1 //===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_VECTORUTILS_H
14 #define LLVM_ANALYSIS_VECTORUTILS_H
15 
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopAccessAnalysis.h"
19 #include "llvm/Support/CheckedArithmetic.h"
20 
21 namespace llvm {
22 class TargetLibraryInfo;
23 
24 /// Describes the type of Parameters
25 enum class VFParamKind {
26   Vector,            // No semantic information.
27   OMP_Linear,        // declare simd linear(i)
28   OMP_LinearRef,     // declare simd linear(ref(i))
29   OMP_LinearVal,     // declare simd linear(val(i))
30   OMP_LinearUVal,    // declare simd linear(uval(i))
31   OMP_LinearPos,     // declare simd linear(i:c) uniform(c)
32   OMP_LinearValPos,  // declare simd linear(val(i:c)) uniform(c)
33   OMP_LinearRefPos,  // declare simd linear(ref(i:c)) uniform(c)
34   OMP_LinearUValPos, // declare simd linear(uval(i:c)) uniform(c
35   OMP_Uniform,       // declare simd uniform(i)
36   GlobalPredicate,   // Global logical predicate that acts on all lanes
37                      // of the input and output mask concurrently. For
38                      // example, it is implied by the `M` token in the
39                      // Vector Function ABI mangled name.
40   Unknown
41 };
42 
43 /// Describes the type of Instruction Set Architecture
44 enum class VFISAKind {
45   AdvancedSIMD, // AArch64 Advanced SIMD (NEON)
46   SVE,          // AArch64 Scalable Vector Extension
47   SSE,          // x86 SSE
48   AVX,          // x86 AVX
49   AVX2,         // x86 AVX2
50   AVX512,       // x86 AVX512
51   LLVM,         // LLVM internal ISA for functions that are not
52   // attached to an existing ABI via name mangling.
53   Unknown // Unknown ISA
54 };
55 
56 /// Encapsulates information needed to describe a parameter.
57 ///
58 /// The description of the parameter is not linked directly to
59 /// OpenMP or any other vector function description. This structure
60 /// is extendible to handle other paradigms that describe vector
61 /// functions and their parameters.
62 struct VFParameter {
63   unsigned ParamPos;         // Parameter Position in Scalar Function.
64   VFParamKind ParamKind;     // Kind of Parameter.
65   int LinearStepOrPos = 0;   // Step or Position of the Parameter.
66   Align Alignment = Align(); // Optional alignment in bytes, defaulted to 1.
67 
68   // Comparison operator.
69   bool operator==(const VFParameter &Other) const {
70     return std::tie(ParamPos, ParamKind, LinearStepOrPos, Alignment) ==
71            std::tie(Other.ParamPos, Other.ParamKind, Other.LinearStepOrPos,
72                     Other.Alignment);
73   }
74 };
75 
76 /// Contains the information about the kind of vectorization
77 /// available.
78 ///
79 /// This object in independent on the paradigm used to
80 /// represent vector functions. in particular, it is not attached to
81 /// any target-specific ABI.
82 struct VFShape {
83   unsigned VF;     // Vectorization factor.
84   bool IsScalable; // True if the function is a scalable function.
85   SmallVector<VFParameter, 8> Parameters; // List of parameter information.
86   // Comparison operator.
87   bool operator==(const VFShape &Other) const {
88     return std::tie(VF, IsScalable, Parameters) ==
89            std::tie(Other.VF, Other.IsScalable, Other.Parameters);
90   }
91 
92   /// Update the parameter in position P.ParamPos to P.
updateParamVFShape93   void updateParam(VFParameter P) {
94     assert(P.ParamPos < Parameters.size() && "Invalid parameter position.");
95     Parameters[P.ParamPos] = P;
96     assert(hasValidParameterList() && "Invalid parameter list");
97   }
98 
99   // Retrieve the VFShape that can be used to map a (scalar) function to itself,
100   // with VF = 1.
getScalarShapeVFShape101   static VFShape getScalarShape(const CallInst &CI) {
102     return VFShape::get(CI, ElementCount::getFixed(1),
103                         /*HasGlobalPredicate*/ false);
104   }
105 
106   // Retrieve the basic vectorization shape of the function, where all
107   // parameters are mapped to VFParamKind::Vector with \p EC
108   // lanes. Specifies whether the function has a Global Predicate
109   // argument via \p HasGlobalPred.
getVFShape110   static VFShape get(const CallInst &CI, ElementCount EC, bool HasGlobalPred) {
111     SmallVector<VFParameter, 8> Parameters;
112     for (unsigned I = 0; I < CI.arg_size(); ++I)
113       Parameters.push_back(VFParameter({I, VFParamKind::Vector}));
114     if (HasGlobalPred)
115       Parameters.push_back(
116           VFParameter({CI.arg_size(), VFParamKind::GlobalPredicate}));
117 
118     return {EC.getKnownMinValue(), EC.isScalable(), Parameters};
119   }
120   /// Sanity check on the Parameters in the VFShape.
