1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 ///    information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Support/InstructionCost.h"
31 #include <functional>
32 
33 namespace llvm {
34 
35 namespace Intrinsic {
36 typedef unsigned ID;
37 }
38 
39 class AssumptionCache;
40 class BlockFrequencyInfo;
41 class DominatorTree;
42 class BranchInst;
43 class CallBase;
44 class ExtractElementInst;
45 class Function;
46 class GlobalValue;
47 class InstCombiner;
48 class IntrinsicInst;
49 class LoadInst;
50 class LoopAccessInfo;
51 class Loop;
52 class LoopInfo;
53 class ProfileSummaryInfo;
54 class SCEV;
55 class ScalarEvolution;
56 class StoreInst;
57 class SwitchInst;
58 class TargetLibraryInfo;
59 class Type;
60 class User;
61 class Value;
62 struct KnownBits;
63 template <typename T> class Optional;
64 
65 /// Information about a load/store intrinsic defined by the target.
66 struct MemIntrinsicInfo {
67   /// This is the pointer that the intrinsic is loading from or storing to.
68   /// If this is non-null, then analysis/optimization passes can assume that
69   /// this intrinsic is functionally equivalent to a load/store from this
70   /// pointer.
71   Value *PtrVal = nullptr;
72 
73   // Ordering for atomic operations.
74   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
75 
76   // Same Id is set by the target for corresponding load/store intrinsics.
77   unsigned short MatchingId = 0;
78 
79   bool ReadMem = false;
80   bool WriteMem = false;
81   bool IsVolatile = false;
82 
isUnorderedMemIntrinsicInfo83   bool isUnordered() const {
84     return (Ordering == AtomicOrdering::NotAtomic ||
85             Ordering == AtomicOrdering::Unordered) &&
86            !IsVolatile;
87   }
88 };
89 
90 /// Attributes of a target dependent hardware loop.
91 struct HardwareLoopInfo {
92   HardwareLoopInfo() = delete;
HardwareLoopInfoHardwareLoopInfo93   HardwareLoopInfo(Loop *L) : L(L) {}
94   Loop *L = nullptr;
95   BasicBlock *ExitBlock = nullptr;
96   BranchInst *ExitBranch = nullptr;
97   const SCEV *TripCount = nullptr;
98   IntegerType *CountType = nullptr;
99   Value *LoopDecrement = nullptr; // Decrement the loop counter by this
100                                   // value in every iteration.
101   bool IsNestingLegal = false;    // Can a hardware loop be a parent to
102                                   // another hardware loop?
103   bool CounterInReg = false;      // Should loop counter be updated in
104                                   // the loop via a phi?
105   bool PerformEntryTest = false;  // Generate the intrinsic which also performs
106                                   // icmp ne zero on the loop counter value and
107                                   // produces an i1 to guard the loop entry.
108   bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
109                                DominatorTree &DT, bool ForceNestedLoop = false,
110                                bool ForceHardwareLoopPHI = false);
111   bool canAnalyze(LoopInfo &LI);
112 };
113 
114 class IntrinsicCostAttributes {
115   const IntrinsicInst *II = nullptr;
116   Type *RetTy = nullptr;
117   Intrinsic::ID IID;
118   SmallVector<Type *, 4> ParamTys;
119   SmallVector<const Value *, 4> Arguments;
120   FastMathFlags FMF;
121   ElementCount VF = ElementCount::getFixed(1);
122   // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
123   // arguments and the return value will be computed based on types.
124   unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
125 
126 public:
127   IntrinsicCostAttributes(const IntrinsicInst &I);
128 
129   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI);
130 
131   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
132                           ElementCount Factor);
133 
134   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
135                           ElementCount Factor, unsigned ScalarCost);
136 
137   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
138                           ArrayRef<Type *> Tys, FastMathFlags Flags);
139 
140   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
141                           ArrayRef<Type *> Tys, FastMathFlags Flags,
142                           unsigned ScalarCost);
143 
144   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
145                           ArrayRef<Type *> Tys, FastMathFlags Flags,
146                           unsigned ScalarCost,
147                           const IntrinsicInst *I);
148 
149   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
150                           ArrayRef<Type *> Tys);
151 
152   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
153                           ArrayRef<const Value *> Args);
154 
getID()155   Intrinsic::ID getID() const { return IID; }
getInst()156   const IntrinsicInst *getInst() const { return II; }
getReturnType()157   Type *getReturnType() const { return RetTy; }
getVectorFactor()158   ElementCount getVectorFactor() const { return VF; }
getFlags()159   FastMathFlags getFlags() const { return FMF; }
getScalarizationCost()160   unsigned getScalarizationCost() const { return ScalarizationCost; }
getArgs()161   const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
getArgTypes()162   const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
163 
isTypeBasedOnly()164   bool isTypeBasedOnly() const {
165     return Arguments.empty();
166   }
167 
skipScalarizationCost()168   bool skipScalarizationCost() const {
169     return ScalarizationCost != std::numeric_limits<unsigned>::max();
170   }
171 };
172 
173 class TargetTransformInfo;
174 typedef TargetTransformInfo TTI;
175 
176 /// This pass provides access to the codegen interfaces that are needed
177 /// for IR-level transformations.
178 class TargetTransformInfo {
179 public:
180   /// Construct a TTI object using a type implementing the \c Concept
181   /// API below.
182   ///
183   /// This is used by targets to construct a TTI wrapping their target-specific
184   /// implementation that encodes appropriate costs for their target.
185   template <typename T> TargetTransformInfo(T Impl);
186 
187   /// Construct a baseline TTI object using a minimal implementation of
188   /// the \c Concept API below.
189   ///
190   /// The TTI implementation will reflect the information in the DataLayout
191   /// provided if non-null.
192   explicit TargetTransformInfo(const DataLayout &DL);
193 
194   // Provide move semantics.
195   TargetTransformInfo(TargetTransformInfo &&Arg);
196   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
197 
198   // We need to define the destructor out-of-line to define our sub-classes
199   // out-of-line.
200   ~TargetTransformInfo();
201 
202   /// Handle the invalidation of this information.
203   ///
204   /// When used as a result of \c TargetIRAnalysis this method will be called
205   /// when the function this was computed for changes. When it returns false,
206   /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)207   bool invalidate(Function &, const PreservedAnalyses &,
208                   FunctionAnalysisManager::Invalidator &) {
209     // FIXME: We should probably in some way ensure that the subtarget
210     // information for a function hasn't changed.
211     return false;
212   }
213 
214   /// \name Generic Target Information
215   /// @{
216 
217   /// The kind of cost model.
218   ///
219   /// There are several different cost models that can be customized by the
220   /// target. The normalization of each cost model may be target specific.
221   enum TargetCostKind {
222     TCK_RecipThroughput, ///< Reciprocal throughput.
223     TCK_Latency,         ///< The latency of instruction.
224     TCK_CodeSize,        ///< Instruction code size.
225     TCK_SizeAndLatency   ///< The weighted sum of size and latency.
226   };
227 
228   /// Query the cost of a specified instruction.
229   ///
230   /// Clients should use this interface to query the cost of an existing
231   /// instruction. The instruction must have a valid parent (basic block).
232   ///
233   /// Note, this method does not cache the cost calculation and it
234   /// can be expensive in some cases.
getInstructionCost(const Instruction * I,enum TargetCostKind kind)235   InstructionCost getInstructionCost(const Instruction *I,
236                                      enum TargetCostKind kind) const {
237     InstructionCost Cost;
238     switch (kind) {
239     case TCK_RecipThroughput:
240       Cost = getInstructionThroughput(I);
241       break;
242     case TCK_Latency:
243       Cost = getInstructionLatency(I);
244       break;
245     case TCK_CodeSize:
246     case TCK_SizeAndLatency:
247       Cost = getUserCost(I, kind);
248       break;
249     }
250     if (Cost == -1)
251       Cost.setInvalid();
252     return Cost;
253   }
254 
255   /// Underlying constants for 'cost' values in this interface.
256   ///
257   /// Many APIs in this interface return a cost. This enum defines the
258   /// fundamental values that should be used to interpret (and produce) those
259   /// costs. The costs are returned as an int rather than a member of this
260   /// enumeration because it is expected that the cost of one IR instruction
261   /// may have a multiplicative factor to it or otherwise won't fit directly
262   /// into the enum. Moreover, it is common to sum or average costs which works
263   /// better as simple integral values. Thus this enum only provides constants.
264   /// Also note that the returned costs are signed integers to make it natural
265   /// to add, subtract, and test with zero (a common boundary condition). It is
266   /// not expected that 2^32 is a realistic cost to be modeling at any point.
267   ///
268   /// Note that these costs should usually reflect the intersection of code-size
269   /// cost and execution cost. A free instruction is typically one that folds
270   /// into another instruction. For example, reg-to-reg moves can often be
271   /// skipped by renaming the registers in the CPU, but they still are encoded
272   /// and thus wouldn't be considered 'free' here.
273   enum TargetCostConstants {
274     TCC_Free = 0,     ///< Expected to fold away in lowering.
275     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
276     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
277   };
278 
279   /// Estimate the cost of a GEP operation when lowered.
280   int getGEPCost(Type *PointeeType, const Value *Ptr,
281                  ArrayRef<const Value *> Operands,
282                  TargetCostKind CostKind = TCK_SizeAndLatency) const;
283 
284   /// \returns A value by which our inlining threshold should be multiplied.
285   /// This is primarily used to bump up the inlining threshold wholesale on
286   /// targets where calls are unusually expensive.
287   ///
288   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
289   /// individual classes of instructions would be better.
290   unsigned getInliningThresholdMultiplier() const;
291 
292   /// \returns A value to be added to the inlining threshold.
293   unsigned adjustInliningThreshold(const CallBase *CB) const;
294 
295   /// \returns Vector bonus in percent.
296   ///
297   /// Vector bonuses: We want to more aggressively inline vector-dense kernels
298   /// and apply this bonus based on the percentage of vector instructions. A
299   /// bonus is applied if the vector instructions exceed 50% and half that
300   /// amount is applied if it exceeds 10%. Note that these bonuses are some what
301   /// arbitrary and evolved over time by accident as much as because they are
302   /// principled bonuses.
303   /// FIXME: It would be nice to base the bonus values on something more
304   /// scientific. A target may has no bonus on vector instructions.
305   int getInlinerVectorBonusPercent() const;
306 
307   /// \return the expected cost of a memcpy, which could e.g. depend on the
308   /// source/destination type and alignment and the number of bytes copied.
309   int getMemcpyCost(const Instruction *I) const;
310 
311   /// \return The estimated number of case clusters when lowering \p 'SI'.
312   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
313   /// table.
314   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
315                                             unsigned &JTSize,
316                                             ProfileSummaryInfo *PSI,
317                                             BlockFrequencyInfo *BFI) const;
318 
319   /// Estimate the cost of a given IR user when lowered.
320   ///
321   /// This can estimate the cost of either a ConstantExpr or Instruction when
322   /// lowered.
323   ///
324   /// \p Operands is a list of operands which can be a result of transformations
325   /// of the current operands. The number of the operands on the list must equal
326   /// to the number of the current operands the IR user has. Their order on the
327   /// list must be the same as the order of the current operands the IR user
328   /// has.
329   ///
330   /// The returned cost is defined in terms of \c TargetCostConstants, see its
331   /// comments for a detailed explanation of the cost values.
