1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "CallGraphSort.h"
11 #include "Config.h"
12 #include "DLL.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
15 #include "MapFile.h"
16 #include "PDB.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
34 #include <algorithm>
35 #include <cstdio>
36 #include <map>
37 #include <memory>
38 #include <utility>
39 
40 using namespace llvm;
41 using namespace llvm::COFF;
42 using namespace llvm::object;
43 using namespace llvm::support;
44 using namespace llvm::support::endian;
45 using namespace lld;
46 using namespace lld::coff;
47 
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51         ; Copy cs to ds.
52         push cs
53         pop ds
54         ; Point ds:dx at the $-terminated string.
55         mov dx, str
56         ; Int 21/AH=09h: Write string to standard output.
57         mov ah, 0x9
58         int 0x21
59         ; Int 21/AH=4Ch: Exit with return code (in AL).
60         mov ax, 0x4C01
61         int 0x21
62 str:
63         db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
67 */
68 static unsigned char dosProgram[] = {
69   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
74 };
75 static_assert(sizeof(dosProgram) % 8 == 0,
76               "DOSProgram size must be multiple of 8");
77 
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
80 
81 static const int numberOfDataDirectory = 16;
82 
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
86 
getOutputSection() const87 OutputSection *Chunk::getOutputSection() const {
88   return osidx == 0 ? nullptr : outputSections[osidx - 1];
89 }
90 
clear()91 void OutputSection::clear() { outputSections.clear(); }
92 
93 namespace {
94 
95 class DebugDirectoryChunk : public NonSectionChunk {
96 public:
DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType,Chunk * >> & r,bool writeRepro)97   DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
98                       bool writeRepro)
99       : records(r), writeRepro(writeRepro) {}
100 
getSize() const101   size_t getSize() const override {
102     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
103   }
104 
writeTo(uint8_t * b) const105   void writeTo(uint8_t *b) const override {
106     auto *d = reinterpret_cast<debug_directory *>(b);
107 
108     for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
109       Chunk *c = record.second;
110       OutputSection *os = c->getOutputSection();
111       uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
112       fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
113       ++d;
114     }
115 
116     if (writeRepro) {
117       // FIXME: The COFF spec allows either a 0-sized entry to just say
118       // "the timestamp field is really a hash", or a 4-byte size field
119       // followed by that many bytes containing a longer hash (with the
120       // lowest 4 bytes usually being the timestamp in little-endian order).
121       // Consider storing the full 8 bytes computed by xxHash64 here.
122       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
123     }
124   }
125 
setTimeDateStamp(uint32_t timeDateStamp)126   void setTimeDateStamp(uint32_t timeDateStamp) {
127     for (support::ulittle32_t *tds : timeDateStamps)
128       *tds = timeDateStamp;
129   }
130 
131 private:
fillEntry(debug_directory * d,COFF::DebugType debugType,size_t size,uint64_t rva,uint64_t offs) const132   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
133                  uint64_t rva, uint64_t offs) const {
134     d->Characteristics = 0;
135     d->TimeDateStamp = 0;
136     d->MajorVersion = 0;
137     d->MinorVersion = 0;
138     d->Type = debugType;
139     d->SizeOfData = size;
140     d->AddressOfRawData = rva;
141     d->PointerToRawData = offs;
142 
143     timeDateStamps.push_back(&d->TimeDateStamp);
144   }
145 
146   mutable std::vector<support::ulittle32_t *> timeDateStamps;
147   const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
148   bool writeRepro;
149 };
150 
151 class CVDebugRecordChunk : public NonSectionChunk {
152 public:
getSize() const153   size_t getSize() const override {
154     return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
155   }
156 
writeTo(uint8_t * b) const157   void writeTo(uint8_t *b) const override {
158     // Save off the DebugInfo entry to backfill the file signature (build id)
159     // in Writer::writeBuildId
160     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
161 
162     // variable sized field (PDB Path)
163     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
164     if (!config->pdbAltPath.empty())
165       memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
166     p[config->pdbAltPath.size()] = '\0';
167   }
168 
169   mutable codeview::DebugInfo *buildId = nullptr;
170 };
171 
172 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
173 public:
ExtendedDllCharacteristicsChunk(uint32_t c)174   ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
175 
getSize() const176   size_t getSize() const override { return 4; }
177 
writeTo(uint8_t * buf) const178   void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
179 
180   uint32_t characteristics = 0;
181 };
182 
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey {
187 public:
188   StringRef name;
189   unsigned characteristics;
190 
operator <(const PartialSectionKey & other) const191   bool operator<(const PartialSectionKey &other) const {
192     int c = name.compare(other.name);
193     if (c == 1)
194       return false;
195     if (c == 0)
196       return characteristics < other.characteristics;
197     return true;
198   }
199 };
200 
201 // The writer writes a SymbolTable result to a file.