121   bool hasValidParameterList() const;
122 };
123 
124 /// Holds the VFShape for a specific scalar to vector function mapping.
125 struct VFInfo {
126   VFShape Shape;          /// Classification of the vector function.
127   std::string ScalarName; /// Scalar Function Name.
128   std::string VectorName; /// Vector Function Name associated to this VFInfo.
129   VFISAKind ISA;          /// Instruction Set Architecture.
130 
131   // Comparison operator.
132   bool operator==(const VFInfo &Other) const {
133     return std::tie(Shape, ScalarName, VectorName, ISA) ==
134            std::tie(Shape, Other.ScalarName, Other.VectorName, Other.ISA);
135   }
136 };
137 
138 namespace VFABI {
139 /// LLVM Internal VFABI ISA token for vector functions.
140 static constexpr char const *_LLVM_ = "_LLVM_";
141 /// Prefix for internal name redirection for vector function that
142 /// tells the compiler to scalarize the call using the scalar name
143 /// of the function. For example, a mangled name like
144 /// `_ZGV_LLVM_N2v_foo(_LLVM_Scalarize_foo)` would tell the
145 /// vectorizer to vectorize the scalar call `foo`, and to scalarize
146 /// it once vectorization is done.
147 static constexpr char const *_LLVM_Scalarize_ = "_LLVM_Scalarize_";
148 
149 /// Function to construct a VFInfo out of a mangled names in the
150 /// following format:
151 ///
152 /// <VFABI_name>{(<redirection>)}
153 ///
154 /// where <VFABI_name> is the name of the vector function, mangled according
155 /// to the rules described in the Vector Function ABI of the target vector
156 /// extension (or <isa> from now on). The <VFABI_name> is in the following
157 /// format:
158 ///
159 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
160 ///
161 /// This methods support demangling rules for the following <isa>:
162 ///
163 /// * AArch64: https://developer.arm.com/docs/101129/latest
164 ///
165 /// * x86 (libmvec): https://sourceware.org/glibc/wiki/libmvec and
166 ///  https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
167 ///
168 /// \param MangledName -> input string in the format
169 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)].
170 /// \param M -> Module used to retrieve informations about the vector
171 /// function that are not possible to retrieve from the mangled
172 /// name. At the moment, this parameter is needed only to retrieve the
173 /// Vectorization Factor of scalable vector functions from their
174 /// respective IR declarations.
175 Optional<VFInfo> tryDemangleForVFABI(StringRef MangledName, const Module &M);
176 
177 /// This routine mangles the given VectorName according to the LangRef
178 /// specification for vector-function-abi-variant attribute and is specific to
179 /// the TLI mappings. It is the responsibility of the caller to make sure that
180 /// this is only used if all parameters in the vector function are vector type.
181 /// This returned string holds scalar-to-vector mapping:
182 ///    _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>)
183 ///
184 /// where:
185 ///
186 /// <isa> = "_LLVM_"
187 /// <mask> = "N". Note: TLI does not support masked interfaces.
188 /// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor`
189 ///          field of the `VecDesc` struct.
190 /// <vparams> = "v", as many as are the numArgs.
191 /// <scalarname> = the name of the scalar function.
192 /// <vectorname> = the name of the vector function.
193 std::string mangleTLIVectorName(StringRef VectorName, StringRef ScalarName,
194                                 unsigned numArgs, unsigned VF);
195 
196 /// Retrieve the `VFParamKind` from a string token.
197 VFParamKind getVFParamKindFromString(const StringRef Token);
198 
199 // Name of the attribute where the variant mappings are stored.
200 static constexpr char const *MappingsAttrName = "vector-function-abi-variant";
201 
202 /// Populates a set of strings representing the Vector Function ABI variants
203 /// associated to the CallInst CI. If the CI does not contain the
204 /// vector-function-abi-variant attribute, we return without populating
205 /// VariantMappings, i.e. callers of getVectorVariantNames need not check for
206 /// the presence of the attribute (see InjectTLIMappings).
207 void getVectorVariantNames(const CallInst &CI,
208                            SmallVectorImpl<std::string> &VariantMappings);
209 } // end namespace VFABI
210 
211 /// The Vector Function Database.
212 ///
213 /// Helper class used to find the vector functions associated to a
214 /// scalar CallInst.
215 class VFDatabase {
216   /// The Module of the CallInst CI.
217   const Module *M;
218   /// The CallInst instance being queried for scalar to vector mappings.
219   const CallInst &CI;
220   /// List of vector functions descriptors associated to the call
221   /// instruction.
