1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <errno.h>
12 #include <stdint.h>
13 #include <string.h>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "lldb/Core/EmulateInstruction.h"
23 #include "lldb/Core/ModuleSpec.h"
24 #include "lldb/Host/Host.h"
25 #include "lldb/Host/HostProcess.h"
26 #include "lldb/Host/ProcessLaunchInfo.h"
27 #include "lldb/Host/PseudoTerminal.h"
28 #include "lldb/Host/ThreadLauncher.h"
29 #include "lldb/Host/common/NativeRegisterContext.h"
30 #include "lldb/Host/linux/Ptrace.h"
31 #include "lldb/Host/linux/Uio.h"
32 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/Target.h"
36 #include "lldb/Utility/LLDBAssert.h"
37 #include "lldb/Utility/RegisterValue.h"
38 #include "lldb/Utility/State.h"
39 #include "lldb/Utility/Status.h"
40 #include "lldb/Utility/StringExtractor.h"
41 #include "llvm/Support/Errno.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Threading.h"
44 
45 #include "NativeThreadLinux.h"
46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
47 #include "Plugins/Process/Utility/LinuxProcMaps.h"
48 #include "Procfs.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 // Support hardware breakpoints in case it has not been defined
58 #ifndef TRAP_HWBKPT
59 #define TRAP_HWBKPT 4
60 #endif
61 
62 using namespace lldb;
63 using namespace lldb_private;
64 using namespace lldb_private::process_linux;
65 using namespace llvm;
66 
67 // Private bits we only need internally.
68 
ProcessVmReadvSupported()69 static bool ProcessVmReadvSupported() {
70   static bool is_supported;
71   static llvm::once_flag flag;
72 
73   llvm::call_once(flag, [] {
74     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
75 
76     uint32_t source = 0x47424742;
77     uint32_t dest = 0;
78 
79     struct iovec local, remote;
80     remote.iov_base = &source;
81     local.iov_base = &dest;
82     remote.iov_len = local.iov_len = sizeof source;
83 
84     // We shall try if cross-process-memory reads work by attempting to read a
85     // value from our own process.
86     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
87     is_supported = (res == sizeof(source) && source == dest);
88     if (is_supported)
89       LLDB_LOG(log,
90                "Detected kernel support for process_vm_readv syscall. "
91                "Fast memory reads enabled.");
92     else
93       LLDB_LOG(log,
94                "syscall process_vm_readv failed (error: {0}). Fast memory "
95                "reads disabled.",
96                llvm::sys::StrError());
97   });
98 
99   return is_supported;
100 }
101 
102 namespace {
MaybeLogLaunchInfo(const ProcessLaunchInfo & info)103 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
104   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
105   if (!log)
106     return;
107 
108   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
109     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
110   else
111     LLDB_LOG(log, "leaving STDIN as is");
112 
113   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
114     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
115   else
116     LLDB_LOG(log, "leaving STDOUT as is");
117 
118   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
119     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
120   else
121     LLDB_LOG(log, "leaving STDERR as is");
122 
123   int i = 0;
124   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
125        ++args, ++i)
126     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
127 }
128 
DisplayBytes(StreamString & s,void * bytes,uint32_t count)129 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
130   uint8_t *ptr = (uint8_t *)bytes;
131   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
132   for (uint32_t i = 0; i < loop_count; i++) {
133     s.Printf("[%x]", *ptr);
134     ptr++;
135   }
136 }
137 
PtraceDisplayBytes(int & req,void * data,size_t data_size)138 void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
139   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
140   if (!log)
141     return;
142   StreamString buf;
143 
144   switch (req) {
145   case PTRACE_POKETEXT: {
146     DisplayBytes(buf, &data, 8);
147     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
148     break;
149   }
150   case PTRACE_POKEDATA: {
151     DisplayBytes(buf, &data, 8);
152     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
153     break;
154   }
155   case PTRACE_POKEUSER: {
156     DisplayBytes(buf, &data, 8);
157     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
158     break;
159   }
160   case PTRACE_SETREGS: {
161     DisplayBytes(buf, data, data_size);
162     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
163     break;
164   }
165   case PTRACE_SETFPREGS: {
166     DisplayBytes(buf, data, data_size);
167     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
168     break;
169   }
170   case PTRACE_SETSIGINFO: {
171     DisplayBytes(buf, data, sizeof(siginfo_t));
172     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
173     break;
174   }
175   case PTRACE_SETREGSET: {
176     // Extract iov_base from data, which is a pointer to the struct iovec
177     DisplayBytes(buf, *(void **)data, data_size);
178     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
179     break;
180   }
181   default: {}
182   }
183 }
184 
185 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
186 static_assert(sizeof(long) >= k_ptrace_word_size,
187               "Size of long must be larger than ptrace word size");
188 } // end of anonymous namespace
189 
190 // Simple helper function to ensure flags are enabled on the given file
191 // descriptor.
EnsureFDFlags(int fd,int flags)192 static Status EnsureFDFlags(int fd, int flags) {
193   Status error;
194 
195   int status = fcntl(fd, F_GETFL);
196   if (status == -1) {
197     error.SetErrorToErrno();
198     return error;
199   }
200 
201   if (fcntl(fd, F_SETFL, status | flags) == -1) {
202     error.SetErrorToErrno();
203     return error;
204   }
205 
206   return error;
207 }
208 
209 // Public Static Methods
210 
211 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Launch(ProcessLaunchInfo & launch_info,NativeDelegate & native_delegate,MainLoop & mainloop) const212 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
213                                     NativeDelegate &native_delegate,
214                                     MainLoop &mainloop) const {
215   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
216 
217   MaybeLogLaunchInfo(launch_info);
218 
219   Status status;
220   ::pid_t pid = ProcessLauncherPosixFork()
221                     .LaunchProcess(launch_info, status)
222                     .GetProcessId();
223   LLDB_LOG(log, "pid = {0:x}", pid);
224   if (status.Fail()) {
225     LLDB_LOG(log, "failed to launch process: {0}", status);
226     return status.ToError();
227   }
228 
229   // Wait for the child process to trap on its call to execve.
230   int wstatus;
231   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
232   assert(wpid == pid);
233   (void)wpid;
234   if (!WIFSTOPPED(wstatus)) {
235     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
236              WaitStatus::Decode(wstatus));
237     return llvm::make_error<StringError>("Could not sync with inferior process",
238                                          llvm::inconvertibleErrorCode());
239   }
240   LLDB_LOG(log, "inferior started, now in stopped state");
241 
242   ProcessInstanceInfo Info;
243   if (!Host::GetProcessInfo(pid, Info)) {
244     return llvm::make_error<StringError>("Cannot get process architecture",
245                                          llvm::inconvertibleErrorCode());
246   }
247 
248   // Set the architecture to the exe architecture.
249   LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
250            Info.GetArchitecture().GetArchitectureName());
251 
252   status = SetDefaultPtraceOpts(pid);
253   if (status.Fail()) {
254     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
255     return status.ToError();
256   }
257 
258   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
259       pid, launch_info.GetPTY().ReleaseMasterFileDescriptor(), native_delegate,
260       Info.GetArchitecture(), mainloop, {pid}));
261 }
262 
263 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Attach(lldb::pid_t pid,NativeProcessProtocol::NativeDelegate & native_delegate,MainLoop & mainloop) const264 NativeProcessLinux::Factory::Attach(
265     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
266     MainLoop &mainloop) const {
267   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
268   LLDB_LOG(log, "pid = {0:x}", pid);
269 
270   // Retrieve the architecture for the running process.
271   ProcessInstanceInfo Info;
272   if (!Host::GetProcessInfo(pid, Info)) {
273     return llvm::make_error<StringError>("Cannot get process architecture",
274                                          llvm::inconvertibleErrorCode());
275   }
276 
277   auto tids_or = NativeProcessLinux::Attach(pid);
278   if (!tids_or)
279     return tids_or.takeError();
280 
281   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
282       pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
283 }
284 
285 // Public Instance Methods
286 
NativeProcessLinux(::pid_t pid,int terminal_fd,NativeDelegate & delegate,const ArchSpec & arch,MainLoop & mainloop,llvm::ArrayRef<::pid_t> tids)287 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
288                                        NativeDelegate &delegate,
289                                        const ArchSpec &arch, MainLoop &mainloop,
290                                        llvm::ArrayRef<::pid_t> tids)
291     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch) {
292   if (m_terminal_fd != -1) {
293     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
294     assert(status.Success());
295   }
296 
297   Status status;
298   m_sigchld_handle = mainloop.RegisterSignal(
299       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
300   assert(m_sigchld_handle && status.Success());
301 
302   for (const auto &tid : tids) {
303     NativeThreadLinux &thread = AddThread(tid);
304     thread.SetStoppedBySignal(SIGSTOP);
305     ThreadWasCreated(thread);
306   }
307 
308   // Let our process instance know the thread has stopped.
