1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
getSourceLiteralString(const Expr * CE)41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42   switch (CE->getStmtClass()) {
43     case Stmt::IntegerLiteralClass:
44       return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45     case Stmt::StringLiteralClass: {
46       std::string ret("\"");
47       ret += cast<StringLiteral>(CE)->getString();
48       ret += "\"";
49       return ret;
50     }
51     case Stmt::CharacterLiteralClass:
52     case Stmt::CXXNullPtrLiteralExprClass:
53     case Stmt::GNUNullExprClass:
54     case Stmt::CXXBoolLiteralExprClass:
55     case Stmt::FloatingLiteralClass:
56     case Stmt::ImaginaryLiteralClass:
57     case Stmt::ObjCStringLiteralClass:
58     default:
59       return "#lit";
60   }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const til::SExpr * E)64 static bool isIncompletePhi(const til::SExpr *E) {
65   if (const auto *Ph = dyn_cast<til::Phi>(E))
66     return Ph->status() == til::Phi::PH_Incomplete;
67   return false;
68 }
69 
70 using CallingContext = SExprBuilder::CallingContext;
71 
lookupStmt(const Stmt * S)72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
73   auto It = SMap.find(S);
74   if (It != SMap.end())
75     return It->second;
76   return nullptr;
77 }
78 
buildCFG(CFGWalker & Walker)79 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
80   Walker.walk(*this);
81   return Scfg;
82 }
83 
isCalleeArrow(const Expr * E)84 static bool isCalleeArrow(const Expr *E) {
85   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
86   return ME ? ME->isArrow() : false;
87 }
88 
89 /// Translate a clang expression in an attribute to a til::SExpr.
90 /// Constructs the context from D, DeclExp, and SelfDecl.
91 ///
92 /// \param AttrExp The expression to translate.
93 /// \param D       The declaration to which the attribute is attached.
94 /// \param DeclExp An expression involving the Decl to which the attribute
95 ///                is attached.  E.g. the call to a function.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,VarDecl * SelfDecl)96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
97                                                const NamedDecl *D,
98                                                const Expr *DeclExp,
99                                                VarDecl *SelfDecl) {
100   // If we are processing a raw attribute expression, with no substitutions.
101   if (!DeclExp)
102     return translateAttrExpr(AttrExp, nullptr);
103 
104   CallingContext Ctx(nullptr, D);
105 
106   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
107   // for formal parameters when we call buildMutexID later.
108   if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
109     Ctx.SelfArg   = ME->getBase();
110     Ctx.SelfArrow = ME->isArrow();
111   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
112     Ctx.SelfArg   = CE->getImplicitObjectArgument();
113     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
114     Ctx.NumArgs   = CE->getNumArgs();
115     Ctx.FunArgs   = CE->getArgs();
116   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
117     Ctx.NumArgs = CE->getNumArgs();
118     Ctx.FunArgs = CE->getArgs();
119   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
120     Ctx.SelfArg = nullptr;  // Will be set below
121     Ctx.NumArgs = CE->getNumArgs();
122     Ctx.FunArgs = CE->getArgs();
123   } else if (D && isa<CXXDestructorDecl>(D)) {
124     // There's no such thing as a "destructor call" in the AST.
125     Ctx.SelfArg = DeclExp;
126   }
127 
128   // Hack to handle constructors, where self cannot be recovered from
129   // the expression.
130   if (SelfDecl && !Ctx.SelfArg) {
131     DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
132                         SelfDecl->getType(), VK_LValue,
133                         SelfDecl->getLocation());
134     Ctx.SelfArg = &SelfDRE;
135 
136     // If the attribute has no arguments, then assume the argument is "this".
137     if (!AttrExp)
138       return translateAttrExpr(Ctx.SelfArg, nullptr);
139     else  // For most attributes.
140       return translateAttrExpr(AttrExp, &Ctx);
141   }
142 
143   // If the attribute has no arguments, then assume the argument is "this".
144   if (!AttrExp)
145     return translateAttrExpr(Ctx.SelfArg, nullptr);
146   else  // For most attributes.
147     return translateAttrExpr(AttrExp, &Ctx);
148 }
149 
150 /// Translate a clang expression in an attribute to a til::SExpr.