222   const SmallVector<VFInfo, 8> ScalarToVectorMappings;
223 
224   /// Retrieve the scalar-to-vector mappings associated to the rule of
225   /// a vector Function ABI.
getVFABIMappings(const CallInst & CI,SmallVectorImpl<VFInfo> & Mappings)226   static void getVFABIMappings(const CallInst &CI,
227                                SmallVectorImpl<VFInfo> &Mappings) {
228     if (!CI.getCalledFunction())
229       return;
230 
231     const StringRef ScalarName = CI.getCalledFunction()->getName();
232 
233     SmallVector<std::string, 8> ListOfStrings;
234     // The check for the vector-function-abi-variant attribute is done when
235     // retrieving the vector variant names here.
236     VFABI::getVectorVariantNames(CI, ListOfStrings);
237     if (ListOfStrings.empty())
238       return;
239     for (const auto &MangledName : ListOfStrings) {
240       const Optional<VFInfo> Shape =
241           VFABI::tryDemangleForVFABI(MangledName, *(CI.getModule()));
242       // A match is found via scalar and vector names, and also by
243       // ensuring that the variant described in the attribute has a
244       // corresponding definition or declaration of the vector
245       // function in the Module M.
246       if (Shape.hasValue() && (Shape.getValue().ScalarName == ScalarName)) {
247         assert(CI.getModule()->getFunction(Shape.getValue().VectorName) &&
248                "Vector function is missing.");
249         Mappings.push_back(Shape.getValue());
250       }
251     }
252   }
253 
254 public:
255   /// Retrieve all the VFInfo instances associated to the CallInst CI.
getMappings(const CallInst & CI)256   static SmallVector<VFInfo, 8> getMappings(const CallInst &CI) {
257     SmallVector<VFInfo, 8> Ret;
258 
259     // Get mappings from the Vector Function ABI variants.
260     getVFABIMappings(CI, Ret);
261 
262     // Other non-VFABI variants should be retrieved here.
263 
264     return Ret;
265   }
266 
267   /// Constructor, requires a CallInst instance.
VFDatabase(CallInst & CI)268   VFDatabase(CallInst &CI)
269       : M(CI.getModule()), CI(CI),
270         ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
271   /// \defgroup VFDatabase query interface.
272   ///
273   /// @{
274   /// Retrieve the Function with VFShape \p Shape.
getVectorizedFunction(const VFShape & Shape)275   Function *getVectorizedFunction(const VFShape &Shape) const {
276     if (Shape == VFShape::getScalarShape(CI))
277       return CI.getCalledFunction();
278 
279     for (const auto &Info : ScalarToVectorMappings)
280       if (Info.Shape == Shape)
281         return M->getFunction(Info.VectorName);
282 
283     return nullptr;
284   }
285   /// @}
286 };
287 
288 template <typename T> class ArrayRef;
289 class DemandedBits;
290 class GetElementPtrInst;
291 template <typename InstTy> class InterleaveGroup;
292 class IRBuilderBase;
293 class Loop;
294 class ScalarEvolution;
295 class TargetTransformInfo;
296 class Type;
297 class Value;
298 
299 namespace Intrinsic {
300 typedef unsigned ID;
301 }
302 
303 /// A helper function for converting Scalar types to vector types. If
304 /// the incoming type is void, we return void. If the EC represents a
305 /// scalar, we return the scalar type.
ToVectorTy(Type * Scalar,ElementCount EC)306 inline Type *ToVectorTy(Type *Scalar, ElementCount EC) {
307   if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar())
308     return Scalar;
309   return VectorType::get(Scalar, EC);
310 }
311 
ToVectorTy(Type * Scalar,unsigned VF)312 inline Type *ToVectorTy(Type *Scalar, unsigned VF) {
313   return ToVectorTy(Scalar, ElementCount::getFixed(VF));
314 }
315 
316 /// Identify if the intrinsic is trivially vectorizable.
317 /// This method returns true if the intrinsic's argument types are all scalars
318 /// for the scalar form of the intrinsic and all vectors (or scalars handled by
319 /// hasVectorInstrinsicScalarOpd) for the vector form of the intrinsic.
320 bool isTriviallyVectorizable(Intrinsic::ID ID);
321 
322 /// Identifies if the vector form of the intrinsic has a scalar operand.
323 bool hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx);
324 
325 /// Returns intrinsic ID for call.
326 /// For the input call instruction it finds mapping intrinsic and returns
327 /// its intrinsic ID, in case it does not found it return not_intrinsic.
328 Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI,
329                                           const TargetLibraryInfo *TLI);
330 
331 /// Find the operand of the GEP that should be checked for consecutive
332 /// stores. This ignores trailing indices that have no effect on the final
333 /// pointer.
334 unsigned getGEPInductionOperand(const GetElementPtrInst *Gep);
335 
336 /// If the argument is a GEP, then returns the operand identified by
337 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
338 /// operand, it returns that instead.
