1//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the X86 x87 FPU instruction set, defining the
10// instructions, and properties of the instructions which are needed for code
11// generation, machine code emission, and analysis.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// FPStack specific DAG Nodes.
17//===----------------------------------------------------------------------===//
18
19def SDTX86Fld       : SDTypeProfile<1, 1, [SDTCisFP<0>,
20                                           SDTCisPtrTy<1>]>;
21def SDTX86Fst       : SDTypeProfile<0, 2, [SDTCisFP<0>,
22                                           SDTCisPtrTy<1>]>;
23def SDTX86Fild      : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24def SDTX86Fist      : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25
26def SDTX86CwdStore  : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
27
28def X86fld          : SDNode<"X86ISD::FLD", SDTX86Fld,
29                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
30def X86fst          : SDNode<"X86ISD::FST", SDTX86Fst,
31                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
32def X86fild         : SDNode<"X86ISD::FILD", SDTX86Fild,
33                             [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
34def X86fist         : SDNode<"X86ISD::FIST", SDTX86Fist,
35                             [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
36def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
37                          [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
38def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m",          SDTX86CwdStore,
39                             [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
40                              SDNPMemOperand]>;
41
42def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
43                        (X86fst node:$val, node:$ptr), [{
44  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
45}]>;
46def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
47                        (X86fst node:$val, node:$ptr), [{
48  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
49}]>;
50def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
51                        (X86fst node:$val, node:$ptr), [{
52  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
53}]>;
54
55def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
56  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
57}]>;
58def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
59  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
60}]>;
61def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
62  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
63}]>;
64
65def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
66  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
67}]>;
68def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
69  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
70}]>;
71def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
72  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
73}]>;
74
75def X86fist32 : PatFrag<(ops node:$val, node:$ptr),
76                        (X86fist node:$val, node:$ptr), [{
77  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
78}]>;
79
80def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
81                        (X86fist node:$val, node:$ptr), [{
82  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
83}]>;
84
85def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
86                              (X86fp_to_mem node:$val, node:$ptr), [{
87  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
88}]>;
89def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
90                              (X86fp_to_mem node:$val, node:$ptr), [{
91  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
92}]>;
93def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
94                              (X86fp_to_mem node:$val, node:$ptr), [{
95  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
96}]>;
97
98//===----------------------------------------------------------------------===//
99// FPStack pattern fragments
100//===----------------------------------------------------------------------===//
101
102def fpimm0 : FPImmLeaf<fAny, [{
103  return Imm.isExactlyValue(+0.0);
104}]>;
105
106def fpimmneg0 : FPImmLeaf<fAny, [{
107  return Imm.isExactlyValue(-0.0);
108}]>;
109
110def fpimm1 : FPImmLeaf<fAny, [{
111  return Imm.isExactlyValue(+1.0);
112}]>;
113
114def fpimmneg1 : FPImmLeaf<fAny, [{
115  return Imm.isExactlyValue(-1.0);
116}]>;
117
118// Some 'special' instructions - expanded after instruction selection.
119// Clobbers EFLAGS due to OR instruction used internally.
120// FIXME: Can we model this in SelectionDAG?
121let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
122  def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
123                              [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
124  def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
125                              [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
126  def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
127                              [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
128  def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
129                              [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
130  def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
131                              [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
132  def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
133                              [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
134  def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
135                              [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
136  def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
137                              [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
138  def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
139                              [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
140}
141
142// All FP Stack operations are represented with four instructions here.  The
143// first three instructions, generated by the instruction selector, use "RFP32"
144// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
145// 64-bit or 80-bit floating point values.  These sizes apply to the values,
146// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
147// copied to each other without losing information.  These instructions are all
148// pseudo instructions and use the "_Fp" suffix.
149// In some cases there are additional variants with a mixture of different
150// register sizes.
151// The second instruction is defined with FPI, which is the actual instruction
152// emitted by the assembler.  These use "RST" registers, although frequently
153// the actual register(s) used are implicit.  These are always 80 bits.
154// The FP stackifier pass converts one to the other after register allocation
155// occurs.
156//
157// Note that the FpI instruction should have instruction selection info (e.g.
158// a pattern) and the FPI instruction should have emission info (e.g. opcode
159// encoding and asm printing info).
