1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetOpcodes.h"
23 #include "llvm/CodeGen/ValueTypes.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include <initializer_list>
27 #include "llvm/Support/MathExtras.h"
28
29 #define DEBUG_TYPE "aarch64-legalinfo"
30
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace LegalizeMutations;
34 using namespace LegalityPredicates;
35
AArch64LegalizerInfo(const AArch64Subtarget & ST)36 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
37 : ST(&ST) {
38 using namespace TargetOpcode;
39 const LLT p0 = LLT::pointer(0, 64);
40 const LLT s1 = LLT::scalar(1);
41 const LLT s8 = LLT::scalar(8);
42 const LLT s16 = LLT::scalar(16);
43 const LLT s32 = LLT::scalar(32);
44 const LLT s64 = LLT::scalar(64);
45 const LLT s128 = LLT::scalar(128);
46 const LLT s256 = LLT::scalar(256);
47 const LLT s512 = LLT::scalar(512);
48 const LLT v16s8 = LLT::vector(16, 8);
49 const LLT v8s8 = LLT::vector(8, 8);
50 const LLT v4s8 = LLT::vector(4, 8);
51 const LLT v8s16 = LLT::vector(8, 16);
52 const LLT v4s16 = LLT::vector(4, 16);
53 const LLT v2s16 = LLT::vector(2, 16);
54 const LLT v2s32 = LLT::vector(2, 32);
55 const LLT v4s32 = LLT::vector(4, 32);
56 const LLT v2s64 = LLT::vector(2, 64);
57 const LLT v2p0 = LLT::vector(2, p0);
58
59 std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
60 v16s8, v8s16, v4s32,
61 v2s64, v2p0,
62 /* End 128bit types */
63 /* Begin 64bit types */
64 v8s8, v4s16, v2s32};
65
66 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
67
68 // FIXME: support subtargets which have neon/fp-armv8 disabled.
69 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
70 computeTables();
71 return;
72 }
73
74 // Some instructions only support s16 if the subtarget has full 16-bit FP
75 // support.
76 const bool HasFP16 = ST.hasFullFP16();
77 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
78
79 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
80 .legalFor({p0, s1, s8, s16, s32, s64})
81 .legalFor(PackedVectorAllTypeList)
82 .clampScalar(0, s1, s64)
83 .widenScalarToNextPow2(0, 8)
84 .fewerElementsIf(
85 [=](const LegalityQuery &Query) {
86 return Query.Types[0].isVector() &&
87 (Query.Types[0].getElementType() != s64 ||
88 Query.Types[0].getNumElements() != 2);
89 },
90 [=](const LegalityQuery &Query) {
91 LLT EltTy = Query.Types[0].getElementType();
92 if (EltTy == s64)
93 return std::make_pair(0, LLT::vector(2, 64));
94 return std::make_pair(0, EltTy);
95 });
96
97 getActionDefinitionsBuilder(G_PHI).legalFor({p0, s16, s32, s64})
98 .legalFor(PackedVectorAllTypeList)
99 .clampScalar(0, s16, s64)
100 .widenScalarToNextPow2(0);
101
102 getActionDefinitionsBuilder(G_BSWAP)
103 .legalFor({s32, s64, v4s32, v2s32, v2s64})
104 .clampScalar(0, s32, s64)
105 .widenScalarToNextPow2(0);
106
107 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
108 .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
109 .scalarizeIf(
110 [=](const LegalityQuery &Query) {
111 return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
112 },
113 0)
114 .legalFor({v2s64})
115 .clampScalar(0, s32, s64)
116 .widenScalarToNextPow2(0)
117 .clampNumElements(0, v2s32, v4s32)
118 .clampNumElements(0, v2s64, v2s64)
119 .moreElementsToNextPow2(0);
120
121 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
122 .customIf([=](const LegalityQuery &Query) {
123 const auto &SrcTy = Query.Types[0];
124 const auto &AmtTy = Query.Types[1];
125 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
126 AmtTy.getSizeInBits() == 32;
127 })
128 .legalFor({
129 {s32, s32},
130 {s32, s64},
131 {s64, s64},
132 {v8s8, v8s8},
133 {v16s8, v16s8},
134 {v4s16, v4s16},
135 {v8s16, v8s16},
136 {v2s32, v2s32},
137 {v4s32, v4s32},
138 {v2s64, v2s64},
139 })
140 .clampScalar(1, s32, s64)
141 .clampScalar(0, s32, s64)
142 .widenScalarToNextPow2(0)
143 .clampNumElements(0, v2s32, v4s32)
144 .clampNumElements(0, v2s64, v2s64)
145 .moreElementsToNextPow2(0)
146 .minScalarSameAs(1, 0);
147
148 getActionDefinitionsBuilder(G_PTR_ADD)