309   SetCurrentThreadID(tids[0]);
310   SetState(StateType::eStateStopped, false);
311 
312   // Proccess any signals we received before installing our handler
313   SigchldHandler();
314 }
315 
Attach(::pid_t pid)316 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
317   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
318 
319   Status status;
320   // Use a map to keep track of the threads which we have attached/need to
321   // attach.
322   Host::TidMap tids_to_attach;
323   while (Host::FindProcessThreads(pid, tids_to_attach)) {
324     for (Host::TidMap::iterator it = tids_to_attach.begin();
325          it != tids_to_attach.end();) {
326       if (it->second == false) {
327         lldb::tid_t tid = it->first;
328 
329         // Attach to the requested process.
330         // An attach will cause the thread to stop with a SIGSTOP.
331         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
332           // No such thread. The thread may have exited. More error handling
333           // may be needed.
334           if (status.GetError() == ESRCH) {
335             it = tids_to_attach.erase(it);
336             continue;
337           }
338           return status.ToError();
339         }
340 
341         int wpid =
342             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
343         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
344         // this point we should have a thread stopped if waitpid succeeds.
345         if (wpid < 0) {
346           // No such thread. The thread may have exited. More error handling
347           // may be needed.
348           if (errno == ESRCH) {
349             it = tids_to_attach.erase(it);
350             continue;
351           }
352           return llvm::errorCodeToError(
353               std::error_code(errno, std::generic_category()));
354         }
355 
356         if ((status = SetDefaultPtraceOpts(tid)).Fail())
357           return status.ToError();
358 
359         LLDB_LOG(log, "adding tid = {0}", tid);
360         it->second = true;
361       }
362 
363       // move the loop forward
364       ++it;
365     }
366   }
367 
368   size_t tid_count = tids_to_attach.size();
369   if (tid_count == 0)
370     return llvm::make_error<StringError>("No such process",
371                                          llvm::inconvertibleErrorCode());
372 
373   std::vector<::pid_t> tids;
374   tids.reserve(tid_count);
375   for (const auto &p : tids_to_attach)
376     tids.push_back(p.first);
377   return std::move(tids);
378 }
379 
SetDefaultPtraceOpts(lldb::pid_t pid)380 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
381   long ptrace_opts = 0;
382 
383   // Have the child raise an event on exit.  This is used to keep the child in
384   // limbo until it is destroyed.
385   ptrace_opts |= PTRACE_O_TRACEEXIT;
386 
387   // Have the tracer trace threads which spawn in the inferior process.
388   // TODO: if we want to support tracing the inferiors' child, add the
389   // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
390   ptrace_opts |= PTRACE_O_TRACECLONE;
391 
392   // Have the tracer notify us before execve returns (needed to disable legacy
393   // SIGTRAP generation)
394   ptrace_opts |= PTRACE_O_TRACEEXEC;
395 
396   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
397 }
398 
399 // Handles all waitpid events from the inferior process.
MonitorCallback(lldb::pid_t pid,bool exited,WaitStatus status)400 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
401                                          WaitStatus status) {
402   Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
403 
404   // Certain activities differ based on whether the pid is the tid of the main
405   // thread.
406   const bool is_main_thread = (pid == GetID());
407 
408   // Handle when the thread exits.
409   if (exited) {
410     LLDB_LOG(log,
411              "got exit status({0}) , tid = {1} ({2} main thread), process "
412              "state = {3}",
413              status, pid, is_main_thread ? "is" : "is not", GetState());
414 
415     // This is a thread that exited.  Ensure we're not tracking it anymore.
416     StopTrackingThread(pid);
417 
418     if (is_main_thread) {
419       // The main thread exited.  We're done monitoring.  Report to delegate.
420       SetExitStatus(status, true);
421 
422       // Notify delegate that our process has exited.
423       SetState(StateType::eStateExited, true);
424     }
425     return;
426   }
427 
428   siginfo_t info;
429   const auto info_err = GetSignalInfo(pid, &info);
430   auto thread_sp = GetThreadByID(pid);
431 
432   if (!thread_sp) {
433     // Normally, the only situation when we cannot find the thread is if we
434     // have just received a new thread notification. This is indicated by
435     // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
436     LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
437 
438     if (info_err.Fail()) {
439       LLDB_LOG(log,
440                "(tid {0}) GetSignalInfo failed ({1}). "
441                "Ingoring this notification.",
442                pid, info_err);
443       return;
444     }
445 
446     LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
447              info.si_pid);
448 
449     NativeThreadLinux &thread = AddThread(pid);
450 
451     // Resume the newly created thread.
452     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
453     ThreadWasCreated(thread);
454     return;
455   }
456 
457   // Get details on the signal raised.
458   if (info_err.Success()) {
459     // We have retrieved the signal info.  Dispatch appropriately.
460     if (info.si_signo == SIGTRAP)
461       MonitorSIGTRAP(info, *thread_sp);
462     else
463       MonitorSignal(info, *thread_sp, exited);
464   } else {
465     if (info_err.GetError() == EINVAL) {
466       // This is a group stop reception for this tid. We can reach here if we
467       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468       // triggering the group-stop mechanism. Normally receiving these would
469       // stop the process, pending a SIGCONT. Simulating this state in a
470       // debugger is hard and is generally not needed (one use case is
471       // debugging background task being managed by a shell). For general use,
472       // it is sufficient to stop the process in a signal-delivery stop which
473       // happens before the group stop. This done by MonitorSignal and works
474       // correctly for all signals.
475       LLDB_LOG(log,
476                "received a group stop for pid {0} tid {1}. Transparent "
477                "handling of group stops not supported, resuming the "
478                "thread.",
479                GetID(), pid);
480       ResumeThread(*thread_sp, thread_sp->GetState(),
481                    LLDB_INVALID_SIGNAL_NUMBER);
482     } else {
483       // ptrace(GETSIGINFO) failed (but not due to group-stop).
484 
485       // A return value of ESRCH means the thread/process is no longer on the
486       // system, so it was killed somehow outside of our control.  Either way,
487       // we can't do anything with it anymore.
488 
489       // Stop tracking the metadata for the thread since it's entirely off the
490       // system now.
491       const bool thread_found = StopTrackingThread(pid);
492 
493       LLDB_LOG(log,
494                "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
495                "status = {3}, main_thread = {4}, thread_found: {5}",
496                info_err, pid, status, status, is_main_thread, thread_found);
497 
498       if (is_main_thread) {
499         // Notify the delegate - our process is not available but appears to
500         // have been killed outside our control.  Is eStateExited the right
501         // exit state in this case?
502         SetExitStatus(status, true);
503         SetState(StateType::eStateExited, true);
504       } else {
505         // This thread was pulled out from underneath us.  Anything to do here?
506         // Do we want to do an all stop?
507         LLDB_LOG(log,
508                  "pid {0} tid {1} non-main thread exit occurred, didn't "
509                  "tell delegate anything since thread disappeared out "
510                  "from underneath us",
511                  GetID(), pid);
512       }
513     }
514   }
515 }
516 
WaitForNewThread(::pid_t tid)517 void NativeProcessLinux::WaitForNewThread(::pid_t tid) {
518   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
519 
520   if (GetThreadByID(tid)) {
521     // We are already tracking the thread - we got the event on the new thread
522     // (see MonitorSignal) before this one. We are done.
523     return;
524   }
525 
526   // The thread is not tracked yet, let's wait for it to appear.
527   int status = -1;
528   LLDB_LOG(log,
529            "received thread creation event for tid {0}. tid not tracked "
530            "yet, waiting for thread to appear...",
531            tid);
532   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, &status, __WALL);
533   // Since we are waiting on a specific tid, this must be the creation event.
534   // But let's do some checks just in case.
535   if (wait_pid != tid) {
536     LLDB_LOG(log,
537              "waiting for tid {0} failed. Assuming the thread has "
538              "disappeared in the meantime",
539              tid);
540     // The only way I know of this could happen is if the whole process was
541     // SIGKILLed in the mean time. In any case, we can't do anything about that
542     // now.
543     return;
544   }
545   if (WIFEXITED(status)) {
546     LLDB_LOG(log,
547              "waiting for tid {0} returned an 'exited' event. Not "
548              "tracking the thread.",
549              tid);
550     // Also a very improbable event.
