1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GCMetadata.h"
24 #include "llvm/CodeGen/GCStrategy.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/RuntimeLibcalls.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/Statepoint.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include <cassert>
47 #include <cstddef>
48 #include <cstdint>
49 #include <iterator>
50 #include <tuple>
51 #include <utility>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "statepoint-lowering"
56
57 STATISTIC(NumSlotsAllocatedForStatepoints,
58 "Number of stack slots allocated for statepoints");
59 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
60 STATISTIC(StatepointMaxSlotsRequired,
61 "Maximum number of stack slots required for a singe statepoint");
62
63 cl::opt<bool> UseRegistersForDeoptValues(
64 "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
65 cl::desc("Allow using registers for non pointer deopt args"));
66
67 cl::opt<bool> UseRegistersForGCPointersInLandingPad(
68 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
69 cl::desc("Allow using registers for gc pointer in landing pad"));
70
71 cl::opt<unsigned> MaxRegistersForGCPointers(
72 "max-registers-for-gc-values", cl::Hidden, cl::init(0),
73 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
74
75 cl::opt<bool> AlwaysSpillBase("statepoint-always-spill-base", cl::Hidden,
76 cl::init(true),
77 cl::desc("Force spilling of base GC pointers"));
78
79 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
80
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)81 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
82 SelectionDAGBuilder &Builder, uint64_t Value) {
83 SDLoc L = Builder.getCurSDLoc();
84 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
85 MVT::i64));
86 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
87 }
88
startNewStatepoint(SelectionDAGBuilder & Builder)89 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
90 // Consistency check
91 assert(PendingGCRelocateCalls.empty() &&
92 "Trying to visit statepoint before finished processing previous one");
93 Locations.clear();
94 NextSlotToAllocate = 0;
95 // Need to resize this on each safepoint - we need the two to stay in sync and
96 // the clear patterns of a SelectionDAGBuilder have no relation to
97 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
98 AllocatedStackSlots.clear();
99 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
100 }
101
clear()102 void StatepointLoweringState::clear() {
103 Locations.clear();
104 AllocatedStackSlots.clear();
105 assert(PendingGCRelocateCalls.empty() &&
106 "cleared before statepoint sequence completed");
107 }
108
109 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)110 StatepointLoweringState::allocateStackSlot(EVT ValueType,
111 SelectionDAGBuilder &Builder) {
112 NumSlotsAllocatedForStatepoints++;
113 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
114
115 unsigned SpillSize = ValueType.getStoreSize();
116 assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
117
118 // First look for a previously created stack slot which is not in
119 // use (accounting for the fact arbitrary slots may already be
120 // reserved), or to create a new stack slot and use it.
121
122 const size_t NumSlots = AllocatedStackSlots.size();
123 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
124
125 assert(AllocatedStackSlots.size() ==
126 Builder.FuncInfo.StatepointStackSlots.size() &&
127 "Broken invariant");
128
129 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
130 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
131 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
132 if (MFI.getObjectSize(FI) == SpillSize) {
133 AllocatedStackSlots.set(NextSlotToAllocate);
134 // TODO: Is ValueType the right thing to use here?
135 return Builder.DAG.getFrameIndex(FI, ValueType);
136 }
137 }
138 }
139
140 // Couldn't find a free slot, so create a new one:
141
142 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
143 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
144 MFI.markAsStatepointSpillSlotObjectIndex(FI);
145
146 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
147 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
148 assert(AllocatedStackSlots.size() ==
149 Builder.FuncInfo.StatepointStackSlots.size() &&
150 "Broken invariant");
151
152 StatepointMaxSlotsRequired.updateMax(
153 Builder.FuncInfo.StatepointStackSlots.size());
154
155 return SpillSlot;
156 }
157
158 /// Utility function for reservePreviousStackSlotForValue. Tries to find
159 /// stack slot index to which we have spilled value for previous statepoints.
160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)161 static Optional<int> findPreviousSpillSlot(const Value *Val,
162 SelectionDAGBuilder &Builder,
163 int LookUpDepth) {
164 // Can not look any further - give up now
165 if (LookUpDepth <= 0)
166 return None;
167
168 // Spill location is known for gc relocates
169 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
170 const auto &RelocationMap =
171 Builder.FuncInfo.StatepointRelocationMaps[Relocate->getStatepoint()];
172
173 auto It = RelocationMap.find(Relocate->getDerivedPtr());
174 if (It == RelocationMap.end())
175 return None;
176
177 auto &Record = It->second;
178 if (Record.type != RecordType::Spill)
179 return None;
180
181 return Record.payload.FI;
182 }
183
184 // Look through bitcast instructions.
185 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
186 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
187
188 // Look through phi nodes
189 // All incoming values should have same known stack slot, otherwise result
190 // is unknown.
191 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
192 Optional<int> MergedResult = None;
193
194 for (auto &IncomingValue : Phi->incoming_values()) {
195 Optional<int> SpillSlot =
196 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
197 if (!SpillSlot.hasValue())
198 return None;
199
200 if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
201 return None;
202
203 MergedResult = SpillSlot;
204 }
205 return MergedResult;
206 }
207
208 // TODO: We can do better for PHI nodes. In cases like this:
209 // ptr = phi(relocated_pointer, not_relocated_pointer)
210 // statepoint(ptr)
211 // We will return that stack slot for ptr is unknown. And later we might
212 // assign different stack slots for ptr and relocated_pointer. This limits
213 // llvm's ability to remove redundant stores.