332   int getUserCost(const User *U, ArrayRef<const Value *> Operands,
333                   TargetCostKind CostKind) const;
334 
335   /// This is a helper function which calls the two-argument getUserCost
336   /// with \p Operands which are the current operands U has.
getUserCost(const User * U,TargetCostKind CostKind)337   int getUserCost(const User *U, TargetCostKind CostKind) const {
338     SmallVector<const Value *, 4> Operands(U->operand_values());
339     return getUserCost(U, Operands, CostKind);
340   }
341 
342   /// Return true if branch divergence exists.
343   ///
344   /// Branch divergence has a significantly negative impact on GPU performance
345   /// when threads in the same wavefront take different paths due to conditional
346   /// branches.
347   bool hasBranchDivergence() const;
348 
349   /// Return true if the target prefers to use GPU divergence analysis to
350   /// replace the legacy version.
351   bool useGPUDivergenceAnalysis() const;
352 
353   /// Returns whether V is a source of divergence.
354   ///
355   /// This function provides the target-dependent information for
356   /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
357   /// first builds the dependency graph, and then runs the reachability
358   /// algorithm starting with the sources of divergence.
359   bool isSourceOfDivergence(const Value *V) const;
360 
361   // Returns true for the target specific
362   // set of operations which produce uniform result
363   // even taking non-uniform arguments
364   bool isAlwaysUniform(const Value *V) const;
365 
366   /// Returns the address space ID for a target's 'flat' address space. Note
367   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
368   /// refers to as the generic address space. The flat address space is a
369   /// generic address space that can be used access multiple segments of memory
370   /// with different address spaces. Access of a memory location through a
371   /// pointer with this address space is expected to be legal but slower
372   /// compared to the same memory location accessed through a pointer with a
373   /// different address space.
374   //
375   /// This is for targets with different pointer representations which can
376   /// be converted with the addrspacecast instruction. If a pointer is converted
377   /// to this address space, optimizations should attempt to replace the access
378   /// with the source address space.
379   ///
380   /// \returns ~0u if the target does not have such a flat address space to
381   /// optimize away.
382   unsigned getFlatAddressSpace() const;
383 
384   /// Return any intrinsic address operand indexes which may be rewritten if
385   /// they use a flat address space pointer.
386   ///
387   /// \returns true if the intrinsic was handled.
388   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
389                                   Intrinsic::ID IID) const;
390 
391   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
392 
393   unsigned getAssumedAddrSpace(const Value *V) const;
394 
395   /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
396   /// NewV, which has a different address space. This should happen for every
397   /// operand index that collectFlatAddressOperands returned for the intrinsic.
398   /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
399   /// new value (which may be the original \p II with modified operands).
400   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
401                                           Value *NewV) const;
402 
403   /// Test whether calls to a function lower to actual program function
404   /// calls.
405   ///
406   /// The idea is to test whether the program is likely to require a 'call'
407   /// instruction or equivalent in order to call the given function.
408   ///
409   /// FIXME: It's not clear that this is a good or useful query API. Client's
410   /// should probably move to simpler cost metrics using the above.
411   /// Alternatively, we could split the cost interface into distinct code-size
412   /// and execution-speed costs. This would allow modelling the core of this
413   /// query more accurately as a call is a single small instruction, but
414   /// incurs significant execution cost.
415   bool isLoweredToCall(const Function *F) const;
416 
417   struct LSRCost {
418     /// TODO: Some of these could be merged. Also, a lexical ordering
419     /// isn't always optimal.
420     unsigned Insns;
421     unsigned NumRegs;
422     unsigned AddRecCost;
423     unsigned NumIVMuls;
424     unsigned NumBaseAdds;
425     unsigned ImmCost;
426     unsigned SetupCost;
427     unsigned ScaleCost;
428   };
429 
430   /// Parameters that control the generic loop unrolling transformation.
431   struct UnrollingPreferences {
432     /// The cost threshold for the unrolled loop. Should be relative to the
433     /// getUserCost values returned by this API, and the expectation is that
434     /// the unrolled loop's instructions when run through that interface should
435     /// not exceed this cost. However, this is only an estimate. Also, specific
436     /// loops may be unrolled even with a cost above this threshold if deemed
437     /// profitable. Set this to UINT_MAX to disable the loop body cost
438     /// restriction.
439     unsigned Threshold;
440     /// If complete unrolling will reduce the cost of the loop, we will boost
441     /// the Threshold by a certain percent to allow more aggressive complete
442     /// unrolling. This value provides the maximum boost percentage that we
443     /// can apply to Threshold (The value should be no less than 100).
444     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
445     ///                                    MaxPercentThresholdBoost / 100)
446     /// E.g. if complete unrolling reduces the loop execution time by 50%
447     /// then we boost the threshold by the factor of 2x. If unrolling is not
448     /// expected to reduce the running time, then we do not increase the
449     /// threshold.
450     unsigned MaxPercentThresholdBoost;
451     /// The cost threshold for the unrolled loop when optimizing for size (set
452     /// to UINT_MAX to disable).
453     unsigned OptSizeThreshold;
454     /// The cost threshold for the unrolled loop, like Threshold, but used
455     /// for partial/runtime unrolling (set to UINT_MAX to disable).
456     unsigned PartialThreshold;
457     /// The cost threshold for the unrolled loop when optimizing for size, like
458     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
459     /// UINT_MAX to disable).
460     unsigned PartialOptSizeThreshold;
461     /// A forced unrolling factor (the number of concatenated bodies of the
462     /// original loop in the unrolled loop body). When set to 0, the unrolling
463     /// transformation will select an unrolling factor based on the current cost
464     /// threshold and other factors.
465     unsigned Count;
466     /// Default unroll count for loops with run-time trip count.
467     unsigned DefaultUnrollRuntimeCount;
468     // Set the maximum unrolling factor. The unrolling factor may be selected
469     // using the appropriate cost threshold, but may not exceed this number
470     // (set to UINT_MAX to disable). This does not apply in cases where the
471     // loop is being fully unrolled.
472     unsigned MaxCount;
473     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
474     /// applies even if full unrolling is selected. This allows a target to fall
475     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
476     unsigned FullUnrollMaxCount;
477     // Represents number of instructions optimized when "back edge"
478     // becomes "fall through" in unrolled loop.
479     // For now we count a conditional branch on a backedge and a comparison
480     // feeding it.
481     unsigned BEInsns;
482     /// Allow partial unrolling (unrolling of loops to expand the size of the
483     /// loop body, not only to eliminate small constant-trip-count loops).
484     bool Partial;
485     /// Allow runtime unrolling (unrolling of loops to expand the size of the
486     /// loop body even when the number of loop iterations is not known at
487     /// compile time).
488     bool Runtime;
489     /// Allow generation of a loop remainder (extra iterations after unroll).
490     bool AllowRemainder;
491     /// Allow emitting expensive instructions (such as divisions) when computing
492     /// the trip count of a loop for runtime unrolling.
493     bool AllowExpensiveTripCount;
494     /// Apply loop unroll on any kind of loop
495     /// (mainly to loops that fail runtime unrolling).
496     bool Force;
497     /// Allow using trip count upper bound to unroll loops.
498     bool UpperBound;
499     /// Allow unrolling of all the iterations of the runtime loop remainder.
500     bool UnrollRemainder;
501     /// Allow unroll and jam. Used to enable unroll and jam for the target.
502     bool UnrollAndJam;
503     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
504     /// value above is used during unroll and jam for the outer loop size.
505     /// This value is used in the same manner to limit the size of the inner
506     /// loop.
507     unsigned UnrollAndJamInnerLoopThreshold;
508     /// Don't allow loop unrolling to simulate more than this number of
509     /// iterations when checking full unroll profitability
510     unsigned MaxIterationsCountToAnalyze;
511   };
512 
513   /// Get target-customized preferences for the generic loop unrolling
514   /// transformation. The caller will initialize UP with the current
515   /// target-independent defaults.
516   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
517                                UnrollingPreferences &UP) const;
518 
519   /// Query the target whether it would be profitable to convert the given loop
520   /// into a hardware loop.
521   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
522                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
523                                 HardwareLoopInfo &HWLoopInfo) const;
524 
525   /// Query the target whether it would be prefered to create a predicated
526   /// vector loop, which can avoid the need to emit a scalar epilogue loop.
527   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
528                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
529                                    DominatorTree *DT,
530                                    const LoopAccessInfo *LAI) const;
531 
532   /// Query the target whether lowering of the llvm.get.active.lane.mask
533   /// intrinsic is supported.
534   bool emitGetActiveLaneMask() const;
535 
536   // Parameters that control the loop peeling transformation
537   struct PeelingPreferences {
538     /// A forced peeling factor (the number of bodied of the original loop
539     /// that should be peeled off before the loop body). When set to 0, the
540     /// a peeling factor based on profile information and other factors.
541     unsigned PeelCount;
542     /// Allow peeling off loop iterations.
543     bool AllowPeeling;
544     /// Allow peeling off loop iterations for loop nests.
545     bool AllowLoopNestsPeeling;
546     /// Allow peeling basing on profile. Uses to enable peeling off all
547     /// iterations basing on provided profile.
548     /// If the value is true the peeling cost model can decide to peel only
549     /// some iterations and in this case it will set this to false.
550     bool PeelProfiledIterations;
551   };
552 
553   /// Get target-customized preferences for the generic loop peeling
554   /// transformation. The caller will initialize \p PP with the current
555   /// target-independent defaults with information from \p L and \p SE.
556   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
557                              PeelingPreferences &PP) const;
558 
559   /// Targets can implement their own combinations for target-specific
560   /// intrinsics. This function will be called from the InstCombine pass every
561   /// time a target-specific intrinsic is encountered.
562   ///
563   /// \returns None to not do anything target specific or a value that will be
564   /// returned from the InstCombiner. It is possible to return null and stop
565   /// further processing of the intrinsic by returning nullptr.
566   Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
567                                                IntrinsicInst &II) const;
568   /// Can be used to implement target-specific instruction combining.
569   /// \see instCombineIntrinsic
570   Optional<Value *>
571   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
572                                    APInt DemandedMask, KnownBits &Known,
573                                    bool &KnownBitsComputed) const;
574   /// Can be used to implement target-specific instruction combining.
575   /// \see instCombineIntrinsic
576   Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
577       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
578       APInt &UndefElts2, APInt &UndefElts3,
579       std::function<void(Instruction *, unsigned, APInt, APInt &)>
580           SimplifyAndSetOp) const;
581   /// @}
582 
583   /// \name Scalar Target Information
584   /// @{
585 
586   /// Flags indicating the kind of support for population count.
587   ///
588   /// Compared to the SW implementation, HW support is supposed to
589   /// significantly boost the performance when the population is dense, and it
590   /// may or may not degrade performance if the population is sparse. A HW
591   /// support is considered as "Fast" if it can outperform, or is on a par
592   /// with, SW implementation when the population is sparse; otherwise, it is
593   /// considered as "Slow".
594   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
595 
596   /// Return true if the specified immediate is legal add immediate, that
597   /// is the target has add instructions which can add a register with the
598   /// immediate without having to materialize the immediate into a register.
599   bool isLegalAddImmediate(int64_t Imm) const;
600 
601   /// Return true if the specified immediate is legal icmp immediate,
602   /// that is the target has icmp instructions which can compare a register
603   /// against the immediate without having to materialize the immediate into a
604   /// register.
605   bool isLegalICmpImmediate(int64_t Imm) const;
606 
607   /// Return true if the addressing mode represented by AM is legal for
608   /// this target, for a load/store of the specified type.
