&XVECEXP (body, 0, i), data);
1480       return;
1481 
1482     case CLOBBER:
1483       if (MEM_P (XEXP (body, 0)))
1484 	(*fun) (&XEXP (XEXP (body, 0), 0), data);
1485       return;
1486 
1487     case SET:
1488       {
1489 	rtx dest = SET_DEST (body);
1490 
1491 	/* For sets we replace everything in source plus registers in memory
1492 	   expression in store and operands of a ZERO_EXTRACT.  */
1493 	(*fun) (&SET_SRC (body), data);
1494 
1495 	if (GET_CODE (dest) == ZERO_EXTRACT)
1496 	  {
1497 	    (*fun) (&XEXP (dest, 1), data);
1498 	    (*fun) (&XEXP (dest, 2), data);
1499 	  }
1500 
1501 	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1502 	  dest = XEXP (dest, 0);
1503 
1504 	if (MEM_P (dest))
1505 	  (*fun) (&XEXP (dest, 0), data);
1506       }
1507       return;
1508 
1509     default:
1510       /* All the other possibilities never store.  */
1511       (*fun) (pbody, data);
1512       return;
1513     }
1514 }
1515 
1516 /* Return nonzero if X's old contents don't survive after INSN.
1517    This will be true if X is (cc0) or if X is a register and
1518    X dies in INSN or because INSN entirely sets X.
1519 
1520    "Entirely set" means set directly and not through a SUBREG, or
1521    ZERO_EXTRACT, so no trace of the old contents remains.
1522    Likewise, REG_INC does not count.
1523 
1524    REG may be a hard or pseudo reg.  Renumbering is not taken into account,
1525    but for this use that makes no difference, since regs don't overlap
1526    during their lifetimes.  Therefore, this function may be used
1527    at any time after deaths have been computed (in flow.c).
1528 
1529    If REG is a hard reg that occupies multiple machine registers, this
1530    function will only return 1 if each of those registers will be replaced
1531    by INSN.  */
1532 
1533 int
dead_or_set_p(rtx insn,rtx x)1534 dead_or_set_p (rtx insn, rtx x)
1535 {
1536   unsigned int regno, last_regno;
1537   unsigned int i;
1538 
1539   /* Can't use cc0_rtx below since this file is used by genattrtab.c.  */
1540   if (GET_CODE (x) == CC0)
1541     return 1;
1542 
1543   gcc_assert (REG_P (x));
1544 
1545   regno = REGNO (x);
1546   last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1547 		: regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1548 
1549   for (i = regno; i <= last_regno; i++)
1550     if (! dead_or_set_regno_p (insn, i))
1551       return 0;
1552 
1553   return 1;
1554 }
1555 
1556 /* Return TRUE iff DEST is a register or subreg of a register and
1557    doesn't change the number of words of the inner register, and any
1558    part of the register is TEST_REGNO.  */
1559 
1560 static bool
covers_regno_no_parallel_p(rtx dest,unsigned int test_regno)1561 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1562 {
1563   unsigned int regno, endregno;
1564 
1565   if (GET_CODE (dest) == SUBREG
1566       && (((GET_MODE_SIZE (GET_MODE (dest))
1567 	    + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1568 	  == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1569 	       + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1570     dest = SUBREG_REG (dest);
1571 
1572   if (!REG_P (dest))
1573     return false;
1574 
1575   regno = REGNO (dest);
1576   endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1577 	      : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1578   return (test_regno >= regno && test_regno < endregno);
1579 }
1580 
1581 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1582    any member matches the covers_regno_no_parallel_p criteria.  */
1583 
1584 static bool
covers_regno_p(rtx dest,unsigned int test_regno)1585 covers_regno_p (rtx dest, unsigned int test_regno)
1586 {
1587   if (GET_CODE (dest) == PARALLEL)
1588     {
1589       /* Some targets place small structures in registers for return
1590 	 values of functions, and those registers are wrapped in
1591 	 PARALLELs that we may see as the destination of a SET.  */
1592       int i;
1593 
1594       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1595 	{
1596 	  rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1597 	  if (inner != NULL_RTX
1598 	      && covers_regno_no_parallel_p (inner, test_regno))
1599 	    return true;
1600 	}
1601 
1602       return false;
1603     }
1604   else
1605     return covers_regno_no_parallel_p (dest, test_regno);
1606 }
1607 
1608 /* Utility function for dead_or_set_p to check an individual register.  Also
1609    called from flow.c.  */
1610 
1611 int
dead_or_set_regno_p(rtx insn,unsigned int test_regno)1612 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1613 {
1614   rtx pattern;
1615 
1616   /* See if there is a death note for something that includes TEST_REGNO.  */
1617   if (find_regno_note (insn, REG_DEAD, test_regno))
1618     return 1;
1619 
1620   if (CALL_P (insn)
1621       && find_regno_fusage (insn, CLOBBER, test_regno))
1622     return 1;
1623 
1624   pattern = PATTERN (insn);
1625 
1626   if (GET_CODE (pattern) == COND_EXEC)
1627     pattern = COND_EXEC_CODE (pattern);
1628 
1629   if (GET_CODE (pattern) == SET)
1630     return covers_regno_p (SET_DEST (pattern), test_regno);
1631   else if (GET_CODE (pattern) == PARALLEL)
1632     {
1633       int i;
1634 
1635       for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1636 	{
1637 	  rtx body = XVECEXP (pattern, 0, i);
1638 
1639 	  if (GET_CODE (body) == COND_EXEC)
1640 	    body = COND_EXEC_CODE (body);
1641 
1642 	  if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1643 	      && covers_regno_p (SET_DEST (body), test_regno))
1644 	    return 1;
1645 	}
1646     }
1647 
1648   return 0;
1649 }
1650 
1651 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1652    If DATUM is nonzero, look for one whose datum is DATUM.  */
1653 
1654 rtx
find_reg_note(rtx insn,enum reg_note kind,rtx datum)1655 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1656 {
1657   rtx link;
1658 
1659   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1660   if (! INSN_P (insn))
1661     return 0;
1662   if (datum == 0)
1663     {
1664       for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1665 	if (REG_NOTE_KIND (link) == kind)
1666 	  return link;
1667       return 0;
1668     }
1669 
1670   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1671     if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1672       return link;
1673   return 0;
1674 }
1675 
1676 /* Return the reg-note of kind KIND in insn INSN which applies to register
1677    number REGNO, if any.  Return 0 if there is no such reg-note.  Note that
1678    the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1679    it might be the case that the note overlaps REGNO.  */
1680 
1681 rtx
find_regno_note(rtx insn,enum reg_note kind,unsigned int regno)1682 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1683 {
1684   rtx link;
1685 
1686   /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN.  */
1687   if (! INSN_P (insn))
1688     return 0;
1689 
1690   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1691     if (REG_NOTE_KIND (link) == kind
1692 	/* Verify that it is a register, so that scratch and MEM won't cause a
1693 	   problem here.  */
1694 	&& REG_P (XEXP (link, 0))
1695 	&& REGNO (XEXP (link, 0)) <= regno
1696 	&& ((REGNO (XEXP (link, 0))
1697 	     + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1698 		: hard_regno_nregs[REGNO (XEXP (link, 0))]
1699 				  [GET_MODE (XEXP (link, 0))]))
1700 	    > regno))
1701       return link;
1702   return 0;
1703 }
1704 
1705 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1706    has such a note.  */
1707 
1708 rtx
find_reg_equal_equiv_note(rtx insn)1709 find_reg_equal_equiv_note (rtx insn)
1710 {
1711   rtx link;
1712 
1713   if (!INSN_P (insn))
1714     return 0;
1715   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1716     if (REG_NOTE_KIND (link) == REG_EQUAL
1717 	|| REG_NOTE_KIND (link) == REG_EQUIV)
1718       {
1719 	if (single_set (insn) == 0)
1720 	  return 0;
1721 	return link;
1722       }
1723   return NULL;
1724 }
1725 
1726 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1727    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1728 
1729 int
find_reg_fusage(rtx insn,enum rtx_code code,rtx datum)1730 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1731 {
1732   /* If it's not a CALL_INSN, it can't possibly have a
1733      CALL_INSN_FUNCTION_USAGE field, so don't bother checking.  */
1734   if (!CALL_P (insn))
1735     return 0;
1736 
1737   gcc_assert (datum);
1738 
1739   if (!REG_P (datum))
1740     {
1741       rtx link;
1742 
1743       for (link = CALL_INSN_FUNCTION_USAGE (insn);
1744 	   link;
1745 	   link = XEXP (link, 1))
1746 	if (GET_CODE (XEXP (link, 0)) == code
1747 	    && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1748 	  return 1;
1749     }
1750   else
1751     {
1752       unsigned int regno = REGNO (datum);
1753 
1754       /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1755 	 to pseudo registers, so don't bother checking.  */
1756 
1757       if (regno < FIRST_PSEUDO_REGISTER)
1758 	{
1759 	  unsigned int end_regno
1760 	    = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1761 	  unsigned int i;
1762 
1763 	  for (i = regno; i < end_regno; i++)
1764 	    if (find_regno_fusage (insn, code, i))
1765 	      return 1;
1766 	}
1767     }
1768 
1769   return 0;
1770 }
1771 
1772 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1773    in the CALL_INSN_FUNCTION_USAGE information of INSN.  */
1774 
1775 int
find_regno_fusage(rtx insn,enum rtx_code code,unsigned int regno)1776 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1777 {
1778   rtx link;
1779 
1780   /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1781      to pseudo registers, so don't bother checking.  */
1782 
1783   if (regno >= FIRST_PSEUDO_REGISTER
1784       || !CALL_P (insn) )
1785     return 0;
1786 
1787   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1788     {
1789       unsigned int regnote;
1790       rtx op, reg;
1791 
1792       if (GET_CODE (op = XEXP (link, 0)) == code
1793 	  && REG_P (reg = XEXP (op, 0))
1794 	  && (regnote = REGNO (reg)) <= regno
1795 	  && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1796 	return 1;
1797     }
1798 
1799   return 0;
1800 }
1801 
1802 /* Return true if INSN is a call to a pure function.  */
1803 
1804 int
pure_call_p(rtx insn)1805 pure_call_p (rtx insn)
1806 {
1807   rtx link;
1808 
1809   if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1810     return 0;
1811 
1812   /* Look for the note that differentiates const and pure functions.  */
1813   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1814     {
1815       rtx u, m;
1816 
1817       if (GET_CODE (u = XEXP (link, 0)) == USE
1818 	  && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1819 	  && GET_CODE (XEXP (m, 0)) == SCRATCH)
1820 	return 1;
1821     }
1822 
1823   return 0;
1824 }
1825 
1826 /* Remove register note NOTE from the REG_NOTES of INSN.  */
1827 
1828 void
remove_note(rtx insn,rtx note)1829 remove_note (rtx insn, rtx note)
1830 {
1831   rtx link;
1832 
1833   if (note == NULL_RTX)
1834     return;
1835 
1836   if (REG_NOTES (insn) == note)
1837     {
1838       REG_NOTES (insn) = XEXP (note, 1);
1839       return;
1840     }
1841 
1842   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1843     if (XEXP (link, 1) == note)
1844       {
1845 	XEXP (link, 1) = XEXP (note, 1);
1846 	return;
1847       }
1848 
1849   gcc_unreachable ();
1850 }
1851 
1852 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1853    return 1 if it is found.  A simple equality test is used to determine if
1854    NODE matches.  */
1855 
1856 int
in_expr_list_p(rtx listp,rtx node)1857 in_expr_list_p (rtx listp, rtx node)
1858 {
1859   rtx x;
1860 
1861   for (x = listp; x; x = XEXP (x, 1))
1862     if (node == XEXP (x, 0))
1863       return 1;
1864 
1865   return 0;
1866 }
1867 
1868 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1869    remove that entry from the list if it is found.