551     return;
552   }
553 
554   LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid);
555   NativeThreadLinux &new_thread = AddThread(tid);
556 
557   ResumeThread(new_thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
558   ThreadWasCreated(new_thread);
559 }
560 
MonitorSIGTRAP(const siginfo_t & info,NativeThreadLinux & thread)561 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
562                                         NativeThreadLinux &thread) {
563   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
564   const bool is_main_thread = (thread.GetID() == GetID());
565 
566   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
567 
568   switch (info.si_code) {
569   // TODO: these two cases are required if we want to support tracing of the
570   // inferiors' children.  We'd need this to debug a monitor. case (SIGTRAP |
571   // (PTRACE_EVENT_FORK << 8)): case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
572 
573   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
574     // This is the notification on the parent thread which informs us of new
575     // thread creation. We don't want to do anything with the parent thread so
576     // we just resume it. In case we want to implement "break on thread
577     // creation" functionality, we would need to stop here.
578 
579     unsigned long event_message = 0;
580     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
581       LLDB_LOG(log,
582                "pid {0} received thread creation event but "
583                "GetEventMessage failed so we don't know the new tid",
584                thread.GetID());
585     } else
586       WaitForNewThread(event_message);
587 
588     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
589     break;
590   }
591 
592   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
593     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
594 
595     // Exec clears any pending notifications.
596     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
597 
598     // Remove all but the main thread here.  Linux fork creates a new process
599     // which only copies the main thread.
600     LLDB_LOG(log, "exec received, stop tracking all but main thread");
601 
602     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
603       return t->GetID() != GetID();
604     });
605     assert(m_threads.size() == 1);
606     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
607 
608     SetCurrentThreadID(main_thread->GetID());
609     main_thread->SetStoppedByExec();
610 
611     // Tell coordinator about about the "new" (since exec) stopped main thread.
612     ThreadWasCreated(*main_thread);
613 
614     // Let our delegate know we have just exec'd.
615     NotifyDidExec();
616 
617     // Let the process know we're stopped.
618     StopRunningThreads(main_thread->GetID());
619 
620     break;
621   }
622 
623   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
624     // The inferior process or one of its threads is about to exit. We don't
625     // want to do anything with the thread so we just resume it. In case we
626     // want to implement "break on thread exit" functionality, we would need to
627     // stop here.
628 
629     unsigned long data = 0;
630     if (GetEventMessage(thread.GetID(), &data).Fail())
631       data = -1;
632 
633     LLDB_LOG(log,
634              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
635              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
636              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
637              is_main_thread);
638 
639 
640     StateType state = thread.GetState();
641     if (!StateIsRunningState(state)) {
642       // Due to a kernel bug, we may sometimes get this stop after the inferior
643       // gets a SIGKILL. This confuses our state tracking logic in
644       // ResumeThread(), since normally, we should not be receiving any ptrace
645       // events while the inferior is stopped. This makes sure that the
646       // inferior is resumed and exits normally.
647       state = eStateRunning;
648     }
649     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
650 
651     break;
652   }
653 
654   case 0:
655   case TRAP_TRACE:  // We receive this on single stepping.
656   case TRAP_HWBKPT: // We receive this on watchpoint hit
657   {
658     // If a watchpoint was hit, report it
659     uint32_t wp_index;
660     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
661         wp_index, (uintptr_t)info.si_addr);
662     if (error.Fail())
663       LLDB_LOG(log,
664                "received error while checking for watchpoint hits, pid = "
665                "{0}, error = {1}",
666                thread.GetID(), error);
667     if (wp_index != LLDB_INVALID_INDEX32) {
668       MonitorWatchpoint(thread, wp_index);
669       break;
670     }
671 
672     // If a breakpoint was hit, report it
673     uint32_t bp_index;
674     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
675         bp_index, (uintptr_t)info.si_addr);
676     if (error.Fail())
677       LLDB_LOG(log, "received error while checking for hardware "
678                     "breakpoint hits, pid = {0}, error = {1}",
679                thread.GetID(), error);
680     if (bp_index != LLDB_INVALID_INDEX32) {
681       MonitorBreakpoint(thread);
682       break;
683     }
684 
685     // Otherwise, report step over
686     MonitorTrace(thread);
687     break;
688   }
689 
690   case SI_KERNEL:
691 #if defined __mips__
692     // For mips there is no special signal for watchpoint So we check for
693     // watchpoint in kernel trap
694     {
695       // If a watchpoint was hit, report it
696       uint32_t wp_index;
697       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
698           wp_index, LLDB_INVALID_ADDRESS);
699       if (error.Fail())
700         LLDB_LOG(log,
701                  "received error while checking for watchpoint hits, pid = "
702                  "{0}, error = {1}",
703                  thread.GetID(), error);
704       if (wp_index != LLDB_INVALID_INDEX32) {
705         MonitorWatchpoint(thread, wp_index);
706         break;
707       }
708     }
709 // NO BREAK
710 #endif
711   case TRAP_BRKPT:
712     MonitorBreakpoint(thread);
713     break;
714 
715   case SIGTRAP:
716   case (SIGTRAP | 0x80):
717     LLDB_LOG(
718         log,
719         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
720         info.si_code, GetID(), thread.GetID());
721 
722     // Ignore these signals until we know more about them.
723     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
724     break;
725 
726   default:
727     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
728              info.si_code, GetID(), thread.GetID());
729     MonitorSignal(info, thread, false);
730     break;
731   }
732 }
733 
MonitorTrace(NativeThreadLinux & thread)734 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
735   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
736   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
737 
738   // This thread is currently stopped.
739   thread.SetStoppedByTrace();
740 
741   StopRunningThreads(thread.GetID());
742 }
743 
MonitorBreakpoint(NativeThreadLinux & thread)744 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
745   Log *log(
746       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
747   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
748 
749   // Mark the thread as stopped at breakpoint.
750   thread.SetStoppedByBreakpoint();
751   FixupBreakpointPCAsNeeded(thread);
752 
753   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
754       m_threads_stepping_with_breakpoint.end())
755     thread.SetStoppedByTrace();
756 
757   StopRunningThreads(thread.GetID());
758 }
759 
MonitorWatchpoint(NativeThreadLinux & thread,uint32_t wp_index)760 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
761                                            uint32_t wp_index) {
762   Log *log(
763       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
764   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
765            thread.GetID(), wp_index);
766 
767   // Mark the thread as stopped at watchpoint. The address is at
768   // (lldb::addr_t)info->si_addr if we need it.
769   thread.SetStoppedByWatchpoint(wp_index);
770 
771   // We need to tell all other running threads before we notify the delegate
772   // about this stop.
773   StopRunningThreads(thread.GetID());
774 }
775 
MonitorSignal(const siginfo_t & info,NativeThreadLinux & thread,bool exited)776 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
777                                        NativeThreadLinux &thread, bool exited) {
778   const int signo = info.si_signo;
779   const bool is_from_llgs = info.si_pid == getpid();
780 
781   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
782 
783   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
784   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
785   // or raise(3).  Similarly for tgkill(2) on Linux.
786   //
787   // IOW, user generated signals never generate what we consider to be a
788   // "crash".
789   //
790   // Similarly, ACK signals generated by this monitor.
791 
792   // Handle the signal.
793   LLDB_LOG(log,
794            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
795            "waitpid pid = {4})",
796            Host::GetSignalAsCString(signo), signo, info.si_code,
797            thread.GetID());
798 
799   // Check for thread stop notification.
800   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
801     // This is a tgkill()-based stop.
802     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
803 
804     // Check that we're not already marked with a stop reason. Note this thread
805     // really shouldn't already be marked as stopped - if we were, that would
806     // imply that the kernel signaled us with the thread stopping which we
807     // handled and marked as stopped, and that, without an intervening resume,
808     // we received another stop.  It is more likely that we are missing the
809     // marking of a run state somewhere if we find that the thread was marked
810     // as stopped.
811     const StateType thread_state = thread.GetState();
812     if (!StateIsStoppedState(thread_state, false)) {
813       // An inferior thread has stopped because of a SIGSTOP we have sent it.
814       // Generally, these are not important stops and we don't want to report
815       // them as they are just used to stop other threads when one thread (the
816       // one with the *real* stop reason) hits a breakpoint (watchpoint,
817       // etc...). However, in the case of an asynchronous Interrupt(), this
818       // *is* the real stop reason, so we leave the signal intact if this is
819       // the thread that was chosen as the triggering thread.
820       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
821         if (m_pending_notification_tid == thread.GetID())
822           thread.SetStoppedBySignal(SIGSTOP, &info);
823         else
824           thread.SetStoppedWithNoReason();
825 
826         SetCurrentThreadID(thread.GetID());
827         SignalIfAllThreadsStopped();
828       } else {
829         // We can end up here if stop was initiated by LLGS but by this time a
830         // thread stop has occurred - maybe initiated by another event.