609   /// The type may be VoidTy, in which case only return true if the addressing
610   /// mode is legal for a load/store of any legal type.
611   /// If target returns true in LSRWithInstrQueries(), I may be valid.
612   /// TODO: Handle pre/postinc as well.
613   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
614                              bool HasBaseReg, int64_t Scale,
615                              unsigned AddrSpace = 0,
616                              Instruction *I = nullptr) const;
617 
618   /// Return true if LSR cost of C1 is lower than C1.
619   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
620                      TargetTransformInfo::LSRCost &C2) const;
621 
622   /// Return true if LSR major cost is number of registers. Targets which
623   /// implement their own isLSRCostLess and unset number of registers as major
624   /// cost should return false, otherwise return true.
625   bool isNumRegsMajorCostOfLSR() const;
626 
627   /// \returns true if LSR should not optimize a chain that includes \p I.
628   bool isProfitableLSRChainElement(Instruction *I) const;
629 
630   /// Return true if the target can fuse a compare and branch.
631   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
632   /// calculation for the instructions in a loop.
633   bool canMacroFuseCmp() const;
634 
635   /// Return true if the target can save a compare for loop count, for example
636   /// hardware loop saves a compare.
637   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
638                   DominatorTree *DT, AssumptionCache *AC,
639                   TargetLibraryInfo *LibInfo) const;
640 
641   /// \return True is LSR should make efforts to create/preserve post-inc
642   /// addressing mode expressions.
643   bool shouldFavorPostInc() const;
644 
645   /// Return true if LSR should make efforts to generate indexed addressing
646   /// modes that operate across loop iterations.
647   bool shouldFavorBackedgeIndex(const Loop *L) const;
648 
649   /// Return true if the target supports masked store.
650   bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
651   /// Return true if the target supports masked load.
652   bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
653 
654   /// Return true if the target supports nontemporal store.
655   bool isLegalNTStore(Type *DataType, Align Alignment) const;
656   /// Return true if the target supports nontemporal load.
657   bool isLegalNTLoad(Type *DataType, Align Alignment) const;
658 
659   /// Return true if the target supports masked scatter.
660   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
661   /// Return true if the target supports masked gather.
662   bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
663 
664   /// Return true if the target supports masked compress store.
665   bool isLegalMaskedCompressStore(Type *DataType) const;
666   /// Return true if the target supports masked expand load.
667   bool isLegalMaskedExpandLoad(Type *DataType) const;
668 
669   /// Return true if the target has a unified operation to calculate division
670   /// and remainder. If so, the additional implicit multiplication and
671   /// subtraction required to calculate a remainder from division are free. This
672   /// can enable more aggressive transformations for division and remainder than
673   /// would typically be allowed using throughput or size cost models.
674   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
675 
676   /// Return true if the given instruction (assumed to be a memory access
677   /// instruction) has a volatile variant. If that's the case then we can avoid
678   /// addrspacecast to generic AS for volatile loads/stores. Default
679   /// implementation returns false, which prevents address space inference for
680   /// volatile loads/stores.
681   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
682 
683   /// Return true if target doesn't mind addresses in vectors.
684   bool prefersVectorizedAddressing() const;
685 
686   /// Return the cost of the scaling factor used in the addressing
687   /// mode represented by AM for this target, for a load/store
688   /// of the specified type.
689   /// If the AM is supported, the return value must be >= 0.
690   /// If the AM is not supported, it returns a negative value.
691   /// TODO: Handle pre/postinc as well.
692   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
693                            bool HasBaseReg, int64_t Scale,
694                            unsigned AddrSpace = 0) const;
695 
696   /// Return true if the loop strength reduce pass should make
697   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
698   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
699   /// immediate offset and no index register.
700   bool LSRWithInstrQueries() const;
701 
702   /// Return true if it's free to truncate a value of type Ty1 to type
703   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
704   /// by referencing its sub-register AX.
705   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
706 
707   /// Return true if it is profitable to hoist instruction in the
708   /// then/else to before if.
709   bool isProfitableToHoist(Instruction *I) const;
710 
711   bool useAA() const;
712 
713   /// Return true if this type is legal.
714   bool isTypeLegal(Type *Ty) const;
715 
716   /// Returns the estimated number of registers required to represent \p Ty.
717   unsigned getRegUsageForType(Type *Ty) const;
718 
719   /// Return true if switches should be turned into lookup tables for the
720   /// target.
721   bool shouldBuildLookupTables() const;
722 
723   /// Return true if switches should be turned into lookup tables
724   /// containing this constant value for the target.
725   bool shouldBuildLookupTablesForConstant(Constant *C) const;
726 
727   /// Return true if the input function which is cold at all call sites,
728   ///  should use coldcc calling convention.
729   bool useColdCCForColdCall(Function &F) const;
730 
731   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
732   /// are set if the demanded result elements need to be inserted and/or
733   /// extracted from vectors.
734   unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
735                                     bool Insert, bool Extract) const;
736 
737   /// Estimate the overhead of scalarizing an instructions unique
738   /// non-constant operands. The types of the arguments are ordinarily
739   /// scalar, in which case the costs are multiplied with VF.
740   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
741                                             unsigned VF) const;
742 
743   /// If target has efficient vector element load/store instructions, it can
744   /// return true here so that insertion/extraction costs are not added to
745   /// the scalarization cost of a load/store.
746   bool supportsEfficientVectorElementLoadStore() const;
747 
748   /// Don't restrict interleaved unrolling to small loops.
749   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
750 
751   /// Returns options for expansion of memcmp. IsZeroCmp is
752   // true if this is the expansion of memcmp(p1, p2, s) == 0.
753   struct MemCmpExpansionOptions {
754     // Return true if memcmp expansion is enabled.
755     operator bool() const { return MaxNumLoads > 0; }
756 
757     // Maximum number of load operations.
758     unsigned MaxNumLoads = 0;
759 
760     // The list of available load sizes (in bytes), sorted in decreasing order.
761     SmallVector<unsigned, 8> LoadSizes;
762 
763     // For memcmp expansion when the memcmp result is only compared equal or
764     // not-equal to 0, allow up to this number of load pairs per block. As an
765     // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
766     //   a0 = load2bytes &a[0]
767     //   b0 = load2bytes &b[0]
768     //   a2 = load1byte  &a[2]
769     //   b2 = load1byte  &b[2]
770     //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
771     unsigned NumLoadsPerBlock = 1;
772 
773     // Set to true to allow overlapping loads. For example, 7-byte compares can
774     // be done with two 4-byte compares instead of 4+2+1-byte compares. This
775     // requires all loads in LoadSizes to be doable in an unaligned way.
776     bool AllowOverlappingLoads = false;
777   };
778   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
779                                                bool IsZeroCmp) const;
780 
781   /// Enable matching of interleaved access groups.
782   bool enableInterleavedAccessVectorization() const;
783 
784   /// Enable matching of interleaved access groups that contain predicated
785   /// accesses or gaps and therefore vectorized using masked
786   /// vector loads/stores.
787   bool enableMaskedInterleavedAccessVectorization() const;
788 
789   /// Indicate that it is potentially unsafe to automatically vectorize
790   /// floating-point operations because the semantics of vector and scalar
791   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
792   /// does not support IEEE-754 denormal numbers, while depending on the
793   /// platform, scalar floating-point math does.
794   /// This applies to floating-point math operations and calls, not memory
795   /// operations, shuffles, or casts.
796   bool isFPVectorizationPotentiallyUnsafe() const;
797 
798   /// Determine if the target supports unaligned memory accesses.
799   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
800                                       unsigned AddressSpace = 0,
801                                       unsigned Alignment = 1,
802                                       bool *Fast = nullptr) const;
803 
804   /// Return hardware support for population count.
805   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
806 
807   /// Return true if the hardware has a fast square-root instruction.
808   bool haveFastSqrt(Type *Ty) const;
809 
810   /// Return true if it is faster to check if a floating-point value is NaN
811   /// (or not-NaN) versus a comparison against a constant FP zero value.
812   /// Targets should override this if materializing a 0.0 for comparison is
813   /// generally as cheap as checking for ordered/unordered.
814   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
815 
816   /// Return the expected cost of supporting the floating point operation
817   /// of the specified type.
818   int getFPOpCost(Type *Ty) const;
819 
820   /// Return the expected cost of materializing for the given integer
821   /// immediate of the specified type.
822   int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const;
823 
824   /// Return the expected cost of materialization for the given integer
825   /// immediate of the specified type for a given instruction. The cost can be
826   /// zero if the immediate can be folded into the specified instruction.
827   int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
828                         TargetCostKind CostKind,
829                         Instruction *Inst = nullptr) const;
830   int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
831                           Type *Ty, TargetCostKind CostKind) const;
832 
833   /// Return the expected cost for the given integer when optimising
834   /// for size. This is different than the other integer immediate cost
835   /// functions in that it is subtarget agnostic. This is useful when you e.g.
836   /// target one ISA such as Aarch32 but smaller encodings could be possible
837   /// with another such as Thumb. This return value is used as a penalty when
838   /// the total costs for a constant is calculated (the bigger the cost, the
839   /// more beneficial constant hoisting is).
840   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
841                             Type *Ty) const;
842   /// @}
843 
844   /// \name Vector Target Information
845   /// @{
846 
847   /// The various kinds of shuffle patterns for vector queries.
848   enum ShuffleKind {
849     SK_Broadcast,        ///< Broadcast element 0 to all other elements.
850     SK_Reverse,          ///< Reverse the order of the vector.
851     SK_Select,           ///< Selects elements from the corresponding lane of
852                          ///< either source operand. This is equivalent to a
853                          ///< vector select with a constant condition operand.
854     SK_Transpose,        ///< Transpose two vectors.
855     SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
856     SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
857     SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
858                          ///< with any shuffle mask.
859     SK_PermuteSingleSrc  ///< Shuffle elements of single source vector with any
860                          ///< shuffle mask.
861   };
862 
863   /// Kind of the reduction data.
864   enum ReductionKind {
865     RK_None,           /// Not a reduction.
866     RK_Arithmetic,     /// Binary reduction data.
867     RK_MinMax,         /// Min/max reduction data.
868     RK_UnsignedMinMax, /// Unsigned min/max reduction data.
869   };
870 
871   /// Contains opcode + LHS/RHS parts of the reduction operations.
872   struct ReductionData {
873     ReductionData() = delete;
ReductionDataReductionData874     ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
875         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
876       assert(Kind != RK_None && "expected binary or min/max reduction only.");
877     }
878     unsigned Opcode = 0;
879     Value *LHS = nullptr;
880     Value *RHS = nullptr;
881     ReductionKind Kind = RK_None;
hasSameDataReductionData882     bool hasSameData(ReductionData &RD) const {
883       return Kind == RD.Kind && Opcode == RD.Opcode;
884     }
885   };
886 
887   static ReductionKind matchPairwiseReduction(
888     const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
889 
890   static ReductionKind matchVectorSplittingReduction(
891     const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
892 
893   static ReductionKind matchVectorReduction(const ExtractElementInst *ReduxRoot,
894                                             unsigned &Opcode, VectorType *&Ty,
895                                             bool &IsPairwise);
896 
897   /// Additional information about an operand's possible values.