202 class Writer {
203 public:
Writer()204   Writer() : buffer(errorHandler().outputBuffer) {}
205   void run();
206 
207 private:
208   void createSections();
209   void createMiscChunks();
210   void createImportTables();
211   void appendImportThunks();
212   void locateImportTables();
213   void createExportTable();
214   void mergeSections();
215   void removeUnusedSections();
216   void assignAddresses();
217   void finalizeAddresses();
218   void removeEmptySections();
219   void assignOutputSectionIndices();
220   void createSymbolAndStringTable();
221   void openFile(StringRef outputPath);
222   template <typename PEHeaderTy> void writeHeader();
223   void createSEHTable();
224   void createRuntimePseudoRelocs();
225   void insertCtorDtorSymbols();
226   void createGuardCFTables();
227   void markSymbolsForRVATable(ObjFile *file,
228                               ArrayRef<SectionChunk *> symIdxChunks,
229                               SymbolRVASet &tableSymbols);
230   void getSymbolsFromSections(ObjFile *file,
231                               ArrayRef<SectionChunk *> symIdxChunks,
232                               std::vector<Symbol *> &symbols);
233   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
234                         StringRef countSym, bool hasFlag=false);
235   void setSectionPermissions();
236   void writeSections();
237   void writeBuildId();
238   void sortSections();
239   void sortExceptionTable();
240   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
241   void addSyntheticIdata();
242   void fixPartialSectionChars(StringRef name, uint32_t chars);
243   bool fixGnuImportChunks();
244   void fixTlsAlignment();
245   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
246   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
247 
248   llvm::Optional<coff_symbol16> createSymbol(Defined *d);
249   size_t addEntryToStringTable(StringRef str);
250 
251   OutputSection *findSection(StringRef name);
252   void addBaserels();
253   void addBaserelBlocks(std::vector<Baserel> &v);
254 
255   uint32_t getSizeOfInitializedData();
256 
257   std::unique_ptr<FileOutputBuffer> &buffer;
258   std::map<PartialSectionKey, PartialSection *> partialSections;
259   std::vector<char> strtab;
260   std::vector<llvm::object::coff_symbol16> outputSymtab;
261   IdataContents idata;
262   Chunk *importTableStart = nullptr;
263   uint64_t importTableSize = 0;
264   Chunk *edataStart = nullptr;
265   Chunk *edataEnd = nullptr;
266   Chunk *iatStart = nullptr;
267   uint64_t iatSize = 0;
268   DelayLoadContents delayIdata;
269   EdataContents edata;
270   bool setNoSEHCharacteristic = false;
271   uint32_t tlsAlignment = 0;
272 
273   DebugDirectoryChunk *debugDirectory = nullptr;
274   std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
275   CVDebugRecordChunk *buildId = nullptr;
276   ArrayRef<uint8_t> sectionTable;
277 
278   uint64_t fileSize;
279   uint32_t pointerToSymbolTable = 0;
280   uint64_t sizeOfImage;
281   uint64_t sizeOfHeaders;
282 
283   OutputSection *textSec;
284   OutputSection *rdataSec;
285   OutputSection *buildidSec;
286   OutputSection *dataSec;
287   OutputSection *pdataSec;
288   OutputSection *idataSec;
289   OutputSection *edataSec;
290   OutputSection *didatSec;
291   OutputSection *rsrcSec;
292   OutputSection *relocSec;
293   OutputSection *ctorsSec;
294   OutputSection *dtorsSec;
295 
296   // The first and last .pdata sections in the output file.
