1 /*
2    ----------------------------------------------------------------
3 
4    Notice that the above BSD-style license applies to this one file
5    (helgrind.h) only.  The entire rest of Valgrind is licensed under
6    the terms of the GNU General Public License, version 2.  See the
7    COPYING file in the source distribution for details.
8 
9    ----------------------------------------------------------------
10 
11    This file is part of Helgrind, a Valgrind tool for detecting errors
12    in threaded programs.
13 
14    Copyright (C) 2007-2017 OpenWorks LLP
15       info@open-works.co.uk
16 
17    Redistribution and use in source and binary forms, with or without
18    modification, are permitted provided that the following conditions
19    are met:
20 
21    1. Redistributions of source code must retain the above copyright
22       notice, this list of conditions and the following disclaimer.
23 
24    2. The origin of this software must not be misrepresented; you must
25       not claim that you wrote the original software.  If you use this
26       software in a product, an acknowledgment in the product
27       documentation would be appreciated but is not required.
28 
29    3. Altered source versions must be plainly marked as such, and must
30       not be misrepresented as being the original software.
31 
32    4. The name of the author may not be used to endorse or promote
33       products derived from this software without specific prior written
34       permission.
35 
36    THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
37    OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
38    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39    ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
40    DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
42    GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
43    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
44    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
45    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
46    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 
48    ----------------------------------------------------------------
49 
50    Notice that the above BSD-style license applies to this one file
51    (helgrind.h) only.  The entire rest of Valgrind is licensed under
52    the terms of the GNU General Public License, version 2.  See the
53    COPYING file in the source distribution for details.
54 
55    ----------------------------------------------------------------
56 */
57 
58 #ifndef __HELGRIND_H
59 #define __HELGRIND_H
60 
61 #include "valgrind.h"
62 
63 /* !! ABIWARNING !! ABIWARNING !! ABIWARNING !! ABIWARNING !!
64    This enum comprises an ABI exported by Valgrind to programs
65    which use client requests.  DO NOT CHANGE THE ORDER OF THESE
66    ENTRIES, NOR DELETE ANY -- add new ones at the end. */
67 typedef
68    enum {
69       VG_USERREQ__HG_CLEAN_MEMORY = VG_USERREQ_TOOL_BASE('H','G'),
70 
71       /* The rest are for Helgrind's internal use.  Not for end-user
72          use.  Do not use them unless you are a Valgrind developer. */
73 
74       /* Notify the tool what this thread's pthread_t is. */
75       _VG_USERREQ__HG_SET_MY_PTHREAD_T = VG_USERREQ_TOOL_BASE('H','G')
76                                          + 256,
77       _VG_USERREQ__HG_PTH_API_ERROR,              /* char*, int */
78       _VG_USERREQ__HG_PTHREAD_JOIN_POST,          /* pthread_t of quitter */
79       _VG_USERREQ__HG_PTHREAD_MUTEX_INIT_POST,    /* pth_mx_t*, long mbRec */
80       _VG_USERREQ__HG_PTHREAD_MUTEX_DESTROY_PRE,  /* pth_mx_t*, long isInit */
81       _VG_USERREQ__HG_PTHREAD_MUTEX_UNLOCK_PRE,   /* pth_mx_t* */
82       _VG_USERREQ__HG_PTHREAD_MUTEX_UNLOCK_POST,  /* pth_mx_t* */
83       _VG_USERREQ__HG_PTHREAD_MUTEX_ACQUIRE_PRE,  /* void*, long isTryLock */
84       _VG_USERREQ__HG_PTHREAD_MUTEX_ACQUIRE_POST, /* void* */
85       _VG_USERREQ__HG_PTHREAD_COND_SIGNAL_PRE,    /* pth_cond_t* */
86       _VG_USERREQ__HG_PTHREAD_COND_BROADCAST_PRE, /* pth_cond_t* */
87       _VG_USERREQ__HG_PTHREAD_COND_WAIT_PRE,     /* pth_cond_t*, pth_mx_t* */
88       _VG_USERREQ__HG_PTHREAD_COND_WAIT_POST,    /* pth_cond_t*, pth_mx_t* */
89       _VG_USERREQ__HG_PTHREAD_COND_DESTROY_PRE,   /* pth_cond_t*, long isInit */
90       _VG_USERREQ__HG_PTHREAD_RWLOCK_INIT_POST,   /* pth_rwlk_t* */
91       _VG_USERREQ__HG_PTHREAD_RWLOCK_DESTROY_PRE, /* pth_rwlk_t* */
92       _VG_USERREQ__HG_PTHREAD_RWLOCK_LOCK_PRE,    /* pth_rwlk_t*, long isW */
