1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AggressiveAntiDepBreaker class, which
10 // implements register anti-dependence breaking during post-RA
11 // scheduling. It attempts to break all anti-dependencies within a
12 // block.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AggressiveAntiDepBreaker.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterClassInfo.h"
27 #include "llvm/CodeGen/ScheduleDAG.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/MachineValueType.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <utility>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "post-RA-sched"
42 
43 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
44 static cl::opt<int>
45 DebugDiv("agg-antidep-debugdiv",
46          cl::desc("Debug control for aggressive anti-dep breaker"),
47          cl::init(0), cl::Hidden);
48 
49 static cl::opt<int>
50 DebugMod("agg-antidep-debugmod",
51          cl::desc("Debug control for aggressive anti-dep breaker"),
52          cl::init(0), cl::Hidden);
53 
AggressiveAntiDepState(const unsigned TargetRegs,MachineBasicBlock * BB)54 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
55                                                MachineBasicBlock *BB)
56     : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
57       GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0),
58       DefIndices(TargetRegs, 0) {
59   const unsigned BBSize = BB->size();
60   for (unsigned i = 0; i < NumTargetRegs; ++i) {
61     // Initialize all registers to be in their own group. Initially we
62     // assign the register to the same-indexed GroupNode.
63     GroupNodeIndices[i] = i;
64     // Initialize the indices to indicate that no registers are live.
65     KillIndices[i] = ~0u;
66     DefIndices[i] = BBSize;
67   }
68 }
69 
GetGroup(unsigned Reg)70 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
71   unsigned Node = GroupNodeIndices[Reg];
72   while (GroupNodes[Node] != Node)
73     Node = GroupNodes[Node];
74 
75   return Node;
76 }
77 
GetGroupRegs(unsigned Group,std::vector<unsigned> & Regs,std::multimap<unsigned,AggressiveAntiDepState::RegisterReference> * RegRefs)78 void AggressiveAntiDepState::GetGroupRegs(
79   unsigned Group,
80   std::vector<unsigned> &Regs,
81   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
82 {
83   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
84     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
85       Regs.push_back(Reg);
86   }
87 }
88 
UnionGroups(unsigned Reg1,unsigned Reg2)89 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) {
90   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
91   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
92 
93   // find group for each register
94   unsigned Group1 = GetGroup(Reg1);
95   unsigned Group2 = GetGroup(Reg2);
96 
97   // if either group is 0, then that must become the parent
98   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
99   unsigned Other = (Parent == Group1) ? Group2 : Group1;
100   GroupNodes.at(Other) = Parent;
101   return Parent;
102 }
103 
LeaveGroup(unsigned Reg)104 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) {
105   // Create a new GroupNode for Reg. Reg's existing GroupNode must
106   // stay as is because there could be other GroupNodes referring to
107   // it.
108   unsigned idx = GroupNodes.size();
109   GroupNodes.push_back(idx);
110   GroupNodeIndices[Reg] = idx;
111   return idx;
112 }
113 
IsLive(unsigned Reg)114 bool AggressiveAntiDepState::IsLive(unsigned Reg) {
115   // KillIndex must be defined and DefIndex not defined for a register
116   // to be live.
117   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
118 }
119 
AggressiveAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI,TargetSubtargetInfo::RegClassVector & CriticalPathRCs)120 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
121     MachineFunction &MFi, const RegisterClassInfo &RCI,
122     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
123     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
124       TII(MF.getSubtarget().getInstrInfo()),
125       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) {
126   /* Collect a bitset of all registers that are only broken if they
127      are on the critical path. */
128   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
129     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
130     if (CriticalPathSet.none())
131       CriticalPathSet = CPSet;
132     else
133       CriticalPathSet |= CPSet;
134    }
135 
136    LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
137    LLVM_DEBUG(for (unsigned r
138                    : CriticalPathSet.set_bits()) dbgs()
139               << " " << printReg(r, TRI));
140    LLVM_DEBUG(dbgs() << '\n');
141 }
142 
~AggressiveAntiDepBreaker()143 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
144   delete State;
145 }
146 
StartBlock(MachineBasicBlock * BB)147 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
148   assert(!State);
149   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
150 
151   bool IsReturnBlock = BB->isReturnBlock();
152   std::vector<unsigned> &KillIndices = State->GetKillIndices();
153   std::vector<unsigned> &DefIndices = State->GetDefIndices();
154 
155   // Examine the live-in regs of all successors.