898   enum OperandValueKind {
899     OK_AnyValue,               // Operand can have any value.
900     OK_UniformValue,           // Operand is uniform (splat of a value).
901     OK_UniformConstantValue,   // Operand is uniform constant.
902     OK_NonUniformConstantValue // Operand is a non uniform constant value.
903   };
904 
905   /// Additional properties of an operand's values.
906   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
907 
908   /// \return the number of registers in the target-provided register class.
909   unsigned getNumberOfRegisters(unsigned ClassID) const;
910 
911   /// \return the target-provided register class ID for the provided type,
912   /// accounting for type promotion and other type-legalization techniques that
913   /// the target might apply. However, it specifically does not account for the
914   /// scalarization or splitting of vector types. Should a vector type require
915   /// scalarization or splitting into multiple underlying vector registers, that
916   /// type should be mapped to a register class containing no registers.
917   /// Specifically, this is designed to provide a simple, high-level view of the
918   /// register allocation later performed by the backend. These register classes
919   /// don't necessarily map onto the register classes used by the backend.
920   /// FIXME: It's not currently possible to determine how many registers
921   /// are used by the provided type.
922   unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
923 
924   /// \return the target-provided register class name
925   const char *getRegisterClassName(unsigned ClassID) const;
926 
927   /// \return The width of the largest scalar or vector register type.
928   unsigned getRegisterBitWidth(bool Vector) const;
929 
930   /// \return The width of the smallest vector register type.
931   unsigned getMinVectorRegisterBitWidth() const;
932 
933   /// \return The maximum value of vscale if the target specifies an
934   ///  architectural maximum vector length, and None otherwise.
935   Optional<unsigned> getMaxVScale() const;
936 
937   /// \return True if the vectorization factor should be chosen to
938   /// make the vector of the smallest element type match the size of a
939   /// vector register. For wider element types, this could result in
940   /// creating vectors that span multiple vector registers.
941   /// If false, the vectorization factor will be chosen based on the
942   /// size of the widest element type.
943   bool shouldMaximizeVectorBandwidth(bool OptSize) const;
944 
945   /// \return The minimum vectorization factor for types of given element
946   /// bit width, or 0 if there is no minimum VF. The returned value only
947   /// applies when shouldMaximizeVectorBandwidth returns true.
948   unsigned getMinimumVF(unsigned ElemWidth) const;
949 
950   /// \return The maximum vectorization factor for types of given element
951   /// bit width and opcode, or 0 if there is no maximum VF.
952   /// Currently only used by the SLP vectorizer.
953   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
954 
955   /// \return True if it should be considered for address type promotion.
956   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
957   /// profitable without finding other extensions fed by the same input.
958   bool shouldConsiderAddressTypePromotion(
959       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
960 
961   /// \return The size of a cache line in bytes.
962   unsigned getCacheLineSize() const;
963 
964   /// The possible cache levels
965   enum class CacheLevel {
966     L1D, // The L1 data cache
967     L2D, // The L2 data cache
968 
969     // We currently do not model L3 caches, as their sizes differ widely between
970     // microarchitectures. Also, we currently do not have a use for L3 cache
971     // size modeling yet.
972   };
973 
974   /// \return The size of the cache level in bytes, if available.
975   Optional<unsigned> getCacheSize(CacheLevel Level) const;
976 
977   /// \return The associativity of the cache level, if available.
978   Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
979 
980   /// \return How much before a load we should place the prefetch
981   /// instruction.  This is currently measured in number of
982   /// instructions.
983   unsigned getPrefetchDistance() const;
984 
985   /// Some HW prefetchers can handle accesses up to a certain constant stride.
986   /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
987   /// and the arguments provided are meant to serve as a basis for deciding this
988   /// for a particular loop.
989   ///
990   /// \param NumMemAccesses        Number of memory accesses in the loop.
991   /// \param NumStridedMemAccesses Number of the memory accesses that
992   ///                              ScalarEvolution could find a known stride
993   ///                              for.
994   /// \param NumPrefetches         Number of software prefetches that will be
995   ///                              emitted as determined by the addresses
996   ///                              involved and the cache line size.
997   /// \param HasCall               True if the loop contains a call.
998   ///
999   /// \return This is the minimum stride in bytes where it makes sense to start
1000   ///         adding SW prefetches. The default is 1, i.e. prefetch with any
1001   ///         stride.
1002   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1003                                 unsigned NumStridedMemAccesses,
1004                                 unsigned NumPrefetches, bool HasCall) const;
1005 
1006   /// \return The maximum number of iterations to prefetch ahead.  If
1007   /// the required number of iterations is more than this number, no
1008   /// prefetching is performed.
1009   unsigned getMaxPrefetchIterationsAhead() const;
1010 
1011   /// \return True if prefetching should also be done for writes.
1012   bool enableWritePrefetching() const;
1013 
1014   /// \return The maximum interleave factor that any transform should try to
1015   /// perform for this target. This number depends on the level of parallelism
1016   /// and the number of execution units in the CPU.
1017   unsigned getMaxInterleaveFactor(unsigned VF) const;
1018 
1019   /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1020   static OperandValueKind getOperandInfo(const Value *V,
1021                                          OperandValueProperties &OpProps);
1022 
1023   /// This is an approximation of reciprocal throughput of a math/logic op.
1024   /// A higher cost indicates less expected throughput.
1025   /// From Agner Fog's guides, reciprocal throughput is "the average number of
1026   /// clock cycles per instruction when the instructions are not part of a
1027   /// limiting dependency chain."
1028   /// Therefore, costs should be scaled to account for multiple execution units
1029   /// on the target that can process this type of instruction. For example, if
1030   /// there are 5 scalar integer units and 2 vector integer units that can
1031   /// calculate an 'add' in a single cycle, this model should indicate that the
1032   /// cost of the vector add instruction is 2.5 times the cost of the scalar
1033   /// add instruction.
1034   /// \p Args is an optional argument which holds the instruction operands
1035   /// values so the TTI can analyze those values searching for special
1036   /// cases or optimizations based on those values.
1037   /// \p CxtI is the optional original context instruction, if one exists, to
1038   /// provide even more information.
1039   int getArithmeticInstrCost(
1040       unsigned Opcode, Type *Ty,
1041       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1042       OperandValueKind Opd1Info = OK_AnyValue,
1043       OperandValueKind Opd2Info = OK_AnyValue,
1044       OperandValueProperties Opd1PropInfo = OP_None,
1045       OperandValueProperties Opd2PropInfo = OP_None,
1046       ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
1047       const Instruction *CxtI = nullptr) const;
1048 
1049   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1050   /// The index and subtype parameters are used by the subvector insertion and
1051   /// extraction shuffle kinds to show the insert/extract point and the type of
1052   /// the subvector being inserted/extracted.
1053   /// NOTE: For subvector extractions Tp represents the source type.
1054   int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index = 0,
1055                      VectorType *SubTp = nullptr) const;
1056 
1057   /// Represents a hint about the context in which a cast is used.
1058   ///
1059   /// For zext/sext, the context of the cast is the operand, which must be a
1060   /// load of some kind. For trunc, the context is of the cast is the single
1061   /// user of the instruction, which must be a store of some kind.
1062   ///
1063   /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1064   /// type of cast it's dealing with, as not every cast is equal. For instance,
1065   /// the zext of a load may be free, but the zext of an interleaving load can
1066   //// be (very) expensive!
1067   ///
1068   /// See \c getCastContextHint to compute a CastContextHint from a cast
1069   /// Instruction*. Callers can use it if they don't need to override the
1070   /// context and just want it to be calculated from the instruction.
1071   ///
1072   /// FIXME: This handles the types of load/store that the vectorizer can
1073   /// produce, which are the cases where the context instruction is most
1074   /// likely to be incorrect. There are other situations where that can happen
1075   /// too, which might be handled here but in the long run a more general
1076   /// solution of costing multiple instructions at the same times may be better.
1077   enum class CastContextHint : uint8_t {
1078     None,          ///< The cast is not used with a load/store of any kind.
1079     Normal,        ///< The cast is used with a normal load/store.
1080     Masked,        ///< The cast is used with a masked load/store.
1081     GatherScatter, ///< The cast is used with a gather/scatter.
1082     Interleave,    ///< The cast is used with an interleaved load/store.
1083     Reversed,      ///< The cast is used with a reversed load/store.
1084   };
1085 
1086   /// Calculates a CastContextHint from \p I.
1087   /// This should be used by callers of getCastInstrCost if they wish to
1088   /// determine the context from some instruction.
1089   /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1090   /// or if it's another type of cast.
1091   static CastContextHint getCastContextHint(const Instruction *I);
1092 
1093   /// \return The expected cost of cast instructions, such as bitcast, trunc,
1094   /// zext, etc. If there is an existing instruction that holds Opcode, it
1095   /// may be passed in the 'I' parameter.
1096   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1097                        TTI::CastContextHint CCH,
1098                        TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1099                        const Instruction *I = nullptr) const;
1100 
1101   /// \return The expected cost of a sign- or zero-extended vector extract. Use
1102   /// -1 to indicate that there is no information about the index value.
1103   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1104                                unsigned Index = -1) const;
1105 
1106   /// \return The expected cost of control-flow related instructions such as
1107   /// Phi, Ret, Br.
1108   int getCFInstrCost(unsigned Opcode,
1109                      TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1110 
1111   /// \returns The expected cost of compare and select instructions. If there
1112   /// is an existing instruction that holds Opcode, it may be passed in the
1113   /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1114   /// is using a compare with the specified predicate as condition. When vector
1115   /// types are passed, \p VecPred must be used for all lanes.
1116   int getCmpSelInstrCost(
1117       unsigned Opcode, Type *ValTy, Type *CondTy = nullptr,
1118       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE,
1119       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1120       const Instruction *I = nullptr) const;
1121 
1122   /// \return The expected cost of vector Insert and Extract.
1123   /// Use -1 to indicate that there is no information on the index value.
1124   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
1125 
1126   /// \return The cost of Load and Store instructions.
1127   int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1128                       unsigned AddressSpace,
1129                       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1130                       const Instruction *I = nullptr) const;
1131 
1132   /// \return The cost of masked Load and Store instructions.
1133   int getMaskedMemoryOpCost(
1134       unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1135       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1136 
1137   /// \return The cost of Gather or Scatter operation
1138   /// \p Opcode - is a type of memory access Load or Store
1139   /// \p DataTy - a vector type of the data to be loaded or stored
1140   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1141   /// \p VariableMask - true when the memory access is predicated with a mask
1142   ///                   that is not a compile-time constant
1143   /// \p Alignment - alignment of single element
1144   /// \p I - the optional original context instruction, if one exists, e.g. the
1145   ///        load/store to transform or the call to the gather/scatter intrinsic
1146   int getGatherScatterOpCost(
1147       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1148       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1149       const Instruction *I = nullptr) const;
1150 
1151   /// \return The cost of the interleaved memory operation.
1152   /// \p Opcode is the memory operation code
1153   /// \p VecTy is the vector type of the interleaved access.
1154   /// \p Factor is the interleave factor
1155   /// \p Indices is the indices for interleaved load members (as interleaved
1156   ///    load allows gaps)
1157   /// \p Alignment is the alignment of the memory operation
1158   /// \p AddressSpace is address space of the pointer.
1159   /// \p UseMaskForCond indicates if the memory access is predicated.
1160   /// \p UseMaskForGaps indicates if gaps should be masked.
1161   int getInterleavedMemoryOpCost(
1162       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1163       Align Alignment, unsigned AddressSpace,
1164       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1165       bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1166 
1167   /// Calculate the cost of performing a vector reduction.