1870 
1871    A simple equality test is used to determine if NODE matches.  */
1872 
1873 void
remove_node_from_expr_list(rtx node,rtx * listp)1874 remove_node_from_expr_list (rtx node, rtx *listp)
1875 {
1876   rtx temp = *listp;
1877   rtx prev = NULL_RTX;
1878 
1879   while (temp)
1880     {
1881       if (node == XEXP (temp, 0))
1882 	{
1883 	  /* Splice the node out of the list.  */
1884 	  if (prev)
1885 	    XEXP (prev, 1) = XEXP (temp, 1);
1886 	  else
1887 	    *listp = XEXP (temp, 1);
1888 
1889 	  return;
1890 	}
1891 
1892       prev = temp;
1893       temp = XEXP (temp, 1);
1894     }
1895 }
1896 
1897 /* Nonzero if X contains any volatile instructions.  These are instructions
1898    which may cause unpredictable machine state instructions, and thus no
1899    instructions should be moved or combined across them.  This includes
1900    only volatile asms and UNSPEC_VOLATILE instructions.  */
1901 
1902 int
volatile_insn_p(rtx x)1903 volatile_insn_p (rtx x)
1904 {
1905   RTX_CODE code;
1906 
1907   code = GET_CODE (x);
1908   switch (code)
1909     {
1910     case LABEL_REF:
1911     case SYMBOL_REF:
1912     case CONST_INT:
1913     case CONST:
1914     case CONST_DOUBLE:
1915     case CONST_VECTOR:
1916     case CC0:
1917     case PC:
1918     case REG:
1919     case SCRATCH:
1920     case CLOBBER:
1921     case ADDR_VEC:
1922     case ADDR_DIFF_VEC:
1923     case CALL:
1924     case MEM:
1925       return 0;
1926 
1927     case UNSPEC_VOLATILE:
1928  /* case TRAP_IF: This isn't clear yet.  */
1929       return 1;
1930 
1931     case ASM_INPUT:
1932     case ASM_OPERANDS:
1933       if (MEM_VOLATILE_P (x))
1934 	return 1;
1935 
1936     default:
1937       break;
1938     }
1939 
1940   /* Recursively scan the operands of this expression.  */
1941 
1942   {
1943     const char *fmt = GET_RTX_FORMAT (code);
1944     int i;
1945 
1946     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1947       {
1948 	if (fmt[i] == 'e')
1949 	  {
1950 	    if (volatile_insn_p (XEXP (x, i)))
1951 	      return 1;
1952 	  }
1953 	else if (fmt[i] == 'E')
1954 	  {
1955 	    int j;
1956 	    for (j = 0; j < XVECLEN (x, i); j++)
1957 	      if (volatile_insn_p (XVECEXP (x, i, j)))
1958 		return 1;
1959 	  }
1960       }
1961   }
1962   return 0;
1963 }
1964 
1965 /* Nonzero if X contains any volatile memory references
1966    UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions.  */
1967 
1968 int
volatile_refs_p(rtx x)1969 volatile_refs_p (rtx x)
1970 {
1971   RTX_CODE code;
1972 
1973   code = GET_CODE (x);
1974   switch (code)
1975     {
1976     case LABEL_REF:
1977     case SYMBOL_REF:
1978     case CONST_INT:
1979     case CONST:
1980     case CONST_DOUBLE:
1981     case CONST_VECTOR:
1982     case CC0:
1983     case PC:
1984     case REG:
1985     case SCRATCH:
1986     case CLOBBER:
1987     case ADDR_VEC:
1988     case ADDR_DIFF_VEC:
1989       return 0;
1990 
1991     case UNSPEC_VOLATILE:
1992       return 1;
1993 
1994     case MEM:
1995     case ASM_INPUT:
1996     case ASM_OPERANDS:
1997       if (MEM_VOLATILE_P (x))
1998 	return 1;
1999 
2000     default:
2001       break;
2002     }
2003 
2004   /* Recursively scan the operands of this expression.  */
2005 
2006   {
2007     const char *fmt = GET_RTX_FORMAT (code);
2008     int i;
2009 
2010     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2011       {
2012 	if (fmt[i] == 'e')
2013 	  {
2014 	    if (volatile_refs_p (XEXP (x, i)))
2015 	      return 1;
2016 	  }
2017 	else if (fmt[i] == 'E')
2018 	  {
2019 	    int j;
2020 	    for (j = 0; j < XVECLEN (x, i); j++)
2021 	      if (volatile_refs_p (XVECEXP (x, i, j)))
2022 		return 1;
2023 	  }
2024       }
2025   }
2026   return 0;
2027 }
2028 
2029 /* Similar to above, except that it also rejects register pre- and post-
2030    incrementing.  */
2031 
2032 int
side_effects_p(rtx x)2033 side_effects_p (rtx x)
2034 {
2035   RTX_CODE code;
2036 
2037   code = GET_CODE (x);
2038   switch (code)
2039     {
2040     case LABEL_REF:
2041     case SYMBOL_REF:
2042     case CONST_INT:
2043     case CONST:
2044     case CONST_DOUBLE:
2045     case CONST_VECTOR:
2046     case CC0:
2047     case PC:
2048     case REG:
2049     case SCRATCH:
2050     case ADDR_VEC:
2051     case ADDR_DIFF_VEC:
2052       return 0;
2053 
2054     case CLOBBER:
2055       /* Reject CLOBBER with a non-VOID mode.  These are made by combine.c
2056 	 when some combination can't be done.  If we see one, don't think
2057 	 that we can simplify the expression.  */
2058       return (GET_MODE (x) != VOIDmode);
2059 
2060     case PRE_INC:
2061     case PRE_DEC:
2062     case POST_INC:
2063     case POST_DEC:
2064     case PRE_MODIFY:
2065     case POST_MODIFY:
2066     case CALL:
2067     case UNSPEC_VOLATILE:
2068  /* case TRAP_IF: This isn't clear yet.  */
2069       return 1;
2070 
2071     case MEM:
2072     case ASM_INPUT:
2073     case ASM_OPERANDS:
2074       if (MEM_VOLATILE_P (x))
2075 	return 1;
2076 
2077     default:
2078       break;
2079     }
2080 
2081   /* Recursively scan the operands of this expression.  */
2082 
2083   {
2084     const char *fmt = GET_RTX_FORMAT (code);
2085     int i;
2086 
2087     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2088       {
2089 	if (fmt[i] == 'e')
2090 	  {
2091 	    if (side_effects_p (XEXP (x, i)))
2092 	      return 1;
2093 	  }
2094 	else if (fmt[i] == 'E')
2095 	  {
2096 	    int j;
2097 	    for (j = 0; j < XVECLEN (x, i); j++)
2098 	      if (side_effects_p (XVECEXP (x, i, j)))
2099 		return 1;
2100 	  }
2101       }
2102   }
2103   return 0;
2104 }
2105 
2106 /* Return nonzero if evaluating rtx X might cause a trap.  UNALIGNED_MEMS
2107    controls whether nonzero is returned for unaligned memory accesses on
2108    strict alignment machines.  */
2109 
2110 static int
may_trap_p_1(rtx x,bool unaligned_mems)2111 may_trap_p_1 (rtx x, bool unaligned_mems)
2112 {
2113   int i;
2114   enum rtx_code code;
2115   const char *fmt;
2116 
2117   if (x == 0)
2118     return 0;
2119   code = GET_CODE (x);
2120   switch (code)
2121     {
2122       /* Handle these cases quickly.  */
2123     case CONST_INT:
2124     case CONST_DOUBLE:
2125     case CONST_VECTOR:
2126     case SYMBOL_REF:
2127     case LABEL_REF:
2128     case CONST:
2129     case PC:
2130     case CC0:
2131     case REG:
2132     case SCRATCH:
2133       return 0;
2134 
2135     case ASM_INPUT:
2136     case UNSPEC_VOLATILE:
2137     case TRAP_IF:
2138       return 1;
2139 
2140     case ASM_OPERANDS:
2141       return MEM_VOLATILE_P (x);
2142 
2143       /* Memory ref can trap unless it's a static var or a stack slot.  */
2144     case MEM:
2145       if (MEM_NOTRAP_P (x)
2146 	  && (!STRICT_ALIGNMENT || !unaligned_mems))
2147 	return 0;
2148       return
2149 	rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2150 
2151       /* Division by a non-constant might trap.  */
2152     case DIV:
2153     case MOD:
2154     case UDIV:
2155     case UMOD:
2156       if (HONOR_SNANS (GET_MODE (x)))
2157 	return 1;
2158       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
2159 	return flag_trapping_math;
2160       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2161 	return 1;
2162       break;
2163 
2164     case EXPR_LIST:
2165       /* An EXPR_LIST is used to represent a function call.  This
2166 	 certainly may trap.  */
2167       return 1;
2168 
2169     case GE:
2170     case GT:
2171     case LE:
2172     case LT:
2173     case LTGT:
2174     case COMPARE:
2175       /* Some floating point comparisons may trap.  */
2176       if (!flag_trapping_math)
2177 	break;
2178       /* ??? There is no machine independent way to check for tests that trap
2179 	 when COMPARE is used, though many targets do make this distinction.
2180 	 For instance, sparc uses CCFPE for compares which generate exceptions
2181 	 and CCFP for compares which do not generate exceptions.  */
2182       if (HONOR_NANS (GET_MODE (x)))
2183 	return 1;
2184       /* But often the compare has some CC mode, so check operand
2185 	 modes as well.  */
2186       if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2187 	  || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2188 	return 1;
2189       break;
2190 
2191     case EQ:
2192     case NE:
2193       if (HONOR_SNANS (GET_MODE (x)))
2194 	return 1;
2195       /* Often comparison is CC mode, so check operand modes.  */
2196       if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2197 	  || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2198 	return 1;
2199       break;
2200 
2201     case FIX:
2202       /* Conversion of floating point might trap.  */
2203       if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2204 	return 1;
2205       break;
2206 
2207     case NEG:
2208     case ABS:
2209     case SUBREG:
2210       /* These operations don't trap even with floating point.  */
2211       break;
2212 
2213     default:
2214       /* Any floating arithmetic may trap.  */
2215       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2216 	  && flag_trapping_math)
2217 	return 1;
2218     }
2219 
2220   fmt = GET_RTX_FORMAT (code);
2221   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2222     {
2223       if (fmt[i] == 'e')
2224 	{
2225 	  if (may_trap_p_1 (XEXP (x, i), unaligned_mems))
2226 	    return 1;
2227 	}
2228       else if (fmt[i] == 'E')
2229 	{
2230 	  int j;
2231 	  for (j = 0; j < XVECLEN (x, i); j++)
2232 	    if (may_trap_p_1 (XVECEXP (x, i, j), unaligned_mems))
2233 	      return 1;
2234 	}
2235     }
2236   return 0;
2237 }
2238 
2239 /* Return nonzero if evaluating rtx X might cause a trap.  */
2240 
2241 int
may_trap_p(rtx x)2242 may_trap_p (rtx x)
2243 {
2244   return may_trap_p_1 (x, false);
2245 }
2246 
2247 /* Same as above, but additionally return non-zero if evaluating rtx X might
2248    cause a fault.  We define a fault for the purpose of this function as a
2249    erroneous execution condition that cannot be encountered during the normal
2250    execution of a valid program; the typical example is an unaligned memory
2251    access on a strict alignment machine.  The compiler guarantees that it
2252    doesn't generate code that will fault from a valid program, but this
2253    guarantee doesn't mean anything for individual instructions.  Consider
2254    the following example:
2255 
2256       struct S { int d; union { char *cp; int *ip; }; };
2257 
2258       int foo(struct S *s)
2259       {
2260 	if (s->d == 1)
2261 	  return *s->ip;
2262 	else
2263 	  return *s->cp;
2264       }
2265 
2266    on a strict alignment machine.  In a valid program, foo will never be
2267    invoked on a structure for which d is equal to 1 and the underlying
2268    unique field of the union not aligned on a 4-byte boundary, but the
2269    expression *s->ip might cause a fault if considered individually.
2270 
2271    At the RTL level, potentially problematic expressions will almost always
2272    verify may_trap_p; for example, the above dereference can be emitted as
2273    (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2274    However, suppose that foo is inlined in a caller that causes s->cp to
2275    point to a local character variable and guarantees that s->d is not set
2276    to 1; foo may have been effectively translated into pseudo-RTL as:
2277 
2278       if ((reg:SI) == 1)
2279 	(set (reg:SI) (mem:SI (%fp - 7)))
2280       else
2281 	(set (reg:QI) (mem:QI (%fp - 7)))
2282 
2283    Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2284    memory reference to a stack slot, but it will certainly cause a fault
2285    on a strict alignment machine.  */
2286 
2287 int
may_trap_or_fault_p(rtx x)2288 may_trap_or_fault_p (rtx x)
2289 {
2290   return may_trap_p_1 (x, true);
2291 }
2292 
2293 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2294    i.e., an inequality.  */
2295 
2296 int
inequality_comparisons_p(rtx x)2297 inequality_comparisons_p (rtx x)
2298 {
2299   const char *fmt;
2300   int len, i;
2301   enum rtx_code code = GET_CODE (x);
2302 
2303   switch (code)
2304     {
2305     case REG:
2306     case SCRATCH:
2307     case PC:
2308     case CC0:
2309     case CONST_INT:
2310     case CONST_DOUBLE:
2311     case CONST_VECTOR:
2312     case CONST:
2313     case LABEL_REF:
2314     case SYMBOL_REF:
2315       return 0;
2316 
2317     case LT:
2318     case LTU:
2319     case GT:
2320     case GTU:
2321     case LE:
2322     case LEU:
2323     case GE:
2324     case GEU:
2325       return 1;
2326 
2327     default:
2328       break;
2329     }
2330 
2331   len = GET_RTX_LENGTH (code);
2332   fmt = GET_RTX_FORMAT (code);
2333 
2334   for (i = 0; i < len; i++)
2335     {
2336       if (fmt[i] == 'e')
2337 	{
2338 	  if (inequality_comparisons_p (XEXP (x, i)))
2339 	    return 1;
2340 	}
2341       else if (fmt[i] == 'E')
2342 	{
2343 	  int j;
2344 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2345 	    if (inequality_comparisons_p (XVECEXP (x, i, j)))
2346 	      return 1;
2347 	}
2348     }
2349 
2350   return 0;
2351 }
2352 
2353 /* Replace any occurrence of FROM in X with TO.  The function does
2354    not enter into CONST_DOUBLE for the replace.
2355 
2356    Note that copying is not done so X must not be shared unless all copies
2357    are to be modified.  */
2358 
2359 rtx
replace_rtx(rtx x,rtx from,rtx to)2360 replace_rtx (rtx x, rtx from, rtx to)
2361 {
2362   int i, j;
2363   const char *fmt;
2364 
2365   /* The following prevents loops occurrence when we change MEM in
2366      CONST_DOUBLE onto the same CONST_DOUBLE.  */
2367   if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2368     return x;
2369 
2370   if (x == from)
2371     return to;
2372 
2373   /* Allow this function to make replacements in EXPR_LISTs.  */
2374   if (x == 0)
2375     return 0;
2376 
2377   if (GET_CODE (x) == SUBREG)
2378     {
2379       rtx new = replace_rtx (SUBREG_REG (x), from, to);
2380 
2381       if (GET_CODE (new) == CONST_INT)
2382 	{
2383 	  x = simplify_subreg (GET_MODE (x), new,
2384 			       GET_MODE (SUBREG_REG (x)),
2385 			       SUBREG_BYTE (x));
2386 	  gcc_assert (x);
2387 	}
2388       else
2389 	SUBREG_REG (x) = new;
2390 
2391       return x;
2392     }
2393   else if (GET_CODE (x) == ZERO_EXTEND)
2394     {
2395       rtx new = replace_rtx (XEXP (x, 0), from, to);
2396 
2397       if (GET_CODE (new) == CONST_INT)
2398 	{
2399 	  x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2400 					new, GET_MODE (XEXP (x, 0)));
2401 	  gcc_assert (x);
2402 	}
2403       else
2404 	XEXP (x, 0) = new;
2405 
2406       return x;
2407     }
2408 
2409   fmt = GET_RTX_FORMAT (GET_CODE (x));
2410   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2411     {
2412       if (fmt[i] == 'e')
2413 	XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2414       else if (fmt[i] == 'E')
2415 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2416 	  XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2417     }
2418 
2419   return x;
2420 }
2421 
2422 /* Throughout the rtx X, replace many registers according to REG_MAP.