156   for (MachineBasicBlock *Succ : BB->successors())
157     for (const auto &LI : Succ->liveins()) {
158       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
159         unsigned Reg = *AI;
160         State->UnionGroups(Reg, 0);
161         KillIndices[Reg] = BB->size();
162         DefIndices[Reg] = ~0u;
163       }
164     }
165 
166   // Mark live-out callee-saved registers. In a return block this is
167   // all callee-saved registers. In non-return this is any
168   // callee-saved register that is not saved in the prolog.
169   const MachineFrameInfo &MFI = MF.getFrameInfo();
170   BitVector Pristine = MFI.getPristineRegs(MF);
171   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
172        ++I) {
173     unsigned Reg = *I;
174     if (!IsReturnBlock && !Pristine.test(Reg))
175       continue;
176     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
177       unsigned AliasReg = *AI;
178       State->UnionGroups(AliasReg, 0);
179       KillIndices[AliasReg] = BB->size();
180       DefIndices[AliasReg] = ~0u;
181     }
182   }
183 }
184 
FinishBlock()185 void AggressiveAntiDepBreaker::FinishBlock() {
186   delete State;
187   State = nullptr;
188 }
189 
Observe(MachineInstr & MI,unsigned Count,unsigned InsertPosIndex)190 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
191                                        unsigned InsertPosIndex) {
192   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
193 
194   std::set<unsigned> PassthruRegs;
195   GetPassthruRegs(MI, PassthruRegs);
196   PrescanInstruction(MI, Count, PassthruRegs);
197   ScanInstruction(MI, Count);
198 
199   LLVM_DEBUG(dbgs() << "Observe: ");
200   LLVM_DEBUG(MI.dump());
201   LLVM_DEBUG(dbgs() << "\tRegs:");
202 
203   std::vector<unsigned> &DefIndices = State->GetDefIndices();
204   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
205     // If Reg is current live, then mark that it can't be renamed as
206     // we don't know the extent of its live-range anymore (now that it
207     // has been scheduled). If it is not live but was defined in the
208     // previous schedule region, then set its def index to the most
209     // conservative location (i.e. the beginning of the previous
210     // schedule region).
211     if (State->IsLive(Reg)) {
212       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs()
213                  << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)
214                  << "->g0(region live-out)");
215       State->UnionGroups(Reg, 0);
216     } else if ((DefIndices[Reg] < InsertPosIndex)
217                && (DefIndices[Reg] >= Count)) {
218       DefIndices[Reg] = Count;
219     }
220   }
221   LLVM_DEBUG(dbgs() << '\n');
222 }
223 
IsImplicitDefUse(MachineInstr & MI,MachineOperand & MO)224 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
225                                                 MachineOperand &MO) {
226   if (!MO.isReg() || !MO.isImplicit())
227     return false;
228 
229   Register Reg = MO.getReg();
230   if (Reg == 0)
231     return false;
232 
233   MachineOperand *Op = nullptr;
234   if (MO.isDef())
235     Op = MI.findRegisterUseOperand(Reg, true);
236   else
237     Op = MI.findRegisterDefOperand(Reg);
238 
239   return(Op && Op->isImplicit());
240 }
241 
GetPassthruRegs(MachineInstr & MI,std::set<unsigned> & PassthruRegs)242 void AggressiveAntiDepBreaker::GetPassthruRegs(
243     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
244   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
245     MachineOperand &MO = MI.getOperand(i);
246     if (!MO.isReg()) continue;
247     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
248         IsImplicitDefUse(MI, MO)) {
249       const Register Reg = MO.getReg();
250       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
251            SubRegs.isValid(); ++SubRegs)
252         PassthruRegs.insert(*SubRegs);
253     }
254   }
255 }
256 
257 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
258 /// in SU that we want to consider for breaking.
AntiDepEdges(const SUnit * SU,std::vector<const SDep * > & Edges)259 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) {
260   SmallSet<unsigned, 4> RegSet;
261   for (const SDep &Pred : SU->Preds) {
262     if ((Pred.getKind() == SDep::Anti) || (Pred.getKind() == SDep::Output)) {
263       if (RegSet.insert(Pred.getReg()).second)
264         Edges.push_back(&Pred);
265     }
266   }
267 }
268 
269 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
270 /// critical path.