831         Status error = ResumeThread(thread, thread.GetState(), 0);
832         if (error.Fail())
833           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
834                    error);
835       }
836     } else {
837       LLDB_LOG(log,
838                "pid {0} tid {1}, thread was already marked as a stopped "
839                "state (state={2}), leaving stop signal as is",
840                GetID(), thread.GetID(), thread_state);
841       SignalIfAllThreadsStopped();
842     }
843 
844     // Done handling.
845     return;
846   }
847 
848   // Check if debugger should stop at this signal or just ignore it and resume
849   // the inferior.
850   if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
851      ResumeThread(thread, thread.GetState(), signo);
852      return;
853   }
854 
855   // This thread is stopped.
856   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
857   thread.SetStoppedBySignal(signo, &info);
858 
859   // Send a stop to the debugger after we get all other threads to stop.
860   StopRunningThreads(thread.GetID());
861 }
862 
863 namespace {
864 
865 struct EmulatorBaton {
866   NativeProcessLinux &m_process;
867   NativeRegisterContext &m_reg_context;
868 
869   // eRegisterKindDWARF -> RegsiterValue
870   std::unordered_map<uint32_t, RegisterValue> m_register_values;
871 
EmulatorBaton__anon90e1bb2a0511::EmulatorBaton872   EmulatorBaton(NativeProcessLinux &process, NativeRegisterContext &reg_context)
873       : m_process(process), m_reg_context(reg_context) {}
874 };
875 
876 } // anonymous namespace
877 
ReadMemoryCallback(EmulateInstruction * instruction,void * baton,const EmulateInstruction::Context & context,lldb::addr_t addr,void * dst,size_t length)878 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton,
879                                  const EmulateInstruction::Context &context,
880                                  lldb::addr_t addr, void *dst, size_t length) {
881   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
882 
883   size_t bytes_read;
884   emulator_baton->m_process.ReadMemory(addr, dst, length, bytes_read);
885   return bytes_read;
886 }
887 
ReadRegisterCallback(EmulateInstruction * instruction,void * baton,const RegisterInfo * reg_info,RegisterValue & reg_value)888 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton,
889                                  const RegisterInfo *reg_info,
890                                  RegisterValue &reg_value) {
891   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
892 
893   auto it = emulator_baton->m_register_values.find(
894       reg_info->kinds[eRegisterKindDWARF]);
895   if (it != emulator_baton->m_register_values.end()) {
896     reg_value = it->second;
897     return true;
898   }
899 
900   // The emulator only fill in the dwarf regsiter numbers (and in some case the
901   // generic register numbers). Get the full register info from the register
902   // context based on the dwarf register numbers.
903   const RegisterInfo *full_reg_info =
904       emulator_baton->m_reg_context.GetRegisterInfo(
905           eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
906 
907   Status error =
908       emulator_baton->m_reg_context.ReadRegister(full_reg_info, reg_value);
909   if (error.Success())
910     return true;
911 
912   return false;
913 }
914 
WriteRegisterCallback(EmulateInstruction * instruction,void * baton,const EmulateInstruction::Context & context,const RegisterInfo * reg_info,const RegisterValue & reg_value)915 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton,
916                                   const EmulateInstruction::Context &context,
917                                   const RegisterInfo *reg_info,
918                                   const RegisterValue &reg_value) {
919   EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton);
920   emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] =
921       reg_value;
922   return true;
923 }
924 
WriteMemoryCallback(EmulateInstruction * instruction,void * baton,const EmulateInstruction::Context & context,lldb::addr_t addr,const void * dst,size_t length)925 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton,
926                                   const EmulateInstruction::Context &context,
927                                   lldb::addr_t addr, const void *dst,
928                                   size_t length) {
929   return length;
930 }
931 
ReadFlags(NativeRegisterContext & regsiter_context)932 static lldb::addr_t ReadFlags(NativeRegisterContext &regsiter_context) {
933   const RegisterInfo *flags_info = regsiter_context.GetRegisterInfo(
934       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
935   return regsiter_context.ReadRegisterAsUnsigned(flags_info,
936                                                  LLDB_INVALID_ADDRESS);
937 }
938 
939 Status
SetupSoftwareSingleStepping(NativeThreadLinux & thread)940 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) {
941   Status error;
942   NativeRegisterContext& register_context = thread.GetRegisterContext();
943 
944   std::unique_ptr<EmulateInstruction> emulator_up(
945       EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying,
946                                      nullptr));
947 
948   if (emulator_up == nullptr)
949     return Status("Instruction emulator not found!");
950 
951   EmulatorBaton baton(*this, register_context);
952   emulator_up->SetBaton(&baton);
953   emulator_up->SetReadMemCallback(&ReadMemoryCallback);
954   emulator_up->SetReadRegCallback(&ReadRegisterCallback);
955   emulator_up->SetWriteMemCallback(&WriteMemoryCallback);
956   emulator_up->SetWriteRegCallback(&WriteRegisterCallback);
957 
958   if (!emulator_up->ReadInstruction())
959     return Status("Read instruction failed!");
960 
961   bool emulation_result =
962       emulator_up->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
963 
964   const RegisterInfo *reg_info_pc = register_context.GetRegisterInfo(
965       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
966   const RegisterInfo *reg_info_flags = register_context.GetRegisterInfo(
967       eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
968 
969   auto pc_it =
970       baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
971   auto flags_it =
972       baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
973 
974   lldb::addr_t next_pc;
975   lldb::addr_t next_flags;
976   if (emulation_result) {
977     assert(pc_it != baton.m_register_values.end() &&
978            "Emulation was successfull but PC wasn't updated");
979     next_pc = pc_it->second.GetAsUInt64();
980 
981     if (flags_it != baton.m_register_values.end())
982       next_flags = flags_it->second.GetAsUInt64();
983     else
984       next_flags = ReadFlags(register_context);
985   } else if (pc_it == baton.m_register_values.end()) {
986     // Emulate instruction failed and it haven't changed PC. Advance PC with
987     // the size of the current opcode because the emulation of all
988     // PC modifying instruction should be successful. The failure most
989     // likely caused by a not supported instruction which don't modify PC.
990     next_pc = register_context.GetPC() + emulator_up->GetOpcode().GetByteSize();
991     next_flags = ReadFlags(register_context);
992   } else {
993     // The instruction emulation failed after it modified the PC. It is an
994     // unknown error where we can't continue because the next instruction is
995     // modifying the PC but we don't  know how.
996     return Status("Instruction emulation failed unexpectedly.");
997   }
998 
999   if (m_arch.GetMachine() == llvm::Triple::arm) {
1000     if (next_flags & 0x20) {
1001       // Thumb mode
1002       error = SetSoftwareBreakpoint(next_pc, 2);
1003     } else {
1004       // Arm mode
1005       error = SetSoftwareBreakpoint(next_pc, 4);
1006     }
1007   } else if (m_arch.IsMIPS() || m_arch.GetTriple().isPPC64())
1008     error = SetSoftwareBreakpoint(next_pc, 4);
1009   else {
1010     // No size hint is given for the next breakpoint
1011     error = SetSoftwareBreakpoint(next_pc, 0);
1012   }
1013 
1014   // If setting the breakpoint fails because next_pc is out of the address
1015   // space, ignore it and let the debugee segfault.
1016   if (error.GetError() == EIO || error.GetError() == EFAULT) {
1017     return Status();
1018   } else if (error.Fail())
1019     return error;
1020 
1021   m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1022 
1023   return Status();
1024 }
1025 
SupportHardwareSingleStepping() const1026 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
1027   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
1028     return false;
1029   return true;
1030 }
1031 
Resume(const ResumeActionList & resume_actions)1032 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
1033   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1034   LLDB_LOG(log, "pid {0}", GetID());
1035 
1036   bool software_single_step = !SupportHardwareSingleStepping();
1037 
1038   if (software_single_step) {
1039     for (const auto &thread : m_threads) {
1040       assert(thread && "thread list should not contain NULL threads");
1041 
1042       const ResumeAction *const action =
1043           resume_actions.GetActionForThread(thread->GetID(), true);
1044       if (action == nullptr)
1045         continue;
1046 
1047       if (action->state == eStateStepping) {
1048         Status error = SetupSoftwareSingleStepping(
1049             static_cast<NativeThreadLinux &>(*thread));
1050         if (error.Fail())
1051           return error;
1052       }
1053     }
1054   }
1055 
1056   for (const auto &thread : m_threads) {
1057     assert(thread && "thread list should not contain NULL threads");
1058 
1059     const ResumeAction *const action =
1060         resume_actions.GetActionForThread(thread->GetID(), true);
1061 
1062     if (action == nullptr) {
1063       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1064                thread->GetID());
1065       continue;
1066     }
1067 
1068     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1069              action->state, GetID(), thread->GetID());
1070 
1071     switch (action->state) {
1072     case eStateRunning:
1073     case eStateStepping: {
1074       // Run the thread, possibly feeding it the signal.