93       _VG_USERREQ__HG_PTHREAD_RWLOCK_ACQUIRED,    /* void*, long isW */
94       _VG_USERREQ__HG_PTHREAD_RWLOCK_RELEASED,    /* void* */
95       _VG_USERREQ__HG_PTHREAD_RWLOCK_UNLOCK_POST, /* pth_rwlk_t* */
96       _VG_USERREQ__HG_POSIX_SEM_INIT_POST,        /* sem_t*, ulong value */
97       _VG_USERREQ__HG_POSIX_SEM_DESTROY_PRE,      /* sem_t* */
98       _VG_USERREQ__HG_POSIX_SEM_RELEASED,         /* void* */
99       _VG_USERREQ__HG_POSIX_SEM_ACQUIRED,         /* void* */
100       _VG_USERREQ__HG_PTHREAD_BARRIER_INIT_PRE,   /* pth_bar_t*, ulong, ulong */
101       _VG_USERREQ__HG_PTHREAD_BARRIER_WAIT_PRE,   /* pth_bar_t* */
102       _VG_USERREQ__HG_PTHREAD_BARRIER_DESTROY_PRE, /* pth_bar_t* */
103       _VG_USERREQ__HG_PTHREAD_SPIN_INIT_OR_UNLOCK_PRE,  /* pth_slk_t* */
104       _VG_USERREQ__HG_PTHREAD_SPIN_INIT_OR_UNLOCK_POST, /* pth_slk_t* */
105       _VG_USERREQ__HG_PTHREAD_SPIN_LOCK_PRE,      /* pth_slk_t* */
106       _VG_USERREQ__HG_PTHREAD_SPIN_LOCK_POST,     /* pth_slk_t* */
107       _VG_USERREQ__HG_PTHREAD_SPIN_DESTROY_PRE,   /* pth_slk_t* */
108       _VG_USERREQ__HG_CLIENTREQ_UNIMP,            /* char* */
109       _VG_USERREQ__HG_USERSO_SEND_PRE,        /* arbitrary UWord SO-tag */
110       _VG_USERREQ__HG_USERSO_RECV_POST,       /* arbitrary UWord SO-tag */
111       _VG_USERREQ__HG_USERSO_FORGET_ALL,      /* arbitrary UWord SO-tag */
112       _VG_USERREQ__HG_RESERVED2,              /* Do not use */
113       _VG_USERREQ__HG_RESERVED3,              /* Do not use */
114       _VG_USERREQ__HG_RESERVED4,              /* Do not use */
115       _VG_USERREQ__HG_ARANGE_MAKE_UNTRACKED, /* Addr a, ulong len */
116       _VG_USERREQ__HG_ARANGE_MAKE_TRACKED,   /* Addr a, ulong len */
117       _VG_USERREQ__HG_PTHREAD_BARRIER_RESIZE_PRE, /* pth_bar_t*, ulong */
118       _VG_USERREQ__HG_CLEAN_MEMORY_HEAPBLOCK, /* Addr start_of_block */
119       _VG_USERREQ__HG_PTHREAD_COND_INIT_POST,  /* pth_cond_t*, pth_cond_attr_t*/
120       _VG_USERREQ__HG_GNAT_MASTER_HOOK,       /* void*d,void*m,Word ml */
121       _VG_USERREQ__HG_GNAT_MASTER_COMPLETED_HOOK, /* void*s,Word ml */
122       _VG_USERREQ__HG_GET_ABITS,              /* Addr a,Addr abits, ulong len */
123       _VG_USERREQ__HG_PTHREAD_CREATE_BEGIN,
124       _VG_USERREQ__HG_PTHREAD_CREATE_END,
125       _VG_USERREQ__HG_PTHREAD_MUTEX_LOCK_PRE,     /* pth_mx_t*,long isTryLock */
126       _VG_USERREQ__HG_PTHREAD_MUTEX_LOCK_POST,    /* pth_mx_t *,long tookLock */
127       _VG_USERREQ__HG_PTHREAD_RWLOCK_LOCK_POST,  /* pth_rwlk_t*,long isW,long */
128       _VG_USERREQ__HG_PTHREAD_RWLOCK_UNLOCK_PRE,  /* pth_rwlk_t* */
129       _VG_USERREQ__HG_POSIX_SEM_POST_PRE,         /* sem_t* */
130       _VG_USERREQ__HG_POSIX_SEM_POST_POST,        /* sem_t* */
131       _VG_USERREQ__HG_POSIX_SEM_WAIT_PRE,         /* sem_t* */
132       _VG_USERREQ__HG_POSIX_SEM_WAIT_POST,        /* sem_t*, long tookLock */
133       _VG_USERREQ__HG_PTHREAD_COND_SIGNAL_POST,   /* pth_cond_t* */
134       _VG_USERREQ__HG_PTHREAD_COND_BROADCAST_POST,/* pth_cond_t* */
135       _VG_USERREQ__HG_RTLD_BIND_GUARD,            /* int flags */
136       _VG_USERREQ__HG_RTLD_BIND_CLEAR,            /* int flags */
137       _VG_USERREQ__HG_GNAT_DEPENDENT_MASTER_JOIN  /* void*d, void*m */
138    } Vg_TCheckClientRequest;
139 
140 
141 /*----------------------------------------------------------------*/
142 /*---                                                          ---*/
143 /*--- Implementation-only facilities.  Not for end-user use.   ---*/
144 /*--- For end-user facilities see below (the next section in   ---*/
145 /*--- this file.)                                              ---*/
146 /*---                                                          ---*/
147 /*----------------------------------------------------------------*/
148 
149 /* Do a client request.  These are macros rather than a functions so
150    as to avoid having an extra frame in stack traces.
151 
152    NB: these duplicate definitions in hg_intercepts.c.  But here, we
153    have to make do with weaker typing (no definition of Word etc) and
154    no assertions, whereas in helgrind.h we can use those facilities.
155    Obviously it's important the two sets of definitions are kept in
156    sync.
157 
158    The commented-out asserts should actually hold, but unfortunately
159    they can't be allowed to be visible here, because that would
160    require the end-user code to #include <assert.h>.