297   //
298   // We need to keep track of the location of .pdata in whichever section it
299   // gets merged into so that we can sort its contents and emit a correct data
300   // directory entry for the exception table. This is also the case for some
301   // other sections (such as .edata) but because the contents of those sections
302   // are entirely linker-generated we can keep track of their locations using
303   // the chunks that the linker creates. All .pdata chunks come from input
304   // files, so we need to keep track of them separately.
305   Chunk *firstPdata = nullptr;
306   Chunk *lastPdata;
307 };
308 } // anonymous namespace
309 
310 static Timer codeLayoutTimer("Code Layout", Timer::root());
311 static Timer diskCommitTimer("Commit Output File", Timer::root());
312 
writeResult()313 void lld::coff::writeResult() { Writer().run(); }
314 
addChunk(Chunk * c)315 void OutputSection::addChunk(Chunk *c) {
316   chunks.push_back(c);
317 }
318 
insertChunkAtStart(Chunk * c)319 void OutputSection::insertChunkAtStart(Chunk *c) {
320   chunks.insert(chunks.begin(), c);
321 }
322 
setPermissions(uint32_t c)323 void OutputSection::setPermissions(uint32_t c) {
324   header.Characteristics &= ~permMask;
325   header.Characteristics |= c;
326 }
327 
merge(OutputSection * other)328 void OutputSection::merge(OutputSection *other) {
329   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
330   other->chunks.clear();
331   contribSections.insert(contribSections.end(), other->contribSections.begin(),
332                          other->contribSections.end());
333   other->contribSections.clear();
334 }
335 
336 // Write the section header to a given buffer.
writeHeaderTo(uint8_t * buf)337 void OutputSection::writeHeaderTo(uint8_t *buf) {
338   auto *hdr = reinterpret_cast<coff_section *>(buf);
339   *hdr = header;
340   if (stringTableOff) {
341     // If name is too long, write offset into the string table as a name.
342     sprintf(hdr->Name, "/%d", stringTableOff);
343   } else {
344     assert(!config->debug || name.size() <= COFF::NameSize ||
345            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
346     strncpy(hdr->Name, name.data(),
347             std::min(name.size(), (size_t)COFF::NameSize));
348   }
349 }
350 
addContributingPartialSection(PartialSection * sec)351 void OutputSection::addContributingPartialSection(PartialSection *sec) {
352   contribSections.push_back(sec);
353 }
354 
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
isInRange(uint16_t relType,uint64_t s,uint64_t p,int margin)357 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
358   if (config->machine == ARMNT) {
359     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
360     switch (relType) {
361     case IMAGE_REL_ARM_BRANCH20T:
362       return isInt<21>(diff);
363     case IMAGE_REL_ARM_BRANCH24T:
364     case IMAGE_REL_ARM_BLX23T:
365       return isInt<25>(diff);
366     default:
367       return true;
368     }
369   } else if (config->machine == ARM64) {
370     int64_t diff = AbsoluteDifference(s, p) + margin;
371     switch (relType) {
372     case IMAGE_REL_ARM64_BRANCH26:
373       return isInt<28>(diff);
374     case IMAGE_REL_ARM64_BRANCH19:
375       return isInt<21>(diff);
376     case IMAGE_REL_ARM64_BRANCH14:
377       return isInt<16>(diff);
378     default:
379       return true;
380     }
381   } else {
382     llvm_unreachable("Unexpected architecture");
383   }
384 }
385 
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair<Defined *, bool>
getThunk(DenseMap<uint64_t,Defined * > & lastThunks,Defined * target,uint64_t p,uint16_t type,int margin)389 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
390          uint16_t type, int margin) {
391   Defined *&lastThunk = lastThunks[target->getRVA()];
392   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
393     return {lastThunk, false};
394   Chunk *c;
395   switch (config->machine) {
396   case ARMNT:
397     c = make<RangeExtensionThunkARM>(target);
398     break;
399   case ARM64:
400     c = make<RangeExtensionThunkARM64>(target);
401     break;
402   default:
403     llvm_unreachable("Unexpected architecture");
404   }
405   Defined *d = make<DefinedSynthetic>("", c);
406   lastThunk = d;
407   return {d, true};
408 }
409 
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
417 //
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
createThunks(OutputSection * os,int margin)421 static bool createThunks(OutputSection *os, int margin) {
422   bool addressesChanged = false;
423   DenseMap<uint64_t, Defined *> lastThunks;
424   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
425   size_t thunksSize = 0;
426   // Recheck Chunks.size() each iteration, since we can insert more
427   // elements into it.
