1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/StandardOps/IR/Ops.h"
11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
12 #include "mlir/IR/Matchers.h"
13 #include "mlir/Pass/Pass.h"
14 #include "mlir/Transforms/DialectConversion.h"
15 #include "mlir/Transforms/FoldUtils.h"
16 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
17 
18 using namespace mlir;
19 using namespace mlir::test;
20 
21 // Native function for testing NativeCodeCall
chooseOperand(Value input1,Value input2,BoolAttr choice)22 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
23   return choice.getValue() ? input1 : input2;
24 }
25 
createOpI(PatternRewriter & rewriter,Location loc,Value input)26 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
27   rewriter.create<OpI>(loc, input);
28 }
29 
handleNoResultOp(PatternRewriter & rewriter,OpSymbolBindingNoResult op)30 static void handleNoResultOp(PatternRewriter &rewriter,
31                              OpSymbolBindingNoResult op) {
32   // Turn the no result op to a one-result op.
33   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
34                                     op.operand());
35 }
36 
37 // Test that natives calls are only called once during rewrites.
38 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
39 // This let us check the number of times OpM_Test was called by inspecting
40 // the returned value in the MLIR output.
41 static int64_t opMIncreasingValue = 314159265;
OpMTest(PatternRewriter & rewriter,Value val)42 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
43   int64_t i = opMIncreasingValue++;
44   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
45 }
46 
47 namespace {
48 #include "TestPatterns.inc"
49 } // end anonymous namespace
50 
51 //===----------------------------------------------------------------------===//
52 // Canonicalizer Driver.
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56 struct FoldingPattern : public RewritePattern {
57 public:
FoldingPattern__anonac0207690211::FoldingPattern58   FoldingPattern(MLIRContext *context)
59       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
60                        /*benefit=*/1, context) {}
61 
matchAndRewrite__anonac0207690211::FoldingPattern62   LogicalResult matchAndRewrite(Operation *op,
63                                 PatternRewriter &rewriter) const override {
64     // Exercise OperationFolder API for a single-result operation that is folded
65     // upon construction. The operation being created through the folder has an
66     // in-place folder, and it should be still present in the output.
67     // Furthermore, the folder should not crash when attempting to recover the
68     // (unchanged) operation result.
69     OperationFolder folder(op->getContext());
70     Value result = folder.create<TestOpInPlaceFold>(
71         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
72         rewriter.getI32IntegerAttr(0));
73     assert(result);
74     rewriter.replaceOp(op, result);
75     return success();
76   }
77 };
78 
79 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
runOnFunction__anonac0207690211::TestPatternDriver80   void runOnFunction() override {
81     mlir::OwningRewritePatternList patterns;
82     populateWithGenerated(&getContext(), patterns);
83 
84     // Verify named pattern is generated with expected name.
85     patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext());
86 
87     applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
88   }
89 };
90 } // end anonymous namespace
91 
92 //===----------------------------------------------------------------------===//
93 // ReturnType Driver.
94 //===----------------------------------------------------------------------===//
95 
96 namespace {
97 // Generate ops for each instance where the type can be successfully inferred.
98 template <typename OpTy>
invokeCreateWithInferredReturnType(Operation * op)99 static void invokeCreateWithInferredReturnType(Operation *op) {
100   auto *context = op->getContext();
101   auto fop = op->getParentOfType<FuncOp>();
102   auto location = UnknownLoc::get(context);
103   OpBuilder b(op);
104   b.setInsertionPointAfter(op);
105 
106   // Use permutations of 2 args as operands.
107   assert(fop.getNumArguments() >= 2);
108   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
109     for (int j = 0; j < e; ++j) {
110       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
111       SmallVector<Type, 2> inferredReturnTypes;
112       if (succeeded(OpTy::inferReturnTypes(
113               context, llvm::None, values, op->getAttrDictionary(),
114               op->getRegions(), inferredReturnTypes))) {
115         OperationState state(location, OpTy::getOperationName());
116         // TODO: Expand to regions.
117         OpTy::build(b, state, values, op->getAttrs());
118         (void)b.createOperation(state);
119       }
120     }
121   }
122 }
123 
reifyReturnShape(Operation * op)124 static void reifyReturnShape(Operation *op) {
125   OpBuilder b(op);
126 
127   // Use permutations of 2 args as operands.
128   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
129   SmallVector<Value, 2> shapes;
130   if (failed(shapedOp.reifyReturnTypeShapes(b, shapes)))
131     return;
132   for (auto it : llvm::enumerate(shapes))
133     op->emitRemark() << "value " << it.index() << ": "
134                      << it.value().getDefiningOp();
135 }
136 
137 struct TestReturnTypeDriver
138     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
runOnFunction__anonac0207690311::TestReturnTypeDriver139   void runOnFunction() override {
140     if (getFunction().getName() == "testCreateFunctions") {
141       std::vector<Operation *> ops;
142       // Collect ops to avoid triggering on inserted ops.