161 */
162 
163 #define DO_CREQ_v_W(_creqF, _ty1F,_arg1F)                \
164    do {                                                  \
165       long int _arg1;                                    \
166       /* assert(sizeof(_ty1F) == sizeof(long int)); */   \
167       _arg1 = (long int)(_arg1F);                        \
168       VALGRIND_DO_CLIENT_REQUEST_STMT(                   \
169                                  (_creqF),               \
170                                  _arg1, 0,0,0,0);        \
171    } while (0)
172 
173 #define DO_CREQ_W_W(_resF, _dfltF, _creqF, _ty1F,_arg1F) \
174    do {                                                  \
175       long int _arg1;                                    \
176       /* assert(sizeof(_ty1F) == sizeof(long int)); */   \
177       _arg1 = (long int)(_arg1F);                        \
178       _qzz_res = VALGRIND_DO_CLIENT_REQUEST_EXPR(        \
179                                  (_dfltF),               \
180                                  (_creqF),               \
181                                  _arg1, 0,0,0,0);        \
182       _resF = _qzz_res;                                  \
183    } while (0)
184 
185 #define DO_CREQ_v_WW(_creqF, _ty1F,_arg1F, _ty2F,_arg2F) \
186    do {                                                  \
187       long int _arg1, _arg2;                             \
188       /* assert(sizeof(_ty1F) == sizeof(long int)); */   \
189       /* assert(sizeof(_ty2F) == sizeof(long int)); */   \
190       _arg1 = (long int)(_arg1F);                        \
191       _arg2 = (long int)(_arg2F);                        \
192       VALGRIND_DO_CLIENT_REQUEST_STMT(                   \
193                                  (_creqF),               \
194                                  _arg1,_arg2,0,0,0);     \
195    } while (0)
196 
197 #define DO_CREQ_v_WWW(_creqF, _ty1F,_arg1F,              \
198                       _ty2F,_arg2F, _ty3F, _arg3F)       \
199    do {                                                  \
200       long int _arg1, _arg2, _arg3;                      \
201       /* assert(sizeof(_ty1F) == sizeof(long int)); */   \
202       /* assert(sizeof(_ty2F) == sizeof(long int)); */   \
203       /* assert(sizeof(_ty3F) == sizeof(long int)); */   \
204       _arg1 = (long int)(_arg1F);                        \
205       _arg2 = (long int)(_arg2F);                        \
206       _arg3 = (long int)(_arg3F);                        \
207       VALGRIND_DO_CLIENT_REQUEST_STMT(                   \
208                                  (_creqF),               \
209                                  _arg1,_arg2,_arg3,0,0); \
210    } while (0)
211 
212 #define DO_CREQ_W_WWW(_resF, _dfltF, _creqF, _ty1F,_arg1F, \
213                       _ty2F,_arg2F, _ty3F, _arg3F)       \
214    do {                                                  \
215       long int _qzz_res;                                 \
216       long int _arg1, _arg2, _arg3;                      \
217       /* assert(sizeof(_ty1F) == sizeof(long int)); */   \
218       _arg1 = (long int)(_arg1F);                        \
219       _arg2 = (long int)(_arg2F);                        \
220       _arg3 = (long int)(_arg3F);                        \
221       _qzz_res = VALGRIND_DO_CLIENT_REQUEST_EXPR(        \
222                                  (_dfltF),               \
223                                  (_creqF),               \
224                                  _arg1,_arg2,_arg3,0,0); \
225       _resF = _qzz_res;                                  \
226    } while (0)
227 
228 
229 
230 #define _HG_CLIENTREQ_UNIMP(_qzz_str)                    \
231    DO_CREQ_v_W(_VG_USERREQ__HG_CLIENTREQ_UNIMP,          \
232                (char*),(_qzz_str))
233 
234 
235 /*----------------------------------------------------------------*/
236 /*---                                                          ---*/
237 /*--- Helgrind-native requests.  These allow access to         ---*/
238 /*--- the same set of annotation primitives that are used      ---*/
239 /*--- to build the POSIX pthread wrappers.                     ---*/
240 /*---                                                          ---*/
241 /*----------------------------------------------------------------*/
242 
243 /* ----------------------------------------------------------
244    For describing ordinary mutexes (non-rwlocks).  For rwlock
245    descriptions see ANNOTATE_RWLOCK_* below.
246    ---------------------------------------------------------- */
247 
248 /* Notify here immediately after mutex creation.  _mbRec == 0 for a
249    non-recursive mutex, 1 for a recursive mutex. */
250 #define VALGRIND_HG_MUTEX_INIT_POST(_mutex, _mbRec)          \
251    DO_CREQ_v_WW(_VG_USERREQ__HG_PTHREAD_MUTEX_INIT_POST,     \
252                 void*,(_mutex), long,(_mbRec))
253 
254 /* Notify here immediately before mutex acquisition.  _isTryLock == 0
255    for a normal acquisition, 1 for a "try" style acquisition. */
256 #define VALGRIND_HG_MUTEX_LOCK_PRE(_mutex, _isTryLock)       \
257    DO_CREQ_v_WW(_VG_USERREQ__HG_PTHREAD_MUTEX_ACQUIRE_PRE,   \
258                 void*,(_mutex), long,(_isTryLock))
259 
260 /* Notify here immediately after a successful mutex acquisition. */
261 #define VALGRIND_HG_MUTEX_LOCK_POST(_mutex)                  \
262    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_MUTEX_ACQUIRE_POST,   \
263                void*,(_mutex))
264 
265 /* Notify here immediately before a mutex release. */
266 #define VALGRIND_HG_MUTEX_UNLOCK_PRE(_mutex)                 \
267    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_MUTEX_UNLOCK_PRE,     \
268                void*,(_mutex))
269 
270 /* Notify here immediately after a mutex release. */
271 #define VALGRIND_HG_MUTEX_UNLOCK_POST(_mutex)                \
272    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_MUTEX_UNLOCK_POST,    \
273                void*,(_mutex))
274 
275 /* Notify here immediately before mutex destruction. */
276 #define VALGRIND_HG_MUTEX_DESTROY_PRE(_mutex)                \
277    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_MUTEX_DESTROY_PRE,    \
278                void*,(_mutex))