1168   ///
1169   /// This is the cost of reducing the vector value of type \p Ty to a scalar
1170   /// value using the operation denoted by \p Opcode. The form of the reduction
1171   /// can either be a pairwise reduction or a reduction that splits the vector
1172   /// at every reduction level.
1173   ///
1174   /// Pairwise:
1175   ///  (v0, v1, v2, v3)
1176   ///  ((v0+v1), (v2+v3), undef, undef)
1177   /// Split:
1178   ///  (v0, v1, v2, v3)
1179   ///  ((v0+v2), (v1+v3), undef, undef)
1180   int getArithmeticReductionCost(
1181     unsigned Opcode, VectorType *Ty, bool IsPairwiseForm,
1182     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1183 
1184   int getMinMaxReductionCost(
1185     VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
1186     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1187 
1188   /// Calculate the cost of an extended reduction pattern, similar to
1189   /// getArithmeticReductionCost of an Add reduction with an extension and
1190   /// optional multiply. This is the cost of as:
1191   /// ResTy vecreduce.add(ext(Ty A)), or if IsMLA flag is set then:
1192   /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). The reduction happens
1193   /// on a VectorType with ResTy elements and Ty lanes.
1194   InstructionCost getExtendedAddReductionCost(
1195       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1196       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1197 
1198   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1199   /// Three cases are handled: 1. scalar instruction 2. vector instruction
1200   /// 3. scalar instruction which is to be vectorized.
1201   int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1202                             TTI::TargetCostKind CostKind) const;
1203 
1204   /// \returns The cost of Call instructions.
1205   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1206                  TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1207 
1208   /// \returns The number of pieces into which the provided type must be
1209   /// split during legalization. Zero is returned when the answer is unknown.
1210   unsigned getNumberOfParts(Type *Tp) const;
1211 
1212   /// \returns The cost of the address computation. For most targets this can be
1213   /// merged into the instruction indexing mode. Some targets might want to
1214   /// distinguish between address computation for memory operations on vector
1215   /// types and scalar types. Such targets should override this function.
1216   /// The 'SE' parameter holds pointer for the scalar evolution object which
1217   /// is used in order to get the Ptr step value in case of constant stride.
1218   /// The 'Ptr' parameter holds SCEV of the access pointer.
1219   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
1220                                 const SCEV *Ptr = nullptr) const;
1221 
1222   /// \returns The cost, if any, of keeping values of the given types alive
1223   /// over a callsite.
1224   ///
1225   /// Some types may require the use of register classes that do not have
1226   /// any callee-saved registers, so would require a spill and fill.
1227   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1228 
1229   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
1230   /// will contain additional information - whether the intrinsic may write
1231   /// or read to memory, volatility and the pointer.  Info is undefined
1232   /// if false is returned.
1233   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1234 
1235   /// \returns The maximum element size, in bytes, for an element
1236   /// unordered-atomic memory intrinsic.
1237   unsigned getAtomicMemIntrinsicMaxElementSize() const;
1238 
1239   /// \returns A value which is the result of the given memory intrinsic.  New
1240   /// instructions may be created to extract the result from the given intrinsic
1241   /// memory operation.  Returns nullptr if the target cannot create a result
1242   /// from the given intrinsic.
1243   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1244                                            Type *ExpectedType) const;
1245 
1246   /// \returns The type to use in a loop expansion of a memcpy call.
1247   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1248                                   unsigned SrcAddrSpace, unsigned DestAddrSpace,
1249                                   unsigned SrcAlign, unsigned DestAlign) const;
1250 
1251   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1252   /// \param RemainingBytes The number of bytes to copy.
1253   ///
1254   /// Calculates the operand types to use when copying \p RemainingBytes of
1255   /// memory, where source and destination alignments are \p SrcAlign and
1256   /// \p DestAlign respectively.
1257   void getMemcpyLoopResidualLoweringType(
1258       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1259       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1260       unsigned SrcAlign, unsigned DestAlign) const;
1261 
1262   /// \returns True if the two functions have compatible attributes for inlining
1263   /// purposes.
1264   bool areInlineCompatible(const Function *Caller,
1265                            const Function *Callee) const;
1266 
1267   /// \returns True if the caller and callee agree on how \p Args will be passed
1268   /// to the callee.
1269   /// \param[out] Args The list of compatible arguments.  The implementation may
1270   /// filter out any incompatible args from this list.
1271   bool areFunctionArgsABICompatible(const Function *Caller,
1272                                     const Function *Callee,
1273                                     SmallPtrSetImpl<Argument *> &Args) const;
1274 
1275   /// The type of load/store indexing.
1276   enum MemIndexedMode {
1277     MIM_Unindexed, ///< No indexing.
1278     MIM_PreInc,    ///< Pre-incrementing.
1279     MIM_PreDec,    ///< Pre-decrementing.
1280     MIM_PostInc,   ///< Post-incrementing.
1281     MIM_PostDec    ///< Post-decrementing.
1282   };
1283 
1284   /// \returns True if the specified indexed load for the given type is legal.
1285   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1286 
1287   /// \returns True if the specified indexed store for the given type is legal.
1288   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1289 
1290   /// \returns The bitwidth of the largest vector type that should be used to
1291   /// load/store in the given address space.
1292   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1293 
1294   /// \returns True if the load instruction is legal to vectorize.
1295   bool isLegalToVectorizeLoad(LoadInst *LI) const;
1296 
1297   /// \returns True if the store instruction is legal to vectorize.
1298   bool isLegalToVectorizeStore(StoreInst *SI) const;
1299 
1300   /// \returns True if it is legal to vectorize the given load chain.
1301   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1302                                    unsigned AddrSpace) const;
1303 
1304   /// \returns True if it is legal to vectorize the given store chain.
1305   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1306                                     unsigned AddrSpace) const;
1307 
1308   /// \returns The new vector factor value if the target doesn't support \p
1309   /// SizeInBytes loads or has a better vector factor.
1310   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1311                                unsigned ChainSizeInBytes,
1312                                VectorType *VecTy) const;
1313 
1314   /// \returns The new vector factor value if the target doesn't support \p
1315   /// SizeInBytes stores or has a better vector factor.
1316   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1317                                 unsigned ChainSizeInBytes,
1318                                 VectorType *VecTy) const;
1319 
1320   /// Flags describing the kind of vector reduction.
1321   struct ReductionFlags {
ReductionFlagsReductionFlags1322     ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
1323     bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
1324     bool IsSigned; ///< Whether the operation is a signed int reduction.
1325     bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
1326   };
1327 
1328   /// \returns True if the target wants to handle the given reduction idiom in
1329   /// the intrinsics form instead of the shuffle form.
1330   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1331                              ReductionFlags Flags) const;
1332 
1333   /// \returns True if the target prefers reductions in loop.
1334   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1335                              ReductionFlags Flags) const;
1336 
1337   /// \returns True if the target prefers reductions select kept in the loop
1338   /// when tail folding. i.e.
1339   /// loop:
1340   ///   p = phi (0, s)
1341   ///   a = add (p, x)
1342   ///   s = select (mask, a, p)
1343   /// vecreduce.add(s)
1344   ///
1345   /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1346   /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1347   /// by the target, this can lead to cleaner code generation.
1348   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1349                                        ReductionFlags Flags) const;
1350 
1351   /// \returns True if the target wants to expand the given reduction intrinsic
1352   /// into a shuffle sequence.
1353   bool shouldExpandReduction(const IntrinsicInst *II) const;
1354 
1355   /// \returns the size cost of rematerializing a GlobalValue address relative
1356   /// to a stack reload.
1357   unsigned getGISelRematGlobalCost() const;
1358 
1359   /// \returns True if the target supports scalable vectors.
1360   bool supportsScalableVectors() const;
1361 
1362   /// \name Vector Predication Information
1363   /// @{
1364   /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1365   /// in hardware. (see LLVM Language Reference - "Vector Predication
1366   /// Intrinsics") Use of %evl is discouraged when that is not the case.
1367   bool hasActiveVectorLength() const;
1368 
1369   /// @}
1370 
1371   /// @}
1372 
1373 private:
1374   /// Estimate the latency of specified instruction.
1375   /// Returns 1 as the default value.
1376   int getInstructionLatency(const Instruction *I) const;
1377 
1378   /// Returns the expected throughput cost of the instruction.
1379   /// Returns -1 if the cost is unknown.
1380   int getInstructionThroughput(const Instruction *I) const;
1381 
1382   /// The abstract base class used to type erase specific TTI
1383   /// implementations.
1384   class Concept;
1385 
1386   /// The template model for the base class which wraps a concrete
1387   /// implementation in a type erased interface.
