1 //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing exception info into assembly files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "EHStreamer.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/BinaryFormat/Dwarf.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineOperand.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCStreamer.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/MC/MCTargetOptions.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <vector>
36
37 using namespace llvm;
38
EHStreamer(AsmPrinter * A)39 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
40
41 EHStreamer::~EHStreamer() = default;
42
43 /// How many leading type ids two landing pads have in common.
sharedTypeIDs(const LandingPadInfo * L,const LandingPadInfo * R)44 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
45 const LandingPadInfo *R) {
46 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
47 return std::mismatch(LIds.begin(), LIds.end(), RIds.begin(), RIds.end())
48 .first -
49 LIds.begin();
50 }
51
52 /// Compute the actions table and gather the first action index for each landing
53 /// pad site.
computeActionsTable(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,SmallVectorImpl<ActionEntry> & Actions,SmallVectorImpl<unsigned> & FirstActions)54 void EHStreamer::computeActionsTable(
55 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
56 SmallVectorImpl<ActionEntry> &Actions,
57 SmallVectorImpl<unsigned> &FirstActions) {
58 // The action table follows the call-site table in the LSDA. The individual
59 // records are of two types:
60 //
61 // * Catch clause
62 // * Exception specification
63 //
64 // The two record kinds have the same format, with only small differences.
65 // They are distinguished by the "switch value" field: Catch clauses
66 // (TypeInfos) have strictly positive switch values, and exception
67 // specifications (FilterIds) have strictly negative switch values. Value 0
68 // indicates a catch-all clause.
69 //
70 // Negative type IDs index into FilterIds. Positive type IDs index into
71 // TypeInfos. The value written for a positive type ID is just the type ID
72 // itself. For a negative type ID, however, the value written is the
73 // (negative) byte offset of the corresponding FilterIds entry. The byte
74 // offset is usually equal to the type ID (because the FilterIds entries are
75 // written using a variable width encoding, which outputs one byte per entry
76 // as long as the value written is not too large) but can differ. This kind
77 // of complication does not occur for positive type IDs because type infos are
78 // output using a fixed width encoding. FilterOffsets[i] holds the byte
79 // offset corresponding to FilterIds[i].
80
81 const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
82 SmallVector<int, 16> FilterOffsets;
83 FilterOffsets.reserve(FilterIds.size());
84 int Offset = -1;
85
86 for (std::vector<unsigned>::const_iterator
87 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
88 FilterOffsets.push_back(Offset);
89 Offset -= getULEB128Size(*I);
90 }
91
92 FirstActions.reserve(LandingPads.size());
93
94 int FirstAction = 0;
95 unsigned SizeActions = 0; // Total size of all action entries for a function
96 const LandingPadInfo *PrevLPI = nullptr;
97
98 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
99 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
100 const LandingPadInfo *LPI = *I;
101 const std::vector<int> &TypeIds = LPI->TypeIds;
102 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
103 unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
104
105 if (NumShared < TypeIds.size()) {
106 // Size of one action entry (typeid + next action)
107 unsigned SizeActionEntry = 0;
108 unsigned PrevAction = (unsigned)-1;
109
110 if (NumShared) {
111 unsigned SizePrevIds = PrevLPI->TypeIds.size();
112 assert(Actions.size());
113 PrevAction = Actions.size() - 1;
114 SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
115 getSLEB128Size(Actions[PrevAction].ValueForTypeID);
116
117 for (unsigned j = NumShared; j != SizePrevIds; ++j) {
118 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
119 SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
120 SizeActionEntry += -Actions[PrevAction].NextAction;
121 PrevAction = Actions[PrevAction].Previous;
122 }
123 }
124
125 // Compute the actions.
126 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
127 int TypeID = TypeIds[J];
128 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
129 int ValueForTypeID =
130 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
131 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
132
133 int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
134 SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
135 SizeSiteActions += SizeActionEntry;
136
137 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
138 Actions.push_back(Action);
139 PrevAction = Actions.size() - 1;
140 }
141
142 // Record the first action of the landing pad site.
