1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86 specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86Subtarget.h"
14 #include "MCTargetDesc/X86BaseInfo.h"
15 #include "X86.h"
16 #include "X86CallLowering.h"
17 #include "X86LegalizerInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86RegisterBankInfo.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 
36 #if defined(_MSC_VER)
37 #include <intrin.h>
38 #endif
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "subtarget"
43 
44 #define GET_SUBTARGETINFO_TARGET_DESC
45 #define GET_SUBTARGETINFO_CTOR
46 #include "X86GenSubtargetInfo.inc"
47 
48 // Temporary option to control early if-conversion for x86 while adding machine
49 // models.
50 static cl::opt<bool>
51 X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
52                cl::desc("Enable early if-conversion on X86"));
53 
54 
55 /// Classify a blockaddress reference for the current subtarget according to how
56 /// we should reference it in a non-pcrel context.
classifyBlockAddressReference() const57 unsigned char X86Subtarget::classifyBlockAddressReference() const {
58   return classifyLocalReference(nullptr);
59 }
60 
61 /// Classify a global variable reference for the current subtarget according to
62 /// how we should reference it in a non-pcrel context.
63 unsigned char
classifyGlobalReference(const GlobalValue * GV) const64 X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
65   return classifyGlobalReference(GV, *GV->getParent());
66 }
67 
68 unsigned char
classifyLocalReference(const GlobalValue * GV) const69 X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
70   // If we're not PIC, it's not very interesting.
71   if (!isPositionIndependent())
72     return X86II::MO_NO_FLAG;
73 
74   if (is64Bit()) {
75     // 64-bit ELF PIC local references may use GOTOFF relocations.
76     if (isTargetELF()) {
77       switch (TM.getCodeModel()) {
78       // 64-bit small code model is simple: All rip-relative.
79       case CodeModel::Tiny:
80         llvm_unreachable("Tiny codesize model not supported on X86");
81       case CodeModel::Small:
82       case CodeModel::Kernel:
83         return X86II::MO_NO_FLAG;
84 
85       // The large PIC code model uses GOTOFF.
86       case CodeModel::Large:
87         return X86II::MO_GOTOFF;
88 
89       // Medium is a hybrid: RIP-rel for code, GOTOFF for DSO local data.
90       case CodeModel::Medium:
91         // Constant pool and jump table handling pass a nullptr to this
92         // function so we need to use isa_and_nonnull.
93         if (isa_and_nonnull<Function>(GV))
94           return X86II::MO_NO_FLAG; // All code is RIP-relative
95         return X86II::MO_GOTOFF;    // Local symbols use GOTOFF.
96       }
97       llvm_unreachable("invalid code model");
98     }
99 
100     // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
101     // both of which use MO_NO_FLAG.
102     return X86II::MO_NO_FLAG;
103   }
104 
105   // The COFF dynamic linker just patches the executable sections.
106   if (isTargetCOFF())
107     return X86II::MO_NO_FLAG;
108 
109   if (isTargetDarwin()) {
110     // 32 bit macho has no relocation for a-b if a is undefined, even if
111     // b is in the section that is being relocated.
112     // This means we have to use o load even for GVs that are known to be
113     // local to the dso.
114     if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
115       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
116 
117     return X86II::MO_PIC_BASE_OFFSET;
118   }
119 
120   return X86II::MO_GOTOFF;
121 }
122 
classifyGlobalReference(const GlobalValue * GV,const Module & M) const123 unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
124                                                     const Module &M) const {
125   // The static large model never uses stubs.
126   if (TM.getCodeModel() == CodeModel::Large && !isPositionIndependent())
127     return X86II::MO_NO_FLAG;
128 
129   // Absolute symbols can be referenced directly.
130   if (GV) {
131     if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
132       // See if we can use the 8-bit immediate form. Note that some instructions
133       // will sign extend the immediate operand, so to be conservative we only
134       // accept the range [0,128).