143       for (auto &op : getFunction().getBody().front())
144         ops.push_back(&op);
145       // Generate test patterns for each, but skip terminator.
146       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
147         // Test create method of each of the Op classes below. The resultant
148         // output would be in reverse order underneath `op` from which
149         // the attributes and regions are used.
150         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
151         invokeCreateWithInferredReturnType<
152             OpWithShapedTypeInferTypeInterfaceOp>(op);
153       };
154       return;
155     }
156     if (getFunction().getName() == "testReifyFunctions") {
157       std::vector<Operation *> ops;
158       // Collect ops to avoid triggering on inserted ops.
159       for (auto &op : getFunction().getBody().front())
160         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
161           ops.push_back(&op);
162       // Generate test patterns for each, but skip terminator.
163       for (auto *op : ops)
164         reifyReturnShape(op);
165     }
166   }
167 };
168 } // end anonymous namespace
169 
170 namespace {
171 struct TestDerivedAttributeDriver
172     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
173   void runOnFunction() override;
174 };
175 } // end anonymous namespace
176 
runOnFunction()177 void TestDerivedAttributeDriver::runOnFunction() {
178   getFunction().walk([](DerivedAttributeOpInterface dOp) {
179     auto dAttr = dOp.materializeDerivedAttributes();
180     if (!dAttr)
181       return;
182     for (auto d : dAttr)
183       dOp.emitRemark() << d.first << " = " << d.second;
184   });
185 }
186 
187 //===----------------------------------------------------------------------===//
188 // Legalization Driver.
189 //===----------------------------------------------------------------------===//
190 
191 namespace {
192 //===----------------------------------------------------------------------===//
193 // Region-Block Rewrite Testing
194 
195 /// This pattern is a simple pattern that inlines the first region of a given
196 /// operation into the parent region.
197 struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement__anonac0207690611::TestRegionRewriteBlockMovement198   TestRegionRewriteBlockMovement(MLIRContext *ctx)
199       : ConversionPattern("test.region", 1, ctx) {}
200 
201   LogicalResult
matchAndRewrite__anonac0207690611::TestRegionRewriteBlockMovement202   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
203                   ConversionPatternRewriter &rewriter) const final {
204     // Inline this region into the parent region.
205     auto &parentRegion = *op->getParentRegion();
206     auto &opRegion = op->getRegion(0);
207     if (op->getAttr("legalizer.should_clone"))
208       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
209     else
210       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
211 
212     if (op->getAttr("legalizer.erase_old_blocks")) {
213       while (!opRegion.empty())
214         rewriter.eraseBlock(&opRegion.front());
215     }
216 
217     // Drop this operation.
218     rewriter.eraseOp(op);
219     return success();
220   }
221 };
222 /// This pattern is a simple pattern that generates a region containing an
223 /// illegal operation.
224 struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo__anonac0207690611::TestRegionRewriteUndo225   TestRegionRewriteUndo(MLIRContext *ctx)
226       : RewritePattern("test.region_builder", 1, ctx) {}
227 
matchAndRewrite__anonac0207690611::TestRegionRewriteUndo228   LogicalResult matchAndRewrite(Operation *op,
229                                 PatternRewriter &rewriter) const final {
230     // Create the region operation with an entry block containing arguments.
231     OperationState newRegion(op->getLoc(), "test.region");
232     newRegion.addRegion();
233     auto *regionOp = rewriter.createOperation(newRegion);
234     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
235     entryBlock->addArgument(rewriter.getIntegerType(64));
236 
237     // Add an explicitly illegal operation to ensure the conversion fails.
238     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
239     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
240 
241     // Drop this operation.
242     rewriter.eraseOp(op);
243     return success();
244   }
245 };
246 /// A simple pattern that creates a block at the end of the parent region of the
247 /// matched operation.
248 struct TestCreateBlock : public RewritePattern {
TestCreateBlock__anonac0207690611::TestCreateBlock249   TestCreateBlock(MLIRContext *ctx)
250       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
251 
matchAndRewrite__anonac0207690611::TestCreateBlock252   LogicalResult matchAndRewrite(Operation *op,
253                                 PatternRewriter &rewriter) const final {
254     Region &region = *op->getParentRegion();
255     Type i32Type = rewriter.getIntegerType(32);
256     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
257     rewriter.create<TerminatorOp>(op->getLoc());
258     rewriter.replaceOp(op, {});
259     return success();
260   }
261 };
262 
263 /// A simple pattern that creates a block containing an invalid operation in
264 /// order to trigger the block creation undo mechanism.