1388   template <typename T> class Model;
1389 
1390   std::unique_ptr<Concept> TTIImpl;
1391 };
1392 
1393 class TargetTransformInfo::Concept {
1394 public:
1395   virtual ~Concept() = 0;
1396   virtual const DataLayout &getDataLayout() const = 0;
1397   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1398                          ArrayRef<const Value *> Operands,
1399                          TTI::TargetCostKind CostKind) = 0;
1400   virtual unsigned getInliningThresholdMultiplier() = 0;
1401   virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1402   virtual int getInlinerVectorBonusPercent() = 0;
1403   virtual int getMemcpyCost(const Instruction *I) = 0;
1404   virtual unsigned
1405   getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1406                                    ProfileSummaryInfo *PSI,
1407                                    BlockFrequencyInfo *BFI) = 0;
1408   virtual int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1409                           TargetCostKind CostKind) = 0;
1410   virtual bool hasBranchDivergence() = 0;
1411   virtual bool useGPUDivergenceAnalysis() = 0;
1412   virtual bool isSourceOfDivergence(const Value *V) = 0;
1413   virtual bool isAlwaysUniform(const Value *V) = 0;
1414   virtual unsigned getFlatAddressSpace() = 0;
1415   virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1416                                           Intrinsic::ID IID) const = 0;
1417   virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1418   virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1419   virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1420                                                   Value *OldV,
1421                                                   Value *NewV) const = 0;
1422   virtual bool isLoweredToCall(const Function *F) = 0;
1423   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1424                                        UnrollingPreferences &UP) = 0;
1425   virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1426                                      PeelingPreferences &PP) = 0;
1427   virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1428                                         AssumptionCache &AC,
1429                                         TargetLibraryInfo *LibInfo,
1430                                         HardwareLoopInfo &HWLoopInfo) = 0;
1431   virtual bool
1432   preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1433                               AssumptionCache &AC, TargetLibraryInfo *TLI,
1434                               DominatorTree *DT, const LoopAccessInfo *LAI) = 0;
1435   virtual bool emitGetActiveLaneMask() = 0;
1436   virtual Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1437                                                        IntrinsicInst &II) = 0;
1438   virtual Optional<Value *>
1439   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1440                                    APInt DemandedMask, KnownBits &Known,
1441                                    bool &KnownBitsComputed) = 0;
1442   virtual Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1443       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1444       APInt &UndefElts2, APInt &UndefElts3,
1445       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1446           SimplifyAndSetOp) = 0;
1447   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1448   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1449   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1450                                      int64_t BaseOffset, bool HasBaseReg,
1451                                      int64_t Scale, unsigned AddrSpace,
1452                                      Instruction *I) = 0;
1453   virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1454                              TargetTransformInfo::LSRCost &C2) = 0;
1455   virtual bool isNumRegsMajorCostOfLSR() = 0;
1456   virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
1457   virtual bool canMacroFuseCmp() = 0;
1458   virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1459                           LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1460                           TargetLibraryInfo *LibInfo) = 0;
1461   virtual bool shouldFavorPostInc() const = 0;
1462   virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
1463   virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1464   virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1465   virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1466   virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1467   virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1468   virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1469   virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1470   virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
1471   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1472   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1473   virtual bool prefersVectorizedAddressing() = 0;
1474   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1475                                    int64_t BaseOffset, bool HasBaseReg,
1476                                    int64_t Scale, unsigned AddrSpace) = 0;
1477   virtual bool LSRWithInstrQueries() = 0;
1478   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1479   virtual bool isProfitableToHoist(Instruction *I) = 0;
1480   virtual bool useAA() = 0;
1481   virtual bool isTypeLegal(Type *Ty) = 0;
1482   virtual unsigned getRegUsageForType(Type *Ty) = 0;
1483   virtual bool shouldBuildLookupTables() = 0;
1484   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1485   virtual bool useColdCCForColdCall(Function &F) = 0;
1486   virtual unsigned getScalarizationOverhead(VectorType *Ty,
1487                                             const APInt &DemandedElts,
1488                                             bool Insert, bool Extract) = 0;
1489   virtual unsigned
1490   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1491                                    unsigned VF) = 0;
1492   virtual bool supportsEfficientVectorElementLoadStore() = 0;
1493   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1494   virtual MemCmpExpansionOptions
1495   enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1496   virtual bool enableInterleavedAccessVectorization() = 0;
1497   virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1498   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1499   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1500                                               unsigned BitWidth,
1501                                               unsigned AddressSpace,
1502                                               unsigned Alignment,
1503                                               bool *Fast) = 0;
1504   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1505   virtual bool haveFastSqrt(Type *Ty) = 0;
1506   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1507   virtual int getFPOpCost(Type *Ty) = 0;
1508   virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1509                                     const APInt &Imm, Type *Ty) = 0;
1510   virtual int getIntImmCost(const APInt &Imm, Type *Ty,
1511                             TargetCostKind CostKind) = 0;
1512   virtual int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm,
1513                                 Type *Ty, TargetCostKind CostKind,
1514                                 Instruction *Inst = nullptr) = 0;
1515   virtual int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1516                                   const APInt &Imm, Type *Ty,
1517                                   TargetCostKind CostKind) = 0;
1518   virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1519   virtual unsigned getRegisterClassForType(bool Vector,
1520                                            Type *Ty = nullptr) const = 0;
1521   virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1522   virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1523   virtual unsigned getMinVectorRegisterBitWidth() = 0;
1524   virtual Optional<unsigned> getMaxVScale() const = 0;
1525   virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1526   virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1527   virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1528   virtual bool shouldConsiderAddressTypePromotion(
1529       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1530   virtual unsigned getCacheLineSize() const = 0;
1531   virtual Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1532   virtual Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
1533 
1534   /// \return How much before a load we should place the prefetch
1535   /// instruction.  This is currently measured in number of
1536   /// instructions.
1537   virtual unsigned getPrefetchDistance() const = 0;
1538 
1539   /// \return Some HW prefetchers can handle accesses up to a certain
1540   /// constant stride.  This is the minimum stride in bytes where it
1541   /// makes sense to start adding SW prefetches.  The default is 1,
1542   /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
1543   /// even below the HW prefetcher limit, and the arguments provided are
1544   /// meant to serve as a basis for deciding this for a particular loop.
1545   virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1546                                         unsigned NumStridedMemAccesses,
1547                                         unsigned NumPrefetches,
1548                                         bool HasCall) const = 0;
1549 
1550   /// \return The maximum number of iterations to prefetch ahead.  If
1551   /// the required number of iterations is more than this number, no
1552   /// prefetching is performed.
1553   virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1554 
1555   /// \return True if prefetching should also be done for writes.
1556   virtual bool enableWritePrefetching() const = 0;
1557 
1558   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1559   virtual unsigned getArithmeticInstrCost(
1560       unsigned Opcode, Type *Ty,
1561       TTI::TargetCostKind CostKind,
1562       OperandValueKind Opd1Info,
1563       OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
1564       OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1565       const Instruction *CxtI = nullptr) = 0;
1566   virtual int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
1567                              VectorType *SubTp) = 0;
1568   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1569                                CastContextHint CCH,
1570                                TTI::TargetCostKind CostKind,
1571                                const Instruction *I) = 0;
1572   virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1573                                        VectorType *VecTy, unsigned Index) = 0;
1574   virtual int getCFInstrCost(unsigned Opcode,
1575                              TTI::TargetCostKind CostKind) = 0;
1576   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1577                                  CmpInst::Predicate VecPred,
1578                                  TTI::TargetCostKind CostKind,
1579                                  const Instruction *I) = 0;
1580   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1581                                  unsigned Index) = 0;
1582   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1583                               unsigned AddressSpace,
1584                               TTI::TargetCostKind CostKind,
1585                               const Instruction *I) = 0;
1586   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1587                                     unsigned AddressSpace,
1588                                     TTI::TargetCostKind CostKind) = 0;
1589   virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1590                                      const Value *Ptr, bool VariableMask,
1591                                      Align Alignment,
1592                                      TTI::TargetCostKind CostKind,
1593                                      const Instruction *I = nullptr) = 0;
1594 
1595   virtual int getInterleavedMemoryOpCost(
1596       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1597       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1598       bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
1599   virtual int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
1600                                          bool IsPairwiseForm,
1601                                          TTI::TargetCostKind CostKind) = 0;
1602   virtual int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
1603                                      bool IsPairwiseForm, bool IsUnsigned,
1604                                      TTI::TargetCostKind CostKind) = 0;
1605   virtual InstructionCost getExtendedAddReductionCost(
1606       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1607       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
1608   virtual int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1609                                     TTI::TargetCostKind CostKind) = 0;
1610   virtual int getCallInstrCost(Function *F, Type *RetTy,
1611                                ArrayRef<Type *> Tys,
1612                                TTI::TargetCostKind CostKind) = 0;
1613   virtual unsigned getNumberOfParts(Type *Tp) = 0;
1614   virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1615                                         const SCEV *Ptr) = 0;
1616   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1617   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1618                                   MemIntrinsicInfo &Info) = 0;
1619   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1620   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1621                                                    Type *ExpectedType) = 0;
1622   virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1623                                           unsigned SrcAddrSpace,
1624                                           unsigned DestAddrSpace,
1625                                           unsigned SrcAlign,
1626                                           unsigned DestAlign) const = 0;
1627   virtual void getMemcpyLoopResidualLoweringType(
1628       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1629       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1630       unsigned SrcAlign, unsigned DestAlign) const = 0;
1631   virtual bool areInlineCompatible(const Function *Caller,
1632                                    const Function *Callee) const = 0;
1633   virtual bool
1634   areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
1635                                SmallPtrSetImpl<Argument *> &Args) const = 0;
1636   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1637   virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1638   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1639   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1640   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1641   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1642                                            Align Alignment,
1643                                            unsigned AddrSpace) const = 0;
1644   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1645                                             Align Alignment,
1646                                             unsigned AddrSpace) const = 0;
1647   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1648                                        unsigned ChainSizeInBytes,
1649                                        VectorType *VecTy) const = 0;
1650   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1651                                         unsigned ChainSizeInBytes,
1652                                         VectorType *VecTy) const = 0;
1653   virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1654                                      ReductionFlags) const = 0;
1655   virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1656                                      ReductionFlags) const = 0;
1657   virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1658                                                ReductionFlags) const = 0;
1659   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1660   virtual unsigned getGISelRematGlobalCost() const = 0;
1661   virtual bool supportsScalableVectors() const = 0;
1662   virtual bool hasActiveVectorLength() const = 0;
1663   virtual int getInstructionLatency(const Instruction *I) = 0;
1664 };
1665 
1666 template <typename T>
1667 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1668   T Impl;
1669 
1670 public:
Model(T Impl)1671   Model(T Impl) : Impl(std::move(Impl)) {}
~Model()1672   ~Model() override {}
1673 
getDataLayout()1674   const DataLayout &getDataLayout() const override {
1675     return Impl.getDataLayout();
1676   }
1677 
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands,enum TargetTransformInfo::TargetCostKind CostKind)1678   int getGEPCost(Type *PointeeType, const Value *Ptr,
1679                  ArrayRef<const Value *> Operands,