160
161// FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
162// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
163// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
164// f80 instructions cannot use SSE and use neither of these.
165class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
166             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
167class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
168             FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
169
170// Factoring for arithmetic.
171multiclass FPBinary_rr<SDNode OpNode> {
172// Register op register -> register
173// These are separated out because they have no reversed form.
174def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
175                [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
176def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
177                [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
178def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
179                [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
180}
181// The FopST0 series are not included here because of the irregularities
182// in where the 'r' goes in assembly output.
183// These instructions cannot address 80-bit memory.
184multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
185                    bit Forward = 1> {
186// ST(0) = ST(0) + [mem]
187def _Fp32m  : FpIf32<(outs RFP32:$dst),
188                     (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
189                  [!if(Forward,
190                       (set RFP32:$dst,
191                        (OpNode RFP32:$src1, (loadf32 addr:$src2))),
192                       (set RFP32:$dst,
193                        (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
194def _Fp64m  : FpIf64<(outs RFP64:$dst),
195                     (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
196                  [!if(Forward,
197                       (set RFP64:$dst,
198                        (OpNode RFP64:$src1, (loadf64 addr:$src2))),
199                       (set RFP64:$dst,
200                        (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
201def _Fp64m32: FpIf64<(outs RFP64:$dst),
202                     (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
203                  [!if(Forward,
204                       (set RFP64:$dst,
205                        (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
206                       (set RFP64:$dst,
207                        (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
208def _Fp80m32: FpI_<(outs RFP80:$dst),
209                   (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
210                  [!if(Forward,
211                       (set RFP80:$dst,
212                        (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
213                       (set RFP80:$dst,
214                        (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
215def _Fp80m64: FpI_<(outs RFP80:$dst),
216                   (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
217                  [!if(Forward,
218                       (set RFP80:$dst,
219                        (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
220                       (set RFP80:$dst,
221                        (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
222let mayLoad = 1 in
223def _F32m  : FPI<0xD8, fp, (outs), (ins f32mem:$src),
224                 !strconcat("f", asmstring, "{s}\t$src")>;
225let mayLoad = 1 in
226def _F64m  : FPI<0xDC, fp, (outs), (ins f64mem:$src),
227                 !strconcat("f", asmstring, "{l}\t$src")>;
228// ST(0) = ST(0) + [memint]
229def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
230                       OneArgFPRW,
231                       [!if(Forward,
232                            (set RFP32:$dst,
233                             (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
234                            (set RFP32:$dst,
235                             (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
236def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
237                       OneArgFPRW,
238                       [!if(Forward,
239                            (set RFP32:$dst,
240                             (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
241                            (set RFP32:$dst,
242                             (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
243def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
244                       OneArgFPRW,
245                       [!if(Forward,
246                            (set RFP64:$dst,
247                             (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
248                            (set RFP64:$dst,
249                             (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
250def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
251                       OneArgFPRW,
252                       [!if(Forward,
253                            (set RFP64:$dst,
254                             (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
255                            (set RFP64:$dst,
256                             (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
257def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
258                     OneArgFPRW,
259                     [!if(Forward,
260                          (set RFP80:$dst,
261                           (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
262                          (set RFP80:$dst,
263                           (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
264def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
265                     OneArgFPRW,
266                     [!if(Forward,
267                          (set RFP80:$dst,
268                           (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
269                          (set RFP80:$dst,
270                           (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
271let mayLoad = 1 in
272def _FI16m  : FPI<0xDE, fp, (outs), (ins i16mem:$src),
273                  !strconcat("fi", asmstring, "{s}\t$src")>;
274let mayLoad = 1 in
275def _FI32m  : FPI<0xDA, fp, (outs), (ins i32mem:$src),
276                  !strconcat("fi", asmstring, "{l}\t$src")>;
277}
278
279let Uses = [FPCW], mayRaiseFPException = 1 in {
280// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
281// resources.
282let hasNoSchedulingInfo = 1 in {
283defm ADD : FPBinary_rr<any_fadd>;
284defm SUB : FPBinary_rr<any_fsub>;
285defm MUL : FPBinary_rr<any_fmul>;
286defm DIV : FPBinary_rr<any_fdiv>;
287}
288
289// Sets the scheduling resources for the actual NAME#_F<size>m definitions.