149 .legalFor({{p0, s64}, {v2p0, v2s64}})
150 .clampScalar(1, s64, s64);
151
152 getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
153
154 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
155 .legalFor({s32, s64})
156 .libcallFor({s128})
157 .clampScalar(0, s32, s64)
158 .widenScalarToNextPow2(0)
159 .scalarize(0);
160
161 getActionDefinitionsBuilder({G_SREM, G_UREM})
162 .lowerFor({s1, s8, s16, s32, s64});
163
164 getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}});
165
166 getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
167
168 getActionDefinitionsBuilder(
169 {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
170 .legalFor({{s32, s1}, {s64, s1}})
171 .minScalar(0, s32);
172
173 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
174 .legalFor({s32, s64, v2s64, v4s32, v2s32})
175 .clampNumElements(0, v2s32, v4s32)
176 .clampNumElements(0, v2s64, v2s64);
177
178 getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
179
180 getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
181 G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
182 G_FNEARBYINT, G_INTRINSIC_LRINT})
183 // If we don't have full FP16 support, then scalarize the elements of
184 // vectors containing fp16 types.
185 .fewerElementsIf(
186 [=, &ST](const LegalityQuery &Query) {
187 const auto &Ty = Query.Types[0];
188 return Ty.isVector() && Ty.getElementType() == s16 &&
189 !ST.hasFullFP16();
190 },
191 [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
192 // If we don't have full FP16 support, then widen s16 to s32 if we
193 // encounter it.
194 .widenScalarIf(
195 [=, &ST](const LegalityQuery &Query) {
196 return Query.Types[0] == s16 && !ST.hasFullFP16();
197 },
198 [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
199 .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
200
201 getActionDefinitionsBuilder(
202 {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
203 // We need a call for these, so we always need to scalarize.
204 .scalarize(0)
205 // Regardless of FP16 support, widen 16-bit elements to 32-bits.
206 .minScalar(0, s32)
207 .libcallFor({s32, s64, v2s32, v4s32, v2s64});
208
209 getActionDefinitionsBuilder(G_INSERT)
210 .unsupportedIf([=](const LegalityQuery &Query) {
211 return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
212 })
213 .legalIf([=](const LegalityQuery &Query) {
214 const LLT &Ty0 = Query.Types[0];
215 const LLT &Ty1 = Query.Types[1];
216 if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
217 return false;
218 return isPowerOf2_32(Ty1.getSizeInBits()) &&
219 (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
220 })
221 .clampScalar(0, s32, s64)
222 .widenScalarToNextPow2(0)
223 .maxScalarIf(typeInSet(0, {s32}), 1, s16)
224 .maxScalarIf(typeInSet(0, {s64}), 1, s32)
225 .widenScalarToNextPow2(1);
226
227 getActionDefinitionsBuilder(G_EXTRACT)
228 .unsupportedIf([=](const LegalityQuery &Query) {
229 return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
230 })
231 .legalIf([=](const LegalityQuery &Query) {
232 const LLT &Ty0 = Query.Types[0];
233 const LLT &Ty1 = Query.Types[1];
234 if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
235 return false;
236 if (Ty1 == p0)
237 return true;
238 return isPowerOf2_32(Ty0.getSizeInBits()) &&
239 (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
240 })
241 .clampScalar(1, s32, s128)
242 .widenScalarToNextPow2(1)
243 .maxScalarIf(typeInSet(1, {s32}), 0, s16)
244 .maxScalarIf(typeInSet(1, {s64}), 0, s32)
245 .widenScalarToNextPow2(0);
246
247 getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
248 .legalForTypesWithMemDesc({{s32, p0, 8, 8},
249 {s32, p0, 16, 8},
250 {s32, p0, 32, 8},
251 {s64, p0, 8, 2},
252 {s64, p0, 16, 2},
253 {s64, p0, 32, 4},
254 {s64, p0, 64, 8},
255 {p0, p0, 64, 8},
256 {v2s32, p0, 64, 8}})
257 .clampScalar(0, s32, s64)
258 .widenScalarToNextPow2(0)
259 // TODO: We could support sum-of-pow2's but the lowering code doesn't know
260 // how to do that yet.