1680                  enum TargetTransformInfo::TargetCostKind CostKind) override {
1681     return Impl.getGEPCost(PointeeType, Ptr, Operands);
1682   }
getInliningThresholdMultiplier()1683   unsigned getInliningThresholdMultiplier() override {
1684     return Impl.getInliningThresholdMultiplier();
1685   }
adjustInliningThreshold(const CallBase * CB)1686   unsigned adjustInliningThreshold(const CallBase *CB) override {
1687     return Impl.adjustInliningThreshold(CB);
1688   }
getInlinerVectorBonusPercent()1689   int getInlinerVectorBonusPercent() override {
1690     return Impl.getInlinerVectorBonusPercent();
1691   }
getMemcpyCost(const Instruction * I)1692   int getMemcpyCost(const Instruction *I) override {
1693     return Impl.getMemcpyCost(I);
1694   }
getUserCost(const User * U,ArrayRef<const Value * > Operands,TargetCostKind CostKind)1695   int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1696                   TargetCostKind CostKind) override {
1697     return Impl.getUserCost(U, Operands, CostKind);
1698   }
hasBranchDivergence()1699   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
useGPUDivergenceAnalysis()1700   bool useGPUDivergenceAnalysis() override {
1701     return Impl.useGPUDivergenceAnalysis();
1702   }
isSourceOfDivergence(const Value * V)1703   bool isSourceOfDivergence(const Value *V) override {
1704     return Impl.isSourceOfDivergence(V);
1705   }
1706 
isAlwaysUniform(const Value * V)1707   bool isAlwaysUniform(const Value *V) override {
1708     return Impl.isAlwaysUniform(V);
1709   }
1710 
getFlatAddressSpace()1711   unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
1712 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID)1713   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1714                                   Intrinsic::ID IID) const override {
1715     return Impl.collectFlatAddressOperands(OpIndexes, IID);
1716   }
1717 
isNoopAddrSpaceCast(unsigned FromAS,unsigned ToAS)1718   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
1719     return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
1720   }
1721 
getAssumedAddrSpace(const Value * V)1722   unsigned getAssumedAddrSpace(const Value *V) const override {
1723     return Impl.getAssumedAddrSpace(V);
1724   }
1725 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV)1726   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
1727                                           Value *NewV) const override {
1728     return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
1729   }
1730 
isLoweredToCall(const Function * F)1731   bool isLoweredToCall(const Function *F) override {
1732     return Impl.isLoweredToCall(F);
1733   }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP)1734   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1735                                UnrollingPreferences &UP) override {
1736     return Impl.getUnrollingPreferences(L, SE, UP);
1737   }
getPeelingPreferences(Loop * L,ScalarEvolution & SE,PeelingPreferences & PP)1738   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1739                              PeelingPreferences &PP) override {
1740     return Impl.getPeelingPreferences(L, SE, PP);
1741   }
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)1742   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1743                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
1744                                 HardwareLoopInfo &HWLoopInfo) override {
1745     return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
1746   }
preferPredicateOverEpilogue(Loop * L,LoopInfo * LI,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * TLI,DominatorTree * DT,const LoopAccessInfo * LAI)1747   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1748                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
1749                                    DominatorTree *DT,
1750                                    const LoopAccessInfo *LAI) override {
1751     return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
1752   }
emitGetActiveLaneMask()1753   bool emitGetActiveLaneMask() override {
1754     return Impl.emitGetActiveLaneMask();
1755   }
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II)1756   Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1757                                                IntrinsicInst &II) override {
1758     return Impl.instCombineIntrinsic(IC, II);
1759   }
1760   Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)1761   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1762                                    APInt DemandedMask, KnownBits &Known,
1763                                    bool &KnownBitsComputed) override {
1764     return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
1765                                                  KnownBitsComputed);
1766   }
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)1767   Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1768       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1769       APInt &UndefElts2, APInt &UndefElts3,
1770       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1771           SimplifyAndSetOp) override {
1772     return Impl.simplifyDemandedVectorEltsIntrinsic(
1773         IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1774         SimplifyAndSetOp);
1775   }
isLegalAddImmediate(int64_t Imm)1776   bool isLegalAddImmediate(int64_t Imm) override {
1777     return Impl.isLegalAddImmediate(Imm);
1778   }
isLegalICmpImmediate(int64_t Imm)1779   bool isLegalICmpImmediate(int64_t Imm) override {
1780     return Impl.isLegalICmpImmediate(Imm);
1781   }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I)1782   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1783                              bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
1784                              Instruction *I) override {
1785     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1786                                       AddrSpace, I);
1787   }
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)1788   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1789                      TargetTransformInfo::LSRCost &C2) override {
1790     return Impl.isLSRCostLess(C1, C2);
1791   }
isNumRegsMajorCostOfLSR()1792   bool isNumRegsMajorCostOfLSR() override {
1793     return Impl.isNumRegsMajorCostOfLSR();
1794   }
isProfitableLSRChainElement(Instruction * I)1795   bool isProfitableLSRChainElement(Instruction *I) override {
1796     return Impl.isProfitableLSRChainElement(I);
1797   }
canMacroFuseCmp()1798   bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)1799   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
1800                   DominatorTree *DT, AssumptionCache *AC,
1801                   TargetLibraryInfo *LibInfo) override {
1802     return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
1803   }
shouldFavorPostInc()1804   bool shouldFavorPostInc() const override { return Impl.shouldFavorPostInc(); }
shouldFavorBackedgeIndex(const Loop * L)1805   bool shouldFavorBackedgeIndex(const Loop *L) const override {
1806     return Impl.shouldFavorBackedgeIndex(L);
1807   }
isLegalMaskedStore(Type * DataType,Align Alignment)1808   bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
1809     return Impl.isLegalMaskedStore(DataType, Alignment);
1810   }
isLegalMaskedLoad(Type * DataType,Align Alignment)1811   bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
1812     return Impl.isLegalMaskedLoad(DataType, Alignment);
1813   }
isLegalNTStore(Type * DataType,Align Alignment)1814   bool isLegalNTStore(Type *DataType, Align Alignment) override {
1815     return Impl.isLegalNTStore(DataType, Alignment);
1816   }
isLegalNTLoad(Type * DataType,Align Alignment)1817   bool isLegalNTLoad(Type *DataType, Align Alignment) override {
1818     return Impl.isLegalNTLoad(DataType, Alignment);
1819   }
isLegalMaskedScatter(Type * DataType,Align Alignment)1820   bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
1821     return Impl.isLegalMaskedScatter(DataType, Alignment);
1822   }
isLegalMaskedGather(Type * DataType,Align Alignment)1823   bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
1824     return Impl.isLegalMaskedGather(DataType, Alignment);
1825   }
isLegalMaskedCompressStore(Type * DataType)1826   bool isLegalMaskedCompressStore(Type *DataType) override {
1827     return Impl.isLegalMaskedCompressStore(DataType);
1828   }
isLegalMaskedExpandLoad(Type * DataType)1829   bool isLegalMaskedExpandLoad(Type *DataType) override {
1830     return Impl.isLegalMaskedExpandLoad(DataType);
1831   }
hasDivRemOp(Type * DataType,bool IsSigned)1832   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1833     return Impl.hasDivRemOp(DataType, IsSigned);
1834   }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)1835   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1836     return Impl.hasVolatileVariant(I, AddrSpace);
1837   }
prefersVectorizedAddressing()1838   bool prefersVectorizedAddressing() override {
1839     return Impl.prefersVectorizedAddressing();
1840   }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)1841   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1842                            bool HasBaseReg, int64_t Scale,
1843                            unsigned AddrSpace) override {
1844     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1845                                      AddrSpace);
1846   }
LSRWithInstrQueries()1847   bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
isTruncateFree(Type * Ty1,Type * Ty2)1848   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1849     return Impl.isTruncateFree(Ty1, Ty2);
1850   }
isProfitableToHoist(Instruction * I)1851   bool isProfitableToHoist(Instruction *I) override {
1852     return Impl.isProfitableToHoist(I);
1853   }
useAA()1854   bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)1855   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getRegUsageForType(Type * Ty)1856   unsigned getRegUsageForType(Type *Ty) override {
1857     return Impl.getRegUsageForType(Ty);
1858   }
shouldBuildLookupTables()1859   bool shouldBuildLookupTables() override {
1860     return Impl.shouldBuildLookupTables();
1861   }
shouldBuildLookupTablesForConstant(Constant * C)1862   bool shouldBuildLookupTablesForConstant(Constant *C) override {
1863     return Impl.shouldBuildLookupTablesForConstant(C);
1864   }
useColdCCForColdCall(Function & F)1865   bool useColdCCForColdCall(Function &F) override {
1866     return Impl.useColdCCForColdCall(F);
1867   }
1868 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract)1869   unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
1870                                     bool Insert, bool Extract) override {
1871     return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
1872   }
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF)1873   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1874                                             unsigned VF) override {
1875     return Impl.getOperandsScalarizationOverhead(Args, VF);
1876   }
1877 
supportsEfficientVectorElementLoadStore()1878   bool supportsEfficientVectorElementLoadStore() override {
1879     return Impl.supportsEfficientVectorElementLoadStore();
1880   }
1881 
enableAggressiveInterleaving(bool LoopHasReductions)1882   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1883     return Impl.enableAggressiveInterleaving(LoopHasReductions);
1884   }
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp)1885   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
1886                                                bool IsZeroCmp) const override {
1887     return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
1888   }
enableInterleavedAccessVectorization()1889   bool enableInterleavedAccessVectorization() override {
1890     return Impl.enableInterleavedAccessVectorization();
1891   }
enableMaskedInterleavedAccessVectorization()1892   bool enableMaskedInterleavedAccessVectorization() override {
1893     return Impl.enableMaskedInterleavedAccessVectorization();
1894   }
isFPVectorizationPotentiallyUnsafe()1895   bool isFPVectorizationPotentiallyUnsafe() override {
1896     return Impl.isFPVectorizationPotentiallyUnsafe();
1897   }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast)1898   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
1899                                       unsigned AddressSpace, unsigned Alignment,
1900                                       bool *Fast) override {
1901     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1902                                                Alignment, Fast);
1903   }
getPopcntSupport(unsigned IntTyWidthInBit)1904   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1905     return Impl.getPopcntSupport(IntTyWidthInBit);
1906   }
haveFastSqrt(Type * Ty)1907   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1908 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)1909   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1910     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1911   }
1912 
getFPOpCost(Type * Ty)1913   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1914 
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1915   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1916                             Type *Ty) override {
1917     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1918   }
getIntImmCost(const APInt & Imm,Type * Ty,TargetCostKind CostKind)1919   int getIntImmCost(const APInt &Imm, Type *Ty,
1920                     TargetCostKind CostKind) override {
1921     return Impl.getIntImmCost(Imm, Ty, CostKind);
1922   }
1923   int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
1924                         TargetCostKind CostKind,
1925                         Instruction *Inst = nullptr) override {
1926     return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
1927   }
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TargetCostKind CostKind)1928   int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1929                           Type *Ty, TargetCostKind CostKind) override {
1930     return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
1931   }
getNumberOfRegisters(unsigned ClassID)1932   unsigned getNumberOfRegisters(unsigned ClassID) const override {
1933     return Impl.getNumberOfRegisters(ClassID);
1934   }
1935   unsigned getRegisterClassForType(bool Vector,
1936                                    Type *Ty = nullptr) const override {
1937     return Impl.getRegisterClassForType(Vector, Ty);
1938   }
getRegisterClassName(unsigned ClassID)1939   const char *getRegisterClassName(unsigned ClassID) const override {
1940     return Impl.getRegisterClassName(ClassID);
1941   }
getRegisterBitWidth(bool Vector)1942   unsigned getRegisterBitWidth(bool Vector) const override {
1943     return Impl.getRegisterBitWidth(Vector);
1944   }
getMinVectorRegisterBitWidth()1945   unsigned getMinVectorRegisterBitWidth() override {
1946     return Impl.getMinVectorRegisterBitWidth();
1947   }
getMaxVScale()1948   Optional<unsigned> getMaxVScale() const override {
1949     return Impl.getMaxVScale();
1950   }
shouldMaximizeVectorBandwidth(bool OptSize)1951   bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1952     return Impl.shouldMaximizeVectorBandwidth(OptSize);
1953   }
getMinimumVF(unsigned ElemWidth)1954   unsigned getMinimumVF(unsigned ElemWidth) const override {
1955     return Impl.getMinimumVF(ElemWidth);
1956   }
getMaximumVF(unsigned ElemWidth,unsigned Opcode)1957   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
1958     return Impl.getMaximumVF(ElemWidth, Opcode);
1959   }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)1960   bool shouldConsiderAddressTypePromotion(
1961       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1962     return Impl.shouldConsiderAddressTypePromotion(
1963         I, AllowPromotionWithoutCommonHeader);
1964   }
getCacheLineSize()1965   unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
getCacheSize(CacheLevel Level)1966   Optional<unsigned> getCacheSize(CacheLevel Level) const override {
1967     return Impl.getCacheSize(Level);
1968   }
getCacheAssociativity(CacheLevel Level)1969   Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
1970     return Impl.getCacheAssociativity(Level);
1971   }
1972 
1973   /// Return the preferred prefetch distance in terms of instructions.
1974   ///
getPrefetchDistance()1975   unsigned getPrefetchDistance() const override {
1976     return Impl.getPrefetchDistance();
1977   }
1978 
1979   /// Return the minimum stride necessary to trigger software
1980   /// prefetching.
1981   ///
getMinPrefetchStride(unsigned NumMemAccesses,unsigned NumStridedMemAccesses,unsigned NumPrefetches,bool HasCall)1982   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1983                                 unsigned NumStridedMemAccesses,
1984                                 unsigned NumPrefetches,
1985                                 bool HasCall) const override {
1986     return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
1987                                      NumPrefetches, HasCall);
1988   }
1989 
1990   /// Return the maximum prefetch distance in terms of loop
1991   /// iterations.