143 FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
144 } // else identical - re-use previous FirstAction
145
146 // Information used when creating the call-site table. The action record
147 // field of the call site record is the offset of the first associated
148 // action record, relative to the start of the actions table. This value is
149 // biased by 1 (1 indicating the start of the actions table), and 0
150 // indicates that there are no actions.
151 FirstActions.push_back(FirstAction);
152
153 // Compute this sites contribution to size.
154 SizeActions += SizeSiteActions;
155
156 PrevLPI = LPI;
157 }
158 }
159
160 /// Return `true' if this is a call to a function marked `nounwind'. Return
161 /// `false' otherwise.
callToNoUnwindFunction(const MachineInstr * MI)162 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
163 assert(MI->isCall() && "This should be a call instruction!");
164
165 bool MarkedNoUnwind = false;
166 bool SawFunc = false;
167
168 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
169 const MachineOperand &MO = MI->getOperand(I);
170
171 if (!MO.isGlobal()) continue;
172
173 const Function *F = dyn_cast<Function>(MO.getGlobal());
174 if (!F) continue;
175
176 if (SawFunc) {
177 // Be conservative. If we have more than one function operand for this
178 // call, then we can't make the assumption that it's the callee and
179 // not a parameter to the call.
180 //
181 // FIXME: Determine if there's a way to say that `F' is the callee or
182 // parameter.
183 MarkedNoUnwind = false;
184 break;
185 }
186
187 MarkedNoUnwind = F->doesNotThrow();
188 SawFunc = true;
189 }
190
191 return MarkedNoUnwind;
192 }
193
computePadMap(const SmallVectorImpl<const LandingPadInfo * > & LandingPads,RangeMapType & PadMap)194 void EHStreamer::computePadMap(
195 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
196 RangeMapType &PadMap) {
197 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
198 // by try-range labels when lowered). Ordinary calls do not, so appropriate
199 // try-ranges for them need be deduced so we can put them in the LSDA.
200 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
201 const LandingPadInfo *LandingPad = LandingPads[i];
202 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
203 MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
204 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
205 PadRange P = { i, j };
206 PadMap[BeginLabel] = P;
207 }
208 }
209 }
210
211 /// Compute the call-site table. The entry for an invoke has a try-range
212 /// containing the call, a non-zero landing pad, and an appropriate action. The
213 /// entry for an ordinary call has a try-range containing the call and zero for
214 /// the landing pad and the action. Calls marked 'nounwind' have no entry and
215 /// must not be contained in the try-range of any entry - they form gaps in the
216 /// table. Entries must be ordered by try-range address.
217 ///
218 /// Call-sites are split into one or more call-site ranges associated with
219 /// different sections of the function.
220 ///
221 /// - Without -basic-block-sections, all call-sites are grouped into one
222 /// call-site-range corresponding to the function section.
223 ///
224 /// - With -basic-block-sections, one call-site range is created for each
225 /// section, with its FragmentBeginLabel and FragmentEndLabel respectively
226 // set to the beginning and ending of the corresponding section and its
227 // ExceptionLabel set to the exception symbol dedicated for this section.
228 // Later, one LSDA header will be emitted for each call-site range with its
229 // call-sites following. The action table and type info table will be
230 // shared across all ranges.
computeCallSiteTable(SmallVectorImpl<CallSiteEntry> & CallSites,SmallVectorImpl<CallSiteRange> & CallSiteRanges,const SmallVectorImpl<const LandingPadInfo * > & LandingPads,const SmallVectorImpl<unsigned> & FirstActions)231 void EHStreamer::computeCallSiteTable(
232 SmallVectorImpl<CallSiteEntry> &CallSites,
233 SmallVectorImpl<CallSiteRange> &CallSiteRanges,
234 const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
235 const SmallVectorImpl<unsigned> &FirstActions) {
236 RangeMapType PadMap;
237 computePadMap(LandingPads, PadMap);
238
239 // The end label of the previous invoke or nounwind try-range.
240 MCSymbol *LastLabel = Asm->getFunctionBegin();
241
242 // Whether there is a potentially throwing instruction (currently this means
243 // an ordinary call) between the end of the previous try-range and now.
244 bool SawPotentiallyThrowing = false;
245
246 // Whether the last CallSite entry was for an invoke.