428   for (size_t i = 0; i != os->chunks.size(); ++i) {
429     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
430     if (!sc)
431       continue;
432     size_t thunkInsertionSpot = i + 1;
433 
434     // Try to get a good enough estimate of where new thunks will be placed.
435     // Offset this by the size of the new thunks added so far, to make the
436     // estimate slightly better.
437     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
438     ObjFile *file = sc->file;
439     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
440     ArrayRef<coff_relocation> originalRelocs =
441         file->getCOFFObj()->getRelocations(sc->header);
442     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
443       const coff_relocation &rel = originalRelocs[j];
444       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
445 
446       // The estimate of the source address P should be pretty accurate,
447       // but we don't know whether the target Symbol address should be
448       // offset by thunksSize or not (or by some of thunksSize but not all of
449       // it), giving us some uncertainty once we have added one thunk.
450       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
451 
452       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
453       if (!sym)
454         continue;
455 
456       uint64_t s = sym->getRVA();
457 
458       if (isInRange(rel.Type, s, p, margin))
459         continue;
460 
461       // If the target isn't in range, hook it up to an existing or new
462       // thunk.
463       Defined *thunk;
464       bool wasNew;
465       std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
466       if (wasNew) {
467         Chunk *thunkChunk = thunk->getChunk();
468         thunkChunk->setRVA(
469             thunkInsertionRVA); // Estimate of where it will be located.
470         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
471         thunkInsertionSpot++;
472         thunksSize += thunkChunk->getSize();
473         thunkInsertionRVA += thunkChunk->getSize();
474         addressesChanged = true;
475       }
476 
477       // To redirect the relocation, add a symbol to the parent object file's
478       // symbol table, and replace the relocation symbol table index with the
479       // new index.
480       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
481       uint32_t &thunkSymbolIndex = insertion.first->second;
482       if (insertion.second)
483         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
484       relocReplacements.push_back({j, thunkSymbolIndex});
485     }
486 
487     // Get a writable copy of this section's relocations so they can be
488     // modified. If the relocations point into the object file, allocate new
489     // memory. Otherwise, this must be previously allocated memory that can be
490     // modified in place.
491     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
492     MutableArrayRef<coff_relocation> newRelocs;
493     if (originalRelocs.data() == curRelocs.data()) {
494       newRelocs = makeMutableArrayRef(
495           bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
496           originalRelocs.size());
497     } else {
498       newRelocs = makeMutableArrayRef(
499           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
500     }
501 
502     // Copy each relocation, but replace the symbol table indices which need
503     // thunks.
504     auto nextReplacement = relocReplacements.begin();
505     auto endReplacement = relocReplacements.end();
506     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
507       newRelocs[i] = originalRelocs[i];
508       if (nextReplacement != endReplacement && nextReplacement->first == i) {
509         newRelocs[i].SymbolTableIndex = nextReplacement->second;
510         ++nextReplacement;
511       }
512     }
513 
514     sc->setRelocs(newRelocs);
515   }
516   return addressesChanged;
517 }
518 
519 // Verify that all relocations are in range, with no extra margin requirements.