214 // Unfortunately it's hard to accomplish in current infrastructure.
215 // We use this function to eliminate spill store completely, while
216 // in example we still need to emit store, but instead of any location
217 // we need to use special "preferred" location.
218
219 // TODO: handle simple updates. If a value is modified and the original
220 // value is no longer live, it would be nice to put the modified value in the
221 // same slot. This allows folding of the memory accesses for some
222 // instructions types (like an increment).
223 // statepoint (i)
224 // i1 = i+1
225 // statepoint (i1)
226 // However we need to be careful for cases like this:
227 // statepoint(i)
228 // i1 = i+1
229 // statepoint(i, i1)
230 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
231 // put handling of simple modifications in this function like it's done
232 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
233 // which we visit values is unspecified.
234
235 // Don't know any information about this instruction
236 return None;
237 }
238
239 /// Return true if-and-only-if the given SDValue can be lowered as either a
240 /// constant argument or a stack reference. The key point is that the value
241 /// doesn't need to be spilled or tracked as a vreg use.
willLowerDirectly(SDValue Incoming)242 static bool willLowerDirectly(SDValue Incoming) {
243 // We are making an unchecked assumption that the frame size <= 2^16 as that
244 // is the largest offset which can be encoded in the stackmap format.
245 if (isa<FrameIndexSDNode>(Incoming))
246 return true;
247
248 // The largest constant describeable in the StackMap format is 64 bits.
249 // Potential Optimization: Constants values are sign extended by consumer,
250 // and thus there are many constants of static type > 64 bits whose value
251 // happens to be sext(Con64) and could thus be lowered directly.
252 if (Incoming.getValueType().getSizeInBits() > 64)
253 return false;
254
255 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
256 Incoming.isUndef());
257 }
258
259 /// Try to find existing copies of the incoming values in stack slots used for
260 /// statepoint spilling. If we can find a spill slot for the incoming value,
261 /// mark that slot as allocated, and reuse the same slot for this safepoint.
262 /// This helps to avoid series of loads and stores that only serve to reshuffle
263 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)264 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
265 SelectionDAGBuilder &Builder) {
266 SDValue Incoming = Builder.getValue(IncomingValue);
267
268 // If we won't spill this, we don't need to check for previously allocated
269 // stack slots.
270 if (willLowerDirectly(Incoming))
271 return;
272
273 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
274 if (OldLocation.getNode())
275 // Duplicates in input
276 return;
277
278 const int LookUpDepth = 6;
279 Optional<int> Index =
280 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
281 if (!Index.hasValue())
282 return;
283
284 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
285
286 auto SlotIt = find(StatepointSlots, *Index);
287 assert(SlotIt != StatepointSlots.end() &&
288 "Value spilled to the unknown stack slot");
289
290 // This is one of our dedicated lowering slots
291 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
292 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
293 // stack slot already assigned to someone else, can't use it!
294 // TODO: currently we reserve space for gc arguments after doing
295 // normal allocation for deopt arguments. We should reserve for
296 // _all_ deopt and gc arguments, then start allocating. This
297 // will prevent some moves being inserted when vm state changes,
298 // but gc state doesn't between two calls.
299 return;
300 }
301 // Reserve this stack slot
302 Builder.StatepointLowering.reserveStackSlot(Offset);
303
304 // Cache this slot so we find it when going through the normal
305 // assignment loop.
306 SDValue Loc =
307 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
308 Builder.StatepointLowering.setLocation(Incoming, Loc);
309 }
310
311 /// Extract call from statepoint, lower it and return pointer to the
312 /// call node. Also update NodeMap so that getValue(statepoint) will
313 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder,SmallVectorImpl<SDValue> & PendingExports)314 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
315 SelectionDAGBuilder::StatepointLoweringInfo &SI,
316 SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
317 SDValue ReturnValue, CallEndVal;
318 std::tie(ReturnValue, CallEndVal) =
319 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
320 SDNode *CallEnd = CallEndVal.getNode();
321
322 // Get a call instruction from the call sequence chain. Tail calls are not
323 // allowed. The following code is essentially reverse engineering X86's
324 // LowerCallTo.
325 //
326 // We are expecting DAG to have the following form:
327 //
328 // ch = eh_label (only in case of invoke statepoint)
329 // ch, glue = callseq_start ch
330 // ch, glue = X86::Call ch, glue
331 // ch, glue = callseq_end ch, glue
332 // get_return_value ch, glue
333 //
334 // get_return_value can either be a sequence of CopyFromReg instructions
335 // to grab the return value from the return register(s), or it can be a LOAD
336 // to load a value returned by reference via a stack slot.