CriticalPathStep(const SUnit * SU)271 static const SUnit *CriticalPathStep(const SUnit *SU) {
272   const SDep *Next = nullptr;
273   unsigned NextDepth = 0;
274   // Find the predecessor edge with the greatest depth.
275   if (SU) {
276     for (const SDep &Pred : SU->Preds) {
277       const SUnit *PredSU = Pred.getSUnit();
278       unsigned PredLatency = Pred.getLatency();
279       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
280       // In the case of a latency tie, prefer an anti-dependency edge over
281       // other types of edges.
282       if (NextDepth < PredTotalLatency ||
283           (NextDepth == PredTotalLatency && Pred.getKind() == SDep::Anti)) {
284         NextDepth = PredTotalLatency;
285         Next = &Pred;
286       }
287     }
288   }
289 
290   return (Next) ? Next->getSUnit() : nullptr;
291 }
292 
HandleLastUse(unsigned Reg,unsigned KillIdx,const char * tag,const char * header,const char * footer)293 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
294                                              const char *tag,
295                                              const char *header,
296                                              const char *footer) {
297   std::vector<unsigned> &KillIndices = State->GetKillIndices();
298   std::vector<unsigned> &DefIndices = State->GetDefIndices();
299   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
300     RegRefs = State->GetRegRefs();
301 
302   // FIXME: We must leave subregisters of live super registers as live, so that
303   // we don't clear out the register tracking information for subregisters of
304   // super registers we're still tracking (and with which we're unioning
305   // subregister definitions).
306   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
307     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
308       LLVM_DEBUG(if (!header && footer) dbgs() << footer);
309       return;
310     }
311 
312   if (!State->IsLive(Reg)) {
313     KillIndices[Reg] = KillIdx;
314     DefIndices[Reg] = ~0u;
315     RegRefs.erase(Reg);
316     State->LeaveGroup(Reg);
317     LLVM_DEBUG(if (header) {
318       dbgs() << header << printReg(Reg, TRI);
319       header = nullptr;
320     });
321     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
322     // Repeat for subregisters. Note that we only do this if the superregister
323     // was not live because otherwise, regardless whether we have an explicit
324     // use of the subregister, the subregister's contents are needed for the
325     // uses of the superregister.
326     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
327       unsigned SubregReg = *SubRegs;
328       if (!State->IsLive(SubregReg)) {
329         KillIndices[SubregReg] = KillIdx;
330         DefIndices[SubregReg] = ~0u;
331         RegRefs.erase(SubregReg);
332         State->LeaveGroup(SubregReg);
333         LLVM_DEBUG(if (header) {
334           dbgs() << header << printReg(Reg, TRI);
335           header = nullptr;
336         });
337         LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g"
338                           << State->GetGroup(SubregReg) << tag);
339       }
340     }
341   }
342 
343   LLVM_DEBUG(if (!header && footer) dbgs() << footer);
344 }
345 
PrescanInstruction(MachineInstr & MI,unsigned Count,std::set<unsigned> & PassthruRegs)346 void AggressiveAntiDepBreaker::PrescanInstruction(
347     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
348   std::vector<unsigned> &DefIndices = State->GetDefIndices();
349   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
350     RegRefs = State->GetRegRefs();
351 
352   // Handle dead defs by simulating a last-use of the register just
353   // after the def. A dead def can occur because the def is truly
354   // dead, or because only a subregister is live at the def. If we
355   // don't do this the dead def will be incorrectly merged into the
356   // previous def.
357   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
358     MachineOperand &MO = MI.getOperand(i);
359     if (!MO.isReg() || !MO.isDef()) continue;
360     Register Reg = MO.getReg();
361     if (Reg == 0) continue;
362 
363     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
364   }
365 
366   LLVM_DEBUG(dbgs() << "\tDef Groups:");
367   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
368     MachineOperand &MO = MI.getOperand(i);
369     if (!MO.isReg() || !MO.isDef()) continue;
370     Register Reg = MO.getReg();
371     if (Reg == 0) continue;
372 
373     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
374                       << State->GetGroup(Reg));
375 
376     // If MI's defs have a special allocation requirement, don't allow
377     // any def registers to be changed. Also assume all registers
378     // defined in a call must not be changed (ABI). Inline assembly may
379     // reference either system calls or the register directly. Skip it until we
380     // can tell user specified registers from compiler-specified.