265 struct TestCreateIllegalBlock : public RewritePattern {
TestCreateIllegalBlock__anonac0207690611::TestCreateIllegalBlock266   TestCreateIllegalBlock(MLIRContext *ctx)
267       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
268 
matchAndRewrite__anonac0207690611::TestCreateIllegalBlock269   LogicalResult matchAndRewrite(Operation *op,
270                                 PatternRewriter &rewriter) const final {
271     Region &region = *op->getParentRegion();
272     Type i32Type = rewriter.getIntegerType(32);
273     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
274     // Create an illegal op to ensure the conversion fails.
275     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
276     rewriter.create<TerminatorOp>(op->getLoc());
277     rewriter.replaceOp(op, {});
278     return success();
279   }
280 };
281 
282 /// A simple pattern that tests the undo mechanism when replacing the uses of a
283 /// block argument.
284 struct TestUndoBlockArgReplace : public ConversionPattern {
TestUndoBlockArgReplace__anonac0207690611::TestUndoBlockArgReplace285   TestUndoBlockArgReplace(MLIRContext *ctx)
286       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
287 
288   LogicalResult
matchAndRewrite__anonac0207690611::TestUndoBlockArgReplace289   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
290                   ConversionPatternRewriter &rewriter) const final {
291     auto illegalOp =
292         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
293     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
294                                         illegalOp);
295     rewriter.updateRootInPlace(op, [] {});
296     return success();
297   }
298 };
299 
300 /// A rewrite pattern that tests the undo mechanism when erasing a block.
301 struct TestUndoBlockErase : public ConversionPattern {
TestUndoBlockErase__anonac0207690611::TestUndoBlockErase302   TestUndoBlockErase(MLIRContext *ctx)
303       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
304 
305   LogicalResult
matchAndRewrite__anonac0207690611::TestUndoBlockErase306   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
307                   ConversionPatternRewriter &rewriter) const final {
308     Block *secondBlock = &*std::next(op->getRegion(0).begin());
309     rewriter.setInsertionPointToStart(secondBlock);
310     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
311     rewriter.eraseBlock(secondBlock);
312     rewriter.updateRootInPlace(op, [] {});
313     return success();
314   }
315 };
316 
317 //===----------------------------------------------------------------------===//
318 // Type-Conversion Rewrite Testing
319 
320 /// This patterns erases a region operation that has had a type conversion.
321 struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion__anonac0207690611::TestDropOpSignatureConversion322   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
323       : ConversionPattern("test.drop_region_op", 1, converter, ctx) {}
324   LogicalResult
matchAndRewrite__anonac0207690611::TestDropOpSignatureConversion325   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
326                   ConversionPatternRewriter &rewriter) const override {
327     Region &region = op->getRegion(0);
328     Block *entry = &region.front();
329 
330     // Convert the original entry arguments.
331     TypeConverter &converter = *getTypeConverter();
332     TypeConverter::SignatureConversion result(entry->getNumArguments());
333     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
334                                               result)) ||
335         failed(rewriter.convertRegionTypes(&region, converter, &result)))
336       return failure();
337 
338     // Convert the region signature and just drop the operation.
339     rewriter.eraseOp(op);
340     return success();
341   }
342 };
343 /// This pattern simply updates the operands of the given operation.
344 struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp__anonac0207690611::TestPassthroughInvalidOp345   TestPassthroughInvalidOp(MLIRContext *ctx)
346       : ConversionPattern("test.invalid", 1, ctx) {}
347   LogicalResult
matchAndRewrite__anonac0207690611::TestPassthroughInvalidOp348   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
349                   ConversionPatternRewriter &rewriter) const final {
350     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
351                                              llvm::None);
352     return success();
353   }
354 };
355 /// This pattern handles the case of a split return value.
356 struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType__anonac0207690611::TestSplitReturnType357   TestSplitReturnType(MLIRContext *ctx)
358       : ConversionPattern("test.return", 1, ctx) {}
359   LogicalResult
matchAndRewrite__anonac0207690611::TestSplitReturnType360   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
361                   ConversionPatternRewriter &rewriter) const final {
362     // Check for a return of F32.
363     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
364       return failure();
365 
366     // Check if the first operation is a cast operation, if it is we use the
367     // results directly.
368     auto *defOp = operands[0].getDefiningOp();
369     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
370       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
371       return success();
372     }
373 
374     // Otherwise, fail to match.