337
338 bool HasDef = !SI.CLI.RetTy->isVoidTy();
339 if (HasDef) {
340 if (CallEnd->getOpcode() == ISD::LOAD)
341 CallEnd = CallEnd->getOperand(0).getNode();
342 else
343 while (CallEnd->getOpcode() == ISD::CopyFromReg)
344 CallEnd = CallEnd->getOperand(0).getNode();
345 }
346
347 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
348 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
349 }
350
getMachineMemOperand(MachineFunction & MF,FrameIndexSDNode & FI)351 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
352 FrameIndexSDNode &FI) {
353 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
354 auto MMOFlags = MachineMemOperand::MOStore |
355 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
356 auto &MFI = MF.getFrameInfo();
357 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
358 MFI.getObjectSize(FI.getIndex()),
359 MFI.getObjectAlign(FI.getIndex()));
360 }
361
362 /// Spill a value incoming to the statepoint. It might be either part of
363 /// vmstate
364 /// or gcstate. In both cases unconditionally spill it on the stack unless it
365 /// is a null constant. Return pair with first element being frame index
366 /// containing saved value and second element with outgoing chain from the
367 /// emitted store
368 static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)369 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
370 SelectionDAGBuilder &Builder) {
371 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
372 MachineMemOperand* MMO = nullptr;
373
374 // Emit new store if we didn't do it for this ptr before
375 if (!Loc.getNode()) {
376 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
377 Builder);
378 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
379 // We use TargetFrameIndex so that isel will not select it into LEA
380 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
381
382 // Right now we always allocate spill slots that are of the same
383 // size as the value we're about to spill (the size of spillee can
384 // vary since we spill vectors of pointers too). At some point we
385 // can consider allowing spills of smaller values to larger slots
386 // (i.e. change the '==' in the assert below to a '>=').
387 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
388 assert((MFI.getObjectSize(Index) * 8) ==
389 (int64_t)Incoming.getValueSizeInBits() &&
390 "Bad spill: stack slot does not match!");
391
392 // Note: Using the alignment of the spill slot (rather than the abi or
393 // preferred alignment) is required for correctness when dealing with spill
394 // slots with preferred alignments larger than frame alignment..
395 auto &MF = Builder.DAG.getMachineFunction();
396 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
397 auto *StoreMMO = MF.getMachineMemOperand(
398 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
399 MFI.getObjectAlign(Index));
400 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
401 StoreMMO);
402
403 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
404
405 Builder.StatepointLowering.setLocation(Incoming, Loc);
406 }
407
408 assert(Loc.getNode());
409 return std::make_tuple(Loc, Chain, MMO);
410 }
411
412 /// Lower a single value incoming to a statepoint node. This value can be
413 /// either a deopt value or a gc value, the handling is the same. We special
414 /// case constants and allocas, then fall back to spilling if required.
415 static void
lowerIncomingStatepointValue(SDValue Incoming,bool RequireSpillSlot,SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder & Builder)416 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
417 SmallVectorImpl<SDValue> &Ops,
418 SmallVectorImpl<MachineMemOperand *> &MemRefs,
419 SelectionDAGBuilder &Builder) {
420
421 if (willLowerDirectly(Incoming)) {
422 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
423 // This handles allocas as arguments to the statepoint (this is only
424 // really meaningful for a deopt value. For GC, we'd be trying to
425 // relocate the address of the alloca itself?)
426 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
427 "Incoming value is a frame index!");
428 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
429 Builder.getFrameIndexTy()));
430
431 auto &MF = Builder.DAG.getMachineFunction();
432 auto *MMO = getMachineMemOperand(MF, *FI);
433 MemRefs.push_back(MMO);
434 return;
435 }
436
437 assert(Incoming.getValueType().getSizeInBits() <= 64);
438
439 if (Incoming.isUndef()) {
440 // Put an easily recognized constant that's unlikely to be a valid
441 // value so that uses of undef by the consumer of the stackmap is
442 // easily recognized. This is legal since the compiler is always
443 // allowed to chose an arbitrary value for undef.
444 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
445 return;
446 }
447
448 // If the original value was a constant, make sure it gets recorded as
449 // such in the stackmap. This is required so that the consumer can
450 // parse any internal format to the deopt state. It also handles null
451 // pointers and other constant pointers in GC states.
452 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
453 pushStackMapConstant(Ops, Builder, C->getSExtValue());
454 return;
455 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
456 pushStackMapConstant(Ops, Builder,
457 C->getValueAPF().bitcastToAPInt().getZExtValue());
458 return;
459 }
460
461 llvm_unreachable("unhandled direct lowering case");
462 }
463
464
465
466 if (!RequireSpillSlot) {
467 // If this value is live in (not live-on-return, or live-through), we can
468 // treat it the same way patchpoint treats it's "live in" values. We'll
469 // end up folding some of these into stack references, but they'll be
470 // handled by the register allocator. Note that we do not have the notion
471 // of a late use so these values might be placed in registers which are
472 // clobbered by the call. This is fine for live-in. For live-through
473 // fix-up pass should be executed to force spilling of such registers.
474 Ops.push_back(Incoming);
475 } else {
476 // Otherwise, locate a spill slot and explicitly spill it so it can be
477 // found by the runtime later. Note: We know all of these spills are
478 // independent, but don't bother to exploit that chain wise. DAGCombine
479 // will happily do so as needed, so doing it here would be a small compile
480 // time win at most.
481 SDValue Chain = Builder.getRoot();
482 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
483 Ops.push_back(std::get<0>(Res));
484 if (auto *MMO = std::get<2>(Res))
485 MemRefs.push_back(MMO);
486 Chain = std::get<1>(Res);;
487 Builder.DAG.setRoot(Chain);
488 }
489
490 }
491
492 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
493 /// lowering is described in lowerIncomingStatepointValue. This function is
494 /// responsible for lowering everything in the right position and playing some
495 /// tricks to avoid redundant stack manipulation where possible. On
496 /// completion, 'Ops' will contain ready to use operands for machine code
497 /// statepoint. The chain nodes will have already been created and the DAG root
498 /// will be set to the last value spilled (if any were).