261 .unsupportedIfMemSizeNotPow2()
262 // Lower anything left over into G_*EXT and G_LOAD
263 .lower();
264
265 auto IsPtrVecPred = [=](const LegalityQuery &Query) {
266 const LLT &ValTy = Query.Types[0];
267 if (!ValTy.isVector())
268 return false;
269 const LLT EltTy = ValTy.getElementType();
270 return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
271 };
272
273 getActionDefinitionsBuilder(G_LOAD)
274 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
275 {s16, p0, 16, 8},
276 {s32, p0, 32, 8},
277 {s64, p0, 64, 8},
278 {p0, p0, 64, 8},
279 {s128, p0, 128, 8},
280 {v8s8, p0, 64, 8},
281 {v16s8, p0, 128, 8},
282 {v4s16, p0, 64, 8},
283 {v8s16, p0, 128, 8},
284 {v2s32, p0, 64, 8},
285 {v4s32, p0, 128, 8},
286 {v2s64, p0, 128, 8}})
287 // These extends are also legal
288 .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}})
289 .clampScalar(0, s8, s64)
290 .lowerIfMemSizeNotPow2()
291 // Lower any any-extending loads left into G_ANYEXT and G_LOAD
292 .lowerIf([=](const LegalityQuery &Query) {
293 return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
294 })
295 .widenScalarToNextPow2(0)
296 .clampMaxNumElements(0, s32, 2)
297 .clampMaxNumElements(0, s64, 1)
298 .customIf(IsPtrVecPred);
299
300 getActionDefinitionsBuilder(G_STORE)
301 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
302 {s16, p0, 16, 8},
303 {s32, p0, 8, 8},
304 {s32, p0, 16, 8},
305 {s32, p0, 32, 8},
306 {s64, p0, 64, 8},
307 {p0, p0, 64, 8},
308 {s128, p0, 128, 8},
309 {v16s8, p0, 128, 8},
310 {v8s8, p0, 64, 8},
311 {v4s16, p0, 64, 8},
312 {v8s16, p0, 128, 8},
313 {v2s32, p0, 64, 8},
314 {v4s32, p0, 128, 8},
315 {v2s64, p0, 128, 8}})
316 .clampScalar(0, s8, s64)
317 .lowerIfMemSizeNotPow2()
318 .lowerIf([=](const LegalityQuery &Query) {
319 return Query.Types[0].isScalar() &&
320 Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
321 })
322 .clampMaxNumElements(0, s32, 2)
323 .clampMaxNumElements(0, s64, 1)
324 .customIf(IsPtrVecPred);
325
326 // Constants
327 getActionDefinitionsBuilder(G_CONSTANT)
328 .legalFor({p0, s8, s16, s32, s64})
329 .clampScalar(0, s8, s64)
330 .widenScalarToNextPow2(0);
331 getActionDefinitionsBuilder(G_FCONSTANT)
332 .legalIf([=](const LegalityQuery &Query) {
333 const auto &Ty = Query.Types[0];
334 if (HasFP16 && Ty == s16)
335 return true;
336 return Ty == s32 || Ty == s64 || Ty == s128;
337 })
338 .clampScalar(0, MinFPScalar, s128);
339
340 getActionDefinitionsBuilder({G_ICMP, G_FCMP})
341 .legalFor({{s32, s32},
342 {s32, s64},
343 {s32, p0},
344 {v4s32, v4s32},
345 {v2s32, v2s32},
346 {v2s64, v2s64},
347 {v2s64, v2p0},
348 {v4s16, v4s16},
349 {v8s16, v8s16},
350 {v8s8, v8s8},
351 {v16s8, v16s8}})
352 .clampScalar(1, s32, s64)
353 .clampScalar(0, s32, s32)
354 .minScalarEltSameAsIf(
355 [=](const LegalityQuery &Query) {
356 const LLT &Ty = Query.Types[0];
357 const LLT &SrcTy = Query.Types[1];
358 return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
359 Ty.getElementType() != SrcTy.getElementType();
360 },
361 0, 1)
362 .minScalarOrEltIf(
363 [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
364 1, s32)
365 .minScalarOrEltIf(
366 [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
367 s64)
368 .widenScalarOrEltToNextPow2(1)
369 .clampNumElements(0, v2s32, v4s32);
370
371 // Extensions
372 auto ExtLegalFunc = [=](const LegalityQuery &Query) {