2423    Return the replacement for X (which may be X with altered contents).
2424    REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2425    NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2426 
2427    We only support REG_MAP entries of REG or SUBREG.  Also, hard registers
2428    should not be mapped to pseudos or vice versa since validate_change
2429    is not called.
2430 
2431    If REPLACE_DEST is 1, replacements are also done in destinations;
2432    otherwise, only sources are replaced.  */
2433 
2434 rtx
replace_regs(rtx x,rtx * reg_map,unsigned int nregs,int replace_dest)2435 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2436 {
2437   enum rtx_code code;
2438   int i;
2439   const char *fmt;
2440 
2441   if (x == 0)
2442     return x;
2443 
2444   code = GET_CODE (x);
2445   switch (code)
2446     {
2447     case SCRATCH:
2448     case PC:
2449     case CC0:
2450     case CONST_INT:
2451     case CONST_DOUBLE:
2452     case CONST_VECTOR:
2453     case CONST:
2454     case SYMBOL_REF:
2455     case LABEL_REF:
2456       return x;
2457 
2458     case REG:
2459       /* Verify that the register has an entry before trying to access it.  */
2460       if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2461 	{
2462 	  /* SUBREGs can't be shared.  Always return a copy to ensure that if
2463 	     this replacement occurs more than once then each instance will
2464 	     get distinct rtx.  */
2465 	  if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2466 	    return copy_rtx (reg_map[REGNO (x)]);
2467 	  return reg_map[REGNO (x)];
2468 	}
2469       return x;
2470 
2471     case SUBREG:
2472       /* Prevent making nested SUBREGs.  */
2473       if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2474 	  && reg_map[REGNO (SUBREG_REG (x))] != 0
2475 	  && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2476 	{
2477 	  rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2478 	  return simplify_gen_subreg (GET_MODE (x), map_val,
2479 				      GET_MODE (SUBREG_REG (x)),
2480 				      SUBREG_BYTE (x));
2481 	}
2482       break;
2483 
2484     case SET:
2485       if (replace_dest)
2486 	SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2487 
2488       else if (MEM_P (SET_DEST (x))
2489 	       || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2490 	/* Even if we are not to replace destinations, replace register if it
2491 	   is CONTAINED in destination (destination is memory or
2492 	   STRICT_LOW_PART).  */
2493 	XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2494 					       reg_map, nregs, 0);
2495       else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2496 	/* Similarly, for ZERO_EXTRACT we replace all operands.  */
2497 	break;
2498 
2499       SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2500       return x;
2501 
2502     default:
2503       break;
2504     }
2505 
2506   fmt = GET_RTX_FORMAT (code);
2507   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2508     {
2509       if (fmt[i] == 'e')
2510 	XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2511       else if (fmt[i] == 'E')
2512 	{
2513 	  int j;
2514 	  for (j = 0; j < XVECLEN (x, i); j++)
2515 	    XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2516 					      nregs, replace_dest);
2517 	}
2518     }
2519   return x;
2520 }
2521 
2522 /* Replace occurrences of the old label in *X with the new one.
2523    DATA is a REPLACE_LABEL_DATA containing the old and new labels.  */
2524 
2525 int
replace_label(rtx * x,void * data)2526 replace_label (rtx *x, void *data)
2527 {
2528   rtx l = *x;
2529   rtx old_label = ((replace_label_data *) data)->r1;
2530   rtx new_label = ((replace_label_data *) data)->r2;
2531   bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2532 
2533   if (l == NULL_RTX)
2534     return 0;
2535 
2536   if (GET_CODE (l) == SYMBOL_REF
2537       && CONSTANT_POOL_ADDRESS_P (l))
2538     {
2539       rtx c = get_pool_constant (l);
2540       if (rtx_referenced_p (old_label, c))
2541 	{
2542 	  rtx new_c, new_l;
2543 	  replace_label_data *d = (replace_label_data *) data;
2544 
2545 	  /* Create a copy of constant C; replace the label inside
2546 	     but do not update LABEL_NUSES because uses in constant pool
2547 	     are not counted.  */
2548 	  new_c = copy_rtx (c);
2549 	  d->update_label_nuses = false;
2550 	  for_each_rtx (&new_c, replace_label, data);
2551 	  d->update_label_nuses = update_label_nuses;
2552 
2553 	  /* Add the new constant NEW_C to constant pool and replace
2554 	     the old reference to constant by new reference.  */
2555 	  new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2556 	  *x = replace_rtx (l, l, new_l);
2557 	}
2558       return 0;
2559     }
2560 
2561   /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2562      field.  This is not handled by for_each_rtx because it doesn't
2563      handle unprinted ('0') fields.  */
2564   if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2565     JUMP_LABEL (l) = new_label;
2566 
2567   if ((GET_CODE (l) == LABEL_REF
2568        || GET_CODE (l) == INSN_LIST)
2569       && XEXP (l, 0) == old_label)
2570     {
2571       XEXP (l, 0) = new_label;
2572       if (update_label_nuses)
2573 	{
2574 	  ++LABEL_NUSES (new_label);
2575 	  --LABEL_NUSES (old_label);
2576 	}
2577       return 0;
2578     }
2579 
2580   return 0;
2581 }
2582 
2583 /* When *BODY is equal to X or X is directly referenced by *BODY
2584    return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2585    too, otherwise FOR_EACH_RTX continues traversing *BODY.  */
2586 
2587 static int
rtx_referenced_p_1(rtx * body,void * x)2588 rtx_referenced_p_1 (rtx *body, void *x)
2589 {
2590   rtx y = (rtx) x;
2591 
2592   if (*body == NULL_RTX)
2593     return y == NULL_RTX;
2594 
2595   /* Return true if a label_ref *BODY refers to label Y.  */
2596   if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2597     return XEXP (*body, 0) == y;
2598 
2599   /* If *BODY is a reference to pool constant traverse the constant.  */
2600   if (GET_CODE (*body) == SYMBOL_REF
2601       && CONSTANT_POOL_ADDRESS_P (*body))
2602     return rtx_referenced_p (y, get_pool_constant (*body));
2603 
2604   /* By default, compare the RTL expressions.  */
2605   return rtx_equal_p (*body, y);
2606 }
2607 
2608 /* Return true if X is referenced in BODY.  */
2609 
2610 int
rtx_referenced_p(rtx x,rtx body)2611 rtx_referenced_p (rtx x, rtx body)
2612 {
2613   return for_each_rtx (&body, rtx_referenced_p_1, x);
2614 }
2615 
2616 /* If INSN is a tablejump return true and store the label (before jump table) to
2617    *LABELP and the jump table to *TABLEP.  LABELP and TABLEP may be NULL.  */
2618 
2619 bool
tablejump_p(rtx insn,rtx * labelp,rtx * tablep)2620 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2621 {
2622   rtx label, table;
2623 
2624   if (JUMP_P (insn)
2625       && (label = JUMP_LABEL (insn)) != NULL_RTX
2626       && (table = next_active_insn (label)) != NULL_RTX
2627       && JUMP_P (table)
2628       && (GET_CODE (PATTERN (table)) == ADDR_VEC
2629 	  || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2630     {
2631       if (labelp)
2632 	*labelp = label;
2633       if (tablep)
2634 	*tablep = table;
2635       return true;
2636     }
2637   return false;
2638 }
2639 
2640 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2641    constant that is not in the constant pool and not in the condition
2642    of an IF_THEN_ELSE.  */
2643 
2644 static int
computed_jump_p_1(rtx x)2645 computed_jump_p_1 (rtx x)
2646 {
2647   enum rtx_code code = GET_CODE (x);
2648   int i, j;
2649   const char *fmt;
2650 
2651   switch (code)
2652     {
2653     case LABEL_REF:
2654     case PC:
2655       return 0;
2656 
2657     case CONST:
2658     case CONST_INT:
2659     case CONST_DOUBLE:
2660     case CONST_VECTOR:
2661     case SYMBOL_REF:
2662     case REG:
2663       return 1;
2664 
2665     case MEM:
2666       return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2667 		&& CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2668 
2669     case IF_THEN_ELSE:
2670       return (computed_jump_p_1 (XEXP (x, 1))
2671 	      || computed_jump_p_1 (XEXP (x, 2)));
2672 
2673     default:
2674       break;
2675     }
2676 
2677   fmt = GET_RTX_FORMAT (code);
2678   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2679     {
2680       if (fmt[i] == 'e'
2681 	  && computed_jump_p_1 (XEXP (x, i)))
2682 	return 1;
2683 
2684       else if (fmt[i] == 'E')
2685 	for (j = 0; j < XVECLEN (x, i); j++)
2686 	  if (computed_jump_p_1 (XVECEXP (x, i, j)))
2687 	    return 1;
2688     }
2689 
2690   return 0;
2691 }
2692 
2693 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2694 
2695    Tablejumps and casesi insns are not considered indirect jumps;
2696    we can recognize them by a (use (label_ref)).  */
2697 
2698 int
computed_jump_p(rtx insn)2699 computed_jump_p (rtx insn)
2700 {
2701   int i;
2702   if (JUMP_P (insn))
2703     {
2704       rtx pat = PATTERN (insn);
2705 
2706       if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2707 	return 0;
2708       else if (GET_CODE (pat) == PARALLEL)
2709 	{
2710 	  int len = XVECLEN (pat, 0);
2711 	  int has_use_labelref = 0;
2712 
2713 	  for (i = len - 1; i >= 0; i--)
2714 	    if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2715 		&& (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2716 		    == LABEL_REF))
2717 	      has_use_labelref = 1;
2718 
2719 	  if (! has_use_labelref)
2720 	    for (i = len - 1; i >= 0; i--)
2721 	      if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2722 		  && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2723 		  && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2724 		return 1;
2725 	}
2726       else if (GET_CODE (pat) == SET
2727 	       && SET_DEST (pat) == pc_rtx
2728 	       && computed_jump_p_1 (SET_SRC (pat)))
2729 	return 1;
2730     }
2731   return 0;
2732 }
2733 
2734 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2735    calls.  Processes the subexpressions of EXP and passes them to F.  */
2736 static int
for_each_rtx_1(rtx exp,int n,rtx_function f,void * data)2737 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2738 {
2739   int result, i, j;
2740   const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2741   rtx *x;
2742 
2743   for (; format[n] != '\0'; n++)
2744     {
2745       switch (format[n])
2746 	{
2747 	case 'e':
2748 	  /* Call F on X.  */
2749 	  x = &XEXP (exp, n);
2750 	  result = (*f) (x, data);
2751 	  if (result == -1)
2752 	    /* Do not traverse sub-expressions.  */
2753 	    continue;
2754 	  else if (result != 0)
2755 	    /* Stop the traversal.  */
2756 	    return result;
2757 
2758 	  if (*x == NULL_RTX)
2759 	    /* There are no sub-expressions.  */
2760 	    continue;
2761 
2762 	  i = non_rtx_starting_operands[GET_CODE (*x)];
2763 	  if (i >= 0)
2764 	    {
2765 	      result = for_each_rtx_1 (*x, i, f, data);
2766 	      if (result != 0)
2767 		return result;
2768 	    }
2769 	  break;
2770 
2771 	case 'V':
2772 	case 'E':
2773 	  if (XVEC (exp, n) == 0)
2774 	    continue;
2775 	  for (j = 0; j < XVECLEN (exp, n); ++j)
2776 	    {
2777 	      /* Call F on X.  */
2778 	      x = &XVECEXP (exp, n, j);
2779 	      result = (*f) (x, data);
2780 	      if (result == -1)
2781 		/* Do not traverse sub-expressions.  */
2782 		continue;
2783 	      else if (result != 0)
2784 		/* Stop the traversal.  */
2785 		return result;
2786 
2787 	      if (*x == NULL_RTX)
2788 		/* There are no sub-expressions.  */
2789 		continue;
2790 
2791 	      i = non_rtx_starting_operands[GET_CODE (*x)];
2792 	      if (i >= 0)
2793 		{
2794 		  result = for_each_rtx_1 (*x, i, f, data);
2795 		  if (result != 0)
2796 		    return result;
2797 	        }
2798 	    }
2799 	  break;
2800 
2801 	default:
2802 	  /* Nothing to do.  */
2803 	  break;
2804 	}
2805     }
2806 
2807   return 0;
2808 }
2809 
2810 /* Traverse X via depth-first search, calling F for each
2811    sub-expression (including X itself).  F is also passed the DATA.
2812    If F returns -1, do not traverse sub-expressions, but continue
2813    traversing the rest of the tree.  If F ever returns any other
2814    nonzero value, stop the traversal, and return the value returned
2815    by F.  Otherwise, return 0.  This function does not traverse inside
2816    tree structure that contains RTX_EXPRs, or into sub-expressions
2817    whose format code is `0' since it is not known whether or not those
2818    codes are actually RTL.
2819 
2820    This routine is very general, and could (should?) be used to
2821    implement many of the other routines in this file.  */
2822 
2823 int
for_each_rtx(rtx * x,rtx_function f,void * data)2824 for_each_rtx (rtx *x, rtx_function f, void *data)
2825 {
2826   int result;
2827   int i;
2828 
2829   /* Call F on X.  */
2830   result = (*f) (x, data);
2831   if (result == -1)
2832     /* Do not traverse sub-expressions.  */
2833     return 0;
2834   else if (result != 0)
2835     /* Stop the traversal.  */
2836     return result;
2837 
2838   if (*x == NULL_RTX)
2839     /* There are no sub-expressions.  */
2840     return 0;
2841 
2842   i = non_rtx_starting_operands[GET_CODE (*x)];
2843   if (i < 0)
2844     return 0;
2845 
2846   return for_each_rtx_1 (*x, i, f, data);
2847 }
2848 
2849 
2850 /* Searches X for any reference to REGNO, returning the rtx of the
2851    reference found if any.  Otherwise, returns NULL_RTX.  */
2852 
2853 rtx
regno_use_in(unsigned int regno,rtx x)2854 regno_use_in (unsigned int regno, rtx x)
2855 {
2856   const char *fmt;
2857   int i, j;
2858   rtx tem;
2859 
2860   if (REG_P (x) && REGNO (x) == regno)
2861     return x;
2862 
2863   fmt = GET_RTX_FORMAT (GET_CODE (x));
2864   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2865     {
2866       if (fmt[i] == 'e')
2867 	{
2868 	  if ((tem = regno_use_in (regno, XEXP (x, i))))
2869 	    return tem;
2870 	}
2871       else if (fmt[i] == 'E')
2872 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2873 	  if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2874 	    return tem;
2875     }
2876 
2877   return NULL_RTX;
2878 }
2879 
2880 /* Return a value indicating whether OP, an operand of a commutative
2881    operation, is preferred as the first or second operand.  The higher
2882    the value, the stronger the preference for being the first operand.