1992   ///
getMaxPrefetchIterationsAhead()1993   unsigned getMaxPrefetchIterationsAhead() const override {
1994     return Impl.getMaxPrefetchIterationsAhead();
1995   }
1996 
1997   /// \return True if prefetching should also be done for writes.
enableWritePrefetching()1998   bool enableWritePrefetching() const override {
1999     return Impl.enableWritePrefetching();
2000   }
2001 
getMaxInterleaveFactor(unsigned VF)2002   unsigned getMaxInterleaveFactor(unsigned VF) override {
2003     return Impl.getMaxInterleaveFactor(VF);
2004   }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)2005   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2006                                             unsigned &JTSize,
2007                                             ProfileSummaryInfo *PSI,
2008                                             BlockFrequencyInfo *BFI) override {
2009     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2010   }
2011   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
2012                                   TTI::TargetCostKind CostKind,
2013                                   OperandValueKind Opd1Info,
2014                                   OperandValueKind Opd2Info,
2015                                   OperandValueProperties Opd1PropInfo,
2016                                   OperandValueProperties Opd2PropInfo,
2017                                   ArrayRef<const Value *> Args,
2018                                   const Instruction *CxtI = nullptr) override {
2019     return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2020                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
2021   }
getShuffleCost(ShuffleKind Kind,VectorType * Tp,int Index,VectorType * SubTp)2022   int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
2023                      VectorType *SubTp) override {
2024     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
2025   }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)2026   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2027                        CastContextHint CCH, TTI::TargetCostKind CostKind,
2028                        const Instruction *I) override {
2029     return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2030   }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)2031   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
2032                                unsigned Index) override {
2033     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2034   }
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind)2035   int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) override {
2036     return Impl.getCFInstrCost(Opcode, CostKind);
2037   }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2038   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2039                          CmpInst::Predicate VecPred,
2040                          TTI::TargetCostKind CostKind,
2041                          const Instruction *I) override {
2042     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2043   }
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)2044   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
2045     return Impl.getVectorInstrCost(Opcode, Val, Index);
2046   }
getMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)2047   int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2048                       unsigned AddressSpace, TTI::TargetCostKind CostKind,
2049                       const Instruction *I) override {
2050     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2051                                 CostKind, I);
2052   }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)2053   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2054                             unsigned AddressSpace,
2055                             TTI::TargetCostKind CostKind) override {
2056     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2057                                       CostKind);
2058   }
2059   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2060                              bool VariableMask, Align Alignment,
2061                              TTI::TargetCostKind CostKind,
2062                              const Instruction *I = nullptr) override {
2063     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2064                                        Alignment, CostKind, I);
2065   }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)2066   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
2067                                  ArrayRef<unsigned> Indices, Align Alignment,
2068                                  unsigned AddressSpace,
2069                                  TTI::TargetCostKind CostKind,
2070                                  bool UseMaskForCond,
2071                                  bool UseMaskForGaps) override {
2072     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2073                                            Alignment, AddressSpace, CostKind,
2074                                            UseMaskForCond, UseMaskForGaps);
2075   }
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,bool IsPairwiseForm,TTI::TargetCostKind CostKind)2076   int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2077                                  bool IsPairwiseForm,
2078                                  TTI::TargetCostKind CostKind) override {
2079     return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
2080                                            CostKind);
2081   }
getMinMaxReductionCost(VectorType * Ty,VectorType * CondTy,bool IsPairwiseForm,bool IsUnsigned,TTI::TargetCostKind CostKind)2082   int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2083                              bool IsPairwiseForm, bool IsUnsigned,
2084                              TTI::TargetCostKind CostKind) override {
2085     return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
2086                                        CostKind);
2087   }
2088   InstructionCost getExtendedAddReductionCost(
2089       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2090       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
2091     return Impl.getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
2092                                             CostKind);
2093   }
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2094   int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2095                             TTI::TargetCostKind CostKind) override {
2096     return Impl.getIntrinsicInstrCost(ICA, CostKind);
2097   }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind)2098   int getCallInstrCost(Function *F, Type *RetTy,
2099                        ArrayRef<Type *> Tys,
2100                        TTI::TargetCostKind CostKind) override {
2101     return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2102   }
getNumberOfParts(Type * Tp)2103   unsigned getNumberOfParts(Type *Tp) override {
2104     return Impl.getNumberOfParts(Tp);
2105   }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)2106   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2107                                 const SCEV *Ptr) override {
2108     return Impl.getAddressComputationCost(Ty, SE, Ptr);
2109   }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)2110   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2111     return Impl.getCostOfKeepingLiveOverCall(Tys);
2112   }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)2113   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2114                           MemIntrinsicInfo &Info) override {
2115     return Impl.getTgtMemIntrinsic(Inst, Info);
2116   }
getAtomicMemIntrinsicMaxElementSize()2117   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2118     return Impl.getAtomicMemIntrinsicMaxElementSize();
2119   }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)2120   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2121                                            Type *ExpectedType) override {
2122     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2123   }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign)2124   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
2125                                   unsigned SrcAddrSpace, unsigned DestAddrSpace,
2126                                   unsigned SrcAlign,
2127                                   unsigned DestAlign) const override {
2128     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2129                                           DestAddrSpace, SrcAlign, DestAlign);
2130   }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign)2131   void getMemcpyLoopResidualLoweringType(
2132       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2133       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2134       unsigned SrcAlign, unsigned DestAlign) const override {
2135     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2136                                            SrcAddrSpace, DestAddrSpace,
2137                                            SrcAlign, DestAlign);
2138   }
areInlineCompatible(const Function * Caller,const Function * Callee)2139   bool areInlineCompatible(const Function *Caller,
2140                            const Function *Callee) const override {
2141     return Impl.areInlineCompatible(Caller, Callee);
2142   }
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args)2143   bool areFunctionArgsABICompatible(
2144       const Function *Caller, const Function *Callee,
2145       SmallPtrSetImpl<Argument *> &Args) const override {
2146     return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
2147   }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)2148   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2149     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2150   }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)2151   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2152     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2153   }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)2154   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2155     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2156   }
isLegalToVectorizeLoad(LoadInst * LI)2157   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2158     return Impl.isLegalToVectorizeLoad(LI);
2159   }
isLegalToVectorizeStore(StoreInst * SI)2160   bool isLegalToVectorizeStore(StoreInst *SI) const override {
2161     return Impl.isLegalToVectorizeStore(SI);
2162   }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2163   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2164                                    unsigned AddrSpace) const override {
2165     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2166                                             AddrSpace);
2167   }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2168   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2169                                     unsigned AddrSpace) const override {
2170     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2171                                              AddrSpace);
2172   }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)2173   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2174                                unsigned ChainSizeInBytes,
2175                                VectorType *VecTy) const override {
2176     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2177   }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)2178   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2179                                 unsigned ChainSizeInBytes,
2180                                 VectorType *VecTy) const override {
2181     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2182   }
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags)2183   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
2184                              ReductionFlags Flags) const override {
2185     return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
2186   }
preferInLoopReduction(unsigned Opcode,Type * Ty,ReductionFlags Flags)2187   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2188                              ReductionFlags Flags) const override {
2189     return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2190   }
preferPredicatedReductionSelect(unsigned Opcode,Type * Ty,ReductionFlags Flags)2191   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2192                                        ReductionFlags Flags) const override {
2193     return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2194   }
shouldExpandReduction(const IntrinsicInst * II)2195   bool shouldExpandReduction(const IntrinsicInst *II) const override {
2196     return Impl.shouldExpandReduction(II);
2197   }
2198 
getGISelRematGlobalCost()2199   unsigned getGISelRematGlobalCost() const override {
2200     return Impl.getGISelRematGlobalCost();
2201   }
2202 
supportsScalableVectors()2203   bool supportsScalableVectors() const override {
2204     return Impl.supportsScalableVectors();
2205   }
2206 
hasActiveVectorLength()2207   bool hasActiveVectorLength() const override {
2208     return Impl.hasActiveVectorLength();
2209   }
2210 
getInstructionLatency(const Instruction * I)2211   int getInstructionLatency(const Instruction *I) override {
2212     return Impl.getInstructionLatency(I);
2213   }
2214 };
2215 
2216 template <typename T>
TargetTransformInfo(T Impl)2217 TargetTransformInfo::TargetTransformInfo(T Impl)
2218     : TTIImpl(new Model<T>(Impl)) {}
2219 
2220 /// Analysis pass providing the \c TargetTransformInfo.
2221 ///
2222 /// The core idea of the TargetIRAnalysis is to expose an interface through
2223 /// which LLVM targets can analyze and provide information about the middle
2224 /// end's target-independent IR. This supports use cases such as target-aware
2225 /// cost modeling of IR constructs.
2226 ///
2227 /// This is a function analysis because much of the cost modeling for targets
2228 /// is done in a subtarget specific way and LLVM supports compiling different
2229 /// functions targeting different subtargets in order to support runtime
2230 /// dispatch according to the observed subtarget.
2231 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2232 public:
2233   typedef TargetTransformInfo Result;
2234 
2235   /// Default construct a target IR analysis.
2236   ///
2237   /// This will use the module's datalayout to construct a baseline
2238   /// conservative TTI result.
2239   TargetIRAnalysis();
2240 
2241   /// Construct an IR analysis pass around a target-provide callback.
2242   ///
2243   /// The callback will be called with a particular function for which the TTI
2244   /// is needed and must return a TTI object for that function.
2245   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2246 
2247   // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)2248   TargetIRAnalysis(const TargetIRAnalysis &Arg)
2249       : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)2250   TargetIRAnalysis(TargetIRAnalysis &&Arg)
2251       : TTICallback(std::move(Arg.TTICallback)) {}
2252   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
2253     TTICallback = RHS.TTICallback;
2254     return *this;
2255   }
2256   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
2257     TTICallback = std::move(RHS.TTICallback);
2258     return *this;
2259   }
2260 
2261   Result run(const Function &F, FunctionAnalysisManager &);
2262 
2263 private:
2264   friend AnalysisInfoMixin<TargetIRAnalysis>;
2265   static AnalysisKey Key;
2266 
2267   /// The callback used to produce a result.
2268   ///
2269   /// We use a completely opaque callback so that targets can provide whatever
2270   /// mechanism they desire for constructing the TTI for a given function.
2271   ///
2272   /// FIXME: Should we really use std::function? It's relatively inefficient.
2273   /// It might be possible to arrange for even stateful callbacks to outlive
2274   /// the analysis and thus use a function_ref which would be lighter weight.
2275   /// This may also be less error prone as the callback is likely to reference
2276   /// the external TargetMachine, and that reference needs to never dangle.
2277   std::function<Result(const Function &)> TTICallback;
2278 
2279   /// Helper function used as the callback in the default constructor.
2280   static Result getDefaultTTI(const Function &F);
2281 };
2282 
2283 /// Wrapper pass for TargetTransformInfo.
2284 ///
2285 /// This pass can be constructed from a TTI object which it stores internally
2286 /// and is queried by passes.
2287 class TargetTransformInfoWrapperPass : public ImmutablePass {
2288   TargetIRAnalysis TIRA;
2289   Optional<TargetTransformInfo> TTI;
2290 
2291   virtual void anchor();
2292 
2293 public:
2294   static char ID;
2295 
2296   /// We must provide a default constructor for the pass but it should
2297   /// never be used.
2298   ///
2299   /// Use the constructor below or call one of the creation routines.
2300   TargetTransformInfoWrapperPass();
2301 
2302   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2303 
2304   TargetTransformInfo &getTTI(const Function &F);
2305 };
2306 
2307 /// Create an analysis pass wrapper around a TTI object.
2308 ///
2309 /// This analysis pass just holds the TTI instance and makes it available to
2310 /// clients.
2311 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2312 
2313 } // namespace llvm
2314 
2315 #endif
2316