247 bool PreviousIsInvoke = false;
248
249 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
250
251 // Visit all instructions in order of address.
252 for (const auto &MBB : *Asm->MF) {
253 if (&MBB == &Asm->MF->front() || MBB.isBeginSection()) {
254 // We start a call-site range upon function entry and at the beginning of
255 // every basic block section.
256 CallSiteRanges.push_back(
257 {Asm->MBBSectionRanges[MBB.getSectionIDNum()].BeginLabel,
258 Asm->MBBSectionRanges[MBB.getSectionIDNum()].EndLabel,
259 Asm->getMBBExceptionSym(MBB), CallSites.size()});
260 PreviousIsInvoke = false;
261 SawPotentiallyThrowing = false;
262 LastLabel = nullptr;
263 }
264
265 if (MBB.isEHPad())
266 CallSiteRanges.back().IsLPRange = true;
267
268 for (const auto &MI : MBB) {
269 if (!MI.isEHLabel()) {
270 if (MI.isCall())
271 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
272 continue;
273 }
274
275 // End of the previous try-range?
276 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
277 if (BeginLabel == LastLabel)
278 SawPotentiallyThrowing = false;
279
280 // Beginning of a new try-range?
281 RangeMapType::const_iterator L = PadMap.find(BeginLabel);
282 if (L == PadMap.end())
283 // Nope, it was just some random label.
284 continue;
285
286 const PadRange &P = L->second;
287 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
288 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
289 "Inconsistent landing pad map!");
290
291 // For Dwarf and AIX exception handling (SjLj handling doesn't use this).
292 // If some instruction between the previous try-range and this one may
293 // throw, create a call-site entry with no landing pad for the region
294 // between the try-ranges.
295 if (SawPotentiallyThrowing &&
296 (Asm->MAI->usesCFIForEH() ||
297 Asm->MAI->getExceptionHandlingType() == ExceptionHandling::AIX)) {
298 CallSites.push_back({LastLabel, BeginLabel, nullptr, 0});
299 PreviousIsInvoke = false;
300 }
301
302 LastLabel = LandingPad->EndLabels[P.RangeIndex];
303 assert(BeginLabel && LastLabel && "Invalid landing pad!");
304
305 if (!LandingPad->LandingPadLabel) {
306 // Create a gap.
307 PreviousIsInvoke = false;
308 } else {
309 // This try-range is for an invoke.
310 CallSiteEntry Site = {
311 BeginLabel,
312 LastLabel,
313 LandingPad,
314 FirstActions[P.PadIndex]
315 };
316
317 // Try to merge with the previous call-site. SJLJ doesn't do this
318 if (PreviousIsInvoke && !IsSJLJ) {
319 CallSiteEntry &Prev = CallSites.back();
320 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
321 // Extend the range of the previous entry.
322 Prev.EndLabel = Site.EndLabel;
323 continue;
324 }
325 }
326
327 // Otherwise, create a new call-site.
328 if (!IsSJLJ)
329 CallSites.push_back(Site);
330 else {
331 // SjLj EH must maintain the call sites in the order assigned
332 // to them by the SjLjPrepare pass.
333 unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
334 if (CallSites.size() < SiteNo)
335 CallSites.resize(SiteNo);
336 CallSites[SiteNo - 1] = Site;
337 }
338 PreviousIsInvoke = true;
339 }
340 }
341
342 // We end the call-site range upon function exit and at the end of every
343 // basic block section.
344 if (&MBB == &Asm->MF->back() || MBB.isEndSection()) {
345 // If some instruction between the previous try-range and the end of the
346 // function may throw, create a call-site entry with no landing pad for
347 // the region following the try-range.
348 if (SawPotentiallyThrowing && !IsSJLJ) {
349 CallSiteEntry Site = {LastLabel, CallSiteRanges.back().FragmentEndLabel,
350 nullptr, 0};
351 CallSites.push_back(Site);
352 SawPotentiallyThrowing = false;
353 }
354 CallSiteRanges.back().CallSiteEndIdx = CallSites.size();
355 }
356 }
357 }
358
359 /// Emit landing pads and actions.