373 unsigned DstSize = Query.Types[0].getSizeInBits();
374
375 if (DstSize == 128 && !Query.Types[0].isVector())
376 return false; // Extending to a scalar s128 needs narrowing.
377
378 // Make sure that we have something that will fit in a register, and
379 // make sure it's a power of 2.
380 if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
381 return false;
382
383 const LLT &SrcTy = Query.Types[1];
384
385 // Special case for s1.
386 if (SrcTy == s1)
387 return true;
388
389 // Make sure we fit in a register otherwise. Don't bother checking that
390 // the source type is below 128 bits. We shouldn't be allowing anything
391 // through which is wider than the destination in the first place.
392 unsigned SrcSize = SrcTy.getSizeInBits();
393 if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
394 return false;
395
396 return true;
397 };
398 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
399 .legalIf(ExtLegalFunc)
400 .clampScalar(0, s64, s64); // Just for s128, others are handled above.
401
402 getActionDefinitionsBuilder(G_TRUNC)
403 .minScalarOrEltIf(
404 [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
405 0, s8)
406 .customIf([=](const LegalityQuery &Query) {
407 LLT DstTy = Query.Types[0];
408 LLT SrcTy = Query.Types[1];
409 return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
410 })
411 .alwaysLegal();
412
413 getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
414
415 // FP conversions
416 getActionDefinitionsBuilder(G_FPTRUNC)
417 .legalFor(
418 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
419 .clampMaxNumElements(0, s32, 2);
420 getActionDefinitionsBuilder(G_FPEXT)
421 .legalFor(
422 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
423 .clampMaxNumElements(0, s64, 2);
424
425 // Conversions
426 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
427 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
428 .clampScalar(0, s32, s64)
429 .widenScalarToNextPow2(0)
430 .clampScalar(1, s32, s64)
431 .widenScalarToNextPow2(1);
432
433 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
434 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
435 .clampScalar(1, s32, s64)
436 .minScalarSameAs(1, 0)
437 .clampScalar(0, s32, s64)
438 .widenScalarToNextPow2(0);
439
440 // Control-flow
441 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
442 getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
443
444 getActionDefinitionsBuilder(G_SELECT)
445 .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
446 .clampScalar(0, s32, s64)
447 .widenScalarToNextPow2(0)
448 .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
449 .lowerIf(isVector(0));
450
451 // Pointer-handling
452 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
453
454 if (TM.getCodeModel() == CodeModel::Small)
455 getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
456 else
457 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
458
459 getActionDefinitionsBuilder(G_PTRTOINT)
460 .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
461 .maxScalar(0, s64)
462 .widenScalarToNextPow2(0, /*Min*/ 8);
463
464 getActionDefinitionsBuilder(G_INTTOPTR)
465 .unsupportedIf([&](const LegalityQuery &Query) {
466 return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
467 })
468 .legalFor({{p0, s64}});
469
470 // Casts for 32 and 64-bit width type are just copies.