135       if (CR->getUnsignedMax().ult(128))
136         return X86II::MO_ABS8;
137       else
138         return X86II::MO_NO_FLAG;
139     }
140   }
141 
142   if (TM.shouldAssumeDSOLocal(M, GV))
143     return classifyLocalReference(GV);
144 
145   if (isTargetCOFF()) {
146     if (GV->hasDLLImportStorageClass())
147       return X86II::MO_DLLIMPORT;
148     return X86II::MO_COFFSTUB;
149   }
150   // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
151   if (isOSWindows())
152     return X86II::MO_NO_FLAG;
153 
154   if (is64Bit()) {
155     // ELF supports a large, truly PIC code model with non-PC relative GOT
156     // references. Other object file formats do not. Use the no-flag, 64-bit
157     // reference for them.
158     if (TM.getCodeModel() == CodeModel::Large)
159       return isTargetELF() ? X86II::MO_GOT : X86II::MO_NO_FLAG;
160     return X86II::MO_GOTPCREL;
161   }
162 
163   if (isTargetDarwin()) {
164     if (!isPositionIndependent())
165       return X86II::MO_DARWIN_NONLAZY;
166     return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
167   }
168 
169   // 32-bit ELF references GlobalAddress directly in static relocation model.
170   // We cannot use MO_GOT because EBX may not be set up.
171   if (TM.getRelocationModel() == Reloc::Static)
172     return X86II::MO_NO_FLAG;
173   return X86II::MO_GOT;
174 }
175 
176 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV) const177 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
178   return classifyGlobalFunctionReference(GV, *GV->getParent());
179 }
180 
181 unsigned char
classifyGlobalFunctionReference(const GlobalValue * GV,const Module & M) const182 X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
183                                               const Module &M) const {
184   if (TM.shouldAssumeDSOLocal(M, GV))
185     return X86II::MO_NO_FLAG;
186 
187   // Functions on COFF can be non-DSO local for two reasons:
188   // - They are marked dllimport
189   // - They are extern_weak, and a stub is needed
190   if (isTargetCOFF()) {
191     if (GV->hasDLLImportStorageClass())
192       return X86II::MO_DLLIMPORT;
193     return X86II::MO_COFFSTUB;
194   }
195 
196   const Function *F = dyn_cast_or_null<Function>(GV);
197 
198   if (isTargetELF()) {
199     if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
200       // According to psABI, PLT stub clobbers XMM8-XMM15.
201       // In Regcall calling convention those registers are used for passing
202       // parameters. Thus we need to prevent lazy binding in Regcall.
203       return X86II::MO_GOTPCREL;
204     // If PLT must be avoided then the call should be via GOTPCREL.
205     if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
206          (!F && M.getRtLibUseGOT())) &&
207         is64Bit())
208        return X86II::MO_GOTPCREL;
209     // Reference ExternalSymbol directly in static relocation model.
210     if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
211       return X86II::MO_NO_FLAG;
212     return X86II::MO_PLT;
213   }
214 
215   if (is64Bit()) {
216     if (F && F->hasFnAttribute(Attribute::NonLazyBind))
217       // If the function is marked as non-lazy, generate an indirect call
218       // which loads from the GOT directly. This avoids runtime overhead
219       // at the cost of eager binding (and one extra byte of encoding).
220       return X86II::MO_GOTPCREL;
221     return X86II::MO_NO_FLAG;
222   }
223 
224   return X86II::MO_NO_FLAG;
225 }
226 
227 /// Return true if the subtarget allows calls to immediate address.
isLegalToCallImmediateAddr() const228 bool X86Subtarget::isLegalToCallImmediateAddr() const {
229   // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
230   // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
231   // the following check for Win32 should be removed.
232   if (In64BitMode || isTargetWin32())
233     return false;
234   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
235 }
236 
initSubtargetFeatures(StringRef CPU,StringRef TuneCPU,StringRef FS)237 void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
238                                          StringRef FS) {
239   if (CPU.empty())
240     CPU = "generic";
241 
242   if (TuneCPU.empty())
243     TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
244 
245   std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
246   assert(!FullFS.empty() && "Failed to parse X86 triple");
247 
248   if (!FS.empty())
249     FullFS = (Twine(FullFS) + "," + FS).str();
250 
251   // Parse features string and set the CPU.