151 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)152 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
153                                                CallingContext *Ctx) {
154   if (!AttrExp)
155     return CapabilityExpr(nullptr, false);
156 
157   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
158     if (SLit->getString() == StringRef("*"))
159       // The "*" expr is a universal lock, which essentially turns off
160       // checks until it is removed from the lockset.
161       return CapabilityExpr(new (Arena) til::Wildcard(), false);
162     else
163       // Ignore other string literals for now.
164       return CapabilityExpr(nullptr, false);
165   }
166 
167   bool Neg = false;
168   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
169     if (OE->getOperator() == OO_Exclaim) {
170       Neg = true;
171       AttrExp = OE->getArg(0);
172     }
173   }
174   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
175     if (UO->getOpcode() == UO_LNot) {
176       Neg = true;
177       AttrExp = UO->getSubExpr();
178     }
179   }
180 
181   til::SExpr *E = translate(AttrExp, Ctx);
182 
183   // Trap mutex expressions like nullptr, or 0.
184   // Any literal value is nonsense.
185   if (!E || isa<til::Literal>(E))
186     return CapabilityExpr(nullptr, false);
187 
188   // Hack to deal with smart pointers -- strip off top-level pointer casts.
189   if (const auto *CE = dyn_cast<til::Cast>(E)) {
190     if (CE->castOpcode() == til::CAST_objToPtr)
191       return CapabilityExpr(CE->expr(), Neg);
192   }
193   return CapabilityExpr(E, Neg);
194 }
195 
196 // Translate a clang statement or expression to a TIL expression.
197 // Also performs substitution of variables; Ctx provides the context.
198 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)199 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
200   if (!S)
201     return nullptr;
202 
203   // Check if S has already been translated and cached.
204   // This handles the lookup of SSA names for DeclRefExprs here.
205   if (til::SExpr *E = lookupStmt(S))
206     return E;
207 
208   switch (S->getStmtClass()) {
209   case Stmt::DeclRefExprClass:
210     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
211   case Stmt::CXXThisExprClass:
212     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
213   case Stmt::MemberExprClass:
214     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
215   case Stmt::ObjCIvarRefExprClass:
216     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
217   case Stmt::CallExprClass:
218     return translateCallExpr(cast<CallExpr>(S), Ctx);
219   case Stmt::CXXMemberCallExprClass:
220     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
221   case Stmt::CXXOperatorCallExprClass:
222     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
223   case Stmt::UnaryOperatorClass:
224     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
225   case Stmt::BinaryOperatorClass:
226   case Stmt::CompoundAssignOperatorClass:
227     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
228 
229   case Stmt::ArraySubscriptExprClass:
230     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
231   case Stmt::ConditionalOperatorClass:
232     return translateAbstractConditionalOperator(
233              cast<ConditionalOperator>(S), Ctx);
234   case Stmt::BinaryConditionalOperatorClass:
235     return translateAbstractConditionalOperator(
236              cast<BinaryConditionalOperator>(S), Ctx);
237 
238   // We treat these as no-ops
239   case Stmt::ConstantExprClass:
240     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
241   case Stmt::ParenExprClass:
242     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
243   case Stmt::ExprWithCleanupsClass:
244     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
245   case Stmt::CXXBindTemporaryExprClass:
246     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
247   case Stmt::MaterializeTemporaryExprClass:
248     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
249 
250   // Collect all literals
251   case Stmt::CharacterLiteralClass:
252   case Stmt::CXXNullPtrLiteralExprClass:
253   case Stmt::GNUNullExprClass:
254   case Stmt::CXXBoolLiteralExprClass:
255   case Stmt::FloatingLiteralClass:
256   case Stmt::ImaginaryLiteralClass:
257   case Stmt::IntegerLiteralClass:
258   case Stmt::StringLiteralClass:
259   case Stmt::ObjCStringLiteralClass:
260     return new (Arena) til::Literal(cast<Expr>(S));
261 
262   case Stmt::DeclStmtClass:
263     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
264   default:
265     break;
266   }
267   if (const auto *CE = dyn_cast<CastExpr>(S))
268     return translateCastExpr(CE, Ctx);
269 
270   return new (Arena) til::Undefined(S);
271 }
272 
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)273 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
274                                                CallingContext *Ctx) {
275   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
276 
277   // Function parameters require substitution and/or renaming.