279 
280 /* ----------------------------------------------------------
281    For describing semaphores.
282    ---------------------------------------------------------- */
283 
284 /* Notify here immediately after semaphore creation. */
285 #define VALGRIND_HG_SEM_INIT_POST(_sem, _value)              \
286    DO_CREQ_v_WW(_VG_USERREQ__HG_POSIX_SEM_INIT_POST,         \
287                 void*, (_sem), unsigned long, (_value))
288 
289 /* Notify here immediately after a semaphore wait (an acquire-style
290    operation) */
291 #define VALGRIND_HG_SEM_WAIT_POST(_sem)                      \
292    DO_CREQ_v_W(_VG_USERREQ__HG_POSIX_SEM_ACQUIRED,           \
293                void*,(_sem))
294 
295 /* Notify here immediately before semaphore post (a release-style
296    operation) */
297 #define VALGRIND_HG_SEM_POST_PRE(_sem)                       \
298    DO_CREQ_v_W(_VG_USERREQ__HG_POSIX_SEM_RELEASED,           \
299                void*,(_sem))
300 
301 /* Notify here immediately before semaphore destruction. */
302 #define VALGRIND_HG_SEM_DESTROY_PRE(_sem)                    \
303    DO_CREQ_v_W(_VG_USERREQ__HG_POSIX_SEM_DESTROY_PRE,        \
304                void*, (_sem))
305 
306 /* ----------------------------------------------------------
307    For describing barriers.
308    ---------------------------------------------------------- */
309 
310 /* Notify here immediately before barrier creation.  _count is the
311    capacity.  _resizable == 0 means the barrier may not be resized, 1
312    means it may be. */
313 #define VALGRIND_HG_BARRIER_INIT_PRE(_bar, _count, _resizable) \
314    DO_CREQ_v_WWW(_VG_USERREQ__HG_PTHREAD_BARRIER_INIT_PRE,   \
315                  void*,(_bar),                               \
316                  unsigned long,(_count),                     \
317                  unsigned long,(_resizable))
318 
319 /* Notify here immediately before arrival at a barrier. */
320 #define VALGRIND_HG_BARRIER_WAIT_PRE(_bar)                   \
321    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_BARRIER_WAIT_PRE,     \
322                void*,(_bar))
323 
324 /* Notify here immediately before a resize (change of barrier
325    capacity).  If _newcount >= the existing capacity, then there is no
326    change in the state of any threads waiting at the barrier.  If
327    _newcount < the existing capacity, and >= _newcount threads are
328    currently waiting at the barrier, then this notification is
329    considered to also have the effect of telling the checker that all
330    waiting threads have now moved past the barrier.  (I can't think of
331    any other sane semantics.) */
332 #define VALGRIND_HG_BARRIER_RESIZE_PRE(_bar, _newcount)      \
333    DO_CREQ_v_WW(_VG_USERREQ__HG_PTHREAD_BARRIER_RESIZE_PRE,  \
334                 void*,(_bar),                                \
335                 unsigned long,(_newcount))
336 
337 /* Notify here immediately before barrier destruction. */
338 #define VALGRIND_HG_BARRIER_DESTROY_PRE(_bar)                \
339    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_BARRIER_DESTROY_PRE,  \
340                void*,(_bar))
341 
342 /* ----------------------------------------------------------
343    For describing memory ownership changes.
344    ---------------------------------------------------------- */
345 
346 /* Clean memory state.  This makes Helgrind forget everything it knew
347    about the specified memory range.  Effectively this announces that
348    the specified memory range now "belongs" to the calling thread, so
349    that: (1) the calling thread can access it safely without
350    synchronisation, and (2) all other threads must sync with this one
351    to access it safely.  This is particularly useful for memory
352    allocators that wish to recycle memory. */
353 #define VALGRIND_HG_CLEAN_MEMORY(_qzz_start, _qzz_len)       \
354    DO_CREQ_v_WW(VG_USERREQ__HG_CLEAN_MEMORY,                 \
355                 void*,(_qzz_start),                          \
356                 unsigned long,(_qzz_len))
357 
358 /* The same, but for the heap block starting at _qzz_blockstart.  This
359    allows painting when we only know the address of an object, but not
360    its size, which is sometimes the case in C++ code involving
361    inheritance, and in which RTTI is not, for whatever reason,
362    available.  Returns the number of bytes painted, which can be zero
363    for a zero-sized block.  Hence, return values >= 0 indicate success
364    (the block was found), and the value -1 indicates block not
365    found, and -2 is returned when not running on Helgrind. */
366 #define VALGRIND_HG_CLEAN_MEMORY_HEAPBLOCK(_qzz_blockstart)  \
367    (__extension__                                            \
368    ({long int _npainted;                                     \
369      DO_CREQ_W_W(_npainted, (-2)/*default*/,                 \
370                  _VG_USERREQ__HG_CLEAN_MEMORY_HEAPBLOCK,     \
371                             void*,(_qzz_blockstart));        \
372      _npainted;                                              \
373    }))