339 Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp);
340 
341 /// If a value has only one user that is a CastInst, return it.
342 Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty);
343 
344 /// Get the stride of a pointer access in a loop. Looks for symbolic
345 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
346 Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp);
347 
348 /// Given a vector and an element number, see if the scalar value is
349 /// already around as a register, for example if it were inserted then extracted
350 /// from the vector.
351 Value *findScalarElement(Value *V, unsigned EltNo);
352 
353 /// If all non-negative \p Mask elements are the same value, return that value.
354 /// If all elements are negative (undefined) or \p Mask contains different
355 /// non-negative values, return -1.
356 int getSplatIndex(ArrayRef<int> Mask);
357 
358 /// Get splat value if the input is a splat vector or return nullptr.
359 /// The value may be extracted from a splat constants vector or from
360 /// a sequence of instructions that broadcast a single value into a vector.
361 Value *getSplatValue(const Value *V);
362 
363 /// Return true if each element of the vector value \p V is poisoned or equal to
364 /// every other non-poisoned element. If an index element is specified, either
365 /// every element of the vector is poisoned or the element at that index is not
366 /// poisoned and equal to every other non-poisoned element.
367 /// This may be more powerful than the related getSplatValue() because it is
368 /// not limited by finding a scalar source value to a splatted vector.
369 bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);
370 
371 /// Replace each shuffle mask index with the scaled sequential indices for an
372 /// equivalent mask of narrowed elements. Mask elements that are less than 0
373 /// (sentinel values) are repeated in the output mask.
374 ///
375 /// Example with Scale = 4:
376 ///   <4 x i32> <3, 2, 0, -1> -->
377 ///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1>
378 ///
379 /// This is the reverse process of widening shuffle mask elements, but it always
380 /// succeeds because the indexes can always be multiplied (scaled up) to map to
381 /// narrower vector elements.
382 void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
383                            SmallVectorImpl<int> &ScaledMask);
384 
385 /// Try to transform a shuffle mask by replacing elements with the scaled index
386 /// for an equivalent mask of widened elements. If all mask elements that would
387 /// map to a wider element of the new mask are the same negative number
388 /// (sentinel value), that element of the new mask is the same value. If any
389 /// element in a given slice is negative and some other element in that slice is
390 /// not the same value, return false (partial matches with sentinel values are
391 /// not allowed).
392 ///
393 /// Example with Scale = 4:
394 ///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> -->
395 ///   <4 x i32> <3, 2, 0, -1>
396 ///
397 /// This is the reverse process of narrowing shuffle mask elements if it
398 /// succeeds. This transform is not always possible because indexes may not
399 /// divide evenly (scale down) to map to wider vector elements.
400 bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
401                           SmallVectorImpl<int> &ScaledMask);
402 
403 /// Compute a map of integer instructions to their minimum legal type
404 /// size.
405 ///
406 /// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
407 /// type (e.g. i32) whenever arithmetic is performed on them.
408 ///
409 /// For targets with native i8 or i16 operations, usually InstCombine can shrink
410 /// the arithmetic type down again. However InstCombine refuses to create
411 /// illegal types, so for targets without i8 or i16 registers, the lengthening
412 /// and shrinking remains.
413 ///
414 /// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
415 /// their scalar equivalents do not, so during vectorization it is important to
416 /// remove these lengthens and truncates when deciding the profitability of
417 /// vectorization.
418 ///
419 /// This function analyzes the given range of instructions and determines the
420 /// minimum type size each can be converted to. It attempts to remove or
421 /// minimize type size changes across each def-use chain, so for example in the
422 /// following code:
423 ///
424 ///   %1 = load i8, i8*
425 ///   %2 = add i8 %1, 2
426 ///   %3 = load i16, i16*
427 ///   %4 = zext i8 %2 to i32
428 ///   %5 = zext i16 %3 to i32
429 ///   %6 = add i32 %4, %5
430 ///   %7 = trunc i32 %6 to i16
431 ///
432 /// Instruction %6 must be done at least in i16, so computeMinimumValueSizes
433 /// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}.
434 ///
435 /// If the optional TargetTransformInfo is provided, this function tries harder
436 /// to do less work by only looking at illegal types.
437 MapVector<Instruction*, uint64_t>
438 computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
439                          DemandedBits &DB,
440                          const TargetTransformInfo *TTI=nullptr);
441 
442 /// Compute the union of two access-group lists.
443 ///
444 /// If the list contains just one access group, it is returned directly. If the
445 /// list is empty, returns nullptr.
446 MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);
447 
448 /// Compute the access-group list of access groups that @p Inst1 and @p Inst2
449 /// are both in. If either instruction does not access memory at all, it is
450 /// considered to be in every list.