verifyRanges(const std::vector<Chunk * > chunks)520 static bool verifyRanges(const std::vector<Chunk *> chunks) {
521   for (Chunk *c : chunks) {
522     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
523     if (!sc)
524       continue;
525 
526     ArrayRef<coff_relocation> relocs = sc->getRelocs();
527     for (size_t j = 0, e = relocs.size(); j < e; ++j) {
528       const coff_relocation &rel = relocs[j];
529       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
530 
531       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
532       if (!sym)
533         continue;
534 
535       uint64_t p = sc->getRVA() + rel.VirtualAddress;
536       uint64_t s = sym->getRVA();
537 
538       if (!isInRange(rel.Type, s, p, 0))
539         return false;
540     }
541   }
542   return true;
543 }
544 
545 // Assign addresses and add thunks if necessary.
finalizeAddresses()546 void Writer::finalizeAddresses() {
547   assignAddresses();
548   if (config->machine != ARMNT && config->machine != ARM64)
549     return;
550 
551   size_t origNumChunks = 0;
552   for (OutputSection *sec : outputSections) {
553     sec->origChunks = sec->chunks;
554     origNumChunks += sec->chunks.size();
555   }
556 
557   int pass = 0;
558   int margin = 1024 * 100;
559   while (true) {
560     // First check whether we need thunks at all, or if the previous pass of
561     // adding them turned out ok.
562     bool rangesOk = true;
563     size_t numChunks = 0;
564     for (OutputSection *sec : outputSections) {
565       if (!verifyRanges(sec->chunks)) {
566         rangesOk = false;
567         break;
568       }
569       numChunks += sec->chunks.size();
570     }
571     if (rangesOk) {
572       if (pass > 0)
573         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
574             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
575       return;
576     }
577 
578     if (pass >= 10)
579       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
580 
581     if (pass > 0) {
582       // If the previous pass didn't work out, reset everything back to the
583       // original conditions before retrying with a wider margin. This should
584       // ideally never happen under real circumstances.
585       for (OutputSection *sec : outputSections)
586         sec->chunks = sec->origChunks;
587       margin *= 2;
588     }
589 
590     // Try adding thunks everywhere where it is needed, with a margin
591     // to avoid things going out of range due to the added thunks.
592     bool addressesChanged = false;
593     for (OutputSection *sec : outputSections)
594       addressesChanged |= createThunks(sec, margin);
595     // If the verification above thought we needed thunks, we should have
596     // added some.
597     assert(addressesChanged);
598     (void)addressesChanged;
599 
600     // Recalculate the layout for the whole image (and verify the ranges at
601     // the start of the next round).
602     assignAddresses();
603 
604     pass++;
605   }
606 }
607 
608 // The main function of the writer.
run()609 void Writer::run() {
610   ScopedTimer t1(codeLayoutTimer);
611 
612   createImportTables();
613   createSections();
614   appendImportThunks();
615   // Import thunks must be added before the Control Flow Guard tables are added.
616   createMiscChunks();
617   createExportTable();
618   mergeSections();
619   removeUnusedSections();
620   finalizeAddresses();
621   removeEmptySections();
622   assignOutputSectionIndices();
623   setSectionPermissions();
624   createSymbolAndStringTable();
625 
626   if (fileSize > UINT32_MAX)
627     fatal("image size (" + Twine(fileSize) + ") " +
628         "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
629 
630   openFile(config->outputFile);
631   if (config->is64()) {
632     writeHeader<pe32plus_header>();
633   } else {
634     writeHeader<pe32_header>();
635   }
636   writeSections();
637   sortExceptionTable();
638 
639   // Fix up the alignment in the TLS Directory's characteristic field,
640   // if a specific alignment value is needed
641   if (tlsAlignment)
642     fixTlsAlignment();
643 
644   t1.stop();
645 
646   if (!config->pdbPath.empty() && config->debug) {
647     assert(buildId);
648     createPDB(symtab, outputSections, sectionTable, buildId->buildId);
649   }
650   writeBuildId();
651 
652   writeLLDMapFile(outputSections);
653   writeMapFile(outputSections);
654 
655   if (errorCount())
656     return;
657 
658   ScopedTimer t2(diskCommitTimer);
659   if (auto e = buffer->commit())
660     fatal("failed to write the output file: " + toString(std::move(e)));
661 }
662 
getOutputSectionName(StringRef name)663 static StringRef getOutputSectionName(StringRef name) {
664   StringRef s = name.split('$').first;
665 
666   // Treat a later period as a separator for MinGW, for sections like
667   // ".ctors.01234".