375     return failure();
376   }
377 };
378 
379 //===----------------------------------------------------------------------===//
380 // Multi-Level Type-Conversion Rewrite Testing
381 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32__anonac0207690611::TestChangeProducerTypeI32ToF32382   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
383       : ConversionPattern("test.type_producer", 1, ctx) {}
384   LogicalResult
matchAndRewrite__anonac0207690611::TestChangeProducerTypeI32ToF32385   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
386                   ConversionPatternRewriter &rewriter) const final {
387     // If the type is I32, change the type to F32.
388     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
389       return failure();
390     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
391     return success();
392   }
393 };
394 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64__anonac0207690611::TestChangeProducerTypeF32ToF64395   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
396       : ConversionPattern("test.type_producer", 1, ctx) {}
397   LogicalResult
matchAndRewrite__anonac0207690611::TestChangeProducerTypeF32ToF64398   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
399                   ConversionPatternRewriter &rewriter) const final {
400     // If the type is F32, change the type to F64.
401     if (!Type(*op->result_type_begin()).isF32())
402       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
403     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
404     return success();
405   }
406 };
407 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid__anonac0207690611::TestChangeProducerTypeF32ToInvalid408   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
409       : ConversionPattern("test.type_producer", 10, ctx) {}
410   LogicalResult
matchAndRewrite__anonac0207690611::TestChangeProducerTypeF32ToInvalid411   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
412                   ConversionPatternRewriter &rewriter) const final {
413     // Always convert to B16, even though it is not a legal type. This tests
414     // that values are unmapped correctly.
415     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
416     return success();
417   }
418 };
419 struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType__anonac0207690611::TestUpdateConsumerType420   TestUpdateConsumerType(MLIRContext *ctx)
421       : ConversionPattern("test.type_consumer", 1, ctx) {}
422   LogicalResult
matchAndRewrite__anonac0207690611::TestUpdateConsumerType423   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
424                   ConversionPatternRewriter &rewriter) const final {
425     // Verify that the incoming operand has been successfully remapped to F64.
426     if (!operands[0].getType().isF64())
427       return failure();
428     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
429     return success();
430   }
431 };
432 
433 //===----------------------------------------------------------------------===//
434 // Non-Root Replacement Rewrite Testing
435 /// This pattern generates an invalid operation, but replaces it before the
436 /// pattern is finished. This checks that we don't need to legalize the
437 /// temporary op.
438 struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement__anonac0207690611::TestNonRootReplacement439   TestNonRootReplacement(MLIRContext *ctx)
440       : RewritePattern("test.replace_non_root", 1, ctx) {}
441 
matchAndRewrite__anonac0207690611::TestNonRootReplacement442   LogicalResult matchAndRewrite(Operation *op,
443                                 PatternRewriter &rewriter) const final {
444     auto resultType = *op->result_type_begin();
445     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
446     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
447 
448     rewriter.replaceOp(illegalOp, {legalOp});
449     rewriter.replaceOp(op, {illegalOp});
450     return success();
451   }
452 };
453 
454 //===----------------------------------------------------------------------===//
455 // Recursive Rewrite Testing
456 /// This pattern is applied to the same operation multiple times, but has a
457 /// bounded recursion.
458 struct TestBoundedRecursiveRewrite
459     : public OpRewritePattern<TestRecursiveRewriteOp> {
TestBoundedRecursiveRewrite__anonac0207690611::TestBoundedRecursiveRewrite460   TestBoundedRecursiveRewrite(MLIRContext *ctx)
461       : OpRewritePattern<TestRecursiveRewriteOp>(ctx) {
462     // The conversion target handles bounding the recursion of this pattern.
463     setHasBoundedRewriteRecursion();
464   }
465 
matchAndRewrite__anonac0207690611::TestBoundedRecursiveRewrite466   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
467                                 PatternRewriter &rewriter) const final {
468     // Decrement the depth of the op in-place.
469     rewriter.updateRootInPlace(op, [&] {
470       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
471     });
472     return success();
473   }
474 };
475 
476 struct TestNestedOpCreationUndoRewrite
477     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
478   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
479 
matchAndRewrite__anonac0207690611::TestNestedOpCreationUndoRewrite480   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
481                                 PatternRewriter &rewriter) const final {
482     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
483     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
484     return success();
485   };
486 };
487 } // namespace
488 
489 namespace {
490 struct TestTypeConverter : public TypeConverter {
491   using TypeConverter::TypeConverter;
TestTypeConverter__anonac0207690a11::TestTypeConverter492   TestTypeConverter() {
493     addConversion(convertType);
494     addArgumentMaterialization(materializeCast);
495     addArgumentMaterialization(materializeOneToOneCast);
496     addSourceMaterialization(materializeCast);
497   }
498 
convertType__anonac0207690a11::TestTypeConverter499   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
500     // Drop I16 types.