451 ///
452 /// If the list contains just one access group, it is returned directly. If the
453 /// list is empty, returns nullptr.
454 MDNode *intersectAccessGroups(const Instruction *Inst1,
455                               const Instruction *Inst2);
456 
457 /// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath,
458 /// MD_nontemporal, MD_access_group].
459 /// For K in Kinds, we get the MDNode for K from each of the
460 /// elements of VL, compute their "intersection" (i.e., the most generic
461 /// metadata value that covers all of the individual values), and set I's
462 /// metadata for M equal to the intersection value.
463 ///
464 /// This function always sets a (possibly null) value for each K in Kinds.
465 Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);
466 
467 /// Create a mask that filters the members of an interleave group where there
468 /// are gaps.
469 ///
470 /// For example, the mask for \p Group with interleave-factor 3
471 /// and \p VF 4, that has only its first member present is:
472 ///
473 ///   <1,0,0,1,0,0,1,0,0,1,0,0>
474 ///
475 /// Note: The result is a mask of 0's and 1's, as opposed to the other
476 /// create[*]Mask() utilities which create a shuffle mask (mask that
477 /// consists of indices).
478 Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
479                                const InterleaveGroup<Instruction> &Group);
480 
481 /// Create a mask with replicated elements.
482 ///
483 /// This function creates a shuffle mask for replicating each of the \p VF
484 /// elements in a vector \p ReplicationFactor times. It can be used to
485 /// transform a mask of \p VF elements into a mask of
486 /// \p VF * \p ReplicationFactor elements used by a predicated
487 /// interleaved-group of loads/stores whose Interleaved-factor ==
488 /// \p ReplicationFactor.
489 ///
490 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
491 ///
492 ///   <0,0,0,1,1,1,2,2,2,3,3,3>
493 llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor,
494                                                 unsigned VF);
495 
496 /// Create an interleave shuffle mask.
497 ///
498 /// This function creates a shuffle mask for interleaving \p NumVecs vectors of
499 /// vectorization factor \p VF into a single wide vector. The mask is of the
500 /// form:
501 ///
502 ///   <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...>
503 ///
504 /// For example, the mask for VF = 4 and NumVecs = 2 is:
505 ///
506 ///   <0, 4, 1, 5, 2, 6, 3, 7>.
507 llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);
508 
509 /// Create a stride shuffle mask.
510 ///
511 /// This function creates a shuffle mask whose elements begin at \p Start and
512 /// are incremented by \p Stride. The mask can be used to deinterleave an
513 /// interleaved vector into separate vectors of vectorization factor \p VF. The
514 /// mask is of the form:
515 ///
516 ///   <Start, Start + Stride, ..., Start + Stride * (VF - 1)>
517 ///
518 /// For example, the mask for Start = 0, Stride = 2, and VF = 4 is:
519 ///
520 ///   <0, 2, 4, 6>
521 llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride,
522                                             unsigned VF);
523 
524 /// Create a sequential shuffle mask.
525 ///
526 /// This function creates shuffle mask whose elements are sequential and begin
527 /// at \p Start.  The mask contains \p NumInts integers and is padded with \p
528 /// NumUndefs undef values. The mask is of the form:
529 ///
530 ///   <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs>
531 ///
532 /// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is:
533 ///
534 ///   <0, 1, 2, 3, undef, undef, undef, undef>
535 llvm::SmallVector<int, 16>
536 createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);
537 
538 /// Concatenate a list of vectors.
539 ///
540 /// This function generates code that concatenate the vectors in \p Vecs into a
541 /// single large vector. The number of vectors should be greater than one, and
542 /// their element types should be the same. The number of elements in the
543 /// vectors should also be the same; however, if the last vector has fewer
544 /// elements, it will be padded with undefs.
545 Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);
546 
547 /// Given a mask vector of i1, Return true if all of the elements of this
548 /// predicate mask are known to be false or undef.  That is, return true if all
549 /// lanes can be assumed inactive.
550 bool maskIsAllZeroOrUndef(Value *Mask);
551 
552 /// Given a mask vector of i1, Return true if all of the elements of this
553 /// predicate mask are known to be true or undef.  That is, return true if all
554 /// lanes can be assumed active.
555 bool maskIsAllOneOrUndef(Value *Mask);
556 
557 /// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y)
558 /// for each lane which may be active.
559 APInt possiblyDemandedEltsInMask(Value *Mask);
560 
561 /// The group of interleaved loads/stores sharing the same stride and
562 /// close to each other.
563 ///
564 /// Each member in this group has an index starting from 0, and the largest
565 /// index should be less than interleaved factor, which is equal to the absolute
566 /// value of the access's stride.