360 ///
361 /// The general organization of the table is complex, but the basic concepts are
362 /// easy. First there is a header which describes the location and organization
363 /// of the three components that follow.
364 ///
365 /// 1. The landing pad site information describes the range of code covered by
366 /// the try. In our case it's an accumulation of the ranges covered by the
367 /// invokes in the try. There is also a reference to the landing pad that
368 /// handles the exception once processed. Finally an index into the actions
369 /// table.
370 /// 2. The action table, in our case, is composed of pairs of type IDs and next
371 /// action offset. Starting with the action index from the landing pad
372 /// site, each type ID is checked for a match to the current exception. If
373 /// it matches then the exception and type id are passed on to the landing
374 /// pad. Otherwise the next action is looked up. This chain is terminated
375 /// with a next action of zero. If no type id is found then the frame is
376 /// unwound and handling continues.
377 /// 3. Type ID table contains references to all the C++ typeinfo for all
378 /// catches in the function. This tables is reverse indexed base 1.
379 ///
380 /// Returns the starting symbol of an exception table.
emitExceptionTable()381 MCSymbol *EHStreamer::emitExceptionTable() {
382 const MachineFunction *MF = Asm->MF;
383 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
384 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
385 const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
386
387 // Sort the landing pads in order of their type ids. This is used to fold
388 // duplicate actions.
389 SmallVector<const LandingPadInfo *, 64> LandingPads;
390 LandingPads.reserve(PadInfos.size());
391
392 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
393 LandingPads.push_back(&PadInfos[i]);
394
395 // Order landing pads lexicographically by type id.
396 llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
397 return L->TypeIds < R->TypeIds;
398 });
399
400 // Compute the actions table and gather the first action index for each
401 // landing pad site.
402 SmallVector<ActionEntry, 32> Actions;
403 SmallVector<unsigned, 64> FirstActions;
404 computeActionsTable(LandingPads, Actions, FirstActions);
405
406 // Compute the call-site table and call-site ranges. Normally, there is only
407 // one call-site-range which covers the whole funciton. With
408 // -basic-block-sections, there is one call-site-range per basic block
409 // section.
410 SmallVector<CallSiteEntry, 64> CallSites;
411 SmallVector<CallSiteRange, 4> CallSiteRanges;
412 computeCallSiteTable(CallSites, CallSiteRanges, LandingPads, FirstActions);
413
414 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
415 bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
416 bool HasLEB128Directives = Asm->MAI->hasLEB128Directives();
417 unsigned CallSiteEncoding =
418 IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
419 Asm->getObjFileLowering().getCallSiteEncoding();
420 bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
421
422 // Type infos.
423 MCSection *LSDASection =
424 Asm->getObjFileLowering().getSectionForLSDA(MF->getFunction(), Asm->TM);
425 unsigned TTypeEncoding;
426
427 if (!HaveTTData) {
428 // If there is no TypeInfo, then we just explicitly say that we're omitting
429 // that bit.
430 TTypeEncoding = dwarf::DW_EH_PE_omit;
431 } else {
432 // Okay, we have actual filters or typeinfos to emit. As such, we need to
433 // pick a type encoding for them. We're about to emit a list of pointers to
434 // typeinfo objects at the end of the LSDA. However, unless we're in static
435 // mode, this reference will require a relocation by the dynamic linker.
436 //
437 // Because of this, we have a couple of options:
438 //
439 // 1) If we are in -static mode, we can always use an absolute reference
440 // from the LSDA, because the static linker will resolve it.
441 //
442 // 2) Otherwise, if the LSDA section is writable, we can output the direct
443 // reference to the typeinfo and allow the dynamic linker to relocate
444 // it. Since it is in a writable section, the dynamic linker won't
445 // have a problem.
446 //
447 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
448 // we need to use some form of indirection. For example, on Darwin,
449 // we can output a statically-relocatable reference to a dyld stub. The
450 // offset to the stub is constant, but the contents are in a section
451 // that is updated by the dynamic linker. This is easy enough, but we
452 // need to tell the personality function of the unwinder to indirect
453 // through the dyld stub.
454 //
455 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
456 // somewhere. This predicate should be moved to a shared location that is
457 // in target-independent code.