499 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SmallVectorImpl<SDValue> & GCPtrs,DenseMap<SDValue,int> & LowerAsVReg,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)500 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
501 SmallVectorImpl<MachineMemOperand *> &MemRefs,
502 SmallVectorImpl<SDValue> &GCPtrs,
503 DenseMap<SDValue, int> &LowerAsVReg,
504 SelectionDAGBuilder::StatepointLoweringInfo &SI,
505 SelectionDAGBuilder &Builder) {
506 // Lower the deopt and gc arguments for this statepoint. Layout will be:
507 // deopt argument length, deopt arguments.., gc arguments...
508 #ifndef NDEBUG
509 if (auto *GFI = Builder.GFI) {
510 // Check that each of the gc pointer and bases we've gotten out of the
511 // safepoint is something the strategy thinks might be a pointer (or vector
512 // of pointers) into the GC heap. This is basically just here to help catch
513 // errors during statepoint insertion. TODO: This should actually be in the
514 // Verifier, but we can't get to the GCStrategy from there (yet).
515 GCStrategy &S = GFI->getStrategy();
516 for (const Value *V : SI.Bases) {
517 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
518 if (Opt.hasValue()) {
519 assert(Opt.getValue() &&
520 "non gc managed base pointer found in statepoint");
521 }
522 }
523 for (const Value *V : SI.Ptrs) {
524 auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
525 if (Opt.hasValue()) {
526 assert(Opt.getValue() &&
527 "non gc managed derived pointer found in statepoint");
528 }
529 }
530 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
531 } else {
532 assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
533 assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
534 }
535 #endif
536
537 // Figure out what lowering strategy we're going to use for each part
538 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
539 // as "live-through". A "live-through" variable is one which is "live-in",
540 // "live-out", and live throughout the lifetime of the call (i.e. we can find
541 // it from any PC within the transitive callee of the statepoint). In
542 // particular, if the callee spills callee preserved registers we may not
543 // be able to find a value placed in that register during the call. This is
544 // fine for live-out, but not for live-through. If we were willing to make
545 // assumptions about the code generator producing the callee, we could
546 // potentially allow live-through values in callee saved registers.
547 const bool LiveInDeopt =
548 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
549
550 // Decide which deriver pointers will go on VRegs
551 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
552
553 // Pointers used on exceptional path of invoke statepoint.
554 // We cannot assing them to VRegs.
555 SmallSet<SDValue, 8> LPadPointers;
556 if (!UseRegistersForGCPointersInLandingPad)
557 if (auto *StInvoke = dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
558 LandingPadInst *LPI = StInvoke->getLandingPadInst();
559 for (auto *Relocate : SI.GCRelocates)
560 if (Relocate->getOperand(0) == LPI) {
561 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
562 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
563 }
564 }
565
566 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
567
568 // List of unique lowered GC Pointer values.
569 SmallSetVector<SDValue, 16> LoweredGCPtrs;
570 // Map lowered GC Pointer value to the index in above vector
571 DenseMap<SDValue, unsigned> GCPtrIndexMap;
572
573 unsigned CurNumVRegs = 0;
574
575 auto canPassGCPtrOnVReg = [&](SDValue SD) {
576 if (SD.getValueType().isVector())
577 return false;
578 if (LPadPointers.count(SD))
579 return false;
580 return !willLowerDirectly(SD);
581 };
582
583 auto processGCPtr = [&](const Value *V) {
584 SDValue PtrSD = Builder.getValue(V);
585 if (!LoweredGCPtrs.insert(PtrSD))
586 return; // skip duplicates
587 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
588
589 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
590 if (LowerAsVReg.size() == MaxVRegPtrs)
591 return;
592 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
593 "IR and SD types disagree");
594 if (!canPassGCPtrOnVReg(PtrSD)) {
595 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
596 return;
597 }
598 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
599 LowerAsVReg[PtrSD] = CurNumVRegs++;
600 };
601
602 // Process derived pointers first to give them more chance to go on VReg.
603 for (const Value *V : SI.Ptrs)
604 processGCPtr(V);
605 for (const Value *V : SI.Bases)
606 processGCPtr(V);
607
608 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
609
610 auto isGCValue = [&](const Value *V) {
611 auto *Ty = V->getType();
612 if (!Ty->isPtrOrPtrVectorTy())
613 return false;
614 if (auto *GFI = Builder.GFI)
615 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
616 return *IsManaged;
617 return true; // conservative
618 };
619
620 auto requireSpillSlot = [&](const Value *V) {
621 if (isGCValue(V))
622 return !LowerAsVReg.count(Builder.getValue(V));
623 return !(LiveInDeopt || UseRegistersForDeoptValues);
624 };
625
626 // Before we actually start lowering (and allocating spill slots for values),
627 // reserve any stack slots which we judge to be profitable to reuse for a
628 // particular value. This is purely an optimization over the code below and
629 // doesn't change semantics at all. It is important for performance that we
630 // reserve slots for both deopt and gc values before lowering either.
631 for (const Value *V : SI.DeoptState) {
632 if (requireSpillSlot(V))
633 reservePreviousStackSlotForValue(V, Builder);
634 }
635
636 for (const Value *V : SI.Ptrs) {
637 SDValue SDV = Builder.getValue(V);
638 if (!LowerAsVReg.count(SDV))
639 reservePreviousStackSlotForValue(V, Builder);
640 }
641
642 for (const Value *V : SI.Bases) {
643 SDValue SDV = Builder.getValue(V);
644 if (!LowerAsVReg.count(SDV))
645 reservePreviousStackSlotForValue(V, Builder);
646 }
647
648 // First, prefix the list with the number of unique values to be
649 // lowered. Note that this is the number of *Values* not the
650 // number of SDValues required to lower them.