2883    We use negative values to indicate a preference for the first operand
2884    and positive values for the second operand.  */
2885 
2886 int
commutative_operand_precedence(rtx op)2887 commutative_operand_precedence (rtx op)
2888 {
2889   enum rtx_code code = GET_CODE (op);
2890 
2891   /* Constants always come the second operand.  Prefer "nice" constants.  */
2892   if (code == CONST_INT)
2893     return -7;
2894   if (code == CONST_DOUBLE)
2895     return -6;
2896   op = avoid_constant_pool_reference (op);
2897   code = GET_CODE (op);
2898 
2899   switch (GET_RTX_CLASS (code))
2900     {
2901     case RTX_CONST_OBJ:
2902       if (code == CONST_INT)
2903         return -5;
2904       if (code == CONST_DOUBLE)
2905         return -4;
2906       return -3;
2907 
2908     case RTX_EXTRA:
2909       /* SUBREGs of objects should come second.  */
2910       if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2911         return -2;
2912 
2913       if (!CONSTANT_P (op))
2914         return 0;
2915       else
2916 	/* As for RTX_CONST_OBJ.  */
2917 	return -3;
2918 
2919     case RTX_OBJ:
2920       /* Complex expressions should be the first, so decrease priority
2921          of objects.  */
2922       return -1;
2923 
2924     case RTX_COMM_ARITH:
2925       /* Prefer operands that are themselves commutative to be first.
2926          This helps to make things linear.  In particular,
2927          (and (and (reg) (reg)) (not (reg))) is canonical.  */
2928       return 4;
2929 
2930     case RTX_BIN_ARITH:
2931       /* If only one operand is a binary expression, it will be the first
2932          operand.  In particular,  (plus (minus (reg) (reg)) (neg (reg)))
2933          is canonical, although it will usually be further simplified.  */
2934       return 2;
2935 
2936     case RTX_UNARY:
2937       /* Then prefer NEG and NOT.  */
2938       if (code == NEG || code == NOT)
2939         return 1;
2940 
2941     default:
2942       return 0;
2943     }
2944 }
2945 
2946 /* Return 1 iff it is necessary to swap operands of commutative operation
2947    in order to canonicalize expression.  */
2948 
2949 int
swap_commutative_operands_p(rtx x,rtx y)2950 swap_commutative_operands_p (rtx x, rtx y)
2951 {
2952   return (commutative_operand_precedence (x)
2953 	  < commutative_operand_precedence (y));
2954 }
2955 
2956 /* Return 1 if X is an autoincrement side effect and the register is
2957    not the stack pointer.  */
2958 int
auto_inc_p(rtx x)2959 auto_inc_p (rtx x)
2960 {
2961   switch (GET_CODE (x))
2962     {
2963     case PRE_INC:
2964     case POST_INC:
2965     case PRE_DEC:
2966     case POST_DEC:
2967     case PRE_MODIFY:
2968     case POST_MODIFY:
2969       /* There are no REG_INC notes for SP.  */
2970       if (XEXP (x, 0) != stack_pointer_rtx)
2971 	return 1;
2972     default:
2973       break;
2974     }
2975   return 0;
2976 }
2977 
2978 /* Return 1 if the sequence of instructions beginning with FROM and up
2979    to and including TO is safe to move.  If NEW_TO is non-NULL, and
2980    the sequence is not already safe to move, but can be easily
2981    extended to a sequence which is safe, then NEW_TO will point to the
2982    end of the extended sequence.
2983 
2984    For now, this function only checks that the region contains whole
2985    exception regions, but it could be extended to check additional
2986    conditions as well.  */
2987 
2988 int
insns_safe_to_move_p(rtx from,rtx to,rtx * new_to)2989 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
2990 {
2991   int eh_region_count = 0;
2992   int past_to_p = 0;
2993   rtx r = from;
2994 
2995   /* By default, assume the end of the region will be what was
2996      suggested.  */
2997   if (new_to)
2998     *new_to = to;
2999 
3000   while (r)
3001     {
3002       if (NOTE_P (r))
3003 	{
3004 	  switch (NOTE_LINE_NUMBER (r))
3005 	    {
3006 	    case NOTE_INSN_EH_REGION_BEG:
3007 	      ++eh_region_count;
3008 	      break;
3009 
3010 	    case NOTE_INSN_EH_REGION_END:
3011 	      if (eh_region_count == 0)
3012 		/* This sequence of instructions contains the end of
3013 		   an exception region, but not he beginning.  Moving
3014 		   it will cause chaos.  */
3015 		return 0;
3016 
3017 	      --eh_region_count;
3018 	      break;
3019 
3020 	    default:
3021 	      break;
3022 	    }
3023 	}
3024       else if (past_to_p)
3025 	/* If we've passed TO, and we see a non-note instruction, we
3026 	   can't extend the sequence to a movable sequence.  */
3027 	return 0;
3028 
3029       if (r == to)
3030 	{
3031 	  if (!new_to)
3032 	    /* It's OK to move the sequence if there were matched sets of
3033 	       exception region notes.  */
3034 	    return eh_region_count == 0;
3035 
3036 	  past_to_p = 1;
3037 	}
3038 
3039       /* It's OK to move the sequence if there were matched sets of
3040 	 exception region notes.  */
3041       if (past_to_p && eh_region_count == 0)
3042 	{
3043 	  *new_to = r;
3044 	  return 1;
3045 	}
3046 
3047       /* Go to the next instruction.  */
3048       r = NEXT_INSN (r);
3049     }
3050 
3051   return 0;
3052 }
3053 
3054 /* Return nonzero if IN contains a piece of rtl that has the address LOC.  */
3055 int
loc_mentioned_in_p(rtx * loc,rtx in)3056 loc_mentioned_in_p (rtx *loc, rtx in)
3057 {
3058   enum rtx_code code = GET_CODE (in);
3059   const char *fmt = GET_RTX_FORMAT (code);
3060   int i, j;
3061 
3062   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3063     {
3064       if (loc == &in->u.fld[i].rt_rtx)
3065 	return 1;
3066       if (fmt[i] == 'e')
3067 	{
3068 	  if (loc_mentioned_in_p (loc, XEXP (in, i)))
3069 	    return 1;
3070 	}
3071       else if (fmt[i] == 'E')
3072 	for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3073 	  if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3074 	    return 1;
3075     }
3076   return 0;
3077 }
3078 
3079 /* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
3080    and SUBREG_BYTE, return the bit offset where the subreg begins
3081    (counting from the least significant bit of the operand).  */
3082 
3083 unsigned int
subreg_lsb_1(enum machine_mode outer_mode,enum machine_mode inner_mode,unsigned int subreg_byte)3084 subreg_lsb_1 (enum machine_mode outer_mode,
3085 	      enum machine_mode inner_mode,
3086 	      unsigned int subreg_byte)
3087 {
3088   unsigned int bitpos;
3089   unsigned int byte;
3090   unsigned int word;
3091 
3092   /* A paradoxical subreg begins at bit position 0.  */
3093   if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3094     return 0;
3095 
3096   if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3097     /* If the subreg crosses a word boundary ensure that
3098        it also begins and ends on a word boundary.  */
3099     gcc_assert (!((subreg_byte % UNITS_PER_WORD
3100 		  + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3101 		  && (subreg_byte % UNITS_PER_WORD
3102 		      || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3103 
3104   if (WORDS_BIG_ENDIAN)
3105     word = (GET_MODE_SIZE (inner_mode)
3106 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3107   else
3108     word = subreg_byte / UNITS_PER_WORD;
3109   bitpos = word * BITS_PER_WORD;
3110 
3111   if (BYTES_BIG_ENDIAN)
3112     byte = (GET_MODE_SIZE (inner_mode)
3113 	    - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3114   else
3115     byte = subreg_byte % UNITS_PER_WORD;
3116   bitpos += byte * BITS_PER_UNIT;
3117 
3118   return bitpos;
3119 }
3120 
3121 /* Given a subreg X, return the bit offset where the subreg begins
3122    (counting from the least significant bit of the reg).  */
3123 
3124 unsigned int
subreg_lsb(rtx x)3125 subreg_lsb (rtx x)
3126 {
3127   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3128 		       SUBREG_BYTE (x));
3129 }
3130 
3131 /* This function returns the regno offset of a subreg expression.
3132    xregno - A regno of an inner hard subreg_reg (or what will become one).
3133    xmode  - The mode of xregno.
3134    offset - The byte offset.
3135    ymode  - The mode of a top level SUBREG (or what may become one).
3136    RETURN - The regno offset which would be used.  */
3137 unsigned int
subreg_regno_offset(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)3138 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3139 		     unsigned int offset, enum machine_mode ymode)
3140 {
3141   int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
3142   int mode_multiple, nregs_multiple;
3143   int y_offset;
3144   enum machine_mode xmode_unit, xmode_unit_int;
3145 
3146   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3147 
3148   if (GET_MODE_INNER (xmode) == VOIDmode)
3149     xmode_unit = xmode;
3150   else
3151     xmode_unit = GET_MODE_INNER (xmode);
3152 
3153   if (FLOAT_MODE_P (xmode_unit))
3154     {
3155       xmode_unit_int = int_mode_for_mode (xmode_unit);
3156       if (xmode_unit_int == BLKmode)
3157 	/* It's probably bad to be here; a port should have an integer mode
3158 	   that's the same size as anything of which it takes a SUBREG.  */
3159 	xmode_unit_int = xmode_unit;
3160     }
3161   else
3162     xmode_unit_int = xmode_unit;
3163 
3164   nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3165 
3166   /* Adjust nregs_xmode to allow for 'holes'.  */
3167   if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
3168     nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3169   else
3170     nregs_xmode = hard_regno_nregs[xregno][xmode];
3171 
3172   nregs_ymode = hard_regno_nregs[xregno][ymode];
3173 
3174   /* If this is a big endian paradoxical subreg, which uses more actual
3175      hard registers than the original register, we must return a negative
3176      offset so that we find the proper highpart of the register.  */
3177   if (offset == 0
3178       && nregs_ymode > nregs_xmode
3179       && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3180 	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3181     return nregs_xmode - nregs_ymode;
3182 
3183   if (offset == 0 || nregs_xmode == nregs_ymode)
3184     return 0;
3185 
3186   /* (TIGCC 20050324) Subregs of a 10-byte mode are special, hardcode them. */
3187   if (GET_MODE_SIZE (xmode) == 10)
3188   {
3189      gcc_assert (nregs_xmode == 3);
3190 
3191      if (offset < 4)
3192        return 0;
3193      else if (offset < 8)
3194        return 1;
3195      else
3196        return 2;
3197   }
3198 
3199   /* Size of ymode must not be greater than the size of xmode.  */
3200   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3201   gcc_assert (mode_multiple != 0);
3202 
3203   y_offset = offset / GET_MODE_SIZE (ymode);
3204   nregs_multiple =  nregs_xmode / nregs_ymode;
3205   return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3206 }
3207 
3208 /* This function returns true when the offset is representable via
3209    subreg_offset in the given regno.
3210    xregno - A regno of an inner hard subreg_reg (or what will become one).
3211    xmode  - The mode of xregno.
3212    offset - The byte offset.
3213    ymode  - The mode of a top level SUBREG (or what may become one).
3214    RETURN - Whether the offset is representable.  */
3215 bool
subreg_offset_representable_p(unsigned int xregno,enum machine_mode xmode,unsigned int offset,enum machine_mode ymode)3216 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3217 			       unsigned int offset, enum machine_mode ymode)
3218 {
3219   int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
3220   int mode_multiple, nregs_multiple;
3221   int y_offset;
3222   enum machine_mode xmode_unit, xmode_unit_int;
3223 
3224   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3225 
3226   if (GET_MODE_INNER (xmode) == VOIDmode)
3227     xmode_unit = xmode;
3228   else
3229     xmode_unit = GET_MODE_INNER (xmode);
3230 
3231   if (FLOAT_MODE_P (xmode_unit))
3232     {
3233       xmode_unit_int = int_mode_for_mode (xmode_unit);
3234       if (xmode_unit_int == BLKmode)
3235 	/* It's probably bad to be here; a port should have an integer mode
3236 	   that's the same size as anything of which it takes a SUBREG.  */
3237 	xmode_unit_int = xmode_unit;
3238     }
3239   else
3240     xmode_unit_int = xmode_unit;
3241 
3242   nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3243   nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3244 
3245   /* If there are holes in a non-scalar mode in registers, we expect
3246      that it is made up of its units concatenated together.  */
3247   if (nregs_xmode_unit != nregs_xmode_unit_int)
3248     {
3249       gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3250 		  == hard_regno_nregs[xregno][xmode]);
3251 
3252       /* You can only ask for a SUBREG of a value with holes in the middle
3253 	 if you don't cross the holes.  (Such a SUBREG should be done by
3254 	 picking a different register class, or doing it in memory if
3255 	 necessary.)  An example of a value with holes is XCmode on 32-bit
3256 	 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3257 	 3 for each part, but in memory it's two 128-bit parts.