278   if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
279     unsigned I = PV->getFunctionScopeIndex();
280     const DeclContext *D = PV->getDeclContext();
281     if (Ctx && Ctx->FunArgs) {
282       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
283       if (isa<FunctionDecl>(D)
284               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
285               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
286         // Substitute call arguments for references to function parameters
287         assert(I < Ctx->NumArgs);
288         return translate(Ctx->FunArgs[I], Ctx->Prev);
289       }
290     }
291     // Map the param back to the param of the original function declaration
292     // for consistent comparisons.
293     VD = isa<FunctionDecl>(D)
294              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
295              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
296   }
297 
298   // For non-local variables, treat it as a reference to a named object.
299   return new (Arena) til::LiteralPtr(VD);
300 }
301 
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)302 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
303                                                CallingContext *Ctx) {
304   // Substitute for 'this'
305   if (Ctx && Ctx->SelfArg)
306     return translate(Ctx->SelfArg, Ctx->Prev);
307   assert(SelfVar && "We have no variable for 'this'!");
308   return SelfVar;
309 }
310 
getValueDeclFromSExpr(const til::SExpr * E)311 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
312   if (const auto *V = dyn_cast<til::Variable>(E))
313     return V->clangDecl();
314   if (const auto *Ph = dyn_cast<til::Phi>(E))
315     return Ph->clangDecl();
316   if (const auto *P = dyn_cast<til::Project>(E))
317     return P->clangDecl();
318   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
319     return L->clangDecl();
320   return nullptr;
321 }
322 
hasAnyPointerType(const til::SExpr * E)323 static bool hasAnyPointerType(const til::SExpr *E) {
324   auto *VD = getValueDeclFromSExpr(E);
325   if (VD && VD->getType()->isAnyPointerType())
326     return true;
327   if (const auto *C = dyn_cast<til::Cast>(E))
328     return C->castOpcode() == til::CAST_objToPtr;
329 
330   return false;
331 }
332 
333 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)334 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
335   while (true) {
336     D = D->getCanonicalDecl();
337     auto OverriddenMethods = D->overridden_methods();
338     if (OverriddenMethods.begin() == OverriddenMethods.end())
339       return D;  // Method does not override anything
340     // FIXME: this does not work with multiple inheritance.
341     D = *OverriddenMethods.begin();
342   }
343   return nullptr;
344 }
345 
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)346 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
347                                               CallingContext *Ctx) {
348   til::SExpr *BE = translate(ME->getBase(), Ctx);
349   til::SExpr *E  = new (Arena) til::SApply(BE);
350 
351   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
352   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
353     D = getFirstVirtualDecl(VD);
354 
355   til::Project *P = new (Arena) til::Project(E, D);
356   if (hasAnyPointerType(BE))
357     P->setArrow(true);
358   return P;
359 }
360 
translateObjCIVarRefExpr(const ObjCIvarRefExpr * IVRE,CallingContext * Ctx)361 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
362                                                    CallingContext *Ctx) {
363   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
364   til::SExpr *E = new (Arena) til::SApply(BE);
365 
366   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
367 
368   til::Project *P = new (Arena) til::Project(E, D);
369   if (hasAnyPointerType(BE))
370     P->setArrow(true);
371   return P;
372 }
373 
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)374 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
375                                             CallingContext *Ctx,
376                                             const Expr *SelfE) {
377   if (CapabilityExprMode) {
378     // Handle LOCK_RETURNED
379     if (const FunctionDecl *FD = CE->getDirectCallee()) {
380       FD = FD->getMostRecentDecl();
381       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
382         CallingContext LRCallCtx(Ctx);
383         LRCallCtx.AttrDecl = CE->getDirectCallee();
384         LRCallCtx.SelfArg = SelfE;
385         LRCallCtx.NumArgs = CE->getNumArgs();
386         LRCallCtx.FunArgs = CE->getArgs();
387         return const_cast<til::SExpr *>(
388             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
389       }
390     }
391   }
392 
393   til::SExpr *E = translate(CE->getCallee(), Ctx);
394   for (const auto *Arg : CE->arguments()) {
395     til::SExpr *A = translate(Arg, Ctx);
396     E = new (Arena) til::Apply(E, A);
397   }
398   return new (Arena) til::Call(E, CE);
399 }
400 
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)401 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
402     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
403   if (CapabilityExprMode) {
404     // Ignore calls to get() on smart pointers.