374 
375 /* ----------------------------------------------------------
376    For error control.
377    ---------------------------------------------------------- */
378 
379 /* Tell H that an address range is not to be "tracked" until further
380    notice.  This puts it in the NOACCESS state, in which case we
381    ignore all reads and writes to it.  Useful for ignoring ranges of
382    memory where there might be races we don't want to see.  If the
383    memory is subsequently reallocated via malloc/new/stack allocation,
384    then it is put back in the trackable state.  Hence it is safe in
385    the situation where checking is disabled, the containing area is
386    deallocated and later reallocated for some other purpose. */
387 #define VALGRIND_HG_DISABLE_CHECKING(_qzz_start, _qzz_len)   \
388    DO_CREQ_v_WW(_VG_USERREQ__HG_ARANGE_MAKE_UNTRACKED,       \
389                  void*,(_qzz_start),                         \
390                  unsigned long,(_qzz_len))
391 
392 /* And put it back into the normal "tracked" state, that is, make it
393    once again subject to the normal race-checking machinery.  This
394    puts it in the same state as new memory allocated by this thread --
395    that is, basically owned exclusively by this thread. */
396 #define VALGRIND_HG_ENABLE_CHECKING(_qzz_start, _qzz_len)    \
397    DO_CREQ_v_WW(_VG_USERREQ__HG_ARANGE_MAKE_TRACKED,         \
398                  void*,(_qzz_start),                         \
399                  unsigned long,(_qzz_len))
400 
401 
402 /*  Checks the accessibility bits for addresses [zza..zza+zznbytes-1].
403     If zzabits array is provided, copy the accessibility bits in zzabits.
404    Return values:
405      -2   if not running on helgrind
406      -1   if any parts of zzabits is not addressable
407      >= 0 : success.
408    When success, it returns the nr of addressable bytes found.
409       So, to check that a whole range is addressable, check
410          VALGRIND_HG_GET_ABITS(addr,NULL,len) == len
411       In addition, if you want to examine the addressability of each
412       byte of the range, you need to provide a non NULL ptr as
413       second argument, pointing to an array of unsigned char
414       of length len.
415       Addressable bytes are indicated with 0xff.
416       Non-addressable bytes are indicated with 0x00.
417 */
418 #define VALGRIND_HG_GET_ABITS(zza,zzabits,zznbytes)          \
419    (__extension__                                            \
420    ({long int _res;                                          \
421       DO_CREQ_W_WWW(_res, (-2)/*default*/,                   \
422                     _VG_USERREQ__HG_GET_ABITS,               \
423                     void*,(zza), void*,(zzabits),            \
424                     unsigned long,(zznbytes));               \
425       _res;                                                  \
426    }))
427 
428 /* End-user request for Ada applications compiled with GNAT.
429    Helgrind understands the Ada concept of Ada task dependencies and
430    terminations. See Ada Reference Manual section 9.3 "Task Dependence
431    - Termination of Tasks".
432    However, in some cases, the master of (terminated) tasks completes
433    only when the application exits. An example of this is dynamically
434    allocated tasks with an access type defined at Library Level.
435    By default, the state of such tasks in Helgrind will be 'exited but
436    join not done yet'. Many tasks in such a state are however causing
437    Helgrind CPU and memory to increase significantly.
438    VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN can be used to indicate
439    to Helgrind that a not yet completed master has however already
440    'seen' the termination of a dependent : this is conceptually the
441    same as a pthread_join and causes the cleanup of the dependent
442    as done by Helgrind when a master completes.
443    This allows to avoid the overhead in helgrind caused by such tasks.
444    A typical usage for a master to indicate it has done conceptually a join
445    with a dependent task before the master completes is:
446       while not Dep_Task'Terminated loop
447          ... do whatever to wait for Dep_Task termination.
448       end loop;
449       VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN
450         (Dep_Task'Identity,
451          Ada.Task_Identification.Current_Task);
452     Note that VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN should be a binding
453     to a C function built with the below macro. */
454 #define VALGRIND_HG_GNAT_DEPENDENT_MASTER_JOIN(_qzz_dep, _qzz_master) \
455    DO_CREQ_v_WW(_VG_USERREQ__HG_GNAT_DEPENDENT_MASTER_JOIN,           \
456                 void*,(_qzz_dep),                                     \
457                 void*,(_qzz_master))
458 
459 /*----------------------------------------------------------------*/
460 /*---                                                          ---*/
461 /*--- ThreadSanitizer-compatible requests                      ---*/
462 /*--- (mostly unimplemented)                                   ---*/
463 /*---                                                          ---*/
464 /*----------------------------------------------------------------*/
465 
466 /* A quite-broad set of annotations, as used in the ThreadSanitizer
467    project.  This implementation aims to be a (source-level)
468    compatible implementation of the macros defined in:
469 
470    http://code.google.com/p/data-race-test/source
471           /browse/trunk/dynamic_annotations/dynamic_annotations.h
472 
473    (some of the comments below are taken from the above file)
474 
475    The implementation here is very incomplete, and intended as a
476    starting point.  Many of the macros are unimplemented.  Rather than
477    allowing unimplemented macros to silently do nothing, they cause an
478    assertion.  Intention is to implement them on demand.
479 
480    The major use of these macros is to make visible to race detectors,
481    the behaviour (effects) of user-implemented synchronisation
482    primitives, that the detectors could not otherwise deduce from the
483    normal observation of pthread etc calls.
484 
485    Some of the macros are no-ops in Helgrind.  That's because Helgrind
486    is a pure happens-before detector, whereas ThreadSanitizer uses a
487    hybrid lockset and happens-before scheme, which requires more
488    accurate annotations for correct operation.