3258 	 Padding is assumed to be at the end (not necessarily the 'high part')
3259 	 of each unit.  */
3260       if (nregs_xmode_unit != nregs_xmode_unit_int
3261 	  && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3262 	      < GET_MODE_NUNITS (xmode))
3263 	  && (offset / GET_MODE_SIZE (xmode_unit_int)
3264 	      != ((offset + GET_MODE_SIZE (ymode) - 1)
3265 		  / GET_MODE_SIZE (xmode_unit_int))))
3266 	return false;
3267 
3268       nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3269     }
3270   else
3271     nregs_xmode = hard_regno_nregs[xregno][xmode];
3272 
3273   nregs_ymode = hard_regno_nregs[xregno][ymode];
3274 
3275   /* Paradoxical subregs are otherwise valid.  */
3276   if (offset == 0
3277       && nregs_ymode > nregs_xmode
3278       && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3279 	  ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3280     return true;
3281 
3282   /* (TIGCC 20050324) Subregs of a 10-byte mode are special, hardcode them. */
3283   if (GET_MODE_SIZE (xmode) == 10)
3284   {
3285      switch (GET_MODE_SIZE (ymode))
3286      {
3287        case 1:
3288          return (offset == 3 || offset == 7 || offset == 9);
3289 
3290        case 2:
3291          return (offset == 2 || offset == 6 || offset == 8);
3292 
3293        case 4:
3294          return (offset == 0 || offset == 4);
3295 
3296        case 8:
3297          return !offset;
3298 
3299        default:
3300          return false;
3301      }
3302   }
3303 
3304   /* Lowpart subregs are otherwise valid.  */
3305   if (offset == subreg_lowpart_offset (ymode, xmode))
3306     return true;
3307 
3308   /* This should always pass, otherwise we don't know how to verify
3309      the constraint.  These conditions may be relaxed but
3310      subreg_regno_offset would need to be redesigned.  */
3311   gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3312   gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3313 
3314   /* The XMODE value can be seen as a vector of NREGS_XMODE
3315      values.  The subreg must represent a lowpart of given field.
3316      Compute what field it is.  */
3317   offset -= subreg_lowpart_offset (ymode,
3318 				   mode_for_size (GET_MODE_BITSIZE (xmode)
3319 						  / nregs_xmode,
3320 						  MODE_INT, 0));
3321 
3322   /* Size of ymode must not be greater than the size of xmode.  */
3323   mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3324   gcc_assert (mode_multiple != 0);
3325 
3326   y_offset = offset / GET_MODE_SIZE (ymode);
3327   nregs_multiple =  nregs_xmode / nregs_ymode;
3328 
3329   gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3330   gcc_assert ((mode_multiple % nregs_multiple) == 0);
3331 
3332   return (!(y_offset % (mode_multiple / nregs_multiple)));
3333 }
3334 
3335 /* Return the final regno that a subreg expression refers to.  */
3336 unsigned int
subreg_regno(rtx x)3337 subreg_regno (rtx x)
3338 {
3339   unsigned int ret;
3340   rtx subreg = SUBREG_REG (x);
3341   int regno = REGNO (subreg);
3342 
3343   ret = regno + subreg_regno_offset (regno,
3344 				     GET_MODE (subreg),
3345 				     SUBREG_BYTE (x),
3346 				     GET_MODE (x));
3347   return ret;
3348 
3349 }
3350 struct parms_set_data
3351 {
3352   int nregs;
3353   HARD_REG_SET regs;
3354 };
3355 
3356 /* Helper function for noticing stores to parameter registers.  */
3357 static void
parms_set(rtx x,rtx pat ATTRIBUTE_UNUSED,void * data)3358 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3359 {
3360   struct parms_set_data *d = data;
3361   if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3362       && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3363     {
3364       CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3365       d->nregs--;
3366     }
3367 }
3368 
3369 /* Look backward for first parameter to be loaded.
3370    Note that loads of all parameters will not necessarily be
3371    found if CSE has eliminated some of them (e.g., an argument
3372    to the outer function is passed down as a parameter).
3373    Do not skip BOUNDARY.  */
3374 rtx
find_first_parameter_load(rtx call_insn,rtx boundary)3375 find_first_parameter_load (rtx call_insn, rtx boundary)
3376 {
3377   struct parms_set_data parm;
3378   rtx p, before, first_set;
3379 
3380   /* Since different machines initialize their parameter registers
3381      in different orders, assume nothing.  Collect the set of all
3382      parameter registers.  */
3383   CLEAR_HARD_REG_SET (parm.regs);
3384   parm.nregs = 0;
3385   for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3386     if (GET_CODE (XEXP (p, 0)) == USE
3387 	&& REG_P (XEXP (XEXP (p, 0), 0)))
3388       {
3389 	gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3390 
3391 	/* We only care about registers which can hold function
3392 	   arguments.  */
3393 	if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3394 	  continue;
3395 
3396 	SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3397 	parm.nregs++;
3398       }
3399   before = call_insn;
3400   first_set = call_insn;
3401 
3402   /* Search backward for the first set of a register in this set.  */
3403   while (parm.nregs && before != boundary)
3404     {
3405       before = PREV_INSN (before);
3406 
3407       /* It is possible that some loads got CSEed from one call to
3408          another.  Stop in that case.  */
3409       if (CALL_P (before))
3410 	break;
3411 
3412       /* Our caller needs either ensure that we will find all sets
3413          (in case code has not been optimized yet), or take care
3414          for possible labels in a way by setting boundary to preceding
3415          CODE_LABEL.  */
3416       if (LABEL_P (before))
3417 	{
3418 	  gcc_assert (before == boundary);
3419 	  break;
3420 	}
3421 
3422       if (INSN_P (before))
3423 	{
3424 	  int nregs_old = parm.nregs;
3425 	  note_stores (PATTERN (before), parms_set, &parm);
3426 	  /* If we found something that did not set a parameter reg,
3427 	     we're done.  Do not keep going, as that might result
3428 	     in hoisting an insn before the setting of a pseudo
3429 	     that is used by the hoisted insn. */
3430 	  if (nregs_old != parm.nregs)
3431 	    first_set = before;
3432 	  else
3433 	    break;
3434 	}
3435     }
3436   return first_set;
3437 }
3438 
3439 /* Return true if we should avoid inserting code between INSN and preceding
3440    call instruction.  */
3441 
3442 bool
keep_with_call_p(rtx insn)3443 keep_with_call_p (rtx insn)
3444 {
3445   rtx set;
3446 
3447   if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3448     {
3449       if (REG_P (SET_DEST (set))
3450 	  && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3451 	  && fixed_regs[REGNO (SET_DEST (set))]
3452 	  && general_operand (SET_SRC (set), VOIDmode))
3453 	return true;
3454       if (REG_P (SET_SRC (set))
3455 	  && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3456 	  && REG_P (SET_DEST (set))
3457 	  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3458 	return true;
3459       /* There may be a stack pop just after the call and before the store
3460 	 of the return register.  Search for the actual store when deciding
3461 	 if we can break or not.  */
3462       if (SET_DEST (set) == stack_pointer_rtx)
3463 	{
3464 	  rtx i2 = next_nonnote_insn (insn);
3465 	  if (i2 && keep_with_call_p (i2))
3466 	    return true;
3467 	}
3468     }
3469   return false;
3470 }
3471 
3472 /* Return true if LABEL is a target of JUMP_INSN.  This applies only
3473    to non-complex jumps.  That is, direct unconditional, conditional,
3474    and tablejumps, but not computed jumps or returns.  It also does
3475    not apply to the fallthru case of a conditional jump.  */
3476 
3477 bool
label_is_jump_target_p(rtx label,rtx jump_insn)3478 label_is_jump_target_p (rtx label, rtx jump_insn)
3479 {
3480   rtx tmp = JUMP_LABEL (jump_insn);
3481 
3482   if (label == tmp)
3483     return true;
3484 
3485   if (tablejump_p (jump_insn, NULL, &tmp))
3486     {
3487       rtvec vec = XVEC (PATTERN (tmp),
3488 			GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3489       int i, veclen = GET_NUM_ELEM (vec);
3490 
3491       for (i = 0; i < veclen; ++i)
3492 	if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3493 	  return true;
3494     }
3495 
3496   return false;
3497 }
3498 
3499 
3500 /* Return an estimate of the cost of computing rtx X.
3501    One use is in cse, to decide which expression to keep in the hash table.
3502    Another is in rtl generation, to pick the cheapest way to multiply.
3503    Other uses like the latter are expected in the future.  */
3504 
3505 int
rtx_cost(rtx x,enum rtx_code outer_code ATTRIBUTE_UNUSED)3506 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3507 {
3508   int i, j;
3509   enum rtx_code code;
3510   const char *fmt;
3511   int total;
3512 
3513   if (x == 0)
3514     return 0;
3515 
3516   /* Compute the default costs of certain things.
3517      Note that targetm.rtx_costs can override the defaults.  */
3518 
3519   code = GET_CODE (x);
3520   switch (code)
3521     {
3522     case MULT:
3523       total = COSTS_N_INSNS (5);
3524       break;
3525     case DIV:
3526     case UDIV:
3527     case MOD:
3528     case UMOD:
3529       total = COSTS_N_INSNS (7);
3530       break;
3531     case USE:
3532       /* Used in loop.c and combine.c as a marker.  */
3533       total = 0;
3534       break;
3535     default:
3536       total = COSTS_N_INSNS (1);
3537     }
3538 
3539   switch (code)
3540     {
3541     case REG:
3542       return 0;
3543 
3544     case SUBREG:
3545       total = 0;
3546       /* If we can't tie these modes, make this expensive.  The larger
3547 	 the mode, the more expensive it is.  */
3548       if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3549 	return COSTS_N_INSNS (2
3550 			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3551       break;
3552 
3553     default:
3554       if (targetm.rtx_costs (x, code, outer_code, &total))
3555 	return total;
3556       break;
3557     }
3558 
3559   /* Sum the costs of the sub-rtx's, plus cost of this operation,
3560      which is already in total.  */
3561 
3562   fmt = GET_RTX_FORMAT (code);
3563   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3564     if (fmt[i] == 'e')
3565       total += rtx_cost (XEXP (x, i), code);
3566     else if (fmt[i] == 'E')
3567       for (j = 0; j < XVECLEN (x, i); j++)
3568 	total += rtx_cost (XVECEXP (x, i, j), code);
3569 
3570   return total;
3571 }
3572 
3573 /* Return cost of address expression X.
3574    Expect that X is properly formed address reference.  */
3575 
3576 int
address_cost(rtx x,enum machine_mode mode)3577 address_cost (rtx x, enum machine_mode mode)
3578 {
3579   /* We may be asked for cost of various unusual addresses, such as operands
3580      of push instruction.  It is not worthwhile to complicate writing
3581      of the target hook by such cases.  */
3582 
3583   if (!memory_address_p (mode, x))
3584     return 1000;
3585 
3586   return targetm.address_cost (x);
3587 }
3588 
3589 /* If the target doesn't override, compute the cost as with arithmetic.  */
3590 
3591 int
default_address_cost(rtx x)3592 default_address_cost (rtx x)
3593 {
3594   return rtx_cost (x, MEM);
3595 }
3596 
3597 
3598 unsigned HOST_WIDE_INT
nonzero_bits(rtx x,enum machine_mode mode)3599 nonzero_bits (rtx x, enum machine_mode mode)
3600 {
3601   return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3602 }
3603 
3604 unsigned int
num_sign_bit_copies(rtx x,enum machine_mode mode)3605 num_sign_bit_copies (rtx x, enum machine_mode mode)
3606 {
3607   return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3608 }
3609 
3610 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3611    It avoids exponential behavior in nonzero_bits1 when X has
3612    identical subexpressions on the first or the second level.  */
3613 
3614 static unsigned HOST_WIDE_INT
cached_nonzero_bits(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3615 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3616 		     enum machine_mode known_mode,
3617 		     unsigned HOST_WIDE_INT known_ret)
3618 {
3619   if (x == known_x && mode == known_mode)
3620     return known_ret;
3621 
3622   /* Try to find identical subexpressions.  If found call
3623      nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3624      precomputed value for the subexpression as KNOWN_RET.  */
3625 
3626   if (ARITHMETIC_P (x))
3627     {
3628       rtx x0 = XEXP (x, 0);
3629       rtx x1 = XEXP (x, 1);
3630 
3631       /* Check the first level.  */
3632       if (x0 == x1)
3633 	return nonzero_bits1 (x, mode, x0, mode,
3634 			      cached_nonzero_bits (x0, mode, known_x,
3635 						   known_mode, known_ret));
3636 
3637       /* Check the second level.  */
3638       if (ARITHMETIC_P (x0)
3639 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3640 	return nonzero_bits1 (x, mode, x1, mode,
3641 			      cached_nonzero_bits (x1, mode, known_x,
3642 						   known_mode, known_ret));
3643 
3644       if (ARITHMETIC_P (x1)
3645 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3646 	return nonzero_bits1 (x, mode, x0, mode,
3647 			      cached_nonzero_bits (x0, mode, known_x,
3648 						   known_mode, known_ret));
3649     }
3650 
3651   return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3652 }
3653 
3654 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3655    We don't let nonzero_bits recur into num_sign_bit_copies, because that
3656    is less useful.  We can't allow both, because that results in exponential
3657    run time recursion.  There is a nullstone testcase that triggered
3658    this.  This macro avoids accidental uses of num_sign_bit_copies.  */
3659 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3660 
3661 /* Given an expression, X, compute which bits in X can be nonzero.