405     if (ME->getMethodDecl()->getNameAsString() == "get" &&
406         ME->getNumArgs() == 0) {
407       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
408       return new (Arena) til::Cast(til::CAST_objToPtr, E);
409       // return E;
410     }
411   }
412   return translateCallExpr(cast<CallExpr>(ME), Ctx,
413                            ME->getImplicitObjectArgument());
414 }
415 
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)416 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
417     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
418   if (CapabilityExprMode) {
419     // Ignore operator * and operator -> on smart pointers.
420     OverloadedOperatorKind k = OCE->getOperator();
421     if (k == OO_Star || k == OO_Arrow) {
422       auto *E = translate(OCE->getArg(0), Ctx);
423       return new (Arena) til::Cast(til::CAST_objToPtr, E);
424       // return E;
425     }
426   }
427   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
428 }
429 
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)430 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
431                                                  CallingContext *Ctx) {
432   switch (UO->getOpcode()) {
433   case UO_PostInc:
434   case UO_PostDec:
435   case UO_PreInc:
436   case UO_PreDec:
437     return new (Arena) til::Undefined(UO);
438 
439   case UO_AddrOf:
440     if (CapabilityExprMode) {
441       // interpret &Graph::mu_ as an existential.
442       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
443         if (DRE->getDecl()->isCXXInstanceMember()) {
444           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
445           // We interpret this syntax specially, as a wildcard.
446           auto *W = new (Arena) til::Wildcard();
447           return new (Arena) til::Project(W, DRE->getDecl());
448         }
449       }
450     }
451     // otherwise, & is a no-op
452     return translate(UO->getSubExpr(), Ctx);
453 
454   // We treat these as no-ops
455   case UO_Deref:
456   case UO_Plus:
457     return translate(UO->getSubExpr(), Ctx);
458 
459   case UO_Minus:
460     return new (Arena)
461       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
462   case UO_Not:
463     return new (Arena)
464       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
465   case UO_LNot:
466     return new (Arena)
467       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
468 
469   // Currently unsupported
470   case UO_Real:
471   case UO_Imag:
472   case UO_Extension:
473   case UO_Coawait:
474     return new (Arena) til::Undefined(UO);
475   }
476   return new (Arena) til::Undefined(UO);
477 }
478 
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)479 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
480                                          const BinaryOperator *BO,
481                                          CallingContext *Ctx, bool Reverse) {
482    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
483    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
484    if (Reverse)
485      return new (Arena) til::BinaryOp(Op, E1, E0);
486    else
487      return new (Arena) til::BinaryOp(Op, E0, E1);
488 }
489 
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)490 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
491                                              const BinaryOperator *BO,
492                                              CallingContext *Ctx,
493                                              bool Assign) {
494   const Expr *LHS = BO->getLHS();
495   const Expr *RHS = BO->getRHS();
496   til::SExpr *E0 = translate(LHS, Ctx);
497   til::SExpr *E1 = translate(RHS, Ctx);
498 
499   const ValueDecl *VD = nullptr;
500   til::SExpr *CV = nullptr;
501   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
502     VD = DRE->getDecl();
503     CV = lookupVarDecl(VD);
504   }
505 
506   if (!Assign) {
507     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
508     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
509     E1 = addStatement(E1, nullptr, VD);
510   }
511   if (VD && CV)
512     return updateVarDecl(VD, E1);
513   return new (Arena) til::Store(E0, E1);
514 }
515 
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)516 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
517                                                   CallingContext *Ctx) {
518   switch (BO->getOpcode()) {
519   case BO_PtrMemD:
520   case BO_PtrMemI:
521     return new (Arena) til::Undefined(BO);
522 
523   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
524   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
525   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
526   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
527   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
528   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
529   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
530   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
531   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
532   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
533   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
534   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
535   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
536   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
537   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
538   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
539   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
540   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
541   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
542 
543   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
544   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
545   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
546   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
547   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
548   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
549   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
550   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
551   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
552   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
553   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
554 
555   case BO_Comma:
556     // The clang CFG should have already processed both sides.