381     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
382         MI.isInlineAsm()) {
383       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
384       State->UnionGroups(Reg, 0);
385     }
386 
387     // Any aliased that are live at this point are completely or
388     // partially defined here, so group those aliases with Reg.
389     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
390       unsigned AliasReg = *AI;
391       if (State->IsLive(AliasReg)) {
392         State->UnionGroups(Reg, AliasReg);
393         LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via "
394                           << printReg(AliasReg, TRI) << ")");
395       }
396     }
397 
398     // Note register reference...
399     const TargetRegisterClass *RC = nullptr;
400     if (i < MI.getDesc().getNumOperands())
401       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
402     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
403     RegRefs.insert(std::make_pair(Reg, RR));
404   }
405 
406   LLVM_DEBUG(dbgs() << '\n');
407 
408   // Scan the register defs for this instruction and update
409   // live-ranges.
410   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
411     MachineOperand &MO = MI.getOperand(i);
412     if (!MO.isReg() || !MO.isDef()) continue;
413     Register Reg = MO.getReg();
414     if (Reg == 0) continue;
415     // Ignore KILLs and passthru registers for liveness...
416     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
417       continue;
418 
419     // Update def for Reg and aliases.
420     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
421       // We need to be careful here not to define already-live super registers.
422       // If the super register is already live, then this definition is not
423       // a definition of the whole super register (just a partial insertion
424       // into it). Earlier subregister definitions (which we've not yet visited
425       // because we're iterating bottom-up) need to be linked to the same group
426       // as this definition.
427       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
428         continue;
429 
430       DefIndices[*AI] = Count;
431     }
432   }
433 }
434 
ScanInstruction(MachineInstr & MI,unsigned Count)435 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
436                                                unsigned Count) {
437   LLVM_DEBUG(dbgs() << "\tUse Groups:");
438   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
439     RegRefs = State->GetRegRefs();
440 
441   // If MI's uses have special allocation requirement, don't allow
442   // any use registers to be changed. Also assume all registers
443   // used in a call must not be changed (ABI).
444   // Inline Assembly register uses also cannot be safely changed.
445   // FIXME: The issue with predicated instruction is more complex. We are being
446   // conservatively here because the kill markers cannot be trusted after
447   // if-conversion:
448   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
449   // ...
450   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
451   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
452   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
453   //
454   // The first R6 kill is not really a kill since it's killed by a predicated
455   // instruction which may not be executed. The second R6 def may or may not
456   // re-define R6 so it's not safe to change it since the last R6 use cannot be
457   // changed.
458   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
459                  TII->isPredicated(MI) || MI.isInlineAsm();
460 
461   // Scan the register uses for this instruction and update
462   // live-ranges, groups and RegRefs.
463   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464     MachineOperand &MO = MI.getOperand(i);
465     if (!MO.isReg() || !MO.isUse()) continue;
466     Register Reg = MO.getReg();
467     if (Reg == 0) continue;
468 
469     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
470                       << State->GetGroup(Reg));
471 
472     // It wasn't previously live but now it is, this is a kill. Forget
473     // the previous live-range information and start a new live-range
474     // for the register.
475     HandleLastUse(Reg, Count, "(last-use)");
476 
477     if (Special) {
478       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
479       State->UnionGroups(Reg, 0);
480     }
481 
482     // Note register reference...
483     const TargetRegisterClass *RC = nullptr;
484     if (i < MI.getDesc().getNumOperands())
485       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
486     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
487     RegRefs.insert(std::make_pair(Reg, RR));
488   }
489 
490   LLVM_DEBUG(dbgs() << '\n');
491 
492   // Form a group of all defs and uses of a KILL instruction to ensure
493   // that all registers are renamed as a group.
494   if (MI.isKill()) {
495     LLVM_DEBUG(dbgs() << "\tKill Group:");
496 
497     unsigned FirstReg = 0;
498     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
499       MachineOperand &MO = MI.getOperand(i);
500       if (!MO.isReg()) continue;
501       Register Reg = MO.getReg();
502       if (Reg == 0) continue;
503 
504       if (FirstReg != 0) {
505         LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI));
506         State->UnionGroups(FirstReg, Reg);
507       } else {
508         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
509         FirstReg = Reg;
510       }
511     }
512 
513     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
514   }
515 }
516 
GetRenameRegisters(unsigned Reg)517 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
518   BitVector BV(TRI->getNumRegs(), false);
519   bool first = true;
520 
521   // Check all references that need rewriting for Reg. For each, use
522   // the corresponding register class to narrow the set of registers
523   // that are appropriate for renaming.