3662    We don't care about bits outside of those defined in MODE.
3663 
3664    For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3665    an arithmetic operation, we can do better.  */
3666 
3667 static unsigned HOST_WIDE_INT
nonzero_bits1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned HOST_WIDE_INT known_ret)3668 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3669 	       enum machine_mode known_mode,
3670 	       unsigned HOST_WIDE_INT known_ret)
3671 {
3672   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3673   unsigned HOST_WIDE_INT inner_nz;
3674   enum rtx_code code;
3675   unsigned int mode_width = GET_MODE_BITSIZE (mode);
3676 
3677   /* For floating-point values, assume all bits are needed.  */
3678   if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3679     return nonzero;
3680 
3681   /* If X is wider than MODE, use its mode instead.  */
3682   if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3683     {
3684       mode = GET_MODE (x);
3685       nonzero = GET_MODE_MASK (mode);
3686       mode_width = GET_MODE_BITSIZE (mode);
3687     }
3688 
3689   if (mode_width > HOST_BITS_PER_WIDE_INT)
3690     /* Our only callers in this case look for single bit values.  So
3691        just return the mode mask.  Those tests will then be false.  */
3692     return nonzero;
3693 
3694 #ifndef WORD_REGISTER_OPERATIONS
3695   /* If MODE is wider than X, but both are a single word for both the host
3696      and target machines, we can compute this from which bits of the
3697      object might be nonzero in its own mode, taking into account the fact
3698      that on many CISC machines, accessing an object in a wider mode
3699      causes the high-order bits to become undefined.  So they are
3700      not known to be zero.  */
3701 
3702   if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3703       && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3704       && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3705       && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3706     {
3707       nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3708 				      known_x, known_mode, known_ret);
3709       nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3710       return nonzero;
3711     }
3712 #endif
3713 
3714   code = GET_CODE (x);
3715   switch (code)
3716     {
3717     case REG:
3718 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3719       /* If pointers extend unsigned and this is a pointer in Pmode, say that
3720 	 all the bits above ptr_mode are known to be zero.  */
3721       if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3722 	  && REG_POINTER (x))
3723 	nonzero &= GET_MODE_MASK (ptr_mode);
3724 #endif
3725 
3726       /* Include declared information about alignment of pointers.  */
3727       /* ??? We don't properly preserve REG_POINTER changes across
3728 	 pointer-to-integer casts, so we can't trust it except for
3729 	 things that we know must be pointers.  See execute/960116-1.c.  */
3730       if ((x == stack_pointer_rtx
3731 	   || x == frame_pointer_rtx
3732 	   || x == arg_pointer_rtx)
3733 	  && REGNO_POINTER_ALIGN (REGNO (x)))
3734 	{
3735 	  unsigned HOST_WIDE_INT alignment
3736 	    = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3737 
3738 #ifdef PUSH_ROUNDING
3739 	  /* If PUSH_ROUNDING is defined, it is possible for the
3740 	     stack to be momentarily aligned only to that amount,
3741 	     so we pick the least alignment.  */
3742 	  if (x == stack_pointer_rtx && PUSH_ARGS)
3743 	    alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3744 			     alignment);
3745 #endif
3746 
3747 	  nonzero &= ~(alignment - 1);
3748 	}
3749 
3750       {
3751 	unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3752 	rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3753 					      known_mode, known_ret,
3754 					      &nonzero_for_hook);
3755 
3756 	if (new)
3757 	  nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3758 						   known_mode, known_ret);
3759 
3760 	return nonzero_for_hook;
3761       }
3762 
3763     case CONST_INT:
3764 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3765       /* If X is negative in MODE, sign-extend the value.  */
3766       if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3767 	  && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3768 	return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3769 #endif
3770 
3771       return INTVAL (x);
3772 
3773     case MEM:
3774 #ifdef LOAD_EXTEND_OP
3775       /* In many, if not most, RISC machines, reading a byte from memory
3776 	 zeros the rest of the register.  Noticing that fact saves a lot
3777 	 of extra zero-extends.  */
3778       if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3779 	nonzero &= GET_MODE_MASK (GET_MODE (x));
3780 #endif
3781       break;
3782 
3783     case EQ:  case NE:
3784     case UNEQ:  case LTGT:
3785     case GT:  case GTU:  case UNGT:
3786     case LT:  case LTU:  case UNLT:
3787     case GE:  case GEU:  case UNGE:
3788     case LE:  case LEU:  case UNLE:
3789     case UNORDERED: case ORDERED:
3790       /* If this produces an integer result, we know which bits are set.
3791 	 Code here used to clear bits outside the mode of X, but that is
3792 	 now done above.  */
3793       /* Mind that MODE is the mode the caller wants to look at this
3794 	 operation in, and not the actual operation mode.  We can wind
3795 	 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3796 	 that describes the results of a vector compare.  */
3797       if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3798 	  && mode_width <= HOST_BITS_PER_WIDE_INT)
3799 	nonzero = STORE_FLAG_VALUE;
3800       break;
3801 
3802     case NEG:
3803 #if 0
3804       /* Disabled to avoid exponential mutual recursion between nonzero_bits
3805 	 and num_sign_bit_copies.  */
3806       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3807 	  == GET_MODE_BITSIZE (GET_MODE (x)))
3808 	nonzero = 1;
3809 #endif
3810 
3811       if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3812 	nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3813       break;
3814 
3815     case ABS:
3816 #if 0
3817       /* Disabled to avoid exponential mutual recursion between nonzero_bits
3818 	 and num_sign_bit_copies.  */
3819       if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3820 	  == GET_MODE_BITSIZE (GET_MODE (x)))
3821 	nonzero = 1;
3822 #endif
3823       break;
3824 
3825     case TRUNCATE:
3826       nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3827 				       known_x, known_mode, known_ret)
3828 		  & GET_MODE_MASK (mode));
3829       break;
3830 
3831     case ZERO_EXTEND:
3832       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3833 				      known_x, known_mode, known_ret);
3834       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3835 	nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3836       break;
3837 
3838     case SIGN_EXTEND:
3839       /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3840 	 Otherwise, show all the bits in the outer mode but not the inner
3841 	 may be nonzero.  */
3842       inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3843 				      known_x, known_mode, known_ret);
3844       if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3845 	{
3846 	  inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3847 	  if (inner_nz
3848 	      & (((HOST_WIDE_INT) 1
3849 		  << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3850 	    inner_nz |= (GET_MODE_MASK (mode)
3851 			 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3852 	}
3853 
3854       nonzero &= inner_nz;
3855       break;
3856 
3857     case AND:
3858       nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3859 				       known_x, known_mode, known_ret)
3860       		 & cached_nonzero_bits (XEXP (x, 1), mode,
3861 					known_x, known_mode, known_ret);
3862       break;
3863 
3864     case XOR:   case IOR:
3865     case UMIN:  case UMAX:  case SMIN:  case SMAX:
3866       {
3867 	unsigned HOST_WIDE_INT nonzero0 =
3868 	  cached_nonzero_bits (XEXP (x, 0), mode,
3869 			       known_x, known_mode, known_ret);
3870 
3871 	/* Don't call nonzero_bits for the second time if it cannot change
3872 	   anything.  */
3873 	if ((nonzero & nonzero0) != nonzero)
3874 	  nonzero &= nonzero0
3875       		     | cached_nonzero_bits (XEXP (x, 1), mode,
3876 					    known_x, known_mode, known_ret);
3877       }
3878       break;
3879 
3880     case PLUS:  case MINUS:
3881     case MULT:
3882     case DIV:   case UDIV:
3883     case MOD:   case UMOD:
3884       /* We can apply the rules of arithmetic to compute the number of
3885 	 high- and low-order zero bits of these operations.  We start by
3886 	 computing the width (position of the highest-order nonzero bit)
3887 	 and the number of low-order zero bits for each value.  */
3888       {
3889 	unsigned HOST_WIDE_INT nz0 =
3890 	  cached_nonzero_bits (XEXP (x, 0), mode,
3891 			       known_x, known_mode, known_ret);
3892 	unsigned HOST_WIDE_INT nz1 =
3893 	  cached_nonzero_bits (XEXP (x, 1), mode,
3894 			       known_x, known_mode, known_ret);
3895 	int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3896 	int width0 = floor_log2 (nz0) + 1;
3897 	int width1 = floor_log2 (nz1) + 1;
3898 	int low0 = floor_log2 (nz0 & -nz0);
3899 	int low1 = floor_log2 (nz1 & -nz1);
3900 	HOST_WIDE_INT op0_maybe_minusp
3901 	  = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3902 	HOST_WIDE_INT op1_maybe_minusp
3903 	  = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3904 	unsigned int result_width = mode_width;
3905 	int result_low = 0;
3906 
3907 	switch (code)
3908 	  {
3909 	  case PLUS:
3910 	    result_width = MAX (width0, width1) + 1;
3911 	    result_low = MIN (low0, low1);
3912 	    break;
3913 	  case MINUS:
3914 	    result_low = MIN (low0, low1);
3915 	    break;
3916 	  case MULT:
3917 	    result_width = width0 + width1;
3918 	    result_low = low0 + low1;
3919 	    break;
3920 	  case DIV:
3921 	    if (width1 == 0)
3922 	      break;
3923 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3924 	      result_width = width0;
3925 	    break;
3926 	  case UDIV:
3927 	    if (width1 == 0)
3928 	      break;
3929 	    result_width = width0;
3930 	    break;
3931 	  case MOD:
3932 	    if (width1 == 0)
3933 	      break;
3934 	    if (! op0_maybe_minusp && ! op1_maybe_minusp)
3935 	      result_width = MIN (width0, width1);
3936 	    result_low = MIN (low0, low1);
3937 	    break;
3938 	  case UMOD:
3939 	    if (width1 == 0)
3940 	      break;
3941 	    result_width = MIN (width0, width1);
3942 	    result_low = MIN (low0, low1);
3943 	    break;
3944 	  default:
3945 	    gcc_unreachable ();
3946 	  }
3947 
3948 	if (result_width < mode_width)
3949 	  nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3950 
3951 	if (result_low > 0)
3952 	  nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3953 
3954 #ifdef POINTERS_EXTEND_UNSIGNED
3955 	/* If pointers extend unsigned and this is an addition or subtraction
3956 	   to a pointer in Pmode, all the bits above ptr_mode are known to be
3957 	   zero.  */
3958 	if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3959 	    && (code == PLUS || code == MINUS)
3960 	    && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3961 	  nonzero &= GET_MODE_MASK (ptr_mode);
3962 #endif
3963       }
3964       break;
3965 
3966     case ZERO_EXTRACT:
3967       if (GET_CODE (XEXP (x, 1)) == CONST_INT
3968 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3969 	nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3970       break;
3971 
3972     case SUBREG:
3973       /* If this is a SUBREG formed for a promoted variable that has
3974 	 been zero-extended, we know that at least the high-order bits
3975 	 are zero, though others might be too.  */
3976 
3977       if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3978 	nonzero = GET_MODE_MASK (GET_MODE (x))
3979 		  & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3980 					 known_x, known_mode, known_ret);
3981 
3982       /* If the inner mode is a single word for both the host and target
3983 	 machines, we can compute this from which bits of the inner
3984 	 object might be nonzero.  */
3985       if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3986 	  && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3987 	      <= HOST_BITS_PER_WIDE_INT))
3988 	{
3989 	  nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3990 					  known_x, known_mode, known_ret);
3991 
3992 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3993 	  /* If this is a typical RISC machine, we only have to worry
3994 	     about the way loads are extended.  */
3995 	  if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3996 	       ? (((nonzero
3997 		    & (((unsigned HOST_WIDE_INT) 1
3998 			<< (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3999 		   != 0))
4000 	       : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4001 	      || !MEM_P (SUBREG_REG (x)))
4002 #endif
4003 	    {
4004 	      /* On many CISC machines, accessing an object in a wider mode
4005 		 causes the high-order bits to become undefined.  So they are
4006 		 not known to be zero.  */
4007 	      if (GET_MODE_SIZE (GET_MODE (x))
4008 		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4009 		nonzero |= (GET_MODE_MASK (GET_MODE (x))
4010 			    & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4011 	    }
4012 	}
4013       break;
4014 
4015     case ASHIFTRT:
4016     case LSHIFTRT:
4017     case ASHIFT:
4018     case ROTATE:
4019       /* The nonzero bits are in two classes: any bits within MODE
4020 	 that aren't in GET_MODE (x) are always significant.  The rest of the
4021 	 nonzero bits are those that are significant in the operand of
4022 	 the shift when shifted the appropriate number of bits.  This
4023 	 shows that high-order bits are cleared by the right shift and
4024 	 low-order bits by left shifts.  */
4025       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4026 	  && INTVAL (XEXP (x, 1)) >= 0
4027 	  && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4028 	{
4029 	  enum machine_mode inner_mode = GET_MODE (x);
4030 	  unsigned int width = GET_MODE_BITSIZE (inner_mode);
4031 	  int count = INTVAL (XEXP (x, 1));
4032 	  unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4033 	  unsigned HOST_WIDE_INT op_nonzero =
4034 	    cached_nonzero_bits (XEXP (x, 0), mode,
4035 				 known_x, known_mode, known_ret);
4036 	  unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4037 	  unsigned HOST_WIDE_INT outer = 0;
4038 
4039 	  if (mode_width > width)
4040 	    outer = (op_nonzero & nonzero & ~mode_mask);
4041 
4042 	  if (code == LSHIFTRT)
4043 	    inner >>= count;
4044 	  else if (code == ASHIFTRT)
4045 	    {
4046 	      inner >>= count;
4047 
4048 	      /* If the sign bit may have been nonzero before the shift, we
4049 		 need to mark all the places it could have been copied to
4050 		 by the shift as possibly nonzero.  */
4051 	      if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4052 		inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4053 	    }
4054 	  else if (code == ASHIFT)
4055 	    inner <<= count;
4056 	  else
4057 	    inner = ((inner << (count % width)
4058 		      | (inner >> (width - (count % width)))) & mode_mask);
4059 
4060 	  nonzero &= (outer | inner);
4061 	}
4062       break;
4063 
4064     case FFS:
4065     case POPCOUNT:
4066       /* This is at most the number of bits in the mode.  */
4067       nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4068       break;
4069 
4070     case CLZ:
4071       /* If CLZ has a known value at zero, then the nonzero bits are
4072 	 that value, plus the number of bits in the mode minus one.  */
4073       if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4074 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4075       else
4076 	nonzero = -1;
4077       break;
4078 
4079     case CTZ:
4080       /* If CTZ has a known value at zero, then the nonzero bits are
4081 	 that value, plus the number of bits in the mode minus one.  */
4082       if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4083 	nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4084       else
4085 	nonzero = -1;
4086       break;
4087 
4088     case PARITY:
4089       nonzero = 1;
4090       break;
4091 
4092     case IF_THEN_ELSE:
4093       {
4094 	unsigned HOST_WIDE_INT nonzero_true =
4095 	  cached_nonzero_bits (XEXP (x, 1), mode,
4096 			       known_x, known_mode, known_ret);