651 const int NumVMSArgs = SI.DeoptState.size();
652 pushStackMapConstant(Ops, Builder, NumVMSArgs);
653
654 // The vm state arguments are lowered in an opaque manner. We do not know
655 // what type of values are contained within.
656 LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
657 for (const Value *V : SI.DeoptState) {
658 SDValue Incoming;
659 // If this is a function argument at a static frame index, generate it as
660 // the frame index.
661 if (const Argument *Arg = dyn_cast<Argument>(V)) {
662 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
663 if (FI != INT_MAX)
664 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
665 }
666 if (!Incoming.getNode())
667 Incoming = Builder.getValue(V);
668 LLVM_DEBUG(dbgs() << "Value " << *V
669 << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
670 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
671 Builder);
672 }
673
674 // Finally, go ahead and lower all the gc arguments.
675 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
676 for (SDValue SDV : LoweredGCPtrs)
677 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
678 Builder);
679
680 // Copy to out vector. LoweredGCPtrs will be empty after this point.
681 GCPtrs = LoweredGCPtrs.takeVector();
682
683 // If there are any explicit spill slots passed to the statepoint, record
684 // them, but otherwise do not do anything special. These are user provided
685 // allocas and give control over placement to the consumer. In this case,
686 // it is the contents of the slot which may get updated, not the pointer to
687 // the alloca
688 SmallVector<SDValue, 4> Allocas;
689 for (Value *V : SI.GCArgs) {
690 SDValue Incoming = Builder.getValue(V);
691 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
692 // This handles allocas as arguments to the statepoint
693 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
694 "Incoming value is a frame index!");
695 Allocas.push_back(Builder.DAG.getTargetFrameIndex(
696 FI->getIndex(), Builder.getFrameIndexTy()));
697
698 auto &MF = Builder.DAG.getMachineFunction();
699 auto *MMO = getMachineMemOperand(MF, *FI);
700 MemRefs.push_back(MMO);
701 }
702 }
703 pushStackMapConstant(Ops, Builder, Allocas.size());
704 Ops.append(Allocas.begin(), Allocas.end());
705
706 // Now construct GC base/derived map;
707 pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
708 SDLoc L = Builder.getCurSDLoc();
709 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
710 SDValue Base = Builder.getValue(SI.Bases[i]);
711 assert(GCPtrIndexMap.count(Base) && "base not found in index map");
712 Ops.push_back(
713 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
714 SDValue Derived = Builder.getValue(SI.Ptrs[i]);
715 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
716 Ops.push_back(
717 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
718 }
719 }
720
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)721 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
722 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
723 // The basic scheme here is that information about both the original call and
724 // the safepoint is encoded in the CallInst. We create a temporary call and
725 // lower it, then reverse engineer the calling sequence.
726
727 NumOfStatepoints++;
728 // Clear state
729 StatepointLowering.startNewStatepoint(*this);
730 assert(SI.Bases.size() == SI.Ptrs.size() &&
731 SI.Ptrs.size() <= SI.GCRelocates.size());
732
733 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
734 #ifndef NDEBUG
735 for (auto *Reloc : SI.GCRelocates)
736 if (Reloc->getParent() == SI.StatepointInstr->getParent())
737 StatepointLowering.scheduleRelocCall(*Reloc);
738 #endif
739
740 // Lower statepoint vmstate and gcstate arguments
741
742 // All lowered meta args.
743 SmallVector<SDValue, 10> LoweredMetaArgs;
744 // Lowered GC pointers (subset of above).
745 SmallVector<SDValue, 16> LoweredGCArgs;
746 SmallVector<MachineMemOperand*, 16> MemRefs;
747 // Maps derived pointer SDValue to statepoint result of relocated pointer.
748 DenseMap<SDValue, int> LowerAsVReg;
749 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
750 SI, *this);
751
752 // Now that we've emitted the spills, we need to update the root so that the
753 // call sequence is ordered correctly.
754 SI.CLI.setChain(getRoot());
755
756 // Get call node, we will replace it later with statepoint
757 SDValue ReturnVal;
758 SDNode *CallNode;
759 std::tie(ReturnVal, CallNode) =
760 lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
761
762 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
763 // nodes with all the appropriate arguments and return values.
764
765 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
766 SDValue Chain = CallNode->getOperand(0);
767
768 SDValue Glue;
769 bool CallHasIncomingGlue = CallNode->getGluedNode();
770 if (CallHasIncomingGlue) {
771 // Glue is always last operand
772 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
773 }
774
775 // Build the GC_TRANSITION_START node if necessary.
776 //
777 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
778 // order in which they appear in the call to the statepoint intrinsic. If
779 // any of the operands is a pointer-typed, that operand is immediately
780 // followed by a SRCVALUE for the pointer that may be used during lowering
781 // (e.g. to form MachinePointerInfo values for loads/stores).