290let SchedRW = [WriteFAddLd] in {
291defm ADD : FPBinary<any_fadd, MRM0m, "add">;
292defm SUB : FPBinary<any_fsub, MRM4m, "sub">;
293defm SUBR: FPBinary<any_fsub ,MRM5m, "subr", 0>;
294}
295
296let SchedRW = [WriteFMulLd] in {
297defm MUL : FPBinary<any_fmul, MRM1m, "mul">;
298}
299
300let SchedRW = [WriteFDivLd] in {
301defm DIV : FPBinary<any_fdiv, MRM6m, "div">;
302defm DIVR: FPBinary<any_fdiv, MRM7m, "divr", 0>;
303}
304} // Uses = [FPCW], mayRaiseFPException = 1
305
306class FPST0rInst<Format fp, string asm>
307  : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
308class FPrST0Inst<Format fp, string asm>
309  : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
310class FPrST0PInst<Format fp, string asm>
311  : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
312
313// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
314// of some of the 'reverse' forms of the fsub and fdiv instructions.  As such,
315// we have to put some 'r's in and take them out of weird places.
316let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in {
317def ADD_FST0r   : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
318def ADD_FrST0   : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
319def ADD_FPrST0  : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
320def SUBR_FST0r  : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
321def SUB_FrST0   : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
322def SUB_FPrST0  : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
323def SUB_FST0r   : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
324def SUBR_FrST0  : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
325def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
326} // SchedRW
327let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in {
328def COM_FST0r   : FPST0rInst <MRM2r, "fcom\t$op">;
329def COMP_FST0r  : FPST0rInst <MRM3r, "fcomp\t$op">;
330} // SchedRW
331let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in {
332def MUL_FST0r   : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
333def MUL_FrST0   : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
334def MUL_FPrST0  : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
335} // SchedRW
336let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in {
337def DIVR_FST0r  : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
338def DIV_FrST0   : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
339def DIV_FPrST0  : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
340def DIV_FST0r   : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
341def DIVR_FrST0  : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
342def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
343} // SchedRW
344
345// Unary operations.
346multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
347def _Fp32  : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
348                 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
349def _Fp64  : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
350                 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
351def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
352                 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
353def _F     : FPI<0xD9, fp, (outs), (ins), asmstring>;
354}
355
356let SchedRW = [WriteFSign] in {
357defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
358defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
359}
360
361let Uses = [FPCW], mayRaiseFPException = 1 in {
362let SchedRW = [WriteFSqrt80] in
363defm SQRT: FPUnary<any_fsqrt,MRM_FA, "fsqrt">;
364
365let SchedRW = [WriteFCom] in {
366let hasSideEffects = 0 in {
367def TST_Fp32  : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
368def TST_Fp64  : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
369def TST_Fp80  : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
370} // hasSideEffects
371
372def TST_F  : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
373} // SchedRW
374} // Uses = [FPCW], mayRaiseFPException = 1
375
376// Versions of FP instructions that take a single memory operand.  Added for the
377//   disassembler; remove as they are included with patterns elsewhere.
378let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1,
379    mayLoad = 1 in {
380def FCOM32m  : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
381def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
382
383def FCOM64m  : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
384def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
385
386def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
387def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
388
389def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
390def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
391} // SchedRW
392
393let SchedRW = [WriteMicrocoded] in {
394let Defs = [FPSW, FPCW], mayLoad = 1 in {
395def FLDENVm  : FPI<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src">;
396def FRSTORm  : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">;
397}
398
399let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in {
400def FSTENVm  : FPI<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst">;
401def FSAVEm   : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">;
402}
403
404let Uses = [FPSW], mayStore = 1 in
405def FNSTSWm  : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
406
407let mayLoad = 1 in
408def FBLDm    : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
409let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in
410def FBSTPm   : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
411} // SchedRW
412
413// Floating point cmovs.