567 ///
568 /// E.g. An interleaved load group of factor 4:
569 ///        for (unsigned i = 0; i < 1024; i+=4) {
570 ///          a = A[i];                           // Member of index 0
571 ///          b = A[i+1];                         // Member of index 1
572 ///          d = A[i+3];                         // Member of index 3
573 ///          ...
574 ///        }
575 ///
576 ///      An interleaved store group of factor 4:
577 ///        for (unsigned i = 0; i < 1024; i+=4) {
578 ///          ...
579 ///          A[i]   = a;                         // Member of index 0
580 ///          A[i+1] = b;                         // Member of index 1
581 ///          A[i+2] = c;                         // Member of index 2
582 ///          A[i+3] = d;                         // Member of index 3
583 ///        }
584 ///
585 /// Note: the interleaved load group could have gaps (missing members), but
586 /// the interleaved store group doesn't allow gaps.
587 template <typename InstTy> class InterleaveGroup {
588 public:
InterleaveGroup(uint32_t Factor,bool Reverse,Align Alignment)589   InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
590       : Factor(Factor), Reverse(Reverse), Alignment(Alignment),
591         InsertPos(nullptr) {}
592 
InterleaveGroup(InstTy * Instr,int32_t Stride,Align Alignment)593   InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
594       : Alignment(Alignment), InsertPos(Instr) {
595     Factor = std::abs(Stride);
596     assert(Factor > 1 && "Invalid interleave factor");
597 
598     Reverse = Stride < 0;
599     Members[0] = Instr;
600   }
601 
isReverse()602   bool isReverse() const { return Reverse; }
getFactor()603   uint32_t getFactor() const { return Factor; }
604   LLVM_ATTRIBUTE_DEPRECATED(uint32_t getAlignment() const,
605                             "Use getAlign instead.") {
606     return Alignment.value();
607   }
getAlign()608   Align getAlign() const { return Alignment; }
getNumMembers()609   uint32_t getNumMembers() const { return Members.size(); }
610 
611   /// Try to insert a new member \p Instr with index \p Index and
612   /// alignment \p NewAlign. The index is related to the leader and it could be
613   /// negative if it is the new leader.
614   ///
615   /// \returns false if the instruction doesn't belong to the group.
insertMember(InstTy * Instr,int32_t Index,Align NewAlign)616   bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) {
617     // Make sure the key fits in an int32_t.
618     Optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey);
619     if (!MaybeKey)
620       return false;
621     int32_t Key = *MaybeKey;
622 
623     // Skip if the key is used for either the tombstone or empty special values.
624     if (DenseMapInfo<int32_t>::getTombstoneKey() == Key ||
625         DenseMapInfo<int32_t>::getEmptyKey() == Key)
626       return false;
627 
628     // Skip if there is already a member with the same index.
629     if (Members.find(Key) != Members.end())
630       return false;
631 
632     if (Key > LargestKey) {
633       // The largest index is always less than the interleave factor.
634       if (Index >= static_cast<int32_t>(Factor))
635         return false;
636 
637       LargestKey = Key;
638     } else if (Key < SmallestKey) {
639 
640       // Make sure the largest index fits in an int32_t.
641       Optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key);
642       if (!MaybeLargestIndex)
643         return false;
644 
645       // The largest index is always less than the interleave factor.
646       if (*MaybeLargestIndex >= static_cast<int64_t>(Factor))
647         return false;
648 
649       SmallestKey = Key;
650     }
651 
652     // It's always safe to select the minimum alignment.
653     Alignment = std::min(Alignment, NewAlign);
654     Members[Key] = Instr;
655     return true;
656   }
657 
658   /// Get the member with the given index \p Index
659   ///
660   /// \returns nullptr if contains no such member.
getMember(uint32_t Index)661   InstTy *getMember(uint32_t Index) const {
662     int32_t Key = SmallestKey + Index;
663     return Members.lookup(Key);
664   }
665 
666   /// Get the index for the given member. Unlike the key in the member
667   /// map, the index starts from 0.
getIndex(const InstTy * Instr)668   uint32_t getIndex(const InstTy *Instr) const {
669     for (auto I : Members) {
670       if (I.second == Instr)
671         return I.first - SmallestKey;
672     }
673 
674     llvm_unreachable("InterleaveGroup contains no such member");
675   }
676 
getInsertPos()677   InstTy *getInsertPos() const { return InsertPos; }
setInsertPos(InstTy * Inst)678   void setInsertPos(InstTy *Inst) { InsertPos = Inst; }
679 
680   /// Add metadata (e.g. alias info) from the instructions in this group to \p
681   /// NewInst.
682   ///
683   /// FIXME: this function currently does not add noalias metadata a'la
684   /// addNewMedata.  To do that we need to compute the intersection of the
685   /// noalias info from all members.