557     return translate(BO->getRHS(), Ctx);
558   }
559   return new (Arena) til::Undefined(BO);
560 }
561 
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)562 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
563                                             CallingContext *Ctx) {
564   CastKind K = CE->getCastKind();
565   switch (K) {
566   case CK_LValueToRValue: {
567     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
568       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
569       if (E0)
570         return E0;
571     }
572     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
573     return E0;
574     // FIXME!! -- get Load working properly
575     // return new (Arena) til::Load(E0);
576   }
577   case CK_NoOp:
578   case CK_DerivedToBase:
579   case CK_UncheckedDerivedToBase:
580   case CK_ArrayToPointerDecay:
581   case CK_FunctionToPointerDecay: {
582     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
583     return E0;
584   }
585   default: {
586     // FIXME: handle different kinds of casts.
587     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
588     if (CapabilityExprMode)
589       return E0;
590     return new (Arena) til::Cast(til::CAST_none, E0);
591   }
592   }
593 }
594 
595 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)596 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
597                                           CallingContext *Ctx) {
598   til::SExpr *E0 = translate(E->getBase(), Ctx);
599   til::SExpr *E1 = translate(E->getIdx(), Ctx);
600   return new (Arena) til::ArrayIndex(E0, E1);
601 }
602 
603 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)604 SExprBuilder::translateAbstractConditionalOperator(
605     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
606   auto *C = translate(CO->getCond(), Ctx);
607   auto *T = translate(CO->getTrueExpr(), Ctx);
608   auto *E = translate(CO->getFalseExpr(), Ctx);
609   return new (Arena) til::IfThenElse(C, T, E);
610 }
611 
612 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)613 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
614   DeclGroupRef DGrp = S->getDeclGroup();
615   for (auto I : DGrp) {
616     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
617       Expr *E = VD->getInit();
618       til::SExpr* SE = translate(E, Ctx);
619 
620       // Add local variables with trivial type to the variable map
621       QualType T = VD->getType();
622       if (T.isTrivialType(VD->getASTContext()))
623         return addVarDecl(VD, SE);
624       else {
625         // TODO: add alloca
626       }
627     }
628   }
629   return nullptr;
630 }
631 
632 // If (E) is non-trivial, then add it to the current basic block, and
633 // update the statement map so that S refers to E.  Returns a new variable
634 // that refers to E.
635 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)636 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
637                                        const ValueDecl *VD) {
638   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
639     return E;
640   if (VD)
641     E = new (Arena) til::Variable(E, VD);
642   CurrentInstructions.push_back(E);
643   if (S)
644     insertStmt(S, E);
645   return E;
646 }
647 
648 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)649 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
650   auto It = LVarIdxMap.find(VD);
651   if (It != LVarIdxMap.end()) {
652     assert(CurrentLVarMap[It->second].first == VD);
653     return CurrentLVarMap[It->second].second;
654   }
655   return nullptr;
656 }
657 
658 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)659 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
660   if (!E)
661     return;
662   if (auto *V = dyn_cast<til::Variable>(E)) {
663     if (!V->clangDecl())
664       V->setClangDecl(VD);
665   }
666 }
667 
668 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)669 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
670   maybeUpdateVD(E, VD);
671   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
672   CurrentLVarMap.makeWritable();
673   CurrentLVarMap.push_back(std::make_pair(VD, E));
674   return E;
675 }
676 
677 // Updates a current variable declaration.  (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)678 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
679   maybeUpdateVD(E, VD);
680   auto It = LVarIdxMap.find(VD);
681   if (It == LVarIdxMap.end()) {
682     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
683     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
684     return St;
685   }
686   CurrentLVarMap.makeWritable();
687   CurrentLVarMap.elem(It->second).second = E;
688   return E;
689 }
690 
691 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
692 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
693 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)694 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
695   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
696   assert(ArgIndex > 0 && ArgIndex < NPreds);
697 
698   til::SExpr *CurrE = CurrentLVarMap[i].second;
699   if (CurrE->block() == CurrentBB) {
700     // We already have a Phi node in the current block,
701     // so just add the new variable to the Phi node.
702     auto *Ph = dyn_cast<til::Phi>(CurrE);
703     assert(Ph && "Expecting Phi node.");
704     if (E)
705       Ph->values()[ArgIndex] = E;
706     return;
707   }
708 
709   // Make a new phi node: phi(..., E)
710   // All phi args up to the current index are set to the current value.
711   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
712   Ph->values().setValues(NPreds, nullptr);
713   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
714     Ph->values()[PIdx] = CurrE;
715   if (E)
716     Ph->values()[ArgIndex] = E;
717   Ph->setClangDecl(CurrentLVarMap[i].first);
718   // If E is from a back-edge, or either E or CurrE are incomplete, then
719   // mark this node as incomplete; we may need to remove it later.