414class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
415  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
416class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
417  FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
418
419multiclass FPCMov<PatLeaf cc> {
420  def _Fp32  : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
421                       CondMovFP,
422                     [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
423                                        cc, EFLAGS))]>;
424  def _Fp64  : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
425                       CondMovFP,
426                     [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
427                                        cc, EFLAGS))]>;
428  def _Fp80  : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
429                     CondMovFP,
430                     [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
431                                        cc, EFLAGS))]>,
432                                        Requires<[HasCMov]>;
433}
434
435let SchedRW = [WriteFCMOV] in {
436let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
437defm CMOVB  : FPCMov<X86_COND_B>;
438defm CMOVBE : FPCMov<X86_COND_BE>;
439defm CMOVE  : FPCMov<X86_COND_E>;
440defm CMOVP  : FPCMov<X86_COND_P>;
441defm CMOVNB : FPCMov<X86_COND_AE>;
442defm CMOVNBE: FPCMov<X86_COND_A>;
443defm CMOVNE : FPCMov<X86_COND_NE>;
444defm CMOVNP : FPCMov<X86_COND_NP>;
445} // Uses = [EFLAGS], Constraints = "$src1 = $dst"
446
447let Predicates = [HasCMov] in {
448// These are not factored because there's no clean way to pass DA/DB.
449def CMOVB_F  : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
450                  "fcmovb\t{$op, %st|st, $op}">;
451def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
452                  "fcmovbe\t{$op, %st|st, $op}">;
453def CMOVE_F  : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
454                  "fcmove\t{$op, %st|st, $op}">;
455def CMOVP_F  : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
456                  "fcmovu\t{$op, %st|st, $op}">;
457def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
458                  "fcmovnb\t{$op, %st|st, $op}">;
459def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
460                  "fcmovnbe\t{$op, %st|st, $op}">;
461def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
462                  "fcmovne\t{$op, %st|st, $op}">;
463def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
464                  "fcmovnu\t{$op, %st|st, $op}">;
465} // Predicates = [HasCMov]
466} // SchedRW
467
468let mayRaiseFPException = 1 in {
469// Floating point loads & stores.
470let SchedRW = [WriteLoad], Uses = [FPCW] in {
471let canFoldAsLoad = 1 in {
472def LD_Fp32m   : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
473                  [(set RFP32:$dst, (loadf32 addr:$src))]>;
474def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
475                  [(set RFP64:$dst, (loadf64 addr:$src))]>;
476def LD_Fp80m   : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
477                  [(set RFP80:$dst, (loadf80 addr:$src))]>;
478} // canFoldAsLoad
479def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
480                  [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
481def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
482                  [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
483def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
484                  [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
485let mayRaiseFPException = 0 in {
486def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
487                  [(set RFP32:$dst, (X86fild16 addr:$src))]>;
488def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
489                  [(set RFP32:$dst, (X86fild32 addr:$src))]>;
490def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
491                  [(set RFP32:$dst, (X86fild64 addr:$src))]>;
492def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
493                  [(set RFP64:$dst, (X86fild16 addr:$src))]>;
494def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
495                  [(set RFP64:$dst, (X86fild32 addr:$src))]>;
496def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
497                  [(set RFP64:$dst, (X86fild64 addr:$src))]>;
498def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
499                  [(set RFP80:$dst, (X86fild16 addr:$src))]>;
500def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
501                  [(set RFP80:$dst, (X86fild32 addr:$src))]>;
502def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
503                  [(set RFP80:$dst, (X86fild64 addr:$src))]>;
504} // mayRaiseFPException = 0
505} // SchedRW
506
507let SchedRW = [WriteStore], Uses = [FPCW] in {
508def ST_Fp32m   : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
509                  [(store RFP32:$src, addr:$op)]>;
510def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
511                  [(truncstoref32 RFP64:$src, addr:$op)]>;
512def ST_Fp64m   : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
513                  [(store RFP64:$src, addr:$op)]>;
514def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
515                  [(truncstoref32 RFP80:$src, addr:$op)]>;
516def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
517                  [(truncstoref64 RFP80:$src, addr:$op)]>;
518// FST does not support 80-bit memory target; FSTP must be used.