471 // Same for 128-bit width type, except they are on the FPR bank.
472 getActionDefinitionsBuilder(G_BITCAST)
473 // FIXME: This is wrong since G_BITCAST is not allowed to change the
474 // number of bits but it's what the previous code described and fixing
475 // it breaks tests.
476 .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
477 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
478 v2p0});
479
480 getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
481
482 // va_list must be a pointer, but most sized types are pretty easy to handle
483 // as the destination.
484 getActionDefinitionsBuilder(G_VAARG)
485 .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
486 .clampScalar(0, s8, s64)
487 .widenScalarToNextPow2(0, /*Min*/ 8);
488
489 if (ST.hasLSE()) {
490 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
491 .lowerIf(all(
492 typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
493 atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
494
495 getActionDefinitionsBuilder(
496 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
497 G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
498 G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
499 .legalIf(all(
500 typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
501 atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
502 }
503
504 getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
505
506 // Merge/Unmerge
507 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
508 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
509 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
510
511 auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
512 const LLT &Ty = Query.Types[TypeIdx];
513 if (Ty.isVector()) {
514 const LLT &EltTy = Ty.getElementType();
515 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
516 return true;
517 if (!isPowerOf2_32(EltTy.getSizeInBits()))
518 return true;
519 }
520 return false;
521 };
522
523 // FIXME: This rule is horrible, but specifies the same as what we had
524 // before with the particularly strange definitions removed (e.g.
525 // s8 = G_MERGE_VALUES s32, s32).
526 // Part of the complexity comes from these ops being extremely flexible. For
527 // example, you can build/decompose vectors with it, concatenate vectors,
528 // etc. and in addition to this you can also bitcast with it at the same
529 // time. We've been considering breaking it up into multiple ops to make it
530 // more manageable throughout the backend.
531 getActionDefinitionsBuilder(Op)
532 // Break up vectors with weird elements into scalars
533 .fewerElementsIf(
534 [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
535 scalarize(0))
536 .fewerElementsIf(
537 [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
538 scalarize(1))
539 // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
540 // or 384.
541 .clampScalar(BigTyIdx, s8, s512)
542 .widenScalarIf(
543 [=](const LegalityQuery &Query) {
544 const LLT &Ty = Query.Types[BigTyIdx];
545 return !isPowerOf2_32(Ty.getSizeInBits()) &&
546 Ty.getSizeInBits() % 64 != 0;
547 },
548 [=](const LegalityQuery &Query) {
549 // Pick the next power of 2, or a multiple of 64 over 128.
550 // Whichever is smaller.
551 const LLT &Ty = Query.Types[BigTyIdx];
552 unsigned NewSizeInBits = 1
553 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
554 if (NewSizeInBits >= 256) {
555 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
556 if (RoundedTo < NewSizeInBits)
557 NewSizeInBits = RoundedTo;
558 }
559 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
560 })
561 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
562 // worth considering the multiples of 64 since 2*192 and 2*384 are not
563 // valid.
564 .clampScalar(LitTyIdx, s8, s256)
565 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
566 // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
567 // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
568 // At this point it's simple enough to accept the legal types.
569 .legalIf([=](const LegalityQuery &Query) {
570 const LLT &BigTy = Query.Types[BigTyIdx];
571 const LLT &LitTy = Query.Types[LitTyIdx];
572 if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
573 return false;
574 if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
575 return false;
576 return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
577 })
578 // Any vectors left are the wrong size. Scalarize them.