1075       const int signo = action->signal;
1076       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1077                    signo);
1078       break;
1079     }
1080 
1081     case eStateSuspended:
1082     case eStateStopped:
1083       llvm_unreachable("Unexpected state");
1084 
1085     default:
1086       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1087                     "for pid %" PRIu64 ", tid %" PRIu64,
1088                     __FUNCTION__, StateAsCString(action->state), GetID(),
1089                     thread->GetID());
1090     }
1091   }
1092 
1093   return Status();
1094 }
1095 
Halt()1096 Status NativeProcessLinux::Halt() {
1097   Status error;
1098 
1099   if (kill(GetID(), SIGSTOP) != 0)
1100     error.SetErrorToErrno();
1101 
1102   return error;
1103 }
1104 
Detach()1105 Status NativeProcessLinux::Detach() {
1106   Status error;
1107 
1108   // Stop monitoring the inferior.
1109   m_sigchld_handle.reset();
1110 
1111   // Tell ptrace to detach from the process.
1112   if (GetID() == LLDB_INVALID_PROCESS_ID)
1113     return error;
1114 
1115   for (const auto &thread : m_threads) {
1116     Status e = Detach(thread->GetID());
1117     if (e.Fail())
1118       error =
1119           e; // Save the error, but still attempt to detach from other threads.
1120   }
1121 
1122   m_processor_trace_monitor.clear();
1123   m_pt_proces_trace_id = LLDB_INVALID_UID;
1124 
1125   return error;
1126 }
1127 
Signal(int signo)1128 Status NativeProcessLinux::Signal(int signo) {
1129   Status error;
1130 
1131   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1132   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1133            Host::GetSignalAsCString(signo), GetID());
1134 
1135   if (kill(GetID(), signo))
1136     error.SetErrorToErrno();
1137 
1138   return error;
1139 }
1140 
Interrupt()1141 Status NativeProcessLinux::Interrupt() {
1142   // Pick a running thread (or if none, a not-dead stopped thread) as the
1143   // chosen thread that will be the stop-reason thread.
1144   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1145 
1146   NativeThreadProtocol *running_thread = nullptr;
1147   NativeThreadProtocol *stopped_thread = nullptr;
1148 
1149   LLDB_LOG(log, "selecting running thread for interrupt target");
1150   for (const auto &thread : m_threads) {
1151     // If we have a running or stepping thread, we'll call that the target of
1152     // the interrupt.
1153     const auto thread_state = thread->GetState();
1154     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1155       running_thread = thread.get();
1156       break;
1157     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1158       // Remember the first non-dead stopped thread.  We'll use that as a
1159       // backup if there are no running threads.
1160       stopped_thread = thread.get();
1161     }
1162   }
1163 
1164   if (!running_thread && !stopped_thread) {
1165     Status error("found no running/stepping or live stopped threads as target "
1166                  "for interrupt");
1167     LLDB_LOG(log, "skipping due to error: {0}", error);
1168 
1169     return error;
1170   }
1171 
1172   NativeThreadProtocol *deferred_signal_thread =
1173       running_thread ? running_thread : stopped_thread;
1174 
1175   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1176            running_thread ? "running" : "stopped",
1177            deferred_signal_thread->GetID());
1178 
1179   StopRunningThreads(deferred_signal_thread->GetID());
1180 
1181   return Status();
1182 }
1183 
Kill()1184 Status NativeProcessLinux::Kill() {
1185   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1186   LLDB_LOG(log, "pid {0}", GetID());
1187 
1188   Status error;
1189 
1190   switch (m_state) {
1191   case StateType::eStateInvalid:
1192   case StateType::eStateExited:
1193   case StateType::eStateCrashed:
1194   case StateType::eStateDetached:
1195   case StateType::eStateUnloaded:
1196     // Nothing to do - the process is already dead.
1197     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1198              m_state);
1199     return error;
1200 
1201   case StateType::eStateConnected:
1202   case StateType::eStateAttaching:
1203   case StateType::eStateLaunching:
1204   case StateType::eStateStopped:
1205   case StateType::eStateRunning:
1206   case StateType::eStateStepping:
1207   case StateType::eStateSuspended:
1208     // We can try to kill a process in these states.
1209     break;
1210   }
1211 
1212   if (kill(GetID(), SIGKILL) != 0) {
1213     error.SetErrorToErrno();
1214     return error;
1215   }
1216 
1217   return error;
1218 }
1219 
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)1220 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1221                                                MemoryRegionInfo &range_info) {
1222   // FIXME review that the final memory region returned extends to the end of
1223   // the virtual address space,
1224   // with no perms if it is not mapped.
1225 
1226   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1227   // proc maps entries are in ascending order.
1228   // FIXME assert if we find differently.
1229 
1230   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1231     // We're done.
1232     return Status("unsupported");
1233   }
1234 
1235   Status error = PopulateMemoryRegionCache();
1236   if (error.Fail()) {
1237     return error;
1238   }
1239 
1240   lldb::addr_t prev_base_address = 0;
1241 
1242   // FIXME start by finding the last region that is <= target address using
1243   // binary search.  Data is sorted.
1244   // There can be a ton of regions on pthreads apps with lots of threads.
1245   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1246        ++it) {
1247     MemoryRegionInfo &proc_entry_info = it->first;
1248 
1249     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1250     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1251            "descending /proc/pid/maps entries detected, unexpected");
1252     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1253     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1254 
1255     // If the target address comes before this entry, indicate distance to next
1256     // region.
1257     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1258       range_info.GetRange().SetRangeBase(load_addr);
1259       range_info.GetRange().SetByteSize(
1260           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1261       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1262       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1263       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1264       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1265 
1266       return error;
1267     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1268       // The target address is within the memory region we're processing here.
1269       range_info = proc_entry_info;
1270       return error;
1271     }
1272 
1273     // The target memory address comes somewhere after the region we just
1274     // parsed.
1275   }
1276 
1277   // If we made it here, we didn't find an entry that contained the given
1278   // address. Return the load_addr as start and the amount of bytes betwwen
1279   // load address and the end of the memory as size.
1280   range_info.GetRange().SetRangeBase(load_addr);
1281   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1282   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1283   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1284   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1285   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1286   return error;
1287 }
1288 
PopulateMemoryRegionCache()1289 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1290   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1291 
1292   // If our cache is empty, pull the latest.  There should always be at least
1293   // one memory region if memory region handling is supported.
1294   if (!m_mem_region_cache.empty()) {
1295     LLDB_LOG(log, "reusing {0} cached memory region entries",
1296              m_mem_region_cache.size());
1297     return Status();
1298   }
1299 
1300   auto BufferOrError = getProcFile(GetID(), "maps");
1301   if (!BufferOrError) {
1302     m_supports_mem_region = LazyBool::eLazyBoolNo;
1303     return BufferOrError.getError();
1304   }
1305   Status Result;
1306   ParseLinuxMapRegions(BufferOrError.get()->getBuffer(),
1307                        [&](const MemoryRegionInfo &Info, const Status &ST) {
1308                          if (ST.Success()) {
1309                            FileSpec file_spec(Info.GetName().GetCString());
1310                            FileSystem::Instance().Resolve(file_spec);
1311                            m_mem_region_cache.emplace_back(Info, file_spec);
1312                            return true;
1313                          } else {
1314                            m_supports_mem_region = LazyBool::eLazyBoolNo;
1315                            LLDB_LOG(log, "failed to parse proc maps: {0}", ST);
1316                            Result = ST;
1317                            return false;
1318                          }
1319                        });
1320   if (Result.Fail())
1321     return Result;
1322 
1323   if (m_mem_region_cache.empty()) {
1324     // No entries after attempting to read them.  This shouldn't happen if
1325     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1326     // procfs.
1327     m_supports_mem_region = LazyBool::eLazyBoolNo;
1328     LLDB_LOG(log,
1329              "failed to find any procfs maps entries, assuming no support "
1330              "for memory region metadata retrieval");
1331     return Status("not supported");
1332   }
1333 
1334   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1335            m_mem_region_cache.size(), GetID());
1336 
1337   // We support memory retrieval, remember that.
1338   m_supports_mem_region = LazyBool::eLazyBoolYes;
1339   return Status();
1340 }
1341 
DoStopIDBumped(uint32_t newBumpId)1342 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1343   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1344   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1345   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1346            m_mem_region_cache.size());
1347   m_mem_region_cache.clear();
1348 }
1349 
AllocateMemory(size_t size,uint32_t permissions,lldb::addr_t & addr)1350 Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions,
1351                                           lldb::addr_t &addr) {
1352 // FIXME implementing this requires the equivalent of
1353 // InferiorCallPOSIX::InferiorCallMmap, which depends on functional ThreadPlans
1354 // working with Native*Protocol.