519
520let mayStore = 1, hasSideEffects = 0 in {
521def ST_FpP32m    : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
522def ST_FpP64m32  : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
523def ST_FpP64m    : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
524def ST_FpP80m32  : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
525def ST_FpP80m64  : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
526} // mayStore
527
528def ST_FpP80m    : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
529                    [(store RFP80:$src, addr:$op)]>;
530
531let mayStore = 1, hasSideEffects = 0 in {
532def IST_Fp16m32  : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
533def IST_Fp32m32  : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
534                          [(X86fist32 RFP32:$src, addr:$op)]>;
535def IST_Fp64m32  : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
536                          [(X86fist64 RFP32:$src, addr:$op)]>;
537def IST_Fp16m64  : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
538def IST_Fp32m64  : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
539                          [(X86fist32 RFP64:$src, addr:$op)]>;
540def IST_Fp64m64  : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
541                          [(X86fist64 RFP64:$src, addr:$op)]>;
542def IST_Fp16m80  : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
543def IST_Fp32m80  : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
544                        [(X86fist32 RFP80:$src, addr:$op)]>;
545def IST_Fp64m80  : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
546                        [(X86fist64 RFP80:$src, addr:$op)]>;
547} // mayStore
548} // SchedRW, Uses = [FPCW]
549
550let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
551def LD_F32m   : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
552def LD_F64m   : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
553def LD_F80m   : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
554let mayRaiseFPException = 0 in {
555def ILD_F16m  : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
556def ILD_F32m  : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
557def ILD_F64m  : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
558}
559}
560let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
561def ST_F32m   : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
562def ST_F64m   : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
563def ST_FP32m  : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
564def ST_FP64m  : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
565def ST_FP80m  : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
566def IST_F16m  : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
567def IST_F32m  : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
568def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
569def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
570def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
571}
572
573// FISTTP requires SSE3 even though it's a FPStack op.
574let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
575def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
576                    [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
577def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
578                    [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
579def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
580                    [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
581def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
582                    [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
583def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
584                    [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
585def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
586                    [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
587def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
588                    [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
589def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
590                    [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
591def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
592                    [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
593} // Predicates = [HasSSE3]
594
595let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
596def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
597def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
598def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
599}
600
601// FP Stack manipulation instructions.
602let SchedRW = [WriteMove], Uses = [FPCW] in {
603def LD_Frr   : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
604def ST_Frr   : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
605def ST_FPrr  : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
606let mayRaiseFPException = 0 in
607def XCH_F    : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
608}
609
610// Floating point constant loads.
611let SchedRW = [WriteZero], Uses = [FPCW] in {
612def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
613                [(set RFP32:$dst, fpimm0)]>;
614def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
615                [(set RFP32:$dst, fpimm1)]>;
616def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
617                [(set RFP64:$dst, fpimm0)]>;
618def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
619                [(set RFP64:$dst, fpimm1)]>;
620def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
621                [(set RFP80:$dst, fpimm0)]>;
622def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
623                [(set RFP80:$dst, fpimm1)]>;
624}
625
626let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in
627def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
628
629let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in
630def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
631
632let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in {
633def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
634def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
635def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
636def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
637def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
638} // SchedRW
639
640// Floating point compares.
641let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in {
642def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
643def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
644def UCOM_Fpr80 : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
645def COM_Fpr32  : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>;
646def COM_Fpr64  : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>;
647def COM_Fpr80  : FpI_  <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>;
648} // SchedRW
649} // mayRaiseFPException = 1
650
651let SchedRW = [WriteFCom], mayRaiseFPException = 1 in {
652// CC = ST(0) cmp ST(i)
653let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
654def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
655                  [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>,
656                  Requires<[FPStackf32, HasCMov]>;
657def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
658                  [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>,
659                  Requires<[FPStackf64, HasCMov]>;
660def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
661                  [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>,
662                  Requires<[HasCMov]>;
663def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
664                  [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>,
665                  Requires<[FPStackf32, HasCMov]>;
666def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
667                  [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>,
668                  Requires<[FPStackf64, HasCMov]>;
669def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
670                  [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>,
671                  Requires<[HasCMov]>;
672}
673
674let Uses = [ST0, FPCW] in {
675def UCOM_Fr    : FPI<0xDD, MRM4r,    // FPSW = cmp ST(0) with ST(i)
676                    (outs), (ins RSTi:$reg), "fucom\t$reg">;
677def UCOM_FPr   : FPI<0xDD, MRM5r,    // FPSW = cmp ST(0) with ST(i), pop
678                    (outs), (ins RSTi:$reg), "fucomp\t$reg">;
679def UCOM_FPPr  : FPI<0xDA, MRM_E9,       // cmp ST(0) with ST(1), pop, pop
680                    (outs), (ins), "fucompp">;
681}
682
683let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
684def UCOM_FIr   : FPI<0xDB, MRM5r,     // CC = cmp ST(0) with ST(i)
685                    (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
686def UCOM_FIPr  : FPI<0xDF, MRM5r,     // CC = cmp ST(0) with ST(i), pop
687                    (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
688
689def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
690                  "fcomi\t{$reg, %st|st, $reg}">;
691def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
692                   "fcompi\t{$reg, %st|st, $reg}">;
693}
694} // SchedRW
695
696// Floating point flag ops.