579 .scalarize(0)
580 .scalarize(1);
581 }
582
583 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
584 .unsupportedIf([=](const LegalityQuery &Query) {
585 const LLT &EltTy = Query.Types[1].getElementType();
586 return Query.Types[0] != EltTy;
587 })
588 .minScalar(2, s64)
589 .legalIf([=](const LegalityQuery &Query) {
590 const LLT &VecTy = Query.Types[1];
591 return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
592 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
593 VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0;
594 })
595 .minScalarOrEltIf(
596 [=](const LegalityQuery &Query) {
597 // We want to promote to <M x s1> to <M x s64> if that wouldn't
598 // cause the total vec size to be > 128b.
599 return Query.Types[1].getNumElements() <= 2;
600 },
601 0, s64)
602 .minScalarOrEltIf(
603 [=](const LegalityQuery &Query) {
604 return Query.Types[1].getNumElements() <= 4;
605 },
606 0, s32)
607 .minScalarOrEltIf(
608 [=](const LegalityQuery &Query) {
609 return Query.Types[1].getNumElements() <= 8;
610 },
611 0, s16)
612 .minScalarOrEltIf(
613 [=](const LegalityQuery &Query) {
614 return Query.Types[1].getNumElements() <= 16;
615 },
616 0, s8)
617 .minScalarOrElt(0, s8); // Worst case, we need at least s8.
618
619 getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
620 .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
621
622 getActionDefinitionsBuilder(G_BUILD_VECTOR)
623 .legalFor({{v8s8, s8},
624 {v16s8, s8},
625 {v4s16, s16},
626 {v8s16, s16},
627 {v2s32, s32},
628 {v4s32, s32},
629 {v2p0, p0},
630 {v2s64, s64}})
631 .clampNumElements(0, v4s32, v4s32)
632 .clampNumElements(0, v2s64, v2s64)
633
634 // Deal with larger scalar types, which will be implicitly truncated.
635 .legalIf([=](const LegalityQuery &Query) {
636 return Query.Types[0].getScalarSizeInBits() <
637 Query.Types[1].getSizeInBits();
638 })
639 .minScalarSameAs(1, 0);
640
641 getActionDefinitionsBuilder(G_CTLZ)
642 .legalForCartesianProduct(
643 {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
644 .scalarize(1);
645
646 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
647 .legalIf([=](const LegalityQuery &Query) {
648 const LLT &DstTy = Query.Types[0];
649 const LLT &SrcTy = Query.Types[1];
650 // For now just support the TBL2 variant which needs the source vectors
651 // to be the same size as the dest.
652 if (DstTy != SrcTy)
653 return false;
654 for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
655 if (DstTy == Ty)
656 return true;
657 }
658 return false;
659 })
660 // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
661 // just want those lowered into G_BUILD_VECTOR
662 .lowerIf([=](const LegalityQuery &Query) {
663 return !Query.Types[1].isVector();
664 })
665 .clampNumElements(0, v4s32, v4s32)
666 .clampNumElements(0, v2s64, v2s64);
667
668 getActionDefinitionsBuilder(G_CONCAT_VECTORS)
669 .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});
670
671 getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
672
673 getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
674 return Query.Types[0] == p0 && Query.Types[1] == s64;
675 });
676
677 getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
678
679 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
680
681 getActionDefinitionsBuilder(G_ABS).lowerIf(
682 [=](const LegalityQuery &Query) { return Query.Types[0].isScalar(); });
683
684 getActionDefinitionsBuilder(G_VECREDUCE_FADD)
685 // We only have FADDP to do reduction-like operations. Lower the rest.
686 .legalFor({{s32, v2s32}, {s64, v2s64}})
687 .lower();
688
689 getActionDefinitionsBuilder(G_VECREDUCE_ADD)
690 .legalFor({{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s64, v2s64}})
691 .lower();
692
693 computeTables();
694 verify(*ST.getInstrInfo());
695 }
696
legalizeCustom(LegalizerHelper & Helper,MachineInstr & MI) const697 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
698 MachineInstr &MI) const {
699 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
700 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
701 GISelChangeObserver &Observer = Helper.Observer;
702 switch (MI.getOpcode()) {
703 default:
704 // No idea what to do.