782 const bool IsGCTransition =
783 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
784 (uint64_t)StatepointFlags::GCTransition;
785 if (IsGCTransition) {
786 SmallVector<SDValue, 8> TSOps;
787
788 // Add chain
789 TSOps.push_back(Chain);
790
791 // Add GC transition arguments
792 for (const Value *V : SI.GCTransitionArgs) {
793 TSOps.push_back(getValue(V));
794 if (V->getType()->isPointerTy())
795 TSOps.push_back(DAG.getSrcValue(V));
796 }
797
798 // Add glue if necessary
799 if (CallHasIncomingGlue)
800 TSOps.push_back(Glue);
801
802 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
803
804 SDValue GCTransitionStart =
805 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
806
807 Chain = GCTransitionStart.getValue(0);
808 Glue = GCTransitionStart.getValue(1);
809 }
810
811 // TODO: Currently, all of these operands are being marked as read/write in
812 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
813 // and flags to be read-only.
814 SmallVector<SDValue, 40> Ops;
815
816 // Add the <id> and <numBytes> constants.
817 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
818 Ops.push_back(
819 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
820
821 // Calculate and push starting position of vmstate arguments
822 // Get number of arguments incoming directly into call node
823 unsigned NumCallRegArgs =
824 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
825 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
826
827 // Add call target
828 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
829 Ops.push_back(CallTarget);
830
831 // Add call arguments
832 // Get position of register mask in the call
833 SDNode::op_iterator RegMaskIt;
834 if (CallHasIncomingGlue)
835 RegMaskIt = CallNode->op_end() - 2;
836 else
837 RegMaskIt = CallNode->op_end() - 1;
838 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
839
840 // Add a constant argument for the calling convention
841 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
842
843 // Add a constant argument for the flags
844 uint64_t Flags = SI.StatepointFlags;
845 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
846 "Unknown flag used");
847 pushStackMapConstant(Ops, *this, Flags);
848
849 // Insert all vmstate and gcstate arguments
850 llvm::append_range(Ops, LoweredMetaArgs);
851
852 // Add register mask from call node
853 Ops.push_back(*RegMaskIt);
854
855 // Add chain
856 Ops.push_back(Chain);
857
858 // Same for the glue, but we add it only if original call had it
859 if (Glue.getNode())
860 Ops.push_back(Glue);
861
862 // Compute return values. Provide a glue output since we consume one as
863 // input. This allows someone else to chain off us as needed.
864 SmallVector<EVT, 8> NodeTys;
865 for (auto SD : LoweredGCArgs) {
866 if (!LowerAsVReg.count(SD))
867 continue;
868 NodeTys.push_back(SD.getValueType());
869 }
870 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
871 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
872 NodeTys.push_back(MVT::Other);
873 NodeTys.push_back(MVT::Glue);
874
875 unsigned NumResults = NodeTys.size();
876 MachineSDNode *StatepointMCNode =
877 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
878 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
879
880 // For values lowered to tied-defs, create the virtual registers. Note that
881 // for simplicity, we *always* create a vreg even within a single block.
882 DenseMap<SDValue, Register> VirtRegs;
883 for (const auto *Relocate : SI.GCRelocates) {
884 Value *Derived = Relocate->getDerivedPtr();
885 SDValue SD = getValue(Derived);
886 if (!LowerAsVReg.count(SD))
887 continue;
888
889 // Handle multiple gc.relocates of the same input efficiently.
890 if (VirtRegs.count(SD))
891 continue;
892
893 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
894
895 auto *RetTy = Relocate->getType();
896 Register Reg = FuncInfo.CreateRegs(RetTy);
897 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
898 DAG.getDataLayout(), Reg, RetTy, None);
899 SDValue Chain = DAG.getRoot();
900 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
901 PendingExports.push_back(Chain);
902
903 VirtRegs[SD] = Reg;
904 }
905
906 // Record for later use how each relocation was lowered. This is needed to
907 // allow later gc.relocates to mirror the lowering chosen.
908 const Instruction *StatepointInstr = SI.StatepointInstr;
909 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
910 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
911 const Value *V = Relocate->getDerivedPtr();
912 SDValue SDV = getValue(V);
913 SDValue Loc = StatepointLowering.getLocation(SDV);
914
915 RecordType Record;
916 if (LowerAsVReg.count(SDV)) {
917 Record.type = RecordType::VReg;
918 assert(VirtRegs.count(SDV));
919 Record.payload.Reg = VirtRegs[SDV];
920 } else if (Loc.getNode()) {
921 Record.type = RecordType::Spill;
922 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
923 } else {
924 Record.type = RecordType::NoRelocate;
925 // If we didn't relocate a value, we'll essentialy end up inserting an
926 // additional use of the original value when lowering the gc.relocate.
927 // We need to make sure the value is available at the new use, which
928 // might be in another block.
929 if (Relocate->getParent() != StatepointInstr->getParent())
930 ExportFromCurrentBlock(V);
931 }
932 RelocationMap[V] = Record;
933 }
934
935
936
937 SDNode *SinkNode = StatepointMCNode;
938
939 // Build the GC_TRANSITION_END node if necessary.
940 //
941 // See the comment above regarding GC_TRANSITION_START for the layout of
942 // the operands to the GC_TRANSITION_END node.
943 if (IsGCTransition) {
944 SmallVector<SDValue, 8> TEOps;
945
946 // Add chain
947 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
948
949 // Add GC transition arguments
950 for (const Value *V : SI.GCTransitionArgs) {
951 TEOps.push_back(getValue(V));
952 if (V->getType()->isPointerTy())
953 TEOps.push_back(DAG.getSrcValue(V));
954 }
955
956 // Add glue
957 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
958
959 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
960
961 SDValue GCTransitionStart =
962 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
963
964 SinkNode = GCTransitionStart.getNode();
965 }
966
967 // Replace original call
968 // Call: ch,glue = CALL ...