489 
490    The macros are listed in the same order as in dynamic_annotations.h
491    (URL just above).
492 
493    I should point out that I am less than clear about the intended
494    semantics of quite a number of them.  Comments and clarifications
495    welcomed!
496 */
497 
498 /* ----------------------------------------------------------------
499    These four allow description of user-level condition variables,
500    apparently in the style of POSIX's pthread_cond_t.  Currently
501    unimplemented and will assert.
502    ----------------------------------------------------------------
503 */
504 /* Report that wait on the condition variable at address CV has
505    succeeded and the lock at address LOCK is now held.  CV and LOCK
506    are completely arbitrary memory addresses which presumably mean
507    something to the application, but are meaningless to Helgrind. */
508 #define ANNOTATE_CONDVAR_LOCK_WAIT(cv, lock) \
509    _HG_CLIENTREQ_UNIMP("ANNOTATE_CONDVAR_LOCK_WAIT")
510 
511 /* Report that wait on the condition variable at CV has succeeded.
512    Variant w/o lock. */
513 #define ANNOTATE_CONDVAR_WAIT(cv) \
514    _HG_CLIENTREQ_UNIMP("ANNOTATE_CONDVAR_WAIT")
515 
516 /* Report that we are about to signal on the condition variable at
517    address CV. */
518 #define ANNOTATE_CONDVAR_SIGNAL(cv) \
519    _HG_CLIENTREQ_UNIMP("ANNOTATE_CONDVAR_SIGNAL")
520 
521 /* Report that we are about to signal_all on the condition variable at
522    CV. */
523 #define ANNOTATE_CONDVAR_SIGNAL_ALL(cv) \
524    _HG_CLIENTREQ_UNIMP("ANNOTATE_CONDVAR_SIGNAL_ALL")
525 
526 
527 /* ----------------------------------------------------------------
528    Create completely arbitrary happens-before edges between threads.
529 
530    If threads T1 .. Tn all do ANNOTATE_HAPPENS_BEFORE(obj) and later
531    (w.r.t. some notional global clock for the computation) thread Tm
532    does ANNOTATE_HAPPENS_AFTER(obj), then Helgrind will regard all
533    memory accesses done by T1 .. Tn before the ..BEFORE.. call as
534    happening-before all memory accesses done by Tm after the
535    ..AFTER.. call.  Hence Helgrind won't complain about races if Tm's
536    accesses afterwards are to the same locations as accesses before by
537    any of T1 .. Tn.
538 
539    OBJ is a machine word (unsigned long, or void*), is completely
540    arbitrary, and denotes the identity of some synchronisation object
541    you're modelling.
542 
543    You must do the _BEFORE call just before the real sync event on the
544    signaller's side, and _AFTER just after the real sync event on the
545    waiter's side.
546 
547    If none of the rest of these macros make sense to you, at least
548    take the time to understand these two.  They form the very essence
549    of describing arbitrary inter-thread synchronisation events to
550    Helgrind.  You can get a long way just with them alone.
551 
552    See also, extensive discussion on semantics of this in
553    https://bugs.kde.org/show_bug.cgi?id=243935
554 
555    ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(obj) is interim until such time
556    as bug 243935 is fully resolved.  It instructs Helgrind to forget
557    about any ANNOTATE_HAPPENS_BEFORE calls on the specified object, in
558    effect putting it back in its original state.  Once in that state,
559    a use of ANNOTATE_HAPPENS_AFTER on it has no effect on the calling
560    thread.
561 
562    An implementation may optionally release resources it has
563    associated with 'obj' when ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(obj)
564    happens.  Users are recommended to use
565    ANNOTATE_HAPPENS_BEFORE_FORGET_ALL to indicate when a
566    synchronisation object is no longer needed, so as to avoid
567    potential indefinite resource leaks.
568    ----------------------------------------------------------------
569 */
570 #define ANNOTATE_HAPPENS_BEFORE(obj) \
571    DO_CREQ_v_W(_VG_USERREQ__HG_USERSO_SEND_PRE, void*,(obj))
572 
573 #define ANNOTATE_HAPPENS_AFTER(obj) \
574    DO_CREQ_v_W(_VG_USERREQ__HG_USERSO_RECV_POST, void*,(obj))
575 
576 #define ANNOTATE_HAPPENS_BEFORE_FORGET_ALL(obj) \
577    DO_CREQ_v_W(_VG_USERREQ__HG_USERSO_FORGET_ALL, void*,(obj))
578 
579 /* ----------------------------------------------------------------
580    Memory publishing.  The TSan sources say:
581 
582      Report that the bytes in the range [pointer, pointer+size) are about
583      to be published safely. The race checker will create a happens-before
584      arc from the call ANNOTATE_PUBLISH_MEMORY_RANGE(pointer, size) to
585      subsequent accesses to this memory.
586 
587    I'm not sure I understand what this means exactly, nor whether it
588    is relevant for a pure h-b detector.  Leaving unimplemented for
589    now.