705 return false;
706 case TargetOpcode::G_VAARG:
707 return legalizeVaArg(MI, MRI, MIRBuilder);
708 case TargetOpcode::G_LOAD:
709 case TargetOpcode::G_STORE:
710 return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
711 case TargetOpcode::G_SHL:
712 case TargetOpcode::G_ASHR:
713 case TargetOpcode::G_LSHR:
714 return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
715 case TargetOpcode::G_GLOBAL_VALUE:
716 return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
717 case TargetOpcode::G_TRUNC:
718 return legalizeVectorTrunc(MI, Helper);
719 }
720
721 llvm_unreachable("expected switch to return");
722 }
723
extractParts(Register Reg,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)724 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
725 MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
726 SmallVectorImpl<Register> &VRegs) {
727 for (int I = 0; I < NumParts; ++I)
728 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
729 MIRBuilder.buildUnmerge(VRegs, Reg);
730 }
731
legalizeVectorTrunc(MachineInstr & MI,LegalizerHelper & Helper) const732 bool AArch64LegalizerInfo::legalizeVectorTrunc(
733 MachineInstr &MI, LegalizerHelper &Helper) const {
734 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
735 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
736 // Similar to how operand splitting is done in SelectiondDAG, we can handle
737 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
738 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
739 // %lo16(<4 x s16>) = G_TRUNC %inlo
740 // %hi16(<4 x s16>) = G_TRUNC %inhi
741 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
742 // %res(<8 x s8>) = G_TRUNC %in16
743
744 Register DstReg = MI.getOperand(0).getReg();
745 Register SrcReg = MI.getOperand(1).getReg();
746 LLT DstTy = MRI.getType(DstReg);
747 LLT SrcTy = MRI.getType(SrcReg);
748 assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
749 isPowerOf2_32(SrcTy.getSizeInBits()));
750
751 // Split input type.
752 LLT SplitSrcTy = SrcTy.changeNumElements(SrcTy.getNumElements() / 2);
753 // First, split the source into two smaller vectors.
754 SmallVector<Register, 2> SplitSrcs;
755 extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
756
757 // Truncate the splits into intermediate narrower elements.
758 LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
759 for (unsigned I = 0; I < SplitSrcs.size(); ++I)
760 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
761
762 auto Concat = MIRBuilder.buildConcatVectors(
763 DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
764
765 Helper.Observer.changingInstr(MI);
766 MI.getOperand(1).setReg(Concat.getReg(0));
767 Helper.Observer.changedInstr(MI);
768 return true;
769 }
770
legalizeSmallCMGlobalValue(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const771 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
772 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
773 GISelChangeObserver &Observer) const {
774 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
775 // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
776 // G_ADD_LOW instructions.
777 // By splitting this here, we can optimize accesses in the small code model by
778 // folding in the G_ADD_LOW into the load/store offset.
779 auto GV = MI.getOperand(1).getGlobal();
780 if (GV->isThreadLocal())
781 return true; // Don't want to modify TLS vars.
782
783 auto &TM = ST->getTargetLowering()->getTargetMachine();
784 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
785
786 if (OpFlags & AArch64II::MO_GOT)
787 return true;
788
789 Register DstReg = MI.getOperand(0).getReg();
790 auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
791 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
792 // Set the regclass on the dest reg too.
793 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
794
795 // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
796 // by creating a MOVK that sets bits 48-63 of the register to (global address
797 // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
798 // prevent an incorrect tag being generated during relocation when the the
799 // global appears before the code section. Without the offset, a global at
800 // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
801 // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
802 // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
803 // instead of `0xf`.
804 // This assumes that we're in the small code model so we can assume a binary
805 // size of <= 4GB, which makes the untagged PC relative offset positive. The
806 // binary must also be loaded into address range [0, 2^48). Both of these
807 // properties need to be ensured at runtime when using tagged addresses.