524   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
525     const TargetRegisterClass *RC = Q.second.RC;
526     if (!RC) continue;
527 
528     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
529     if (first) {
530       BV |= RCBV;
531       first = false;
532     } else {
533       BV &= RCBV;
534     }
535 
536     LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
537   }
538 
539   return BV;
540 }
541 
FindSuitableFreeRegisters(unsigned AntiDepGroupIndex,RenameOrderType & RenameOrder,std::map<unsigned,unsigned> & RenameMap)542 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
543                                 unsigned AntiDepGroupIndex,
544                                 RenameOrderType& RenameOrder,
545                                 std::map<unsigned, unsigned> &RenameMap) {
546   std::vector<unsigned> &KillIndices = State->GetKillIndices();
547   std::vector<unsigned> &DefIndices = State->GetDefIndices();
548   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
549     RegRefs = State->GetRegRefs();
550 
551   // Collect all referenced registers in the same group as
552   // AntiDepReg. These all need to be renamed together if we are to
553   // break the anti-dependence.
554   std::vector<unsigned> Regs;
555   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
556   assert(!Regs.empty() && "Empty register group!");
557   if (Regs.empty())
558     return false;
559 
560   // Find the "superest" register in the group. At the same time,
561   // collect the BitVector of registers that can be used to rename
562   // each register.
563   LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
564                     << ":\n");
565   std::map<unsigned, BitVector> RenameRegisterMap;
566   unsigned SuperReg = 0;
567   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
568     unsigned Reg = Regs[i];
569     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
570       SuperReg = Reg;
571 
572     // If Reg has any references, then collect possible rename regs
573     if (RegRefs.count(Reg) > 0) {
574       LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":");
575 
576       BitVector &BV = RenameRegisterMap[Reg];
577       assert(BV.empty());
578       BV = GetRenameRegisters(Reg);
579 
580       LLVM_DEBUG({
581         dbgs() << " ::";
582         for (unsigned r : BV.set_bits())
583           dbgs() << " " << printReg(r, TRI);
584         dbgs() << "\n";
585       });
586     }
587   }
588 
589   // All group registers should be a subreg of SuperReg.
590   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
591     unsigned Reg = Regs[i];
592     if (Reg == SuperReg) continue;
593     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
594     // FIXME: remove this once PR18663 has been properly fixed. For now,
595     // return a conservative answer:
596     // assert(IsSub && "Expecting group subregister");
597     if (!IsSub)
598       return false;
599   }
600 
601 #ifndef NDEBUG
602   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
603   if (DebugDiv > 0) {
604     static int renamecnt = 0;
605     if (renamecnt++ % DebugDiv != DebugMod)
606       return false;
607 
608     dbgs() << "*** Performing rename " << printReg(SuperReg, TRI)
609            << " for debug ***\n";
610   }
611 #endif
612 
613   // Check each possible rename register for SuperReg in round-robin
614   // order. If that register is available, and the corresponding
615   // registers are available for the other group subregisters, then we
616   // can use those registers to rename.
617 
618   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
619   // check every use of the register and find the largest register class
620   // that can be used in all of them.
621   const TargetRegisterClass *SuperRC =
622     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
623 
624   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
625   if (Order.empty()) {
626     LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
627     return false;
628   }
629 
630   LLVM_DEBUG(dbgs() << "\tFind Registers:");
631 
632   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
633 
634   unsigned OrigR = RenameOrder[SuperRC];
635   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
636   unsigned R = OrigR;
637   do {
638     if (R == 0) R = Order.size();
639     --R;
640     const unsigned NewSuperReg = Order[R];
641     // Don't consider non-allocatable registers
642     if (!MRI.isAllocatable(NewSuperReg)) continue;
643     // Don't replace a register with itself.