668   return s.substr(0, s.find('.', 1));
669 }
670 
671 // For /order.
sortBySectionOrder(std::vector<Chunk * > & chunks)672 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
673   auto getPriority = [](const Chunk *c) {
674     if (auto *sec = dyn_cast<SectionChunk>(c))
675       if (sec->sym)
676         return config->order.lookup(sec->sym->getName());
677     return 0;
678   };
679 
680   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
681     return getPriority(a) < getPriority(b);
682   });
683 }
684 
685 // Change the characteristics of existing PartialSections that belong to the
686 // section Name to Chars.
fixPartialSectionChars(StringRef name,uint32_t chars)687 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
688   for (auto it : partialSections) {
689     PartialSection *pSec = it.second;
690     StringRef curName = pSec->name;
691     if (!curName.consume_front(name) ||
692         (!curName.empty() && !curName.startswith("$")))
693       continue;
694     if (pSec->characteristics == chars)
695       continue;
696     PartialSection *destSec = createPartialSection(pSec->name, chars);
697     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
698                            pSec->chunks.end());
699     pSec->chunks.clear();
700   }
701 }
702 
703 // Sort concrete section chunks from GNU import libraries.
704 //
705 // GNU binutils doesn't use short import files, but instead produces import
706 // libraries that consist of object files, with section chunks for the .idata$*
707 // sections. These are linked just as regular static libraries. Each import
708 // library consists of one header object, one object file for every imported
709 // symbol, and one trailer object. In order for the .idata tables/lists to
710 // be formed correctly, the section chunks within each .idata$* section need
711 // to be grouped by library, and sorted alphabetically within each library
712 // (which makes sure the header comes first and the trailer last).
fixGnuImportChunks()713 bool Writer::fixGnuImportChunks() {
714   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
715 
716   // Make sure all .idata$* section chunks are mapped as RDATA in order to
717   // be sorted into the same sections as our own synthesized .idata chunks.
718   fixPartialSectionChars(".idata", rdata);
719 
720   bool hasIdata = false;
721   // Sort all .idata$* chunks, grouping chunks from the same library,
722   // with alphabetical ordering of the object fils within a library.
723   for (auto it : partialSections) {
724     PartialSection *pSec = it.second;
725     if (!pSec->name.startswith(".idata"))
726       continue;
727 
728     if (!pSec->chunks.empty())
729       hasIdata = true;
730     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
731       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
732       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
733       if (!sc1 || !sc2) {
734         // if SC1, order them ascending. If SC2 or both null,
735         // S is not less than T.
736         return sc1 != nullptr;
737       }
738       // Make a string with "libraryname/objectfile" for sorting, achieving
739       // both grouping by library and sorting of objects within a library,
740       // at once.
741       std::string key1 =
742           (sc1->file->parentName + "/" + sc1->file->getName()).str();
743       std::string key2 =
744           (sc2->file->parentName + "/" + sc2->file->getName()).str();
745       return key1 < key2;
746     });
747   }
748   return hasIdata;
749 }
750 
751 // Add generated idata chunks, for imported symbols and DLLs, and a
752 // terminator in .idata$2.
addSyntheticIdata()753 void Writer::addSyntheticIdata() {
754   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
755   idata.create();
756 
757   // Add the .idata content in the right section groups, to allow
758   // chunks from other linked in object files to be grouped together.
759   // See Microsoft PE/COFF spec 5.4 for details.
760   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
761     PartialSection *pSec = createPartialSection(n, rdata);
762     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
763   };
764 
765   // The loader assumes a specific order of data.
766   // Add each type in the correct order.