501     if (t.isSignlessInteger(16))
502       return success();
503 
504     // Convert I64 to F64.
505     if (t.isSignlessInteger(64)) {
506       results.push_back(FloatType::getF64(t.getContext()));
507       return success();
508     }
509 
510     // Convert I42 to I43.
511     if (t.isInteger(42)) {
512       results.push_back(IntegerType::get(t.getContext(), 43));
513       return success();
514     }
515 
516     // Split F32 into F16,F16.
517     if (t.isF32()) {
518       results.assign(2, FloatType::getF16(t.getContext()));
519       return success();
520     }
521 
522     // Otherwise, convert the type directly.
523     results.push_back(t);
524     return success();
525   }
526 
527   /// Hook for materializing a conversion. This is necessary because we generate
528   /// 1->N type mappings.
materializeCast__anonac0207690a11::TestTypeConverter529   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
530                                          ValueRange inputs, Location loc) {
531     if (inputs.size() == 1)
532       return inputs[0];
533     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
534   }
535 
536   /// Materialize the cast for one-to-one conversion from i64 to f64.
materializeOneToOneCast__anonac0207690a11::TestTypeConverter537   static Optional<Value> materializeOneToOneCast(OpBuilder &builder,
538                                                  IntegerType resultType,
539                                                  ValueRange inputs,
540                                                  Location loc) {
541     if (resultType.getWidth() == 42 && inputs.size() == 1)
542       return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
543     return llvm::None;
544   }
545 };
546 
547 struct TestLegalizePatternDriver
548     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
549   /// The mode of conversion to use with the driver.
550   enum class ConversionMode { Analysis, Full, Partial };
551 
TestLegalizePatternDriver__anonac0207690a11::TestLegalizePatternDriver552   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
553 
runOnOperation__anonac0207690a11::TestLegalizePatternDriver554   void runOnOperation() override {
555     TestTypeConverter converter;
556     mlir::OwningRewritePatternList patterns;
557     populateWithGenerated(&getContext(), patterns);
558     patterns.insert<
559         TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock,
560         TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase,
561         TestPassthroughInvalidOp, TestSplitReturnType,
562         TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
563         TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
564         TestNonRootReplacement, TestBoundedRecursiveRewrite,
565         TestNestedOpCreationUndoRewrite>(&getContext());
566     patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
567     mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
568                                               converter);
569     mlir::populateCallOpTypeConversionPattern(patterns, &getContext(),
570                                               converter);
571 
572     // Define the conversion target used for the test.
573     ConversionTarget target(getContext());
574     target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
575     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
576                       TerminatorOp>();
577     target
578         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
579     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
580       // Don't allow F32 operands.
581       return llvm::none_of(op.getOperandTypes(),
582                            [](Type type) { return type.isF32(); });
583     });
584     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
585       return converter.isSignatureLegal(op.getType()) &&
586              converter.isLegal(&op.getBody());
587     });
588 
589     // Expect the type_producer/type_consumer operations to only operate on f64.
590     target.addDynamicallyLegalOp<TestTypeProducerOp>(
591         [](TestTypeProducerOp op) { return op.getType().isF64(); });
592     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
593       return op.getOperand().getType().isF64();
594     });
595 
596     // Check support for marking certain operations as recursively legal.
597     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
598       return static_cast<bool>(
599           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
600     });
601 
602     // Mark the bound recursion operation as dynamically legal.
603     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
604         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
605 
606     // Handle a partial conversion.
607     if (mode == ConversionMode::Partial) {
608       DenseSet<Operation *> unlegalizedOps;
609       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
610                                    &unlegalizedOps);
611       // Emit remarks for each legalizable operation.
612       for (auto *op : unlegalizedOps)
613         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
614       return;
615     }
616 
617     // Handle a full conversion.
618     if (mode == ConversionMode::Full) {
619       // Check support for marking unknown operations as dynamically legal.
620       target.markUnknownOpDynamicallyLegal([](Operation *op) {
621         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
622       });
623 
624       (void)applyFullConversion(getOperation(), target, std::move(patterns));
625       return;
626     }
627 
628     // Otherwise, handle an analysis conversion.
629     assert(mode == ConversionMode::Analysis);
630 
631     // Analyze the convertible operations.
632     DenseSet<Operation *> legalizedOps;
633     if (failed(applyAnalysisConversion(getOperation(), target,
634                                        std::move(patterns), legalizedOps)))
635       return signalPassFailure();
636 
637     // Emit remarks for each legalizable operation.
638     for (auto *op : legalizedOps)
639       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
640   }
641 
642   /// The mode of conversion to use.