1355 #if 1
1356   return Status("not implemented yet");
1357 #else
1358   addr = LLDB_INVALID_ADDRESS;
1359 
1360   unsigned prot = 0;
1361   if (permissions & lldb::ePermissionsReadable)
1362     prot |= eMmapProtRead;
1363   if (permissions & lldb::ePermissionsWritable)
1364     prot |= eMmapProtWrite;
1365   if (permissions & lldb::ePermissionsExecutable)
1366     prot |= eMmapProtExec;
1367 
1368   // TODO implement this directly in NativeProcessLinux
1369   // (and lift to NativeProcessPOSIX if/when that class is refactored out).
1370   if (InferiorCallMmap(this, addr, 0, size, prot,
1371                        eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1372     m_addr_to_mmap_size[addr] = size;
1373     return Status();
1374   } else {
1375     addr = LLDB_INVALID_ADDRESS;
1376     return Status("unable to allocate %" PRIu64
1377                   " bytes of memory with permissions %s",
1378                   size, GetPermissionsAsCString(permissions));
1379   }
1380 #endif
1381 }
1382 
DeallocateMemory(lldb::addr_t addr)1383 Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1384   // FIXME see comments in AllocateMemory - required lower-level
1385   // bits not in place yet (ThreadPlans)
1386   return Status("not implemented");
1387 }
1388 
UpdateThreads()1389 size_t NativeProcessLinux::UpdateThreads() {
1390   // The NativeProcessLinux monitoring threads are always up to date with
1391   // respect to thread state and they keep the thread list populated properly.
1392   // All this method needs to do is return the thread count.
1393   return m_threads.size();
1394 }
1395 
SetBreakpoint(lldb::addr_t addr,uint32_t size,bool hardware)1396 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1397                                          bool hardware) {
1398   if (hardware)
1399     return SetHardwareBreakpoint(addr, size);
1400   else
1401     return SetSoftwareBreakpoint(addr, size);
1402 }
1403 
RemoveBreakpoint(lldb::addr_t addr,bool hardware)1404 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1405   if (hardware)
1406     return RemoveHardwareBreakpoint(addr);
1407   else
1408     return NativeProcessProtocol::RemoveBreakpoint(addr);
1409 }
1410 
1411 llvm::Expected<llvm::ArrayRef<uint8_t>>
GetSoftwareBreakpointTrapOpcode(size_t size_hint)1412 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1413   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1414   // linux kernel does otherwise.
1415   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1416   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1417 
1418   switch (GetArchitecture().GetMachine()) {
1419   case llvm::Triple::arm:
1420     switch (size_hint) {
1421     case 2:
1422       return llvm::makeArrayRef(g_thumb_opcode);
1423     case 4:
1424       return llvm::makeArrayRef(g_arm_opcode);
1425     default:
1426       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1427                                      "Unrecognised trap opcode size hint!");
1428     }
1429   default:
1430     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1431   }
1432 }
1433 
ReadMemory(lldb::addr_t addr,void * buf,size_t size,size_t & bytes_read)1434 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1435                                       size_t &bytes_read) {
1436   if (ProcessVmReadvSupported()) {
1437     // The process_vm_readv path is about 50 times faster than ptrace api. We
1438     // want to use this syscall if it is supported.
1439 
1440     const ::pid_t pid = GetID();
1441 
1442     struct iovec local_iov, remote_iov;
1443     local_iov.iov_base = buf;
1444     local_iov.iov_len = size;
1445     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1446     remote_iov.iov_len = size;
1447 
1448     bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1449     const bool success = bytes_read == size;
1450 
1451     Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1452     LLDB_LOG(log,
1453              "using process_vm_readv to read {0} bytes from inferior "
1454              "address {1:x}: {2}",
1455              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1456 
1457     if (success)
1458       return Status();
1459     // else the call failed for some reason, let's retry the read using ptrace
1460     // api.
1461   }
1462 
1463   unsigned char *dst = static_cast<unsigned char *>(buf);
1464   size_t remainder;
1465   long data;
1466 
1467   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1468   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1469 
1470   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1471     Status error = NativeProcessLinux::PtraceWrapper(
1472         PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1473     if (error.Fail())
1474       return error;
1475 
1476     remainder = size - bytes_read;
1477     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1478 
1479     // Copy the data into our buffer
1480     memcpy(dst, &data, remainder);
1481 
1482     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1483     addr += k_ptrace_word_size;
1484     dst += k_ptrace_word_size;
1485   }
1486   return Status();
1487 }
1488 
WriteMemory(lldb::addr_t addr,const void * buf,size_t size,size_t & bytes_written)1489 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1490                                        size_t size, size_t &bytes_written) {
1491   const unsigned char *src = static_cast<const unsigned char *>(buf);
1492   size_t remainder;
1493   Status error;
1494 
1495   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1496   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1497 
1498   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1499     remainder = size - bytes_written;
1500     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1501 
1502     if (remainder == k_ptrace_word_size) {
1503       unsigned long data = 0;
1504       memcpy(&data, src, k_ptrace_word_size);
1505 
1506       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1507       error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1508                                                 (void *)addr, (void *)data);
1509       if (error.Fail())
1510         return error;
1511     } else {
1512       unsigned char buff[8];
1513       size_t bytes_read;
1514       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1515       if (error.Fail())
1516         return error;
1517 
1518       memcpy(buff, src, remainder);
1519 
1520       size_t bytes_written_rec;
1521       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1522       if (error.Fail())
1523         return error;
1524 
1525       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1526                *(unsigned long *)buff);
1527     }
1528 
1529     addr += k_ptrace_word_size;
1530     src += k_ptrace_word_size;
1531   }
1532   return error;
1533 }
1534 
GetSignalInfo(lldb::tid_t tid,void * siginfo)1535 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1536   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1537 }
1538 
GetEventMessage(lldb::tid_t tid,unsigned long * message)1539 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1540                                            unsigned long *message) {
1541   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1542 }
1543 
Detach(lldb::tid_t tid)1544 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1545   if (tid == LLDB_INVALID_THREAD_ID)
1546     return Status();
1547 
1548   return PtraceWrapper(PTRACE_DETACH, tid);
1549 }
1550 
HasThreadNoLock(lldb::tid_t thread_id)1551 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1552   for (const auto &thread : m_threads) {
1553     assert(thread && "thread list should not contain NULL threads");
1554     if (thread->GetID() == thread_id) {
1555       // We have this thread.
1556       return true;
1557     }
1558   }
1559 
1560   // We don't have this thread.
1561   return false;
1562 }
1563 
StopTrackingThread(lldb::tid_t thread_id)1564 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1565   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1566   LLDB_LOG(log, "tid: {0})", thread_id);
1567 
1568   bool found = false;
1569   for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1570     if (*it && ((*it)->GetID() == thread_id)) {
1571       m_threads.erase(it);
1572       found = true;
1573       break;
1574     }
1575   }
1576 
1577   if (found)
1578     StopTracingForThread(thread_id);
1579   SignalIfAllThreadsStopped();
1580   return found;
1581 }
1582 
AddThread(lldb::tid_t thread_id)1583 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id) {
1584   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1585   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1586 
1587   assert(!HasThreadNoLock(thread_id) &&
1588          "attempted to add a thread by id that already exists");
1589 
1590   // If this is the first thread, save it as the current thread
1591   if (m_threads.empty())
1592     SetCurrentThreadID(thread_id);
1593 
1594   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1595 
1596   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1597     auto traceMonitor = ProcessorTraceMonitor::Create(
1598         GetID(), thread_id, m_pt_process_trace_config, true);
1599     if (traceMonitor) {
1600       m_pt_traced_thread_group.insert(thread_id);
1601       m_processor_trace_monitor.insert(
1602           std::make_pair(thread_id, std::move(*traceMonitor)));
1603     } else {
1604       LLDB_LOG(log, "failed to start trace on thread {0}", thread_id);
1605       Status error(traceMonitor.takeError());
1606       LLDB_LOG(log, "error {0}", error);
1607     }
1608   }
1609 
1610   return static_cast<NativeThreadLinux &>(*m_threads.back());
1611 }
1612 
GetLoadedModuleFileSpec(const char * module_path,FileSpec & file_spec)1613 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1614                                                    FileSpec &file_spec) {
1615   Status error = PopulateMemoryRegionCache();
1616   if (error.Fail())
1617     return error;
1618 
1619   FileSpec module_file_spec(module_path);
1620   FileSystem::Instance().Resolve(module_file_spec);
1621 
1622   file_spec.Clear();
1623   for (const auto &it : m_mem_region_cache) {
1624     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1625       file_spec = it.second;
1626       return Status();
1627     }
1628   }
1629   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1630                 module_file_spec.GetFilename().AsCString(), GetID());
1631 }
1632 
GetFileLoadAddress(const llvm::StringRef & file_name,lldb::addr_t & load_addr)1633 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1634                                               lldb::addr_t &load_addr) {
1635   load_addr = LLDB_INVALID_ADDRESS;
1636   Status error = PopulateMemoryRegionCache();
1637   if (error.Fail())
1638     return error;
1639 
1640   FileSpec file(file_name);
1641   for (const auto &it : m_mem_region_cache) {
1642     if (it.second == file) {
1643       load_addr = it.first.GetRange().GetRangeBase();
1644       return Status();
1645     }
1646   }
1647   return Status("No load address found for specified file.");
1648 }
1649 
GetThreadByID(lldb::tid_t tid)1650 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1651   return static_cast<NativeThreadLinux *>(
1652       NativeProcessProtocol::GetThreadByID(tid));
1653 }
1654 
ResumeThread(NativeThreadLinux & thread,lldb::StateType state,int signo)1655 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1656                                         lldb::StateType state, int signo) {
1657   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1658   LLDB_LOG(log, "tid: {0}", thread.GetID());
1659 
1660   // Before we do the resume below, first check if we have a pending stop
1661   // notification that is currently waiting for all threads to stop.  This is
1662   // potentially a buggy situation since we're ostensibly waiting for threads
1663   // to stop before we send out the pending notification, and here we are
1664   // resuming one before we send out the pending stop notification.