458 //
459 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
460 }
461
462 // Begin the exception table.
463 // Sometimes we want not to emit the data into separate section (e.g. ARM
464 // EHABI). In this case LSDASection will be NULL.
465 if (LSDASection)
466 Asm->OutStreamer->SwitchSection(LSDASection);
467 Asm->emitAlignment(Align(4));
468
469 // Emit the LSDA.
470 MCSymbol *GCCETSym =
471 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
472 Twine(Asm->getFunctionNumber()));
473 Asm->OutStreamer->emitLabel(GCCETSym);
474 MCSymbol *CstEndLabel = Asm->createTempSymbol(
475 CallSiteRanges.size() > 1 ? "action_table_base" : "cst_end");
476
477 MCSymbol *TTBaseLabel = nullptr;
478 if (HaveTTData)
479 TTBaseLabel = Asm->createTempSymbol("ttbase");
480
481 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
482
483 // Helper for emitting references (offsets) for type table and the end of the
484 // call-site table (which marks the beginning of the action table).
485 // * For Itanium, these references will be emitted for every callsite range.
486 // * For SJLJ and Wasm, they will be emitted only once in the LSDA header.
487 auto EmitTypeTableRefAndCallSiteTableEndRef = [&]() {
488 Asm->emitEncodingByte(TTypeEncoding, "@TType");
489 if (HaveTTData) {
490 // N.B.: There is a dependency loop between the size of the TTBase uleb128
491 // here and the amount of padding before the aligned type table. The
492 // assembler must sometimes pad this uleb128 or insert extra padding
493 // before the type table. See PR35809 or GNU as bug 4029.
494 MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
495 Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
496 Asm->OutStreamer->emitLabel(TTBaseRefLabel);
497 }
498
499 // The Action table follows the call-site table. So we emit the
500 // label difference from here (start of the call-site table for SJLJ and
501 // Wasm, and start of a call-site range for Itanium) to the end of the
502 // whole call-site table (end of the last call-site range for Itanium).
503 MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
504 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
505 Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
506 Asm->OutStreamer->emitLabel(CstBeginLabel);
507 };
508
509 // An alternative path to EmitTypeTableRefAndCallSiteTableEndRef.
510 // For some platforms, the system assembler does not accept the form of
511 // `.uleb128 label2 - label1`. In those situations, we would need to calculate
512 // the size between label1 and label2 manually.
513 // In this case, we would need to calculate the LSDA size and the call
514 // site table size.
515 auto EmitTypeTableOffsetAndCallSiteTableOffset = [&]() {
516 assert(CallSiteEncoding == dwarf::DW_EH_PE_udata4 && !HasLEB128Directives &&
517 "Targets supporting .uleb128 do not need to take this path.");
518 if (CallSiteRanges.size() > 1)
519 report_fatal_error(
520 "-fbasic-block-sections is not yet supported on "
521 "platforms that do not have general LEB128 directive support.");
522
523 uint64_t CallSiteTableSize = 0;
524 const CallSiteRange &CSRange = CallSiteRanges.back();
525 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
526 CallSiteIdx < CSRange.CallSiteEndIdx; ++CallSiteIdx) {
527 const CallSiteEntry &S = CallSites[CallSiteIdx];
528 // Each call site entry consists of 3 udata4 fields (12 bytes) and
529 // 1 ULEB128 field.
530 CallSiteTableSize += 12 + getULEB128Size(S.Action);
531 assert(isUInt<32>(CallSiteTableSize) && "CallSiteTableSize overflows.");
532 }
533
534 Asm->emitEncodingByte(TTypeEncoding, "@TType");
535 if (HaveTTData) {
536 const unsigned ByteSizeOfCallSiteOffset =
537 getULEB128Size(CallSiteTableSize);
538 uint64_t ActionTableSize = 0;
539 for (const ActionEntry &Action : Actions) {
540 // Each action entry consists of two SLEB128 fields.