4097 
4098 	/* Don't call nonzero_bits for the second time if it cannot change
4099 	   anything.  */
4100 	if ((nonzero & nonzero_true) != nonzero)
4101 	  nonzero &= nonzero_true
4102       		     | cached_nonzero_bits (XEXP (x, 2), mode,
4103 					    known_x, known_mode, known_ret);
4104       }
4105       break;
4106 
4107     default:
4108       break;
4109     }
4110 
4111   return nonzero;
4112 }
4113 
4114 /* See the macro definition above.  */
4115 #undef cached_num_sign_bit_copies
4116 
4117 
4118 /* The function cached_num_sign_bit_copies is a wrapper around
4119    num_sign_bit_copies1.  It avoids exponential behavior in
4120    num_sign_bit_copies1 when X has identical subexpressions on the
4121    first or the second level.  */
4122 
4123 static unsigned int
cached_num_sign_bit_copies(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)4124 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4125 			    enum machine_mode known_mode,
4126 			    unsigned int known_ret)
4127 {
4128   if (x == known_x && mode == known_mode)
4129     return known_ret;
4130 
4131   /* Try to find identical subexpressions.  If found call
4132      num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4133      the precomputed value for the subexpression as KNOWN_RET.  */
4134 
4135   if (ARITHMETIC_P (x))
4136     {
4137       rtx x0 = XEXP (x, 0);
4138       rtx x1 = XEXP (x, 1);
4139 
4140       /* Check the first level.  */
4141       if (x0 == x1)
4142 	return
4143 	  num_sign_bit_copies1 (x, mode, x0, mode,
4144 				cached_num_sign_bit_copies (x0, mode, known_x,
4145 							    known_mode,
4146 							    known_ret));
4147 
4148       /* Check the second level.  */
4149       if (ARITHMETIC_P (x0)
4150 	  && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4151 	return
4152 	  num_sign_bit_copies1 (x, mode, x1, mode,
4153 				cached_num_sign_bit_copies (x1, mode, known_x,
4154 							    known_mode,
4155 							    known_ret));
4156 
4157       if (ARITHMETIC_P (x1)
4158 	  && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4159 	return
4160 	  num_sign_bit_copies1 (x, mode, x0, mode,
4161 				cached_num_sign_bit_copies (x0, mode, known_x,
4162 							    known_mode,
4163 							    known_ret));
4164     }
4165 
4166   return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4167 }
4168 
4169 /* Return the number of bits at the high-order end of X that are known to
4170    be equal to the sign bit.  X will be used in mode MODE; if MODE is
4171    VOIDmode, X will be used in its own mode.  The returned value  will always
4172    be between 1 and the number of bits in MODE.  */
4173 
4174 static unsigned int
num_sign_bit_copies1(rtx x,enum machine_mode mode,rtx known_x,enum machine_mode known_mode,unsigned int known_ret)4175 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4176 		      enum machine_mode known_mode,
4177 		      unsigned int known_ret)
4178 {
4179   enum rtx_code code = GET_CODE (x);
4180   unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4181   int num0, num1, result;
4182   unsigned HOST_WIDE_INT nonzero;
4183 
4184   /* If we weren't given a mode, use the mode of X.  If the mode is still
4185      VOIDmode, we don't know anything.  Likewise if one of the modes is
4186      floating-point.  */
4187 
4188   if (mode == VOIDmode)
4189     mode = GET_MODE (x);
4190 
4191   if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4192     return 1;
4193 
4194   /* For a smaller object, just ignore the high bits.  */
4195   if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4196     {
4197       num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4198 					 known_x, known_mode, known_ret);
4199       return MAX (1,
4200 		  num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4201     }
4202 
4203   if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4204     {
4205 #ifndef WORD_REGISTER_OPERATIONS
4206   /* If this machine does not do all register operations on the entire
4207      register and MODE is wider than the mode of X, we can say nothing
4208      at all about the high-order bits.  */
4209       return 1;
4210 #else
4211       /* Likewise on machines that do, if the mode of the object is smaller
4212 	 than a word and loads of that size don't sign extend, we can say
4213 	 nothing about the high order bits.  */
4214       if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4215 #ifdef LOAD_EXTEND_OP
4216 	  && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4217 #endif
4218 	  )
4219 	return 1;
4220 #endif
4221     }
4222 
4223   switch (code)
4224     {
4225     case REG:
4226 
4227 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4228       /* If pointers extend signed and this is a pointer in Pmode, say that
4229 	 all the bits above ptr_mode are known to be sign bit copies.  */
4230       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4231 	  && REG_POINTER (x))
4232 	return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4233 #endif
4234 
4235       {
4236 	unsigned int copies_for_hook = 1, copies = 1;
4237 	rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4238 						     known_mode, known_ret,
4239 						     &copies_for_hook);
4240 
4241 	if (new)
4242 	  copies = cached_num_sign_bit_copies (new, mode, known_x,
4243 					       known_mode, known_ret);
4244 
4245 	if (copies > 1 || copies_for_hook > 1)
4246 	  return MAX (copies, copies_for_hook);
4247 
4248 	/* Else, use nonzero_bits to guess num_sign_bit_copies (see below).  */
4249       }
4250       break;
4251 
4252     case MEM:
4253 #ifdef LOAD_EXTEND_OP
4254       /* Some RISC machines sign-extend all loads of smaller than a word.  */
4255       if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4256 	return MAX (1, ((int) bitwidth
4257 			- (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4258 #endif
4259       break;
4260 
4261     case CONST_INT:
4262       /* If the constant is negative, take its 1's complement and remask.
4263 	 Then see how many zero bits we have.  */
4264       nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4265       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4266 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4267 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4268 
4269       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4270 
4271     case SUBREG:
4272       /* If this is a SUBREG for a promoted object that is sign-extended
4273 	 and we are looking at it in a wider mode, we know that at least the
4274 	 high-order bits are known to be sign bit copies.  */
4275 
4276       if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4277 	{
4278 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4279 					     known_x, known_mode, known_ret);
4280 	  return MAX ((int) bitwidth
4281 		      - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4282 		      num0);
4283 	}
4284 
4285       /* For a smaller object, just ignore the high bits.  */
4286       if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4287 	{
4288 	  num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4289 					     known_x, known_mode, known_ret);
4290 	  return MAX (1, (num0
4291 			  - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4292 				   - bitwidth)));
4293 	}
4294 
4295 #ifdef WORD_REGISTER_OPERATIONS
4296 #ifdef LOAD_EXTEND_OP
4297       /* For paradoxical SUBREGs on machines where all register operations
4298 	 affect the entire register, just look inside.  Note that we are
4299 	 passing MODE to the recursive call, so the number of sign bit copies
4300 	 will remain relative to that mode, not the inner mode.  */
4301 
4302       /* This works only if loads sign extend.  Otherwise, if we get a
4303 	 reload for the inner part, it may be loaded from the stack, and
4304 	 then we lose all sign bit copies that existed before the store
4305 	 to the stack.  */
4306 
4307       if ((GET_MODE_SIZE (GET_MODE (x))
4308 	   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4309 	  && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4310 	  && MEM_P (SUBREG_REG (x)))
4311 	return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4312 					   known_x, known_mode, known_ret);
4313 #endif
4314 #endif
4315       break;
4316 
4317     case SIGN_EXTRACT:
4318       if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4319 	return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4320       break;
4321 
4322     case SIGN_EXTEND:
4323       return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4324 	      + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4325 					    known_x, known_mode, known_ret));
4326 
4327     case TRUNCATE:
4328       /* For a smaller object, just ignore the high bits.  */
4329       num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4330 					 known_x, known_mode, known_ret);
4331       return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4332 				    - bitwidth)));
4333 
4334     case NOT:
4335       return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4336 					 known_x, known_mode, known_ret);
4337 
4338     case ROTATE:       case ROTATERT:
4339       /* If we are rotating left by a number of bits less than the number
4340 	 of sign bit copies, we can just subtract that amount from the
4341 	 number.  */
4342       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4343 	  && INTVAL (XEXP (x, 1)) >= 0
4344 	  && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4345 	{
4346 	  num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4347 					     known_x, known_mode, known_ret);
4348 	  return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4349 				 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4350 	}
4351       break;
4352 
4353     case NEG:
4354       /* In general, this subtracts one sign bit copy.  But if the value
4355 	 is known to be positive, the number of sign bit copies is the
4356 	 same as that of the input.  Finally, if the input has just one bit
4357 	 that might be nonzero, all the bits are copies of the sign bit.  */
4358       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4359 					 known_x, known_mode, known_ret);
4360       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4361 	return num0 > 1 ? num0 - 1 : 1;
4362 
4363       nonzero = nonzero_bits (XEXP (x, 0), mode);
4364       if (nonzero == 1)
4365 	return bitwidth;
4366 
4367       if (num0 > 1
4368 	  && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4369 	num0--;
4370 
4371       return num0;
4372 
4373     case IOR:   case AND:   case XOR:
4374     case SMIN:  case SMAX:  case UMIN:  case UMAX:
4375       /* Logical operations will preserve the number of sign-bit copies.
4376 	 MIN and MAX operations always return one of the operands.  */
4377       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4378 					 known_x, known_mode, known_ret);
4379       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4380 					 known_x, known_mode, known_ret);
4381       return MIN (num0, num1);
4382 
4383     case PLUS:  case MINUS:
4384       /* For addition and subtraction, we can have a 1-bit carry.  However,
4385 	 if we are subtracting 1 from a positive number, there will not
4386 	 be such a carry.  Furthermore, if the positive number is known to
4387 	 be 0 or 1, we know the result is either -1 or 0.  */
4388 
4389       if (code == PLUS && XEXP (x, 1) == constm1_rtx
4390 	  && bitwidth <= HOST_BITS_PER_WIDE_INT)
4391 	{
4392 	  nonzero = nonzero_bits (XEXP (x, 0), mode);
4393 	  if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4394 	    return (nonzero == 1 || nonzero == 0 ? bitwidth
4395 		    : bitwidth - floor_log2 (nonzero) - 1);
4396 	}
4397 
4398       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4399 					 known_x, known_mode, known_ret);
4400       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4401 					 known_x, known_mode, known_ret);
4402       result = MAX (1, MIN (num0, num1) - 1);
4403 
4404 #ifdef POINTERS_EXTEND_UNSIGNED
4405       /* If pointers extend signed and this is an addition or subtraction
4406 	 to a pointer in Pmode, all the bits above ptr_mode are known to be
4407 	 sign bit copies.  */
4408       if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4409 	  && (code == PLUS || code == MINUS)
4410 	  && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4411 	result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4412 			     - GET_MODE_BITSIZE (ptr_mode) + 1),
4413 		      result);
4414 #endif
4415       return result;
4416 
4417     case MULT:
4418       /* The number of bits of the product is the sum of the number of
4419 	 bits of both terms.  However, unless one of the terms if known
4420 	 to be positive, we must allow for an additional bit since negating
4421 	 a negative number can remove one sign bit copy.  */
4422 
4423       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4424 					 known_x, known_mode, known_ret);
4425       num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4426 					 known_x, known_mode, known_ret);
4427 
4428       result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4429       if (result > 0
4430 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4431 	      || (((nonzero_bits (XEXP (x, 0), mode)
4432 		    & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4433 		  && ((nonzero_bits (XEXP (x, 1), mode)
4434 		       & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4435 	result--;
4436 
4437       return MAX (1, result);
4438 
4439     case UDIV:
4440       /* The result must be <= the first operand.  If the first operand
4441 	 has the high bit set, we know nothing about the number of sign
4442 	 bit copies.  */
4443       if (bitwidth > HOST_BITS_PER_WIDE_INT)
4444 	return 1;
4445       else if ((nonzero_bits (XEXP (x, 0), mode)
4446 		& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4447 	return 1;
4448       else
4449 	return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4450 					   known_x, known_mode, known_ret);
4451 
4452     case UMOD:
4453       /* The result must be <= the second operand.  */
4454       return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4455 					   known_x, known_mode, known_ret);
4456 
4457     case DIV:
4458       /* Similar to unsigned division, except that we have to worry about
4459 	 the case where the divisor is negative, in which case we have
4460 	 to add 1.  */
4461       result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4462 					   known_x, known_mode, known_ret);
4463       if (result > 1
4464 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4465 	      || (nonzero_bits (XEXP (x, 1), mode)
4466 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4467 	result--;
4468 
4469       return result;
4470 
4471     case MOD:
4472       result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4473 					   known_x, known_mode, known_ret);
4474       if (result > 1
4475 	  && (bitwidth > HOST_BITS_PER_WIDE_INT
4476 	      || (nonzero_bits (XEXP (x, 1), mode)
4477 		  & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4478 	result--;
4479 
4480       return result;
4481 
4482     case ASHIFTRT:
4483       /* Shifts by a constant add to the number of bits equal to the
4484 	 sign bit.  */
4485       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4486 					 known_x, known_mode, known_ret);
4487       if (GET_CODE (XEXP (x, 1)) == CONST_INT
4488 	  && INTVAL (XEXP (x, 1)) > 0)
4489 	num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4490 
4491       return num0;
4492 
4493     case ASHIFT:
4494       /* Left shifts destroy copies.  */
4495       if (GET_CODE (XEXP (x, 1)) != CONST_INT
4496 	  || INTVAL (XEXP (x, 1)) < 0
4497 	  || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4498 	return 1;
4499 
4500       num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4501 					 known_x, known_mode, known_ret);
4502       return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4503 
4504     case IF_THEN_ELSE:
4505       num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4506 					 known_x, known_mode, known_ret);
4507       num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4508 					 known_x, known_mode, known_ret);
4509       return MIN (num0, num1);
4510 
4511     case EQ:  case NE:  case GE:  case GT:  case LE:  case LT:
4512     case UNEQ:  case LTGT:  case UNGE:  case UNGT:  case UNLE:  case UNLT:
4513     case GEU: case GTU: case LEU: case LTU:
4514     case UNORDERED: case ORDERED:
4515       /* If the constant is negative, take its 1's complement and remask.