1665   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1666     LLDB_LOG(log,
1667              "about to resume tid {0} per explicit request but we have a "
1668              "pending stop notification (tid {1}) that is actively "
1669              "waiting for this thread to stop. Valid sequence of events?",
1670              thread.GetID(), m_pending_notification_tid);
1671   }
1672 
1673   // Request a resume.  We expect this to be synchronous and the system to
1674   // reflect it is running after this completes.
1675   switch (state) {
1676   case eStateRunning: {
1677     const auto resume_result = thread.Resume(signo);
1678     if (resume_result.Success())
1679       SetState(eStateRunning, true);
1680     return resume_result;
1681   }
1682   case eStateStepping: {
1683     const auto step_result = thread.SingleStep(signo);
1684     if (step_result.Success())
1685       SetState(eStateRunning, true);
1686     return step_result;
1687   }
1688   default:
1689     LLDB_LOG(log, "Unhandled state {0}.", state);
1690     llvm_unreachable("Unhandled state for resume");
1691   }
1692 }
1693 
1694 //===----------------------------------------------------------------------===//
1695 
StopRunningThreads(const lldb::tid_t triggering_tid)1696 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1697   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1698   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1699            triggering_tid);
1700 
1701   m_pending_notification_tid = triggering_tid;
1702 
1703   // Request a stop for all the thread stops that need to be stopped and are
1704   // not already known to be stopped.
1705   for (const auto &thread : m_threads) {
1706     if (StateIsRunningState(thread->GetState()))
1707       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1708   }
1709 
1710   SignalIfAllThreadsStopped();
1711   LLDB_LOG(log, "event processing done");
1712 }
1713 
SignalIfAllThreadsStopped()1714 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1715   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1716     return; // No pending notification. Nothing to do.
1717 
1718   for (const auto &thread_sp : m_threads) {
1719     if (StateIsRunningState(thread_sp->GetState()))
1720       return; // Some threads are still running. Don't signal yet.
1721   }
1722 
1723   // We have a pending notification and all threads have stopped.
1724   Log *log(
1725       GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1726 
1727   // Clear any temporary breakpoints we used to implement software single
1728   // stepping.
1729   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1730     Status error = RemoveBreakpoint(thread_info.second);
1731     if (error.Fail())
1732       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1733                thread_info.first, error);
1734   }
1735   m_threads_stepping_with_breakpoint.clear();
1736 
1737   // Notify the delegate about the stop
1738   SetCurrentThreadID(m_pending_notification_tid);
1739   SetState(StateType::eStateStopped, true);
1740   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1741 }
1742 
ThreadWasCreated(NativeThreadLinux & thread)1743 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1744   Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1745   LLDB_LOG(log, "tid: {0}", thread.GetID());
1746 
1747   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1748       StateIsRunningState(thread.GetState())) {
1749     // We will need to wait for this new thread to stop as well before firing
1750     // the notification.
1751     thread.RequestStop();
1752   }
1753 }
1754 
SigchldHandler()1755 void NativeProcessLinux::SigchldHandler() {
1756   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1757   // Process all pending waitpid notifications.
1758   while (true) {
1759     int status = -1;
1760     ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1761                                           __WALL | __WNOTHREAD | WNOHANG);
1762 
1763     if (wait_pid == 0)
1764       break; // We are done.
1765 
1766     if (wait_pid == -1) {
1767       Status error(errno, eErrorTypePOSIX);
1768       LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1769       break;
1770     }
1771 
1772     WaitStatus wait_status = WaitStatus::Decode(status);
1773     bool exited = wait_status.type == WaitStatus::Exit ||
1774                   (wait_status.type == WaitStatus::Signal &&
1775                    wait_pid == static_cast<::pid_t>(GetID()));
1776 
1777     LLDB_LOG(
1778         log,
1779         "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1780         wait_pid, wait_status, exited);
1781 
1782     MonitorCallback(wait_pid, exited, wait_status);
1783   }
1784 }
1785 
1786 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1787 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
PtraceWrapper(int req,lldb::pid_t pid,void * addr,void * data,size_t data_size,long * result)1788 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1789                                          void *data, size_t data_size,
1790                                          long *result) {
1791   Status error;
1792   long int ret;
1793 
1794   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1795 
1796   PtraceDisplayBytes(req, data, data_size);
1797 
1798   errno = 0;
1799   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1800     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1801                  *(unsigned int *)addr, data);
1802   else
1803     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1804                  addr, data);
1805 
1806   if (ret == -1)
1807     error.SetErrorToErrno();
1808 
1809   if (result)
1810     *result = ret;
1811 
1812   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1813            data_size, ret);
1814 
1815   PtraceDisplayBytes(req, data, data_size);
1816 
1817   if (error.Fail())
1818     LLDB_LOG(log, "ptrace() failed: {0}", error);
1819 
1820   return error;
1821 }
1822 
1823 llvm::Expected<ProcessorTraceMonitor &>
LookupProcessorTraceInstance(lldb::user_id_t traceid,lldb::tid_t thread)1824 NativeProcessLinux::LookupProcessorTraceInstance(lldb::user_id_t traceid,
1825                                                  lldb::tid_t thread) {
1826   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1827   if (thread == LLDB_INVALID_THREAD_ID && traceid == m_pt_proces_trace_id) {
1828     LLDB_LOG(log, "thread not specified: {0}", traceid);
1829     return Status("tracing not active thread not specified").ToError();
1830   }
1831 
1832   for (auto& iter : m_processor_trace_monitor) {
1833     if (traceid == iter.second->GetTraceID() &&
1834         (thread == iter.first || thread == LLDB_INVALID_THREAD_ID))
1835       return *(iter.second);
1836   }
1837 
1838   LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1839   return Status("tracing not active for this thread").ToError();
1840 }
1841 
GetMetaData(lldb::user_id_t traceid,lldb::tid_t thread,llvm::MutableArrayRef<uint8_t> & buffer,size_t offset)1842 Status NativeProcessLinux::GetMetaData(lldb::user_id_t traceid,
1843                                        lldb::tid_t thread,
1844                                        llvm::MutableArrayRef<uint8_t> &buffer,
1845                                        size_t offset) {
1846   TraceOptions trace_options;
1847   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1848   Status error;
1849 
1850   LLDB_LOG(log, "traceid {0}", traceid);
1851 
1852   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1853   if (!perf_monitor) {
1854     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1855     buffer = buffer.slice(buffer.size());
1856     error = perf_monitor.takeError();
1857     return error;
1858   }
1859   return (*perf_monitor).ReadPerfTraceData(buffer, offset);
1860 }
1861 
GetData(lldb::user_id_t traceid,lldb::tid_t thread,llvm::MutableArrayRef<uint8_t> & buffer,size_t offset)1862 Status NativeProcessLinux::GetData(lldb::user_id_t traceid, lldb::tid_t thread,
1863                                    llvm::MutableArrayRef<uint8_t> &buffer,
1864                                    size_t offset) {