643   ConversionMode mode;
644 };
645 } // end anonymous namespace
646 
647 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
648     legalizerConversionMode(
649         "test-legalize-mode",
650         llvm::cl::desc("The legalization mode to use with the test driver"),
651         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
652         llvm::cl::values(
653             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
654                        "analysis", "Perform an analysis conversion"),
655             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
656                        "Perform a full conversion"),
657             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
658                        "partial", "Perform a partial conversion")));
659 
660 //===----------------------------------------------------------------------===//
661 // ConversionPatternRewriter::getRemappedValue testing. This method is used
662 // to get the remapped value of an original value that was replaced using
663 // ConversionPatternRewriter.
664 namespace {
665 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
666 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
667 /// operand twice.
668 ///
669 /// Example:
670 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
671 /// is replaced with:
672 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
673 struct OneVResOneVOperandOp1Converter
674     : public OpConversionPattern<OneVResOneVOperandOp1> {
675   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
676 
677   LogicalResult
matchAndRewrite__anonac0207691311::OneVResOneVOperandOp1Converter678   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
679                   ConversionPatternRewriter &rewriter) const override {
680     auto origOps = op.getOperands();
681     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
682            "One operand expected");
683     Value origOp = *origOps.begin();
684     SmallVector<Value, 2> remappedOperands;
685     // Replicate the remapped original operand twice. Note that we don't used
686     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
687     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
688     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
689 
690     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
691                                                        remappedOperands);
692     return success();
693   }
694 };
695 
696 struct TestRemappedValue
697     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
runOnFunction__anonac0207691311::TestRemappedValue698   void runOnFunction() override {
699     mlir::OwningRewritePatternList patterns;
700     patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
701 
702     mlir::ConversionTarget target(getContext());
703     target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
704     // We make OneVResOneVOperandOp1 legal only when it has more that one
705     // operand. This will trigger the conversion that will replace one-operand
706     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
707     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
708         [](Operation *op) -> bool {
709           return std::distance(op->operand_begin(), op->operand_end()) > 1;
710         });
711 
712     if (failed(mlir::applyFullConversion(getFunction(), target,
713                                          std::move(patterns)))) {
714       signalPassFailure();
715     }
716   }
717 };
718 } // end anonymous namespace
719 
720 //===----------------------------------------------------------------------===//
721 // Test patterns without a specific root operation kind
722 //===----------------------------------------------------------------------===//
723 
724 namespace {
725 /// This pattern matches and removes any operation in the test dialect.
726 struct RemoveTestDialectOps : public RewritePattern {
RemoveTestDialectOps__anonac0207691511::RemoveTestDialectOps727   RemoveTestDialectOps() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {}
728 
matchAndRewrite__anonac0207691511::RemoveTestDialectOps729   LogicalResult matchAndRewrite(Operation *op,
730                                 PatternRewriter &rewriter) const override {
731     if (!isa<TestDialect>(op->getDialect()))
732       return failure();
733     rewriter.eraseOp(op);
734     return success();
735   }
736 };
737 
738 struct TestUnknownRootOpDriver
739     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
runOnFunction__anonac0207691511::TestUnknownRootOpDriver740   void runOnFunction() override {
741     mlir::OwningRewritePatternList patterns;
742     patterns.insert<RemoveTestDialectOps>();
743 
744     mlir::ConversionTarget target(getContext());
745     target.addIllegalDialect<TestDialect>();
746     if (failed(
747             applyPartialConversion(getFunction(), target, std::move(patterns))))
748       signalPassFailure();
749   }
750 };
751 } // end anonymous namespace
752 
753 //===----------------------------------------------------------------------===//
754 // Test type conversions
755 //===----------------------------------------------------------------------===//
756 
757 namespace {
758 struct TestTypeConversionProducer
759     : public OpConversionPattern<TestTypeProducerOp> {
760   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
761   LogicalResult
matchAndRewrite__anonac0207691611::TestTypeConversionProducer762   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
763                   ConversionPatternRewriter &rewriter) const final {
764     Type resultType = op.getType();
765     if (resultType.isa<FloatType>())
766       resultType = rewriter.getF64Type();
767     else if (resultType.isInteger(16))
768       resultType = rewriter.getIntegerType(64);
769     else
770       return failure();
771 
772     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
773     return success();
774   }
775 };
776 
777 struct TestTypeConversionDriver
778     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
getDependentDialects__anonac0207691611::TestTypeConversionDriver779   void getDependentDialects(DialectRegistry &registry) const override {
780     registry.insert<TestDialect>();
781   }
782 
runOnOperation__anonac0207691611::TestTypeConversionDriver783   void runOnOperation() override {
784     // Initialize the type converter.