252   ParseSubtargetFeatures(CPU, TuneCPU, FullFS);
253 
254   // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
255   // 16-bytes and under that are reasonably fast. These features were
256   // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
257   // micro-architectures respectively.
258   if (hasSSE42() || hasSSE4A())
259     IsUAMem16Slow = false;
260 
261   LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
262                     << ", 3DNowLevel " << X863DNowLevel << ", 64bit "
263                     << HasX86_64 << "\n");
264   if (In64BitMode && !HasX86_64)
265     report_fatal_error("64-bit code requested on a subtarget that doesn't "
266                        "support it!");
267 
268   // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and for all
269   // 64-bit targets.  On Solaris (32-bit), stack alignment is 4 bytes
270   // following the i386 psABI, while on Illumos it is always 16 bytes.
271   if (StackAlignOverride)
272     stackAlignment = *StackAlignOverride;
273   else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
274            In64BitMode)
275     stackAlignment = Align(16);
276 
277   // Consume the vector width attribute or apply any target specific limit.
278   if (PreferVectorWidthOverride)
279     PreferVectorWidth = PreferVectorWidthOverride;
280   else if (Prefer128Bit)
281     PreferVectorWidth = 128;
282   else if (Prefer256Bit)
283     PreferVectorWidth = 256;
284 }
285 
initializeSubtargetDependencies(StringRef CPU,StringRef TuneCPU,StringRef FS)286 X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
287                                                             StringRef TuneCPU,
288                                                             StringRef FS) {
289   initSubtargetFeatures(CPU, TuneCPU, FS);
290   return *this;
291 }
292 
X86Subtarget(const Triple & TT,StringRef CPU,StringRef TuneCPU,StringRef FS,const X86TargetMachine & TM,MaybeAlign StackAlignOverride,unsigned PreferVectorWidthOverride,unsigned RequiredVectorWidth)293 X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU,
294                            StringRef FS, const X86TargetMachine &TM,
295                            MaybeAlign StackAlignOverride,
296                            unsigned PreferVectorWidthOverride,
297                            unsigned RequiredVectorWidth)
298     : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
299       PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
300       StackAlignOverride(StackAlignOverride),
301       PreferVectorWidthOverride(PreferVectorWidthOverride),
302       RequiredVectorWidth(RequiredVectorWidth),
303       InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
304       TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
305   // Determine the PICStyle based on the target selected.
306   if (!isPositionIndependent())
307     setPICStyle(PICStyles::Style::None);
308   else if (is64Bit())
309     setPICStyle(PICStyles::Style::RIPRel);
310   else if (isTargetCOFF())
311     setPICStyle(PICStyles::Style::None);
312   else if (isTargetDarwin())
313     setPICStyle(PICStyles::Style::StubPIC);
314   else if (isTargetELF())
315     setPICStyle(PICStyles::Style::GOT);
316 
317   CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
318   Legalizer.reset(new X86LegalizerInfo(*this, TM));
319 
320   auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
321   RegBankInfo.reset(RBI);
322   InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
323 }
324 
getCallLowering() const325 const CallLowering *X86Subtarget::getCallLowering() const {
326   return CallLoweringInfo.get();
327 }
328 
getInstructionSelector() const329 InstructionSelector *X86Subtarget::getInstructionSelector() const {
330   return InstSelector.get();
331 }
332 
getLegalizerInfo() const333 const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
334   return Legalizer.get();
335 }
336 
getRegBankInfo() const337 const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
338   return RegBankInfo.get();
339 }
340 
enableEarlyIfConversion() const341 bool X86Subtarget::enableEarlyIfConversion() const {
342   return hasCMov() && X86EarlyIfConv;
343 }
344 
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const345 void X86Subtarget::getPostRAMutations(
346     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
347   Mutations.push_back(createX86MacroFusionDAGMutation());
348 }
349 
isPositionIndependent() const350 bool X86Subtarget::isPositionIndependent() const {
351   return TM.isPositionIndependent();
352 }
353