644     if (NewSuperReg == SuperReg) continue;
645 
646     LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':');
647     RenameMap.clear();
648 
649     // For each referenced group register (which must be a SuperReg or
650     // a subregister of SuperReg), find the corresponding subregister
651     // of NewSuperReg and make sure it is free to be renamed.
652     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
653       unsigned Reg = Regs[i];
654       unsigned NewReg = 0;
655       if (Reg == SuperReg) {
656         NewReg = NewSuperReg;
657       } else {
658         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
659         if (NewSubRegIdx != 0)
660           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
661       }
662 
663       LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI));
664 
665       // Check if Reg can be renamed to NewReg.
666       if (!RenameRegisterMap[Reg].test(NewReg)) {
667         LLVM_DEBUG(dbgs() << "(no rename)");
668         goto next_super_reg;
669       }
670 
671       // If NewReg is dead and NewReg's most recent def is not before
672       // Regs's kill, it's safe to replace Reg with NewReg. We
673       // must also check all aliases of NewReg, because we can't define a
674       // register when any sub or super is already live.
675       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
676         LLVM_DEBUG(dbgs() << "(live)");
677         goto next_super_reg;
678       } else {
679         bool found = false;
680         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
681           unsigned AliasReg = *AI;
682           if (State->IsLive(AliasReg) ||
683               (KillIndices[Reg] > DefIndices[AliasReg])) {
684             LLVM_DEBUG(dbgs()
685                        << "(alias " << printReg(AliasReg, TRI) << " live)");
686             found = true;
687             break;
688           }
689         }
690         if (found)
691           goto next_super_reg;
692       }
693 
694       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
695       // defines 'NewReg' via an early-clobber operand.
696       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
697         MachineInstr *UseMI = Q.second.Operand->getParent();
698         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
699         if (Idx == -1)
700           continue;
701 
702         if (UseMI->getOperand(Idx).isEarlyClobber()) {
703           LLVM_DEBUG(dbgs() << "(ec)");
704           goto next_super_reg;
705         }
706       }
707 
708       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
709       // 'Reg' is an early-clobber define and that instruction also uses
710       // 'NewReg'.
711       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
712         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
713           continue;
714 
715         MachineInstr *DefMI = Q.second.Operand->getParent();
716         if (DefMI->readsRegister(NewReg, TRI)) {
717           LLVM_DEBUG(dbgs() << "(ec)");
718           goto next_super_reg;
719         }
720       }
721 
722       // Record that 'Reg' can be renamed to 'NewReg'.
723       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
724     }
725 
726     // If we fall-out here, then every register in the group can be
727     // renamed, as recorded in RenameMap.
728     RenameOrder.erase(SuperRC);
729     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
730     LLVM_DEBUG(dbgs() << "]\n");
731     return true;
732 
733   next_super_reg:
734     LLVM_DEBUG(dbgs() << ']');
735   } while (R != EndR);
736 
737   LLVM_DEBUG(dbgs() << '\n');
738 
739   // No registers are free and available!
740   return false;
741 }
742 
743 /// BreakAntiDependencies - Identifiy anti-dependencies within the
744 /// ScheduleDAG and break them by renaming registers.
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)745 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
746                               const std::vector<SUnit> &SUnits,
747                               MachineBasicBlock::iterator Begin,
748                               MachineBasicBlock::iterator End,
749                               unsigned InsertPosIndex,
750                               DbgValueVector &DbgValues) {
751   std::vector<unsigned> &KillIndices = State->GetKillIndices();
752   std::vector<unsigned> &DefIndices = State->GetDefIndices();
753   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
754     RegRefs = State->GetRegRefs();
755 
756   // The code below assumes that there is at least one instruction,
757   // so just duck out immediately if the block is empty.
758   if (SUnits.empty()) return 0;
759 
760   // For each regclass the next register to use for renaming.
761   RenameOrderType RenameOrder;
762 
763   // ...need a map from MI to SUnit.
764   std::map<MachineInstr *, const SUnit *> MISUnitMap;
765   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
766     const SUnit *SU = &SUnits[i];
767     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
768                                                                SU));
769   }
770 
771   // Track progress along the critical path through the SUnit graph as
772   // we walk the instructions. This is needed for regclasses that only
773   // break critical-path anti-dependencies.