1865   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1866   Status error;
1867 
1868   LLDB_LOG(log, "traceid {0}", traceid);
1869 
1870   auto perf_monitor = LookupProcessorTraceInstance(traceid, thread);
1871   if (!perf_monitor) {
1872     LLDB_LOG(log, "traceid not being traced: {0}", traceid);
1873     buffer = buffer.slice(buffer.size());
1874     error = perf_monitor.takeError();
1875     return error;
1876   }
1877   return (*perf_monitor).ReadPerfTraceAux(buffer, offset);
1878 }
1879 
GetTraceConfig(lldb::user_id_t traceid,TraceOptions & config)1880 Status NativeProcessLinux::GetTraceConfig(lldb::user_id_t traceid,
1881                                           TraceOptions &config) {
1882   Status error;
1883   if (config.getThreadID() == LLDB_INVALID_THREAD_ID &&
1884       m_pt_proces_trace_id == traceid) {
1885     if (m_pt_proces_trace_id == LLDB_INVALID_UID) {
1886       error.SetErrorString("tracing not active for this process");
1887       return error;
1888     }
1889     config = m_pt_process_trace_config;
1890   } else {
1891     auto perf_monitor =
1892         LookupProcessorTraceInstance(traceid, config.getThreadID());
1893     if (!perf_monitor) {
1894       error = perf_monitor.takeError();
1895       return error;
1896     }
1897     error = (*perf_monitor).GetTraceConfig(config);
1898   }
1899   return error;
1900 }
1901 
1902 lldb::user_id_t
StartTraceGroup(const TraceOptions & config,Status & error)1903 NativeProcessLinux::StartTraceGroup(const TraceOptions &config,
1904                                            Status &error) {
1905 
1906   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1907   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1908     return LLDB_INVALID_UID;
1909 
1910   if (m_pt_proces_trace_id != LLDB_INVALID_UID) {
1911     error.SetErrorString("tracing already active on this process");
1912     return m_pt_proces_trace_id;
1913   }
1914 
1915   for (const auto &thread_sp : m_threads) {
1916     if (auto traceInstance = ProcessorTraceMonitor::Create(
1917             GetID(), thread_sp->GetID(), config, true)) {
1918       m_pt_traced_thread_group.insert(thread_sp->GetID());
1919       m_processor_trace_monitor.insert(
1920           std::make_pair(thread_sp->GetID(), std::move(*traceInstance)));
1921     }
1922   }
1923 
1924   m_pt_process_trace_config = config;
1925   error = ProcessorTraceMonitor::GetCPUType(m_pt_process_trace_config);
1926 
1927   // Trace on Complete process will have traceid of 0
1928   m_pt_proces_trace_id = 0;
1929 
1930   LLDB_LOG(log, "Process Trace ID {0}", m_pt_proces_trace_id);
1931   return m_pt_proces_trace_id;
1932 }
1933 
StartTrace(const TraceOptions & config,Status & error)1934 lldb::user_id_t NativeProcessLinux::StartTrace(const TraceOptions &config,
1935                                                Status &error) {
1936   if (config.getType() != TraceType::eTraceTypeProcessorTrace)
1937     return NativeProcessProtocol::StartTrace(config, error);
1938 
1939   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1940 
1941   lldb::tid_t threadid = config.getThreadID();
1942 
1943   if (threadid == LLDB_INVALID_THREAD_ID)
1944     return StartTraceGroup(config, error);
1945 
1946   auto thread_sp = GetThreadByID(threadid);
1947   if (!thread_sp) {
1948     // Thread not tracked by lldb so don't trace.
1949     error.SetErrorString("invalid thread id");
1950     return LLDB_INVALID_UID;
1951   }
1952 
1953   const auto &iter = m_processor_trace_monitor.find(threadid);
1954   if (iter != m_processor_trace_monitor.end()) {
1955     LLDB_LOG(log, "Thread already being traced");
1956     error.SetErrorString("tracing already active on this thread");
1957     return LLDB_INVALID_UID;
1958   }
1959 
1960   auto traceMonitor =
1961       ProcessorTraceMonitor::Create(GetID(), threadid, config, false);
1962   if (!traceMonitor) {
1963     error = traceMonitor.takeError();
1964     LLDB_LOG(log, "error {0}", error);
1965     return LLDB_INVALID_UID;
1966   }
1967   lldb::user_id_t ret_trace_id = (*traceMonitor)->GetTraceID();
1968   m_processor_trace_monitor.insert(
1969       std::make_pair(threadid, std::move(*traceMonitor)));
1970   return ret_trace_id;
1971 }
1972 
StopTracingForThread(lldb::tid_t thread)1973 Status NativeProcessLinux::StopTracingForThread(lldb::tid_t thread) {
1974   Status error;
1975   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1976   LLDB_LOG(log, "Thread {0}", thread);
1977 
1978   const auto& iter = m_processor_trace_monitor.find(thread);
1979   if (iter == m_processor_trace_monitor.end()) {
1980     error.SetErrorString("tracing not active for this thread");
1981     return error;
1982   }
1983 
1984   if (iter->second->GetTraceID() == m_pt_proces_trace_id) {
1985     // traceid maps to the whole process so we have to erase it from the thread
1986     // group.
1987     LLDB_LOG(log, "traceid maps to process");
1988     m_pt_traced_thread_group.erase(thread);
1989   }
1990   m_processor_trace_monitor.erase(iter);
1991 
1992   return error;
1993 }
1994 
StopTrace(lldb::user_id_t traceid,lldb::tid_t thread)1995 Status NativeProcessLinux::StopTrace(lldb::user_id_t traceid,
1996                                      lldb::tid_t thread) {
1997   Status error;
1998 
1999   TraceOptions trace_options;
2000   trace_options.setThreadID(thread);
2001   error = NativeProcessLinux::GetTraceConfig(traceid, trace_options);
2002 
2003   if (error.Fail())
2004     return error;
2005 
2006   switch (trace_options.getType()) {
2007   case lldb::TraceType::eTraceTypeProcessorTrace:
2008     if (traceid == m_pt_proces_trace_id &&
2009         thread == LLDB_INVALID_THREAD_ID)
2010       StopProcessorTracingOnProcess();
2011     else
2012       error = StopProcessorTracingOnThread(traceid, thread);
2013     break;
2014   default:
2015     error.SetErrorString("trace not supported");
2016     break;
2017   }
2018 
2019   return error;
2020 }
2021 
StopProcessorTracingOnProcess()2022 void NativeProcessLinux::StopProcessorTracingOnProcess() {
2023   for (auto thread_id_iter : m_pt_traced_thread_group)
2024     m_processor_trace_monitor.erase(thread_id_iter);
2025   m_pt_traced_thread_group.clear();
2026   m_pt_proces_trace_id = LLDB_INVALID_UID;
2027 }
2028 
StopProcessorTracingOnThread(lldb::user_id_t traceid,lldb::tid_t thread)2029 Status NativeProcessLinux::StopProcessorTracingOnThread(lldb::user_id_t traceid,
2030                                                         lldb::tid_t thread) {
2031   Status error;
2032   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
2033 
2034   if (thread == LLDB_INVALID_THREAD_ID) {
2035     for (auto& iter : m_processor_trace_monitor) {
2036       if (iter.second->GetTraceID() == traceid) {
2037         // Stopping a trace instance for an individual thread hence there will
2038         // only be one traceid that can match.
2039         m_processor_trace_monitor.erase(iter.first);
2040         return error;
2041       }
2042       LLDB_LOG(log, "Trace ID {0}", iter.second->GetTraceID());
2043     }
2044 
2045     LLDB_LOG(log, "Invalid TraceID");
2046     error.SetErrorString("invalid trace id");
2047     return error;
2048   }
2049 
2050   // thread is specified so we can use find function on the map.
2051   const auto& iter = m_processor_trace_monitor.find(thread);
2052   if (iter == m_processor_trace_monitor.end()) {
2053     // thread not found in our map.
2054     LLDB_LOG(log, "thread not being traced");
2055     error.SetErrorString("tracing not active for this thread");
2056     return error;
2057   }
2058   if (iter->second->GetTraceID() != traceid) {
2059     // traceid did not match so it has to be invalid.
2060     LLDB_LOG(log, "Invalid TraceID");
2061     error.SetErrorString("invalid trace id");
2062     return error;
2063   }
2064 
2065   LLDB_LOG(log, "UID - {0} , Thread -{1}", traceid, thread);
2066 
2067   if (traceid == m_pt_proces_trace_id) {
2068     // traceid maps to the whole process so we have to erase it from the thread
2069     // group.
2070     LLDB_LOG(log, "traceid maps to process");
2071     m_pt_traced_thread_group.erase(thread);
2072   }
2073   m_processor_trace_monitor.erase(iter);
2074 
2075   return error;
2076 }
2077