785     TypeConverter converter;
786 
787     /// Add the legal set of type conversions.
788     converter.addConversion([](Type type) -> Type {
789       // Treat F64 as legal.
790       if (type.isF64())
791         return type;
792       // Allow converting BF16/F16/F32 to F64.
793       if (type.isBF16() || type.isF16() || type.isF32())
794         return FloatType::getF64(type.getContext());
795       // Otherwise, the type is illegal.
796       return nullptr;
797     });
798     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
799       // Drop all integer types.
800       return success();
801     });
802 
803     /// Add the legal set of type materializations.
804     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
805                                           ValueRange inputs,
806                                           Location loc) -> Value {
807       // Allow casting from F64 back to F32.
808       if (!resultType.isF16() && inputs.size() == 1 &&
809           inputs[0].getType().isF64())
810         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
811       // Allow producing an i32 or i64 from nothing.
812       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
813           inputs.empty())
814         return builder.create<TestTypeProducerOp>(loc, resultType);
815       // Allow producing an i64 from an integer.
816       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
817           inputs[0].getType().isa<IntegerType>())
818         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
819       // Otherwise, fail.
820       return nullptr;
821     });
822 
823     // Initialize the conversion target.
824     mlir::ConversionTarget target(getContext());
825     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
826       return op.getType().isF64() || op.getType().isInteger(64);
827     });
828     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
829       return converter.isSignatureLegal(op.getType()) &&
830              converter.isLegal(&op.getBody());
831     });
832     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
833       // Allow casts from F64 to F32.
834       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
835     });
836 
837     // Initialize the set of rewrite patterns.
838     OwningRewritePatternList patterns;
839     patterns.insert<TestTypeConversionProducer>(converter, &getContext());
840     mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
841                                               converter);
842 
843     if (failed(applyPartialConversion(getOperation(), target,
844                                       std::move(patterns))))
845       signalPassFailure();
846   }
847 };
848 } // end anonymous namespace
849 
850 //===----------------------------------------------------------------------===//
851 // Test Block Merging
852 //===----------------------------------------------------------------------===//
853 
854 namespace {
855 /// A rewriter pattern that tests that blocks can be merged.
856 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
857   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
858 
859   LogicalResult
matchAndRewrite__anonac0207691d11::TestMergeBlock860   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
861                   ConversionPatternRewriter &rewriter) const final {
862     Block &firstBlock = op.body().front();
863     Operation *branchOp = firstBlock.getTerminator();
864     Block *secondBlock = &*(std::next(op.body().begin()));
865     auto succOperands = branchOp->getOperands();
866     SmallVector<Value, 2> replacements(succOperands);
867     rewriter.eraseOp(branchOp);
868     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
869     rewriter.updateRootInPlace(op, [] {});
870     return success();
871   }
872 };
873 
874 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
875 struct TestUndoBlocksMerge : public ConversionPattern {
TestUndoBlocksMerge__anonac0207691d11::TestUndoBlocksMerge876   TestUndoBlocksMerge(MLIRContext *ctx)
877       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
878   LogicalResult
matchAndRewrite__anonac0207691d11::TestUndoBlocksMerge879   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
880                   ConversionPatternRewriter &rewriter) const final {
881     Block &firstBlock = op->getRegion(0).front();
882     Operation *branchOp = firstBlock.getTerminator();
883     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
884     rewriter.setInsertionPointToStart(secondBlock);
885     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
886     auto succOperands = branchOp->getOperands();
887     SmallVector<Value, 2> replacements(succOperands);
888     rewriter.eraseOp(branchOp);
889     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
890     rewriter.updateRootInPlace(op, [] {});
891     return success();
892   }
893 };
894 
895 /// A rewrite mechanism to inline the body of the op into its parent, when both
896 /// ops can have a single block.
897 struct TestMergeSingleBlockOps
898     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
899   using OpConversionPattern<
900       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
901 
902   LogicalResult
matchAndRewrite__anonac0207691d11::TestMergeSingleBlockOps903   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
904                   ConversionPatternRewriter &rewriter) const final {
905     SingleBlockImplicitTerminatorOp parentOp =
906         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
907     if (!parentOp)
908       return failure();
909     Block &innerBlock = op.region().front();
910     TerminatorOp innerTerminator =
911         cast<TerminatorOp>(innerBlock.getTerminator());
912     rewriter.mergeBlockBefore(&innerBlock, op);
913     rewriter.eraseOp(innerTerminator);
914     rewriter.eraseOp(op);
915     rewriter.updateRootInPlace(op, [] {});
916     return success();
917   }
918 };
919 
920 struct TestMergeBlocksPatternDriver
921     : public PassWrapper<TestMergeBlocksPatternDriver,
922                          OperationPass<ModuleOp>> {
runOnOperation__anonac0207691d11::TestMergeBlocksPatternDriver923   void runOnOperation() override {
924     mlir::OwningRewritePatternList patterns;
925     MLIRContext *context = &getContext();
926     patterns
927         .insert<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
928             context);
929     ConversionTarget target(*context);
930     target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp, TerminatorOp,
931                       TestBranchOp, TestTypeConsumerOp, TestTypeProducerOp,
932                       TestReturnOp>();
933     target.addIllegalOp<ILLegalOpF>();
934 
935     /// Expect the op to have a single block after legalization.