720   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
721     Ph->setStatus(til::Phi::PH_Incomplete);
722 
723   // Add Phi node to current block, and update CurrentLVarMap[i]
724   CurrentArguments.push_back(Ph);
725   if (Ph->status() == til::Phi::PH_Incomplete)
726     IncompleteArgs.push_back(Ph);
727 
728   CurrentLVarMap.makeWritable();
729   CurrentLVarMap.elem(i).second = Ph;
730 }
731 
732 // Merge values from Map into the current variable map.
733 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)734 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
735   assert(CurrentBlockInfo && "Not processing a block!");
736 
737   if (!CurrentLVarMap.valid()) {
738     // Steal Map, using copy-on-write.
739     CurrentLVarMap = std::move(Map);
740     return;
741   }
742   if (CurrentLVarMap.sameAs(Map))
743     return;  // Easy merge: maps from different predecessors are unchanged.
744 
745   unsigned NPreds = CurrentBB->numPredecessors();
746   unsigned ESz = CurrentLVarMap.size();
747   unsigned MSz = Map.size();
748   unsigned Sz  = std::min(ESz, MSz);
749 
750   for (unsigned i = 0; i < Sz; ++i) {
751     if (CurrentLVarMap[i].first != Map[i].first) {
752       // We've reached the end of variables in common.
753       CurrentLVarMap.makeWritable();
754       CurrentLVarMap.downsize(i);
755       break;
756     }
757     if (CurrentLVarMap[i].second != Map[i].second)
758       makePhiNodeVar(i, NPreds, Map[i].second);
759   }
760   if (ESz > MSz) {
761     CurrentLVarMap.makeWritable();
762     CurrentLVarMap.downsize(Map.size());
763   }
764 }
765 
766 // Merge a back edge into the current variable map.
767 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()768 void SExprBuilder::mergeEntryMapBackEdge() {
769   // We don't have definitions for variables on the backedge, because we
770   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
771   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
772   // nodes will be marked as incomplete, and stripped out at the end.
773   //
774   // An Phi node is unnecessary if it only refers to itself and one other
775   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
776 
777   assert(CurrentBlockInfo && "Not processing a block!");
778 
779   if (CurrentBlockInfo->HasBackEdges)
780     return;
781   CurrentBlockInfo->HasBackEdges = true;
782 
783   CurrentLVarMap.makeWritable();
784   unsigned Sz = CurrentLVarMap.size();
785   unsigned NPreds = CurrentBB->numPredecessors();
786 
787   for (unsigned i = 0; i < Sz; ++i)
788     makePhiNodeVar(i, NPreds, nullptr);
789 }
790 
791 // Update the phi nodes that were initially created for a back edge
792 // once the variable definitions have been computed.
793 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)794 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
795   til::BasicBlock *BB = lookupBlock(Blk);
796   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
797   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
798 
799   for (til::SExpr *PE : BB->arguments()) {
800     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
801     assert(Ph && "Expecting Phi Node.");
802     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
803 
804     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
805     assert(E && "Couldn't find local variable for Phi node.");
806     Ph->values()[ArgIndex] = E;
807   }
808 }
809 
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)810 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
811                             const CFGBlock *First) {
812   // Perform initial setup operations.
813   unsigned NBlocks = Cfg->getNumBlockIDs();
814   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
815 
816   // allocate all basic blocks immediately, to handle forward references.
817   BBInfo.resize(NBlocks);
818   BlockMap.resize(NBlocks, nullptr);
819   // create map from clang blockID to til::BasicBlocks
820   for (auto *B : *Cfg) {
821     auto *BB = new (Arena) til::BasicBlock(Arena);
822     BB->reserveInstructions(B->size());
823     BlockMap[B->getBlockID()] = BB;
824   }
825 
826   CurrentBB = lookupBlock(&Cfg->getEntry());
827   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
828                                       : cast<FunctionDecl>(D)->parameters();
829   for (auto *Pm : Parms) {
830     QualType T = Pm->getType();
831     if (!T.isTrivialType(Pm->getASTContext()))
832       continue;
833 
834     // Add parameters to local variable map.
835     // FIXME: right now we emulate params with loads; that should be fixed.