774   const SUnit *CriticalPathSU = nullptr;
775   MachineInstr *CriticalPathMI = nullptr;
776   if (CriticalPathSet.any()) {
777     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
778       const SUnit *SU = &SUnits[i];
779       if (!CriticalPathSU ||
780           ((SU->getDepth() + SU->Latency) >
781            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
782         CriticalPathSU = SU;
783       }
784     }
785     assert(CriticalPathSU && "Failed to find SUnit critical path");
786     CriticalPathMI = CriticalPathSU->getInstr();
787   }
788 
789 #ifndef NDEBUG
790   LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
791   LLVM_DEBUG(dbgs() << "Available regs:");
792   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
793     if (!State->IsLive(Reg))
794       LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
795   }
796   LLVM_DEBUG(dbgs() << '\n');
797 #endif
798 
799   BitVector RegAliases(TRI->getNumRegs());
800 
801   // Attempt to break anti-dependence edges. Walk the instructions
802   // from the bottom up, tracking information about liveness as we go
803   // to help determine which registers are available.
804   unsigned Broken = 0;
805   unsigned Count = InsertPosIndex - 1;
806   for (MachineBasicBlock::iterator I = End, E = Begin;
807        I != E; --Count) {
808     MachineInstr &MI = *--I;
809 
810     if (MI.isDebugInstr())
811       continue;
812 
813     LLVM_DEBUG(dbgs() << "Anti: ");
814     LLVM_DEBUG(MI.dump());
815 
816     std::set<unsigned> PassthruRegs;
817     GetPassthruRegs(MI, PassthruRegs);
818 
819     // Process the defs in MI...
820     PrescanInstruction(MI, Count, PassthruRegs);
821 
822     // The dependence edges that represent anti- and output-
823     // dependencies that are candidates for breaking.
824     std::vector<const SDep *> Edges;
825     const SUnit *PathSU = MISUnitMap[&MI];
826     AntiDepEdges(PathSU, Edges);
827 
828     // If MI is not on the critical path, then we don't rename
829     // registers in the CriticalPathSet.
830     BitVector *ExcludeRegs = nullptr;
831     if (&MI == CriticalPathMI) {
832       CriticalPathSU = CriticalPathStep(CriticalPathSU);
833       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
834     } else if (CriticalPathSet.any()) {
835       ExcludeRegs = &CriticalPathSet;
836     }
837 
838     // Ignore KILL instructions (they form a group in ScanInstruction
839     // but don't cause any anti-dependence breaking themselves)
840     if (!MI.isKill()) {
841       // Attempt to break each anti-dependency...
842       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
843         const SDep *Edge = Edges[i];
844         SUnit *NextSU = Edge->getSUnit();
845 
846         if ((Edge->getKind() != SDep::Anti) &&
847             (Edge->getKind() != SDep::Output)) continue;
848 
849         unsigned AntiDepReg = Edge->getReg();
850         LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI));
851         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
852 
853         if (!MRI.isAllocatable(AntiDepReg)) {
854           // Don't break anti-dependencies on non-allocatable registers.
855           LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
856           continue;
857         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
858           // Don't break anti-dependencies for critical path registers
859           // if not on the critical path
860           LLVM_DEBUG(dbgs() << " (not critical-path)\n");
861           continue;
862         } else if (PassthruRegs.count(AntiDepReg) != 0) {
863           // If the anti-dep register liveness "passes-thru", then
864           // don't try to change it. It will be changed along with
865           // the use if required to break an earlier antidep.
866           LLVM_DEBUG(dbgs() << " (passthru)\n");
867           continue;
868         } else {
869           // No anti-dep breaking for implicit deps
870           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
871           assert(AntiDepOp && "Can't find index for defined register operand");
872           if (!AntiDepOp || AntiDepOp->isImplicit()) {
873             LLVM_DEBUG(dbgs() << " (implicit)\n");
874             continue;
875           }
876 
877           // If the SUnit has other dependencies on the SUnit that
878           // it anti-depends on, don't bother breaking the
879           // anti-dependency since those edges would prevent such
880           // units from being scheduled past each other
881           // regardless.
882           //
883           // Also, if there are dependencies on other SUnits with the
884           // same register as the anti-dependency, don't attempt to
885           // break it.