969 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
970 unsigned NumSinkValues = SinkNode->getNumValues();
971 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
972 SDValue(SinkNode, NumSinkValues - 1)};
973 DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
974 // Remove original call node
975 DAG.DeleteNode(CallNode);
976
977 // Since we always emit CopyToRegs (even for local relocates), we must
978 // update root, so that they are emitted before any local uses.
979 (void)getControlRoot();
980
981 // TODO: A better future implementation would be to emit a single variable
982 // argument, variable return value STATEPOINT node here and then hookup the
983 // return value of each gc.relocate to the respective output of the
984 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
985 // to actually be possible today.
986
987 return ReturnVal;
988 }
989
990 void
LowerStatepoint(const GCStatepointInst & I,const BasicBlock * EHPadBB)991 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
992 const BasicBlock *EHPadBB /*= nullptr*/) {
993 assert(I.getCallingConv() != CallingConv::AnyReg &&
994 "anyregcc is not supported on statepoints!");
995
996 #ifndef NDEBUG
997 // Check that the associated GCStrategy expects to encounter statepoints.
998 assert(GFI->getStrategy().useStatepoints() &&
999 "GCStrategy does not expect to encounter statepoints");
1000 #endif
1001
1002 SDValue ActualCallee;
1003 SDValue Callee = getValue(I.getActualCalledOperand());
1004
1005 if (I.getNumPatchBytes() > 0) {
1006 // If we've been asked to emit a nop sequence instead of a call instruction
1007 // for this statepoint then don't lower the call target, but use a constant
1008 // `undef` instead. Not lowering the call target lets statepoint clients
1009 // get away without providing a physical address for the symbolic call
1010 // target at link time.
1011 ActualCallee = DAG.getUNDEF(Callee.getValueType());
1012 } else {
1013 ActualCallee = Callee;
1014 }
1015
1016 StatepointLoweringInfo SI(DAG);
1017 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1018 I.getNumCallArgs(), ActualCallee,
1019 I.getActualReturnType(), false /* IsPatchPoint */);
1020
1021 // There may be duplication in the gc.relocate list; such as two copies of
1022 // each relocation on normal and exceptional path for an invoke. We only
1023 // need to spill once and record one copy in the stackmap, but we need to
1024 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1025 // handled as a CSE problem elsewhere.)
1026 // TODO: There a couple of major stackmap size optimizations we could do
1027 // here if we wished.
1028 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1029 // record {B,B} if it's seen later.
1030 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1031 // given that, we could change the format to record base pointer relocations
1032 // separately with half the space. This would require a format rev and a
1033 // fairly major rework of the STATEPOINT node though.
1034 SmallSet<SDValue, 8> Seen;
1035 for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1036 SI.GCRelocates.push_back(Relocate);
1037
1038 SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1039 if (Seen.insert(DerivedSD).second) {
1040 SI.Bases.push_back(Relocate->getBasePtr());
1041 SI.Ptrs.push_back(Relocate->getDerivedPtr());
1042 }
1043 }
1044
1045 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1046 SI.StatepointInstr = &I;
1047 SI.ID = I.getID();
1048
1049 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1050 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1051 I.gc_transition_args_end());
1052
1053 SI.StatepointFlags = I.getFlags();
1054 SI.NumPatchBytes = I.getNumPatchBytes();
1055 SI.EHPadBB = EHPadBB;
1056
1057 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1058
1059 // Export the result value if needed
1060 const GCResultInst *GCResult = I.getGCResult();
1061 Type *RetTy = I.getActualReturnType();
1062
1063 if (RetTy->isVoidTy() || !GCResult) {
1064 // The return value is not needed, just generate a poison value.
1065 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1066 return;
1067 }
1068
1069 if (GCResult->getParent() == I.getParent()) {
1070 // Result value will be used in a same basic block. Don't export it or
1071 // perform any explicit register copies. The gc_result will simply grab
1072 // this value.
1073 setValue(&I, ReturnValue);
1074 return;
1075 }
1076
1077 // Result value will be used in a different basic block so we need to export
1078 // it now. Default exporting mechanism will not work here because statepoint
1079 // call has a different type than the actual call. It means that by default
1080 // llvm will create export register of the wrong type (always i32 in our
1081 // case). So instead we need to create export register with correct type
1082 // manually.
1083 // TODO: To eliminate this problem we can remove gc.result intrinsics
1084 // completely and make statepoint call to return a tuple.
1085 unsigned Reg = FuncInfo.CreateRegs(RetTy);
1086 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1087 DAG.getDataLayout(), Reg, RetTy,
1088 I.getCallingConv());
1089 SDValue Chain = DAG.getEntryNode();
1090
1091 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1092 PendingExports.push_back(Chain);
1093 FuncInfo.ValueMap[&I] = Reg;
1094 }
1095
LowerCallSiteWithDeoptBundleImpl(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)1096 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1097 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1098 bool VarArgDisallowed, bool ForceVoidReturnTy) {
1099 StatepointLoweringInfo SI(DAG);
1100 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1101 populateCallLoweringInfo(
1102 SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee,
1103 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1104 false);
1105 if (!VarArgDisallowed)
1106 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1107
1108 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1109
1110 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1111
1112 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1113 SI.ID = SD.StatepointID.getValueOr(DefaultID);
1114 SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
1115
1116 SI.DeoptState =
1117 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1118 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1119 SI.EHPadBB = EHPadBB;
1120
1121 // NB! The GC arguments are deliberately left empty.