541 ActionTableSize += getSLEB128Size(Action.ValueForTypeID) +
542 getSLEB128Size(Action.NextAction);
543 assert(isUInt<32>(ActionTableSize) && "ActionTableSize overflows.");
544 }
545
546 const unsigned TypeInfoSize =
547 Asm->GetSizeOfEncodedValue(TTypeEncoding) * MF->getTypeInfos().size();
548
549 const uint64_t LSDASizeBeforeAlign =
550 1 // Call site encoding byte.
551 + ByteSizeOfCallSiteOffset // ULEB128 encoding of CallSiteTableSize.
552 + CallSiteTableSize // Call site table content.
553 + ActionTableSize; // Action table content.
554
555 const uint64_t LSDASizeWithoutAlign = LSDASizeBeforeAlign + TypeInfoSize;
556 const unsigned ByteSizeOfLSDAWithoutAlign =
557 getULEB128Size(LSDASizeWithoutAlign);
558 const uint64_t DisplacementBeforeAlign =
559 2 // LPStartEncoding and TypeTableEncoding.
560 + ByteSizeOfLSDAWithoutAlign + LSDASizeBeforeAlign;
561
562 // The type info area starts with 4 byte alignment.
563 const unsigned NeedAlignVal = (4 - DisplacementBeforeAlign % 4) % 4;
564 uint64_t LSDASizeWithAlign = LSDASizeWithoutAlign + NeedAlignVal;
565 const unsigned ByteSizeOfLSDAWithAlign =
566 getULEB128Size(LSDASizeWithAlign);
567
568 // The LSDASizeWithAlign could use 1 byte less padding for alignment
569 // when the data we use to represent the LSDA Size "needs" to be 1 byte
570 // larger than the one previously calculated without alignment.
571 if (ByteSizeOfLSDAWithAlign > ByteSizeOfLSDAWithoutAlign)
572 LSDASizeWithAlign -= 1;
573
574 Asm->OutStreamer->emitULEB128IntValue(LSDASizeWithAlign,
575 ByteSizeOfLSDAWithAlign);
576 }
577
578 Asm->emitEncodingByte(CallSiteEncoding, "Call site");
579 Asm->OutStreamer->emitULEB128IntValue(CallSiteTableSize);
580 };
581
582 // SjLj / Wasm Exception handling
583 if (IsSJLJ || IsWasm) {
584 Asm->OutStreamer->emitLabel(Asm->getMBBExceptionSym(Asm->MF->front()));
585
586 // emit the LSDA header.
587 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
588 EmitTypeTableRefAndCallSiteTableEndRef();
589
590 unsigned idx = 0;
591 for (SmallVectorImpl<CallSiteEntry>::const_iterator
592 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
593 const CallSiteEntry &S = *I;
594
595 // Index of the call site entry.
596 if (VerboseAsm) {
597 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
598 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx));
599 }
600 Asm->emitULEB128(idx);
601
602 // Offset of the first associated action record, relative to the start of
603 // the action table. This value is biased by 1 (1 indicates the start of
604 // the action table), and 0 indicates that there are no actions.
605 if (VerboseAsm) {
606 if (S.Action == 0)
607 Asm->OutStreamer->AddComment(" Action: cleanup");
608 else
609 Asm->OutStreamer->AddComment(" Action: " +
610 Twine((S.Action - 1) / 2 + 1));
611 }
612 Asm->emitULEB128(S.Action);
613 }
614 Asm->OutStreamer->emitLabel(CstEndLabel);
615 } else {
616 // Itanium LSDA exception handling
617
618 // The call-site table is a list of all call sites that may throw an
619 // exception (including C++ 'throw' statements) in the procedure
620 // fragment. It immediately follows the LSDA header. Each entry indicates,
621 // for a given call, the first corresponding action record and corresponding
622 // landing pad.
623 //
624 // The table begins with the number of bytes, stored as an LEB128
625 // compressed, unsigned integer. The records immediately follow the record
626 // count. They are sorted in increasing call-site address. Each record
627 // indicates:
628 //
629 // * The position of the call-site.
630 // * The position of the landing pad.
631 // * The first action record for that call site.
632 //
633 // A missing entry in the call-site table indicates that a call is not
634 // supposed to throw.
635
636 assert(CallSiteRanges.size() != 0 && "No call-site ranges!");
637
638 // There should be only one call-site range which includes all the landing
639 // pads. Find that call-site range here.