936     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
937         [&](TestMergeBlocksOp op) -> bool {
938           return llvm::hasSingleElement(op.body());
939         });
940 
941     /// Only allow `test.br` within test.merge_blocks op.
942     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
943       return op->getParentOfType<TestMergeBlocksOp>();
944     });
945 
946     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
947     /// inlined.
948     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
949         [&](SingleBlockImplicitTerminatorOp op) -> bool {
950           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
951         });
952 
953     DenseSet<Operation *> unlegalizedOps;
954     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
955                                  &unlegalizedOps);
956     for (auto *op : unlegalizedOps)
957       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
958   }
959 };
960 } // namespace
961 
962 //===----------------------------------------------------------------------===//
963 // Test Selective Replacement
964 //===----------------------------------------------------------------------===//
965 
966 namespace {
967 /// A rewrite mechanism to inline the body of the op into its parent, when both
968 /// ops can have a single block.
969 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
970   using OpRewritePattern<TestCastOp>::OpRewritePattern;
971 
matchAndRewrite__anonac0207692411::TestSelectiveOpReplacementPattern972   LogicalResult matchAndRewrite(TestCastOp op,
973                                 PatternRewriter &rewriter) const final {
974     if (op.getNumOperands() != 2)
975       return failure();
976     OperandRange operands = op.getOperands();
977 
978     // Replace non-terminator uses with the first operand.
979     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
980       return operand.getOwner()->isKnownTerminator();
981     });
982     // Replace everything else with the second operand if the operation isn't
983     // dead.
984     rewriter.replaceOp(op, op.getOperand(1));
985     return success();
986   }
987 };
988 
989 struct TestSelectiveReplacementPatternDriver
990     : public PassWrapper<TestSelectiveReplacementPatternDriver,
991                          OperationPass<>> {
runOnOperation__anonac0207692411::TestSelectiveReplacementPatternDriver992   void runOnOperation() override {
993     mlir::OwningRewritePatternList patterns;
994     MLIRContext *context = &getContext();
995     patterns.insert<TestSelectiveOpReplacementPattern>(context);
996     applyPatternsAndFoldGreedily(getOperation()->getRegions(),
997                                  std::move(patterns));
998   }
999 };
1000 } // namespace
1001 
1002 //===----------------------------------------------------------------------===//
1003 // PassRegistration
1004 //===----------------------------------------------------------------------===//
1005 
1006 namespace mlir {
1007 namespace test {
registerPatternsTestPass()1008 void registerPatternsTestPass() {
1009   PassRegistration<TestReturnTypeDriver>("test-return-type",
1010                                          "Run return type functions");
1011 
1012   PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
1013                                                "Run test derived attributes");
1014 
1015   PassRegistration<TestPatternDriver>("test-patterns",
1016                                       "Run test dialect patterns");
1017 
1018   PassRegistration<TestLegalizePatternDriver>(
1019       "test-legalize-patterns", "Run test dialect legalization patterns", [] {
1020         return std::make_unique<TestLegalizePatternDriver>(
1021             legalizerConversionMode);
1022       });
1023 
1024   PassRegistration<TestRemappedValue>(
1025       "test-remapped-value",
1026       "Test public remapped value mechanism in ConversionPatternRewriter");
1027 
1028   PassRegistration<TestUnknownRootOpDriver>(
1029       "test-legalize-unknown-root-patterns",
1030       "Test public remapped value mechanism in ConversionPatternRewriter");
1031 
1032   PassRegistration<TestTypeConversionDriver>(
1033       "test-legalize-type-conversion",
1034       "Test various type conversion functionalities in DialectConversion");
1035 
1036   PassRegistration<TestMergeBlocksPatternDriver>{
1037       "test-merge-blocks",
1038       "Test Merging operation in ConversionPatternRewriter"};
1039   PassRegistration<TestSelectiveReplacementPatternDriver>{
1040       "test-pattern-selective-replacement",
1041       "Test selective replacement in the PatternRewriter"};
1042 }
1043 } // namespace test
1044 } // namespace mlir
1045