686   void addMetadata(InstTy *NewInst) const;
687 
688   /// Returns true if this Group requires a scalar iteration to handle gaps.
requiresScalarEpilogue()689   bool requiresScalarEpilogue() const {
690     // If the last member of the Group exists, then a scalar epilog is not
691     // needed for this group.
692     if (getMember(getFactor() - 1))
693       return false;
694 
695     // We have a group with gaps. It therefore cannot be a group of stores,
696     // and it can't be a reversed access, because such groups get invalidated.
697     assert(!getMember(0)->mayWriteToMemory() &&
698            "Group should have been invalidated");
699     assert(!isReverse() && "Group should have been invalidated");
700 
701     // This is a group of loads, with gaps, and without a last-member
702     return true;
703   }
704 
705 private:
706   uint32_t Factor; // Interleave Factor.
707   bool Reverse;
708   Align Alignment;
709   DenseMap<int32_t, InstTy *> Members;
710   int32_t SmallestKey = 0;
711   int32_t LargestKey = 0;
712 
713   // To avoid breaking dependences, vectorized instructions of an interleave
714   // group should be inserted at either the first load or the last store in
715   // program order.
716   //
717   // E.g. %even = load i32             // Insert Position
718   //      %add = add i32 %even         // Use of %even
719   //      %odd = load i32
720   //
721   //      store i32 %even
722   //      %odd = add i32               // Def of %odd
723   //      store i32 %odd               // Insert Position
724   InstTy *InsertPos;
725 };
726 
727 /// Drive the analysis of interleaved memory accesses in the loop.
728 ///
729 /// Use this class to analyze interleaved accesses only when we can vectorize
730 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
731 /// on interleaved accesses is unsafe.
732 ///
733 /// The analysis collects interleave groups and records the relationships
734 /// between the member and the group in a map.
735 class InterleavedAccessInfo {
736 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI,const LoopAccessInfo * LAI)737   InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
738                         DominatorTree *DT, LoopInfo *LI,
739                         const LoopAccessInfo *LAI)
740       : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
741 
~InterleavedAccessInfo()742   ~InterleavedAccessInfo() { invalidateGroups(); }
743 
744   /// Analyze the interleaved accesses and collect them in interleave
745   /// groups. Substitute symbolic strides using \p Strides.
746   /// Consider also predicated loads/stores in the analysis if
747   /// \p EnableMaskedInterleavedGroup is true.
748   void analyzeInterleaving(bool EnableMaskedInterleavedGroup);
749 
750   /// Invalidate groups, e.g., in case all blocks in loop will be predicated
751   /// contrary to original assumption. Although we currently prevent group
752   /// formation for predicated accesses, we may be able to relax this limitation
753   /// in the future once we handle more complicated blocks. Returns true if any
754   /// groups were invalidated.
invalidateGroups()755   bool invalidateGroups() {
756     if (InterleaveGroups.empty()) {
757       assert(
758           !RequiresScalarEpilogue &&
759           "RequiresScalarEpilog should not be set without interleave groups");
760       return false;
761     }
762 
763     InterleaveGroupMap.clear();
764     for (auto *Ptr : InterleaveGroups)
765       delete Ptr;
766     InterleaveGroups.clear();
767     RequiresScalarEpilogue = false;
768     return true;
769   }
770 
771   /// Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr)772   bool isInterleaved(Instruction *Instr) const {
773     return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end();
774   }
775 
776   /// Get the interleave group that \p Instr belongs to.
777   ///
778   /// \returns nullptr if doesn't have such group.
779   InterleaveGroup<Instruction> *
getInterleaveGroup(const Instruction * Instr)780   getInterleaveGroup(const Instruction *Instr) const {
781     return InterleaveGroupMap.lookup(Instr);
782   }
783 
784   iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>>
getInterleaveGroups()785   getInterleaveGroups() {
786     return make_range(InterleaveGroups.begin(), InterleaveGroups.end());
787   }
788 
789   /// Returns true if an interleaved group that may access memory
790   /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue()791   bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
792 
793   /// Invalidate groups that require a scalar epilogue (due to gaps). This can
794   /// happen when optimizing for size forbids a scalar epilogue, and the gap
795   /// cannot be filtered by masking the load/store.
796   void invalidateGroupsRequiringScalarEpilogue();
797 
798 private:
799   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
800   /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
801   /// The interleaved access analysis can also add new predicates (for example
802   /// by versioning strides of pointers).
803   PredicatedScalarEvolution &PSE;
804 
805   Loop *TheLoop;
806   DominatorTree *DT;
807   LoopInfo *LI;
808   const LoopAccessInfo *LAI;
809 
810   /// True if the loop may contain non-reversed interleaved groups with
811   /// out-of-bounds accesses. We ensure we don't speculatively access memory
812   /// out-of-bounds by executing at least one scalar epilogue iteration.
813   bool RequiresScalarEpilogue = false;
814 
815   /// Holds the relationships between the members and the interleave group.