640 const CallSiteRange *LandingPadRange = nullptr;
641 for (const CallSiteRange &CSRange : CallSiteRanges) {
642 if (CSRange.IsLPRange) {
643 assert(LandingPadRange == nullptr &&
644 "All landing pads must be in a single callsite range.");
645 LandingPadRange = &CSRange;
646 }
647 }
648
649 // The call-site table is split into its call-site ranges, each being
650 // emitted as:
651 // [ LPStartEncoding | LPStart ]
652 // [ TypeTableEncoding | TypeTableOffset ]
653 // [ CallSiteEncoding | CallSiteTableEndOffset ]
654 // cst_begin -> { call-site entries contained in this range }
655 //
656 // and is followed by the next call-site range.
657 //
658 // For each call-site range, CallSiteTableEndOffset is computed as the
659 // difference between cst_begin of that range and the last call-site-table's
660 // end label. This offset is used to find the action table.
661
662 unsigned Entry = 0;
663 for (const CallSiteRange &CSRange : CallSiteRanges) {
664 if (CSRange.CallSiteBeginIdx != 0) {
665 // Align the call-site range for all ranges except the first. The
666 // first range is already aligned due to the exception table alignment.
667 Asm->emitAlignment(Align(4));
668 }
669 Asm->OutStreamer->emitLabel(CSRange.ExceptionLabel);
670
671 // Emit the LSDA header.
672 // If only one call-site range exists, LPStart is omitted as it is the
673 // same as the function entry.
674 if (CallSiteRanges.size() == 1) {
675 Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
676 } else if (!Asm->isPositionIndependent()) {
677 // For more than one call-site ranges, LPStart must be explicitly
678 // specified.
679 // For non-PIC we can simply use the absolute value.
680 Asm->emitEncodingByte(dwarf::DW_EH_PE_absptr, "@LPStart");
681 Asm->OutStreamer->emitSymbolValue(LandingPadRange->FragmentBeginLabel,
682 Asm->MAI->getCodePointerSize());
683 } else {
684 // For PIC mode, we Emit a PC-relative address for LPStart.
685 Asm->emitEncodingByte(dwarf::DW_EH_PE_pcrel, "@LPStart");
686 MCContext &Context = Asm->OutStreamer->getContext();
687 MCSymbol *Dot = Context.createTempSymbol();
688 Asm->OutStreamer->emitLabel(Dot);
689 Asm->OutStreamer->emitValue(
690 MCBinaryExpr::createSub(
691 MCSymbolRefExpr::create(LandingPadRange->FragmentBeginLabel,
692 Context),
693 MCSymbolRefExpr::create(Dot, Context), Context),
694 Asm->MAI->getCodePointerSize());
695 }
696
697 if (HasLEB128Directives)
698 EmitTypeTableRefAndCallSiteTableEndRef();
699 else
700 EmitTypeTableOffsetAndCallSiteTableOffset();
701
702 for (size_t CallSiteIdx = CSRange.CallSiteBeginIdx;
703 CallSiteIdx != CSRange.CallSiteEndIdx; ++CallSiteIdx) {
704 const CallSiteEntry &S = CallSites[CallSiteIdx];
705
706 MCSymbol *EHFuncBeginSym = CSRange.FragmentBeginLabel;
707 MCSymbol *EHFuncEndSym = CSRange.FragmentEndLabel;
708
709 MCSymbol *BeginLabel = S.BeginLabel;
710 if (!BeginLabel)
711 BeginLabel = EHFuncBeginSym;
712 MCSymbol *EndLabel = S.EndLabel;
713 if (!EndLabel)
714 EndLabel = EHFuncEndSym;
715
716 // Offset of the call site relative to the start of the procedure.
717 if (VerboseAsm)
718 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) +
719 " <<");
720 Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
721 if (VerboseAsm)
722 Asm->OutStreamer->AddComment(Twine(" Call between ") +
723 BeginLabel->getName() + " and " +
724 EndLabel->getName());
725 Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
726
727 // Offset of the landing pad relative to the start of the landing pad
728 // fragment.