4516 	 Then see how many zero bits we have.  */
4517       nonzero = STORE_FLAG_VALUE;
4518       if (bitwidth <= HOST_BITS_PER_WIDE_INT
4519 	  && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4520 	nonzero = (~nonzero) & GET_MODE_MASK (mode);
4521 
4522       return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4523 
4524     default:
4525       break;
4526     }
4527 
4528   /* If we haven't been able to figure it out by one of the above rules,
4529      see if some of the high-order bits are known to be zero.  If so,
4530      count those bits and return one less than that amount.  If we can't
4531      safely compute the mask for this mode, always return BITWIDTH.  */
4532 
4533   bitwidth = GET_MODE_BITSIZE (mode);
4534   if (bitwidth > HOST_BITS_PER_WIDE_INT)
4535     return 1;
4536 
4537   nonzero = nonzero_bits (x, mode);
4538   return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4539 	 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4540 }
4541 
4542 /* Calculate the rtx_cost of a single instruction.  A return value of
4543    zero indicates an instruction pattern without a known cost.  */
4544 
4545 int
insn_rtx_cost(rtx pat)4546 insn_rtx_cost (rtx pat)
4547 {
4548   int i, cost;
4549   rtx set;
4550 
4551   /* Extract the single set rtx from the instruction pattern.
4552      We can't use single_set since we only have the pattern.  */
4553   if (GET_CODE (pat) == SET)
4554     set = pat;
4555   else if (GET_CODE (pat) == PARALLEL)
4556     {
4557       set = NULL_RTX;
4558       for (i = 0; i < XVECLEN (pat, 0); i++)
4559 	{
4560 	  rtx x = XVECEXP (pat, 0, i);
4561 	  if (GET_CODE (x) == SET)
4562 	    {
4563 	      if (set)
4564 		return 0;
4565 	      set = x;
4566 	    }
4567 	}
4568       if (!set)
4569 	return 0;
4570     }
4571   else
4572     return 0;
4573 
4574   cost = rtx_cost (SET_SRC (set), SET);
4575   return cost > 0 ? cost : COSTS_N_INSNS (1);
4576 }
4577 
4578 /* Given an insn INSN and condition COND, return the condition in a
4579    canonical form to simplify testing by callers.  Specifically:
4580 
4581    (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4582    (2) Both operands will be machine operands; (cc0) will have been replaced.
4583    (3) If an operand is a constant, it will be the second operand.
4584    (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4585        for GE, GEU, and LEU.
4586 
4587    If the condition cannot be understood, or is an inequality floating-point
4588    comparison which needs to be reversed, 0 will be returned.
4589 
4590    If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4591 
4592    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4593    insn used in locating the condition was found.  If a replacement test
4594    of the condition is desired, it should be placed in front of that
4595    insn and we will be sure that the inputs are still valid.
4596 
4597    If WANT_REG is nonzero, we wish the condition to be relative to that
4598    register, if possible.  Therefore, do not canonicalize the condition
4599    further.  If ALLOW_CC_MODE is nonzero, allow the condition returned
4600    to be a compare to a CC mode register.
4601 
4602    If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4603    and at INSN.  */
4604 
4605 rtx
canonicalize_condition(rtx insn,rtx cond,int reverse,rtx * earliest,rtx want_reg,int allow_cc_mode,int valid_at_insn_p)4606 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4607 			rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4608 {
4609   enum rtx_code code;
4610   rtx prev = insn;
4611   rtx set;
4612   rtx tem;
4613   rtx op0, op1;
4614   int reverse_code = 0;
4615   enum machine_mode mode;
4616 
4617   code = GET_CODE (cond);
4618   mode = GET_MODE (cond);
4619   op0 = XEXP (cond, 0);
4620   op1 = XEXP (cond, 1);
4621 
4622   if (reverse)
4623     code = reversed_comparison_code (cond, insn);
4624   if (code == UNKNOWN)
4625     return 0;
4626 
4627   if (earliest)
4628     *earliest = insn;
4629 
4630   /* If we are comparing a register with zero, see if the register is set
4631      in the previous insn to a COMPARE or a comparison operation.  Perform
4632      the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4633      in cse.c  */
4634 
4635   while ((GET_RTX_CLASS (code) == RTX_COMPARE
4636 	  || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4637 	 && op1 == CONST0_RTX (GET_MODE (op0))
4638 	 && op0 != want_reg)
4639     {
4640       /* Set nonzero when we find something of interest.  */
4641       rtx x = 0;
4642 
4643 #ifdef HAVE_cc0
4644       /* If comparison with cc0, import actual comparison from compare
4645 	 insn.  */
4646       if (op0 == cc0_rtx)
4647 	{
4648 	  if ((prev = prev_nonnote_insn (prev)) == 0
4649 	      || !NONJUMP_INSN_P (prev)
4650 	      || (set = single_set (prev)) == 0
4651 	      || SET_DEST (set) != cc0_rtx)
4652 	    return 0;
4653 
4654 	  op0 = SET_SRC (set);
4655 	  op1 = CONST0_RTX (GET_MODE (op0));
4656 	  if (earliest)
4657 	    *earliest = prev;
4658 	}
4659 #endif
4660 
4661       /* If this is a COMPARE, pick up the two things being compared.  */
4662       if (GET_CODE (op0) == COMPARE)
4663 	{
4664 	  op1 = XEXP (op0, 1);
4665 	  op0 = XEXP (op0, 0);
4666 	  continue;
4667 	}
4668       else if (!REG_P (op0))
4669 	break;
4670 
4671       /* Go back to the previous insn.  Stop if it is not an INSN.  We also
4672 	 stop if it isn't a single set or if it has a REG_INC note because
4673 	 we don't want to bother dealing with it.  */
4674 
4675       if ((prev = prev_nonnote_insn (prev)) == 0
4676 	  || !NONJUMP_INSN_P (prev)
4677 	  || FIND_REG_INC_NOTE (prev, NULL_RTX))
4678 	break;
4679 
4680       set = set_of (op0, prev);
4681 
4682       if (set
4683 	  && (GET_CODE (set) != SET
4684 	      || !rtx_equal_p (SET_DEST (set), op0)))
4685 	break;
4686 
4687       /* If this is setting OP0, get what it sets it to if it looks
4688 	 relevant.  */
4689       if (set)
4690 	{
4691 	  enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4692 #ifdef FLOAT_STORE_FLAG_VALUE
4693 	  REAL_VALUE_TYPE fsfv;
4694 #endif
4695 
4696 	  /* ??? We may not combine comparisons done in a CCmode with
4697 	     comparisons not done in a CCmode.  This is to aid targets
4698 	     like Alpha that have an IEEE compliant EQ instruction, and
4699 	     a non-IEEE compliant BEQ instruction.  The use of CCmode is
4700 	     actually artificial, simply to prevent the combination, but
4701 	     should not affect other platforms.
4702 
4703 	     However, we must allow VOIDmode comparisons to match either
4704 	     CCmode or non-CCmode comparison, because some ports have
4705 	     modeless comparisons inside branch patterns.
4706 
4707 	     ??? This mode check should perhaps look more like the mode check
4708 	     in simplify_comparison in combine.  */
4709 
4710 	  if ((GET_CODE (SET_SRC (set)) == COMPARE
4711 	       || (((code == NE
4712 		     || (code == LT
4713 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4714 			 && (GET_MODE_BITSIZE (inner_mode)
4715 			     <= HOST_BITS_PER_WIDE_INT)
4716 			 && (STORE_FLAG_VALUE
4717 			     & ((HOST_WIDE_INT) 1
4718 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4719 #ifdef FLOAT_STORE_FLAG_VALUE
4720 		     || (code == LT
4721 			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4722 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4723 			     REAL_VALUE_NEGATIVE (fsfv)))
4724 #endif
4725 		     ))
4726 		   && COMPARISON_P (SET_SRC (set))))
4727 	      && (((GET_MODE_CLASS (mode) == MODE_CC)
4728 		   == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4729 		  || mode == VOIDmode || inner_mode == VOIDmode))
4730 	    x = SET_SRC (set);
4731 	  else if (((code == EQ
4732 		     || (code == GE
4733 			 && (GET_MODE_BITSIZE (inner_mode)
4734 			     <= HOST_BITS_PER_WIDE_INT)
4735 			 && GET_MODE_CLASS (inner_mode) == MODE_INT
4736 			 && (STORE_FLAG_VALUE
4737 			     & ((HOST_WIDE_INT) 1
4738 				<< (GET_MODE_BITSIZE (inner_mode) - 1))))
4739 #ifdef FLOAT_STORE_FLAG_VALUE
4740 		     || (code == GE
4741 			 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
4742 			 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4743 			     REAL_VALUE_NEGATIVE (fsfv)))
4744 #endif
4745 		     ))
4746 		   && COMPARISON_P (SET_SRC (set))
4747 		   && (((GET_MODE_CLASS (mode) == MODE_CC)
4748 			== (GET_MODE_CLASS (inner_mode) == MODE_CC))
4749 		       || mode == VOIDmode || inner_mode == VOIDmode))
4750 
4751 	    {
4752 	      reverse_code = 1;
4753 	      x = SET_SRC (set);
4754 	    }
4755 	  else
4756 	    break;
4757 	}
4758 
4759       else if (reg_set_p (op0, prev))
4760 	/* If this sets OP0, but not directly, we have to give up.  */
4761 	break;
4762 
4763       if (x)
4764 	{
4765 	  /* If the caller is expecting the condition to be valid at INSN,
4766 	     make sure X doesn't change before INSN.  */
4767 	  if (valid_at_insn_p)
4768 	    if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4769 	      break;
4770 	  if (COMPARISON_P (x))
4771 	    code = GET_CODE (x);
4772 	  if (reverse_code)
4773 	    {
4774 	      code = reversed_comparison_code (x, prev);
4775 	      if (code == UNKNOWN)
4776 		return 0;
4777 	      reverse_code = 0;
4778 	    }
4779 
4780 	  op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4781 	  if (earliest)
4782 	    *earliest = prev;
4783 	}
4784     }
4785 
4786   /* If constant is first, put it last.  */
4787   if (CONSTANT_P (op0))
4788     code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4789 
4790   /* If OP0 is the result of a comparison, we weren't able to find what
4791      was really being compared, so fail.  */
4792   if (!allow_cc_mode
4793       && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4794     return 0;
4795 
4796   /* Canonicalize any ordered comparison with integers involving equality
4797      if we can do computations in the relevant mode and we do not
4798      overflow.  */
4799 
4800   if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4801       && GET_CODE (op1) == CONST_INT
4802       && GET_MODE (op0) != VOIDmode
4803       && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4804     {
4805       HOST_WIDE_INT const_val = INTVAL (op1);
4806       unsigned HOST_WIDE_INT uconst_val = const_val;
4807       unsigned HOST_WIDE_INT max_val
4808 	= (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4809 
4810       switch (code)
4811 	{
4812 	case LE:
4813 	  if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4814 	    code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4815 	  break;
4816 
4817 	/* When cross-compiling, const_val might be sign-extended from
4818 	   BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4819 	case GE:
4820 	  if ((HOST_WIDE_INT) (const_val & max_val)
4821 	      != (((HOST_WIDE_INT) 1
4822 		   << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4823 	    code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4824 	  break;
4825 
4826 	case LEU:
4827 	  if (uconst_val < max_val)
4828 	    code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4829 	  break;
4830 
4831 	case GEU:
4832 	  if (uconst_val != 0)
4833 	    code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4834 	  break;
4835 
4836 	default:
4837 	  break;
4838 	}
4839     }
4840 
4841   /* Never return CC0; return zero instead.  */
4842   if (CC0_P (op0))
4843     return 0;
4844 
4845   return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4846 }
4847 
4848 /* Given a jump insn JUMP, return the condition that will cause it to branch
4849    to its JUMP_LABEL.  If the condition cannot be understood, or is an
4850    inequality floating-point comparison which needs to be reversed, 0 will
4851    be returned.
4852 
4853    If EARLIEST is nonzero, it is a pointer to a place where the earliest
4854    insn used in locating the condition was found.  If a replacement test
4855    of the condition is desired, it should be placed in front of that
4856    insn and we will be sure that the inputs are still valid.  If EARLIEST
4857    is null, the returned condition will be valid at INSN.
4858 
4859    If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4860    compare CC mode register.
4861 
4862    VALID_AT_INSN_P is the same as for canonicalize_condition.  */
4863 
4864 rtx
get_condition(rtx jump,rtx * earliest,int allow_cc_mode,int valid_at_insn_p)4865 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4866 {
4867   rtx cond;
4868   int reverse;
4869   rtx set;
4870 
4871   /* If this is not a standard conditional jump, we can't parse it.  */
4872   if (!JUMP_P (jump)
4873       || ! any_condjump_p (jump))
4874     return 0;
4875   set = pc_set (jump);
4876 
4877   cond = XEXP (SET_SRC (set), 0);
4878 
4879   /* If this branches to JUMP_LABEL when the condition is false, reverse
4880      the condition.  */
4881   reverse
4882     = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4883       && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4884 
4885   return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4886 				 allow_cc_mode, valid_at_insn_p);
4887 }
4888 
4889 
4890 /* Initialize non_rtx_starting_operands, which is used to speed up
4891    for_each_rtx.  */
4892 void
init_rtlanal(void)4893 init_rtlanal (void)
4894 {
4895   int i;
4896   for (i = 0; i < NUM_RTX_CODE; i++)
4897     {
4898       const char *format = GET_RTX_FORMAT (i);
4899       const char *first = strpbrk (format, "eEV");
4900       non_rtx_starting_operands[i] = first ? first - format : -1;
4901     }
4902 }
4903