1122
1123 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1124 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1125 setValue(Call, ReturnVal);
1126 }
1127 }
1128
LowerCallSiteWithDeoptBundle(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB)1129 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1130 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1131 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1132 /* VarArgDisallowed = */ false,
1133 /* ForceVoidReturnTy = */ false);
1134 }
1135
visitGCResult(const GCResultInst & CI)1136 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1137 // The result value of the gc_result is simply the result of the actual
1138 // call. We've already emitted this, so just grab the value.
1139 const GCStatepointInst *SI = CI.getStatepoint();
1140
1141 if (SI->getParent() == CI.getParent()) {
1142 setValue(&CI, getValue(SI));
1143 return;
1144 }
1145 // Statepoint is in different basic block so we should have stored call
1146 // result in a virtual register.
1147 // We can not use default getValue() functionality to copy value from this
1148 // register because statepoint and actual call return types can be
1149 // different, and getValue() will use CopyFromReg of the wrong type,
1150 // which is always i32 in our case.
1151 Type *RetTy = SI->getActualReturnType();
1152 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1153
1154 assert(CopyFromReg.getNode());
1155 setValue(&CI, CopyFromReg);
1156 }
1157
visitGCRelocate(const GCRelocateInst & Relocate)1158 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1159 #ifndef NDEBUG
1160 // Consistency check
1161 // We skip this check for relocates not in the same basic block as their
1162 // statepoint. It would be too expensive to preserve validation info through
1163 // different basic blocks.
1164 if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
1165 StatepointLowering.relocCallVisited(Relocate);
1166
1167 auto *Ty = Relocate.getType()->getScalarType();
1168 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
1169 assert(*IsManaged && "Non gc managed pointer relocated!");
1170 #endif
1171
1172 const Value *DerivedPtr = Relocate.getDerivedPtr();
1173 auto &RelocationMap =
1174 FuncInfo.StatepointRelocationMaps[Relocate.getStatepoint()];
1175 auto SlotIt = RelocationMap.find(DerivedPtr);
1176 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1177 const RecordType &Record = SlotIt->second;
1178
1179 // If relocation was done via virtual register..
1180 if (Record.type == RecordType::VReg) {
1181 Register InReg = Record.payload.Reg;
1182 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1183 DAG.getDataLayout(), InReg, Relocate.getType(),
1184 None); // This is not an ABI copy.
1185 // We generate copy to/from regs even for local uses, hence we must
1186 // chain with current root to ensure proper ordering of copies w.r.t.
1187 // statepoint.
1188 SDValue Chain = DAG.getRoot();
1189 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1190 Chain, nullptr, nullptr);
1191 setValue(&Relocate, Relocation);
1192 return;
1193 }
1194
1195 SDValue SD = getValue(DerivedPtr);
1196
1197 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1198 // Lowering relocate(undef) as arbitrary constant. Current constant value
1199 // is chosen such that it's unlikely to be a valid pointer.
1200 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1201 return;
1202 }
1203
1204
1205 // We didn't need to spill these special cases (constants and allocas).
1206 // See the handling in spillIncomingValueForStatepoint for detail.
1207 if (Record.type == RecordType::NoRelocate) {
1208 setValue(&Relocate, SD);
1209 return;
1210 }
1211
1212 assert(Record.type == RecordType::Spill);
1213
1214 unsigned Index = Record.payload.FI;;
1215 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1216
1217 // All the reloads are independent and are reading memory only modified by
1218 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1219 // this this let's CSE kick in for free and allows reordering of instructions
1220 // if possible. The lowering for statepoint sets the root, so this is
1221 // ordering all reloads with the either a) the statepoint node itself, or b)
1222 // the entry of the current block for an invoke statepoint.
1223 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1224
1225 auto &MF = DAG.getMachineFunction();
1226 auto &MFI = MF.getFrameInfo();
1227 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1228 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1229 MFI.getObjectSize(Index),
1230 MFI.getObjectAlign(Index));
1231
1232 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1233 Relocate.getType());
1234
1235 SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain,
1236 SpillSlot, LoadMMO);
1237 PendingLoads.push_back(SpillLoad.getValue(1));
1238
1239 assert(SpillLoad.getNode());
1240 setValue(&Relocate, SpillLoad);
1241 }
1242
LowerDeoptimizeCall(const CallInst * CI)1243 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1244 const auto &TLI = DAG.getTargetLoweringInfo();
1245 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1246 TLI.getPointerTy(DAG.getDataLayout()));
1247
1248 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1249 // call. We also do not lower the return value to any virtual register, and
1250 // change the immediately following return to a trap instruction.
1251 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1252 /* VarArgDisallowed = */ true,
1253 /* ForceVoidReturnTy = */ true);
1254 }
1255
LowerDeoptimizingReturn()1256 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1257 // We do not lower the return value from llvm.deoptimize to any virtual
1258 // register, and change the immediately following return to a trap
1259 // instruction.
1260 if (DAG.getTarget().Options.TrapUnreachable)
1261 DAG.setRoot(
1262 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1263 }
1264