729 if (!S.LPad) {
730 if (VerboseAsm)
731 Asm->OutStreamer->AddComment(" has no landing pad");
732 Asm->emitCallSiteValue(0, CallSiteEncoding);
733 } else {
734 if (VerboseAsm)
735 Asm->OutStreamer->AddComment(Twine(" jumps to ") +
736 S.LPad->LandingPadLabel->getName());
737 Asm->emitCallSiteOffset(S.LPad->LandingPadLabel,
738 LandingPadRange->FragmentBeginLabel,
739 CallSiteEncoding);
740 }
741
742 // Offset of the first associated action record, relative to the start
743 // of the action table. This value is biased by 1 (1 indicates the start
744 // of the action table), and 0 indicates that there are no actions.
745 if (VerboseAsm) {
746 if (S.Action == 0)
747 Asm->OutStreamer->AddComment(" On action: cleanup");
748 else
749 Asm->OutStreamer->AddComment(" On action: " +
750 Twine((S.Action - 1) / 2 + 1));
751 }
752 Asm->emitULEB128(S.Action);
753 }
754 }
755 Asm->OutStreamer->emitLabel(CstEndLabel);
756 }
757
758 // Emit the Action Table.
759 int Entry = 0;
760 for (SmallVectorImpl<ActionEntry>::const_iterator
761 I = Actions.begin(), E = Actions.end(); I != E; ++I) {
762 const ActionEntry &Action = *I;
763
764 if (VerboseAsm) {
765 // Emit comments that decode the action table.
766 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
767 }
768
769 // Type Filter
770 //
771 // Used by the runtime to match the type of the thrown exception to the
772 // type of the catch clauses or the types in the exception specification.
773 if (VerboseAsm) {
774 if (Action.ValueForTypeID > 0)
775 Asm->OutStreamer->AddComment(" Catch TypeInfo " +
776 Twine(Action.ValueForTypeID));
777 else if (Action.ValueForTypeID < 0)
778 Asm->OutStreamer->AddComment(" Filter TypeInfo " +
779 Twine(Action.ValueForTypeID));
780 else
781 Asm->OutStreamer->AddComment(" Cleanup");
782 }
783 Asm->emitSLEB128(Action.ValueForTypeID);
784
785 // Action Record
786 if (VerboseAsm) {
787 if (Action.Previous == unsigned(-1)) {
788 Asm->OutStreamer->AddComment(" No further actions");
789 } else {
790 Asm->OutStreamer->AddComment(" Continue to action " +
791 Twine(Action.Previous + 1));
792 }
793 }
794 Asm->emitSLEB128(Action.NextAction);
795 }
796
797 if (HaveTTData) {
798 Asm->emitAlignment(Align(4));
799 emitTypeInfos(TTypeEncoding, TTBaseLabel);
800 }
801
802 Asm->emitAlignment(Align(4));
803 return GCCETSym;
804 }
805
emitTypeInfos(unsigned TTypeEncoding,MCSymbol * TTBaseLabel)806 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
807 const MachineFunction *MF = Asm->MF;
808 const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
809 const std::vector<unsigned> &FilterIds = MF->getFilterIds();
810
811 const bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
812
813 int Entry = 0;
814 // Emit the Catch TypeInfos.
815 if (VerboseAsm && !TypeInfos.empty()) {
816 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
817 Asm->OutStreamer->AddBlankLine();
818 Entry = TypeInfos.size();
819 }
820
821 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
822 TypeInfos.rend())) {
823 if (VerboseAsm)
824 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
825 Asm->emitTTypeReference(GV, TTypeEncoding);
826 }
827
828 Asm->OutStreamer->emitLabel(TTBaseLabel);
829
830 // Emit the Exception Specifications.
831 if (VerboseAsm && !FilterIds.empty()) {
832 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
833 Asm->OutStreamer->AddBlankLine();
834 Entry = 0;
835 }
836 for (std::vector<unsigned>::const_iterator
837 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
838 unsigned TypeID = *I;
839 if (VerboseAsm) {
840 --Entry;
841 if (isFilterEHSelector(TypeID))
842 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
843 }
844
845 Asm->emitULEB128(TypeID);
846 }
847 }
848