697let SchedRW = [WriteALU] in {
698let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in
699def FNSTSW16r : I<0xDF, MRM_E0,                  // AX = fp flags
700                  (outs), (ins), "fnstsw\t{%ax|ax}", []>;
701let Defs = [FPSW], Uses = [FPCW] in
702def FNSTCW16m : I<0xD9, MRM7m,                   // [mem16] = X87 control world
703                  (outs), (ins i16mem:$dst), "fnstcw\t$dst",
704                  [(X86fp_cwd_get16 addr:$dst)]>;
705} // SchedRW
706let Defs = [FPSW,FPCW], mayLoad = 1 in
707def FLDCW16m  : I<0xD9, MRM5m,                   // X87 control world = [mem16]
708                  (outs), (ins i16mem:$dst), "fldcw\t$dst", []>,
709                Sched<[WriteLoad]>;
710
711// FPU control instructions
712let SchedRW = [WriteMicrocoded] in {
713def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
714def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
715
716let Defs = [FPSW, FPCW] in
717def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
718// Clear exceptions
719let Defs = [FPSW] in
720def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
721} // SchedRW
722
723// Operand-less floating-point instructions for the disassembler.
724let Defs = [FPSW] in
725def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
726
727let SchedRW = [WriteMicrocoded] in {
728let Defs = [FPSW] in {
729def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
730def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>;
731def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
732def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
733let Uses = [FPCW], mayRaiseFPException = 1 in {
734def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
735def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
736def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
737def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
738def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
739def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
740def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
741def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
742def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>;
743def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>;
744def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
745def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
746def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
747def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
748} // Uses = [FPCW], mayRaiseFPException = 1
749} // Defs = [FPSW]
750
751let Uses = [FPSW, FPCW] in {
752def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
753             "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, PS,
754             Requires<[HasFXSR]>;
755def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
756               "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
757               PS, Requires<[HasFXSR, In64BitMode]>;
758} // Uses = [FPSW, FPCW]
759
760let Defs = [FPSW, FPCW] in {
761def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
762              "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
763              PS, Requires<[HasFXSR]>;
764def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
765                "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
766                PS, Requires<[HasFXSR, In64BitMode]>;
767} // Defs = [FPSW, FPCW]
768} // SchedRW
769
770//===----------------------------------------------------------------------===//
771// Non-Instruction Patterns
772//===----------------------------------------------------------------------===//
773
774// Required for RET of f32 / f64 / f80 values.
775def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
776def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>;
777def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
778def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>;
779def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>;
780def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
781
782// Required for CALL which return f32 / f64 / f80 values.
783def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
784def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
785def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
786def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
787def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
788def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
789
790// Floating point constant -0.0 and -1.0
791def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
792def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
793def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
794def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
795def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
796def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
797
798// FP extensions map onto simple pseudo-value conversions if they are to/from
799// the FP stack.
800def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
801          Requires<[FPStackf32]>;
802def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
803           Requires<[FPStackf32]>;
804def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
805           Requires<[FPStackf64]>;
806
807// FP truncations map onto simple pseudo-value conversions if they are to/from
808// the FP stack.  We have validated that only value-preserving truncations make
809// it through isel.
810def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
811          Requires<[FPStackf32]>;
812def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
813           Requires<[FPStackf32]>;
814def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
815           Requires<[FPStackf64]>;
816