836     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
837     til::SExpr *Ld = new (Arena) til::Load(Lp);
838     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
839     addVarDecl(Pm, V);
840   }
841 }
842 
enterCFGBlock(const CFGBlock * B)843 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
844   // Initialize TIL basic block and add it to the CFG.
845   CurrentBB = lookupBlock(B);
846   CurrentBB->reservePredecessors(B->pred_size());
847   Scfg->add(CurrentBB);
848 
849   CurrentBlockInfo = &BBInfo[B->getBlockID()];
850 
851   // CurrentLVarMap is moved to ExitMap on block exit.
852   // FIXME: the entry block will hold function parameters.
853   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
854 }
855 
handlePredecessor(const CFGBlock * Pred)856 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
857   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
858 
859   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
860   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
861   assert(PredInfo->UnprocessedSuccessors > 0);
862 
863   if (--PredInfo->UnprocessedSuccessors == 0)
864     mergeEntryMap(std::move(PredInfo->ExitMap));
865   else
866     mergeEntryMap(PredInfo->ExitMap.clone());
867 
868   ++CurrentBlockInfo->ProcessedPredecessors;
869 }
870 
handlePredecessorBackEdge(const CFGBlock * Pred)871 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
872   mergeEntryMapBackEdge();
873 }
874 
enterCFGBlockBody(const CFGBlock * B)875 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
876   // The merge*() methods have created arguments.
877   // Push those arguments onto the basic block.
878   CurrentBB->arguments().reserve(
879     static_cast<unsigned>(CurrentArguments.size()), Arena);
880   for (auto *A : CurrentArguments)
881     CurrentBB->addArgument(A);
882 }
883 
handleStatement(const Stmt * S)884 void SExprBuilder::handleStatement(const Stmt *S) {
885   til::SExpr *E = translate(S, nullptr);
886   addStatement(E, S);
887 }
888 
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)889 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
890                                         const CXXDestructorDecl *DD) {
891   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
892   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
893   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
894   til::SExpr *E = new (Arena) til::Call(Ap);
895   addStatement(E, nullptr);
896 }
897 
exitCFGBlockBody(const CFGBlock * B)898 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
899   CurrentBB->instructions().reserve(
900     static_cast<unsigned>(CurrentInstructions.size()), Arena);
901   for (auto *V : CurrentInstructions)
902     CurrentBB->addInstruction(V);
903 
904   // Create an appropriate terminator
905   unsigned N = B->succ_size();
906   auto It = B->succ_begin();
907   if (N == 1) {
908     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
909     // TODO: set index
910     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
911     auto *Tm = new (Arena) til::Goto(BB, Idx);
912     CurrentBB->setTerminator(Tm);
913   }
914   else if (N == 2) {
915     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
916     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
917     ++It;
918     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
919     // FIXME: make sure these aren't critical edges.
920     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
921     CurrentBB->setTerminator(Tm);
922   }
923 }
924 
handleSuccessor(const CFGBlock * Succ)925 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
926   ++CurrentBlockInfo->UnprocessedSuccessors;
927 }
928 
handleSuccessorBackEdge(const CFGBlock * Succ)929 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
930   mergePhiNodesBackEdge(Succ);
931   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
932 }
933 
exitCFGBlock(const CFGBlock * B)934 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
935   CurrentArguments.clear();
936   CurrentInstructions.clear();
937   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
938   CurrentBB = nullptr;
939   CurrentBlockInfo = nullptr;
940 }
941 
exitCFG(const CFGBlock * Last)942 void SExprBuilder::exitCFG(const CFGBlock *Last) {
943   for (auto *Ph : IncompleteArgs) {
944     if (Ph->status() == til::Phi::PH_Incomplete)
945       simplifyIncompleteArg(Ph);
946   }
947 
948   CurrentArguments.clear();
949   CurrentInstructions.clear();
950   IncompleteArgs.clear();
951 }
952 
953 /*
954 namespace {
955 
956 class TILPrinter :
957     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
958 
959 } // namespace
960 
961 namespace clang {
962 namespace threadSafety {
963 
964 void printSCFG(CFGWalker &Walker) {
965   llvm::BumpPtrAllocator Bpa;
966   til::MemRegionRef Arena(&Bpa);
967   SExprBuilder SxBuilder(Arena);
968   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
969   TILPrinter::print(Scfg, llvm::errs());
970 }
971 
972 } // namespace threadSafety
973 } // namespace clang
974 */
975