808 if (OpFlags & AArch64II::MO_TAGGED) {
809 ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
810 .addGlobalAddress(GV, 0x100000000,
811 AArch64II::MO_PREL | AArch64II::MO_G3)
812 .addImm(48);
813 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
814 }
815
816 MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
817 .addGlobalAddress(GV, 0,
818 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
819 MI.eraseFromParent();
820 return true;
821 }
822
legalizeIntrinsic(LegalizerHelper & Helper,MachineInstr & MI) const823 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
824 MachineInstr &MI) const {
825 return true;
826 }
827
legalizeShlAshrLshr(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const828 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
829 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
830 GISelChangeObserver &Observer) const {
831 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
832 MI.getOpcode() == TargetOpcode::G_LSHR ||
833 MI.getOpcode() == TargetOpcode::G_SHL);
834 // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
835 // imported patterns can select it later. Either way, it will be legal.
836 Register AmtReg = MI.getOperand(2).getReg();
837 auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI);
838 if (!VRegAndVal)
839 return true;
840 // Check the shift amount is in range for an immediate form.
841 int64_t Amount = VRegAndVal->Value.getSExtValue();
842 if (Amount > 31)
843 return true; // This will have to remain a register variant.
844 auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
845 Observer.changingInstr(MI);
846 MI.getOperand(2).setReg(ExtCst.getReg(0));
847 Observer.changedInstr(MI);
848 return true;
849 }
850
legalizeLoadStore(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const851 bool AArch64LegalizerInfo::legalizeLoadStore(
852 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
853 GISelChangeObserver &Observer) const {
854 assert(MI.getOpcode() == TargetOpcode::G_STORE ||
855 MI.getOpcode() == TargetOpcode::G_LOAD);
856 // Here we just try to handle vector loads/stores where our value type might
857 // have pointer elements, which the SelectionDAG importer can't handle. To
858 // allow the existing patterns for s64 to fire for p0, we just try to bitcast
859 // the value to use s64 types.
860
861 // Custom legalization requires the instruction, if not deleted, must be fully
862 // legalized. In order to allow further legalization of the inst, we create
863 // a new instruction and erase the existing one.
864
865 Register ValReg = MI.getOperand(0).getReg();
866 const LLT ValTy = MRI.getType(ValReg);
867
868 if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
869 ValTy.getElementType().getAddressSpace() != 0) {
870 LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
871 return false;
872 }
873
874 unsigned PtrSize = ValTy.getElementType().getSizeInBits();
875 const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
876 auto &MMO = **MI.memoperands_begin();
877 if (MI.getOpcode() == TargetOpcode::G_STORE) {
878 auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
879 MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
880 } else {
881 auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
882 MIRBuilder.buildBitcast(ValReg, NewLoad);
883 }
884 MI.eraseFromParent();
885 return true;
886 }
887
legalizeVaArg(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder) const888 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
889 MachineRegisterInfo &MRI,
890 MachineIRBuilder &MIRBuilder) const {
891 MachineFunction &MF = MIRBuilder.getMF();
892 Align Alignment(MI.getOperand(2).getImm());
893 Register Dst = MI.getOperand(0).getReg();
894 Register ListPtr = MI.getOperand(1).getReg();
895
896 LLT PtrTy = MRI.getType(ListPtr);
897 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
898
899 const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
900 const Align PtrAlign = Align(PtrSize);
901 auto List = MIRBuilder.buildLoad(
902 PtrTy, ListPtr,
903 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
904 PtrSize, PtrAlign));
905
906 MachineInstrBuilder DstPtr;
907 if (Alignment > PtrAlign) {
908 // Realign the list to the actual required alignment.
909 auto AlignMinus1 =
910 MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
911 auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
912 DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
913 } else
914 DstPtr = List;
915
916 uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
917 MIRBuilder.buildLoad(
918 Dst, DstPtr,
919 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
920 ValSize, std::max(Alignment, PtrAlign)));
921
922 auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
923
924 auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
925
926 MIRBuilder.buildStore(NewList, ListPtr,
927 *MF.getMachineMemOperand(MachinePointerInfo(),
928 MachineMemOperand::MOStore,
929 PtrSize, PtrAlign));
930
931 MI.eraseFromParent();
932 return true;
933 }
934