886           for (const SDep &Pred : PathSU->Preds) {
887             if (Pred.getSUnit() == NextSU ? (Pred.getKind() != SDep::Anti ||
888                                              Pred.getReg() != AntiDepReg)
889                                           : (Pred.getKind() == SDep::Data &&
890                                              Pred.getReg() == AntiDepReg)) {
891               AntiDepReg = 0;
892               break;
893             }
894           }
895           for (const SDep &Pred : PathSU->Preds) {
896             if ((Pred.getSUnit() == NextSU) && (Pred.getKind() != SDep::Anti) &&
897                 (Pred.getKind() != SDep::Output)) {
898               LLVM_DEBUG(dbgs() << " (real dependency)\n");
899               AntiDepReg = 0;
900               break;
901             } else if ((Pred.getSUnit() != NextSU) &&
902                        (Pred.getKind() == SDep::Data) &&
903                        (Pred.getReg() == AntiDepReg)) {
904               LLVM_DEBUG(dbgs() << " (other dependency)\n");
905               AntiDepReg = 0;
906               break;
907             }
908           }
909 
910           if (AntiDepReg == 0) continue;
911 
912           // If the definition of the anti-dependency register does not start
913           // a new live range, bail out. This can happen if the anti-dep
914           // register is a sub-register of another register whose live range
915           // spans over PathSU. In such case, PathSU defines only a part of
916           // the larger register.
917           RegAliases.reset();
918           for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
919             RegAliases.set(*AI);
920           for (SDep S : PathSU->Succs) {
921             SDep::Kind K = S.getKind();
922             if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
923               continue;
924             unsigned R = S.getReg();
925             if (!RegAliases[R])
926               continue;
927             if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
928               continue;
929             AntiDepReg = 0;
930             break;
931           }
932 
933           if (AntiDepReg == 0) continue;
934         }
935 
936         assert(AntiDepReg != 0);
937         if (AntiDepReg == 0) continue;
938 
939         // Determine AntiDepReg's register group.
940         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
941         if (GroupIndex == 0) {
942           LLVM_DEBUG(dbgs() << " (zero group)\n");
943           continue;
944         }
945 
946         LLVM_DEBUG(dbgs() << '\n');
947 
948         // Look for a suitable register to use to break the anti-dependence.
949         std::map<unsigned, unsigned> RenameMap;
950         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
951           LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
952                             << printReg(AntiDepReg, TRI) << ":");
953 
954           // Handle each group register...
955           for (const auto &P : RenameMap) {
956             unsigned CurrReg = P.first;
957             unsigned NewReg = P.second;
958 
959             LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->"
960                               << printReg(NewReg, TRI) << "("
961                               << RegRefs.count(CurrReg) << " refs)");
962 
963             // Update the references to the old register CurrReg to
964             // refer to the new register NewReg.
965             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
966               Q.second.Operand->setReg(NewReg);
967               // If the SU for the instruction being updated has debug
968               // information related to the anti-dependency register, make
969               // sure to update that as well.
970               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
971               if (!SU) continue;
972               UpdateDbgValues(DbgValues, Q.second.Operand->getParent(),
973                               AntiDepReg, NewReg);
974             }
975 
976             // We just went back in time and modified history; the
977             // liveness information for CurrReg is now inconsistent. Set
978             // the state as if it were dead.
979             State->UnionGroups(NewReg, 0);
980             RegRefs.erase(NewReg);
981             DefIndices[NewReg] = DefIndices[CurrReg];
982             KillIndices[NewReg] = KillIndices[CurrReg];
983 
984             State->UnionGroups(CurrReg, 0);
985             RegRefs.erase(CurrReg);
986             DefIndices[CurrReg] = KillIndices[CurrReg];
987             KillIndices[CurrReg] = ~0u;
988             assert(((KillIndices[CurrReg] == ~0u) !=
989                     (DefIndices[CurrReg] == ~0u)) &&
990                    "Kill and Def maps aren't consistent for AntiDepReg!");
991           }
992 
993           ++Broken;
994           LLVM_DEBUG(dbgs() << '\n');
995         }
996       }
997     }
998 
999     ScanInstruction(MI, Count);
1000   }
1001 
1002   return Broken;
1003 }
1004 
createAggressiveAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI,TargetSubtargetInfo::RegClassVector & CriticalPathRCs)1005 AntiDepBreaker *llvm::createAggressiveAntiDepBreaker(
1006     MachineFunction &MFi, const RegisterClassInfo &RCI,
1007     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) {
1008   return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs);
1009 }
1010