1 /* Double-precision 2^x function.
2    Copyright (c) 2018 Arm Ltd.  All rights reserved.
3 
4    SPDX-License-Identifier: BSD-3-Clause
5 
6    Redistribution and use in source and binary forms, with or without
7    modification, are permitted provided that the following conditions
8    are met:
9    1. Redistributions of source code must retain the above copyright
10       notice, this list of conditions and the following disclaimer.
11    2. Redistributions in binary form must reproduce the above copyright
12       notice, this list of conditions and the following disclaimer in the
13       documentation and/or other materials provided with the distribution.
14    3. The name of the company may not be used to endorse or promote
15       products derived from this software without specific prior written
16       permission.
17 
18    THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
19    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21    IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23    TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
28 
29 #include "fdlibm.h"
30 #if !__OBSOLETE_MATH
31 
32 #include <math.h>
33 #include <stdint.h>
34 #include "math_config.h"
35 
36 #define N (1 << EXP_TABLE_BITS)
37 #define Shift __exp_data.exp2_shift
38 #define T __exp_data.tab
39 #define C1 __exp_data.exp2_poly[0]
40 #define C2 __exp_data.exp2_poly[1]
41 #define C3 __exp_data.exp2_poly[2]
42 #define C4 __exp_data.exp2_poly[3]
43 #define C5 __exp_data.exp2_poly[4]
44 #define C6 __exp_data.exp2_poly[5]
45 
46 /* Handle cases that may overflow or underflow when computing the result that
47    is scale*(1+TMP) without intermediate rounding.  The bit representation of
48    scale is in SBITS, however it has a computed exponent that may have
49    overflown into the sign bit so that needs to be adjusted before using it as
50    a double.  (int32_t)KI is the k used in the argument reduction and exponent
51    adjustment of scale, positive k here means the result may overflow and
52    negative k means the result may underflow.  */
53 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)54 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
55 {
56   double_t scale, y;
57 
58   if ((ki & 0x80000000) == 0)
59     {
60       /* k > 0, the exponent of scale might have overflowed by 1.  */
61       sbits -= 1ull << 52;
62       scale = asdouble (sbits);
63       y = 2 * (scale + scale * tmp);
64       return check_oflow (y);
65     }
66   /* k < 0, need special care in the subnormal range.  */
67   sbits += 1022ull << 52;
68   scale = asdouble (sbits);
69   y = scale + scale * tmp;
70   if (y < 1.0)
71     {
72       /* Round y to the right precision before scaling it into the subnormal
73 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
74 	 E is the worst-case ulp error outside the subnormal range.  So this
75 	 is only useful if the goal is better than 1 ulp worst-case error.  */
76       double_t hi, lo;
77       lo = scale - y + scale * tmp;
78       hi = 1.0 + y;
79       lo = 1.0 - hi + y + lo;
80       y = eval_as_double (hi + lo) - 1.0;
81       /* Avoid -0.0 with downward rounding.  */
82       if (WANT_ROUNDING && y == 0.0)
83 	y = 0.0;
84       /* The underflow exception needs to be signaled explicitly.  */
85       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
86     }
87   y = 0x1p-1022 * y;
88   return check_uflow (y);
89 }
90 
91 /* Top 12 bits of a double (sign and exponent bits).  */
92 static inline uint32_t
top12(double x)93 top12 (double x)
94 {
95   return asuint64 (x) >> 52;
96 }
97 
98 double
exp2(double x)99 exp2 (double x)
100 {
101   uint32_t abstop;
102   uint64_t ki, idx, top, sbits;
103   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
104   double_t kd, r, r2, scale, tail, tmp;
105 
106   abstop = top12 (x) & 0x7ff;
107   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
108     {
109       if (abstop - top12 (0x1p-54) >= 0x80000000)
110 	/* Avoid spurious underflow for tiny x.  */
111 	/* Note: 0 is common input.  */
112 	return WANT_ROUNDING ? 1.0 + x : 1.0;
113       if (abstop >= top12 (1024.0))
114 	{
115 	  if (asuint64 (x) == asuint64 (-INFINITY))
116 	    return 0.0;
117 	  if (abstop >= top12 (INFINITY))
118 	    return 1.0 + x;
119 	  if (!(asuint64 (x) >> 63))
120 	    return __math_oflow (0);
121 	  else if (asuint64 (x) >= asuint64 (-1075.0))
122 	    return __math_uflow (0);
123 	}
124       if (2 * asuint64 (x) > 2 * asuint64 (928.0))
125 	/* Large x is special cased below.  */
126 	abstop = 0;
127     }
128 
129   /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)].  */
130   /* x = k/N + r, with int k and r in [-1/2N, 1/2N].  */
131   kd = eval_as_double (x + Shift);
132   ki = asuint64 (kd); /* k.  */
133   kd -= Shift; /* k/N for int k.  */
134   r = x - kd;
135   /* 2^(k/N) ~= scale * (1 + tail).  */
136   idx = 2 * (ki % N);
137   top = ki << (52 - EXP_TABLE_BITS);
138   tail = asdouble (T[idx]);
139   /* This is only a valid scale when -1023*N < k < 1024*N.  */
140   sbits = T[idx + 1] + top;
141   /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1).  */
142   /* Evaluation is optimized assuming superscalar pipelined execution.  */
143   r2 = r * r;
144   /* Without fma the worst case error is 0.5/N ulp larger.  */
145   /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp.  */
146 #if EXP2_POLY_ORDER == 4
147   tmp = tail + r * C1 + r2 * C2 + r * r2 * (C3 + r * C4);
148 #elif EXP2_POLY_ORDER == 5
149   tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
150 #elif EXP2_POLY_ORDER == 6
151   tmp = tail + r * C1 + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
152 #endif
153   if (unlikely (abstop == 0))
154     return specialcase (tmp, sbits, ki);
155   scale = asdouble (sbits);
156   /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
157      is no spurious underflow here even without fma.  */
158   return scale + scale * tmp;
159 }
160 #endif
161