590    ----------------------------------------------------------------
591 */
592 #define ANNOTATE_PUBLISH_MEMORY_RANGE(pointer, size) \
593    _HG_CLIENTREQ_UNIMP("ANNOTATE_PUBLISH_MEMORY_RANGE")
594 
595 /* DEPRECATED. Don't use it. */
596 /* #define ANNOTATE_UNPUBLISH_MEMORY_RANGE(pointer, size) */
597 
598 /* DEPRECATED. Don't use it. */
599 /* #define ANNOTATE_SWAP_MEMORY_RANGE(pointer, size) */
600 
601 
602 /* ----------------------------------------------------------------
603    TSan sources say:
604 
605      Instruct the tool to create a happens-before arc between
606      MU->Unlock() and MU->Lock().  This annotation may slow down the
607      race detector; normally it is used only when it would be
608      difficult to annotate each of the mutex's critical sections
609      individually using the annotations above.
610 
611    If MU is a posix pthread_mutex_t then Helgrind will do this anyway.
612    In any case, leave as unimp for now.  I'm unsure about the intended
613    behaviour.
614    ----------------------------------------------------------------
615 */
616 #define ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(mu) \
617    _HG_CLIENTREQ_UNIMP("ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX")
618 
619 /* Deprecated. Use ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX. */
620 /* #define ANNOTATE_MUTEX_IS_USED_AS_CONDVAR(mu) */
621 
622 
623 /* ----------------------------------------------------------------
624    TSan sources say:
625 
626      Annotations useful when defining memory allocators, or when
627      memory that was protected in one way starts to be protected in
628      another.
629 
630      Report that a new memory at "address" of size "size" has been
631      allocated.  This might be used when the memory has been retrieved
632      from a free list and is about to be reused, or when a the locking
633      discipline for a variable changes.
634 
635    AFAICS this is the same as VALGRIND_HG_CLEAN_MEMORY.
636    ----------------------------------------------------------------
637 */
638 #define ANNOTATE_NEW_MEMORY(address, size) \
639    VALGRIND_HG_CLEAN_MEMORY((address), (size))
640 
641 
642 /* ----------------------------------------------------------------
643    TSan sources say:
644 
645      Annotations useful when defining FIFO queues that transfer data
646      between threads.
647 
648    All unimplemented.  Am not claiming to understand this (yet).
649    ----------------------------------------------------------------
650 */
651 
652 /* Report that the producer-consumer queue object at address PCQ has
653    been created.  The ANNOTATE_PCQ_* annotations should be used only
654    for FIFO queues.  For non-FIFO queues use ANNOTATE_HAPPENS_BEFORE
655    (for put) and ANNOTATE_HAPPENS_AFTER (for get). */
656 #define ANNOTATE_PCQ_CREATE(pcq) \
657    _HG_CLIENTREQ_UNIMP("ANNOTATE_PCQ_CREATE")
658 
659 /* Report that the queue at address PCQ is about to be destroyed. */
660 #define ANNOTATE_PCQ_DESTROY(pcq) \
661    _HG_CLIENTREQ_UNIMP("ANNOTATE_PCQ_DESTROY")
662 
663 /* Report that we are about to put an element into a FIFO queue at
664    address PCQ. */
665 #define ANNOTATE_PCQ_PUT(pcq) \
666    _HG_CLIENTREQ_UNIMP("ANNOTATE_PCQ_PUT")
667 
668 /* Report that we've just got an element from a FIFO queue at address
669    PCQ. */
670 #define ANNOTATE_PCQ_GET(pcq) \
671    _HG_CLIENTREQ_UNIMP("ANNOTATE_PCQ_GET")
672 
673 
674 /* ----------------------------------------------------------------
675    Annotations that suppress errors.  It is usually better to express
676    the program's synchronization using the other annotations, but
677    these can be used when all else fails.
678 
679    Currently these are all unimplemented.  I can't think of a simple
680    way to implement them without at least some performance overhead.
681    ----------------------------------------------------------------
682 */
683 
684 /* Report that we may have a benign race at "pointer", with size
685    "sizeof(*(pointer))". "pointer" must be a non-void* pointer.  Insert at the
686    point where "pointer" has been allocated, preferably close to the point
687    where the race happens.  See also ANNOTATE_BENIGN_RACE_STATIC.
688 
689    XXX: what's this actually supposed to do?  And what's the type of
690    DESCRIPTION?  When does the annotation stop having an effect?
691 */
692 #define ANNOTATE_BENIGN_RACE(pointer, description) \
693    _HG_CLIENTREQ_UNIMP("ANNOTATE_BENIGN_RACE")
694 
695 /* Same as ANNOTATE_BENIGN_RACE(address, description), but applies to
696    the memory range [address, address+size). */
697 #define ANNOTATE_BENIGN_RACE_SIZED(address, size, description) \
698    VALGRIND_HG_DISABLE_CHECKING(address, size)
699 
700 /* Request the analysis tool to ignore all reads in the current thread
701    until ANNOTATE_IGNORE_READS_END is called.  Useful to ignore
702    intentional racey reads, while still checking other reads and all
703    writes. */
704 #define ANNOTATE_IGNORE_READS_BEGIN() \
705    _HG_CLIENTREQ_UNIMP("ANNOTATE_IGNORE_READS_BEGIN")
706 
707 /* Stop ignoring reads. */
708 #define ANNOTATE_IGNORE_READS_END() \
709    _HG_CLIENTREQ_UNIMP("ANNOTATE_IGNORE_READS_END")
710 
711 /* Similar to ANNOTATE_IGNORE_READS_BEGIN, but ignore writes. */
712 #define ANNOTATE_IGNORE_WRITES_BEGIN() \
713    _HG_CLIENTREQ_UNIMP("ANNOTATE_IGNORE_WRITES_BEGIN")
714 
715 /* Stop ignoring writes. */
716 #define ANNOTATE_IGNORE_WRITES_END() \
717    _HG_CLIENTREQ_UNIMP("ANNOTATE_IGNORE_WRITES_END")
718 
719 /* Start ignoring all memory accesses (reads and writes). */
720 #define ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN() \
721    do { \
722       ANNOTATE_IGNORE_READS_BEGIN(); \
723       ANNOTATE_IGNORE_WRITES_BEGIN(); \
724    } while (0)
725 
726 /* Stop ignoring all memory accesses. */
727 #define ANNOTATE_IGNORE_READS_AND_WRITES_END() \
728    do { \
729       ANNOTATE_IGNORE_WRITES_END(); \
730       ANNOTATE_IGNORE_READS_END(); \
731    } while (0)