816   DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap;
817 
818   SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;
819 
820   /// Holds dependences among the memory accesses in the loop. It maps a source
821   /// access to a set of dependent sink accesses.
822   DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
823 
824   /// The descriptor for a strided memory access.
825   struct StrideDescriptor {
826     StrideDescriptor() = default;
StrideDescriptorStrideDescriptor827     StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
828                      Align Alignment)
829         : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}
830 
831     // The access's stride. It is negative for a reverse access.
832     int64_t Stride = 0;
833 
834     // The scalar expression of this access.
835     const SCEV *Scev = nullptr;
836 
837     // The size of the memory object.
838     uint64_t Size = 0;
839 
840     // The alignment of this access.
841     Align Alignment;
842   };
843 
844   /// A type for holding instructions and their stride descriptors.
845   using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
846 
847   /// Create a new interleave group with the given instruction \p Instr,
848   /// stride \p Stride and alignment \p Align.
849   ///
850   /// \returns the newly created interleave group.
851   InterleaveGroup<Instruction> *
createInterleaveGroup(Instruction * Instr,int Stride,Align Alignment)852   createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) {
853     assert(!InterleaveGroupMap.count(Instr) &&
854            "Already in an interleaved access group");
855     InterleaveGroupMap[Instr] =
856         new InterleaveGroup<Instruction>(Instr, Stride, Alignment);
857     InterleaveGroups.insert(InterleaveGroupMap[Instr]);
858     return InterleaveGroupMap[Instr];
859   }
860 
861   /// Release the group and remove all the relationships.
releaseGroup(InterleaveGroup<Instruction> * Group)862   void releaseGroup(InterleaveGroup<Instruction> *Group) {
863     for (unsigned i = 0; i < Group->getFactor(); i++)
864       if (Instruction *Member = Group->getMember(i))
865         InterleaveGroupMap.erase(Member);
866 
867     InterleaveGroups.erase(Group);
868     delete Group;
869   }
870 
871   /// Collect all the accesses with a constant stride in program order.
872   void collectConstStrideAccesses(
873       MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
874       const ValueToValueMap &Strides);
875 
876   /// Returns true if \p Stride is allowed in an interleaved group.
877   static bool isStrided(int Stride);
878 
879   /// Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB)880   bool isPredicated(BasicBlock *BB) const {
881     return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
882   }
883 
884   /// Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid()885   bool areDependencesValid() const {
886     return LAI && LAI->getDepChecker().getDependences();
887   }
888 
889   /// Returns true if memory accesses \p A and \p B can be reordered, if
890   /// necessary, when constructing interleaved groups.
891   ///
892   /// \p A must precede \p B in program order. We return false if reordering is
893   /// not necessary or is prevented because \p A and \p B may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * A,StrideEntry * B)894   bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
895                                                  StrideEntry *B) const {
896     // Code motion for interleaved accesses can potentially hoist strided loads
897     // and sink strided stores. The code below checks the legality of the
898     // following two conditions:
899     //
900     // 1. Potentially moving a strided load (B) before any store (A) that
901     //    precedes B, or
902     //
903     // 2. Potentially moving a strided store (A) after any load or store (B)
904     //    that A precedes.
905     //
906     // It's legal to reorder A and B if we know there isn't a dependence from A
907     // to B. Note that this determination is conservative since some
908     // dependences could potentially be reordered safely.
909 
910     // A is potentially the source of a dependence.
911     auto *Src = A->first;
912     auto SrcDes = A->second;
913 
914     // B is potentially the sink of a dependence.
915     auto *Sink = B->first;
916     auto SinkDes = B->second;
917 
918     // Code motion for interleaved accesses can't violate WAR dependences.
919     // Thus, reordering is legal if the source isn't a write.
920     if (!Src->mayWriteToMemory())
921       return true;
922 
923     // At least one of the accesses must be strided.
924     if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
925       return true;
926 
927     // If dependence information is not available from LoopAccessInfo,
928     // conservatively assume the instructions can't be reordered.
929     if (!areDependencesValid())
930       return false;
931 
932     // If we know there is a dependence from source to sink, assume the
933     // instructions can't be reordered. Otherwise, reordering is legal.
934     return Dependences.find(Src) == Dependences.end() ||
935            !Dependences.lookup(Src).count(Sink);
936   }
937 
938   /// Collect the dependences from LoopAccessInfo.
939   ///
940   /// We process the dependences once during the interleaved access analysis to
941   /// enable constant-time dependence queries.
collectDependences()942   void collectDependences() {
943     if (!areDependencesValid())
944       return;
945     auto *Deps = LAI->getDepChecker().getDependences();
946     for (auto Dep : *Deps)
947       Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
948   }
949 };
950 
951 } // llvm namespace
952 
953 #endif
954