732 
733 
734 /* ----------------------------------------------------------------
735    Annotations useful for debugging.
736 
737    Again, so for unimplemented, partly for performance reasons.
738    ----------------------------------------------------------------
739 */
740 
741 /* Request to trace every access to ADDRESS. */
742 #define ANNOTATE_TRACE_MEMORY(address) \
743    _HG_CLIENTREQ_UNIMP("ANNOTATE_TRACE_MEMORY")
744 
745 /* Report the current thread name to a race detector. */
746 #define ANNOTATE_THREAD_NAME(name) \
747    _HG_CLIENTREQ_UNIMP("ANNOTATE_THREAD_NAME")
748 
749 
750 /* ----------------------------------------------------------------
751    Annotations for describing behaviour of user-implemented lock
752    primitives.  In all cases, the LOCK argument is a completely
753    arbitrary machine word (unsigned long, or void*) and can be any
754    value which gives a unique identity to the lock objects being
755    modelled.
756 
757    We just pretend they're ordinary posix rwlocks.  That'll probably
758    give some rather confusing wording in error messages, claiming that
759    the arbitrary LOCK values are pthread_rwlock_t*'s, when in fact
760    they are not.  Ah well.
761    ----------------------------------------------------------------
762 */
763 /* Report that a lock has just been created at address LOCK. */
764 #define ANNOTATE_RWLOCK_CREATE(lock)                         \
765    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_RWLOCK_INIT_POST,     \
766                void*,(lock))
767 
768 /* Report that the lock at address LOCK is about to be destroyed. */
769 #define ANNOTATE_RWLOCK_DESTROY(lock)                        \
770    DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_RWLOCK_DESTROY_PRE,   \
771                void*,(lock))
772 
773 /* Report that the lock at address LOCK has just been acquired.
774    is_w=1 for writer lock, is_w=0 for reader lock. */
775 #define ANNOTATE_RWLOCK_ACQUIRED(lock, is_w)                 \
776   DO_CREQ_v_WW(_VG_USERREQ__HG_PTHREAD_RWLOCK_ACQUIRED,      \
777                void*,(lock), unsigned long,(is_w))
778 
779 /* Report that the lock at address LOCK is about to be released. */
780 #define ANNOTATE_RWLOCK_RELEASED(lock, is_w)                 \
781   DO_CREQ_v_W(_VG_USERREQ__HG_PTHREAD_RWLOCK_RELEASED,       \
782               void*,(lock)) /* is_w is ignored */
783 
784 
785 /* -------------------------------------------------------------
786    Annotations useful when implementing barriers.  They are not
787    normally needed by modules that merely use barriers.
788    The "barrier" argument is a pointer to the barrier object.
789    ----------------------------------------------------------------
790 */
791 
792 /* Report that the "barrier" has been initialized with initial
793    "count".  If 'reinitialization_allowed' is true, initialization is
794    allowed to happen multiple times w/o calling barrier_destroy() */
795 #define ANNOTATE_BARRIER_INIT(barrier, count, reinitialization_allowed) \
796    _HG_CLIENTREQ_UNIMP("ANNOTATE_BARRIER_INIT")
797 
798 /* Report that we are about to enter barrier_wait("barrier"). */
799 #define ANNOTATE_BARRIER_WAIT_BEFORE(barrier) \
800    _HG_CLIENTREQ_UNIMP("ANNOTATE_BARRIER_DESTROY")
801 
802 /* Report that we just exited barrier_wait("barrier"). */
803 #define ANNOTATE_BARRIER_WAIT_AFTER(barrier) \
804    _HG_CLIENTREQ_UNIMP("ANNOTATE_BARRIER_DESTROY")
805 
806 /* Report that the "barrier" has been destroyed. */
807 #define ANNOTATE_BARRIER_DESTROY(barrier) \
808    _HG_CLIENTREQ_UNIMP("ANNOTATE_BARRIER_DESTROY")
809 
810 
811 /* ----------------------------------------------------------------
812    Annotations useful for testing race detectors.
813    ----------------------------------------------------------------
814 */
815 
816 /* Report that we expect a race on the variable at ADDRESS.  Use only
817    in unit tests for a race detector. */
818 #define ANNOTATE_EXPECT_RACE(address, description) \
819    _HG_CLIENTREQ_UNIMP("ANNOTATE_EXPECT_RACE")
820 
821 /* A no-op. Insert where you like to test the interceptors. */
822 #define ANNOTATE_NO_OP(arg) \
823    _HG_CLIENTREQ_UNIMP("ANNOTATE_NO_OP")
824 
825 /* Force the race detector to flush its state. The actual effect depends on
826  * the implementation of the detector. */
827 #define ANNOTATE_FLUSH_STATE() \
828    _HG_CLIENTREQ_UNIMP("ANNOTATE_FLUSH_STATE")
829 
830 #endif /* __HELGRIND_H */
831