767   add(".idata$2", idata.dirs);
768   add(".idata$4", idata.lookups);
769   add(".idata$5", idata.addresses);
770   if (!idata.hints.empty())
771     add(".idata$6", idata.hints);
772   add(".idata$7", idata.dllNames);
773 }
774 
775 // Locate the first Chunk and size of the import directory list and the
776 // IAT.
locateImportTables()777 void Writer::locateImportTables() {
778   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
779 
780   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
781     if (!importDirs->chunks.empty())
782       importTableStart = importDirs->chunks.front();
783     for (Chunk *c : importDirs->chunks)
784       importTableSize += c->getSize();
785   }
786 
787   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
788     if (!importAddresses->chunks.empty())
789       iatStart = importAddresses->chunks.front();
790     for (Chunk *c : importAddresses->chunks)
791       iatSize += c->getSize();
792   }
793 }
794 
795 // Return whether a SectionChunk's suffix (the dollar and any trailing
796 // suffix) should be removed and sorted into the main suffixless
797 // PartialSection.
shouldStripSectionSuffix(SectionChunk * sc,StringRef name)798 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
799   // On MinGW, comdat groups are formed by putting the comdat group name
800   // after the '$' in the section name. For .eh_frame$<symbol>, that must
801   // still be sorted before the .eh_frame trailer from crtend.o, thus just
802   // strip the section name trailer. For other sections, such as
803   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
804   // ".tls$"), they must be strictly sorted after .tls. And for the
805   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
806   // suffix for sorting. Thus, to play it safe, only strip the suffix for
807   // the standard sections.
808   if (!config->mingw)
809     return false;
810   if (!sc || !sc->isCOMDAT())
811     return false;
812   return name.startswith(".text$") || name.startswith(".data$") ||
813          name.startswith(".rdata$") || name.startswith(".pdata$") ||
814          name.startswith(".xdata$") || name.startswith(".eh_frame$");
815 }
816 
sortSections()817 void Writer::sortSections() {
818   if (!config->callGraphProfile.empty()) {
819     DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
820     for (auto it : order) {
821       if (DefinedRegular *sym = it.first->sym)
822         config->order[sym->getName()] = it.second;
823     }
824   }
825   if (!config->order.empty())
826     for (auto it : partialSections)
827       sortBySectionOrder(it.second->chunks);
828 }
829 
830 // Create output section objects and add them to OutputSections.
createSections()831 void Writer::createSections() {
832   // First, create the builtin sections.
833   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
834   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
835   const uint32_t code = IMAGE_SCN_CNT_CODE;
836   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
837   const uint32_t r = IMAGE_SCN_MEM_READ;
838   const uint32_t w = IMAGE_SCN_MEM_WRITE;
839   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
840 
841   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
842   auto createSection = [&](StringRef name, uint32_t outChars) {
843     OutputSection *&sec = sections[{name, outChars}];
844     if (!sec) {
845       sec = make<OutputSection>(name, outChars);
846       outputSections.push_back(sec);
847     }
848     return sec;
849   };
850 
851   // Try to match the section order used by link.exe.
852   textSec = createSection(".text", code | r | x);
853   createSection(".bss", bss | r | w);
854   rdataSec = createSection(".rdata", data | r);
855   buildidSec = createSection(".buildid", data | r);
856   dataSec = createSection(".data", data | r | w);
857   pdataSec = createSection(".pdata", data | r);
858   idataSec = createSection(".idata", data | r);
859   edataSec = createSection(".edata", data | r);
860   didatSec = createSection(".didat", data | r);
861   rsrcSec = createSection(".rsrc", data | r);
862   relocSec = createSection(".reloc", data | discardable | r);
863   ctorsSec = createSection(".ctors", data | r | w);
864   dtorsSec = createSection(".dtors", data | r | w);
865 
866   // Then bin chunks by name and output characteristics.
867   for (Chunk *c : symtab->getChunks()) {
868     auto *sc = dyn_cast<SectionChunk>(c);
869     if (sc && !sc->live) {
870       if (config->verbose)
871         sc->printDiscardedMessage();
872       continue;
873     }
874     StringRef name = c->getSectionName();
875     if (shouldStripSectionSuffix(sc, name))
876       name = name.split('$').first;
877 
878     if (name.startswith(".tls"))
879       tlsAlignment = std::max(tlsAlignment, c->getAlignment());
880 
881     PartialSection *pSec = createPartialSection(name,
882                                                 c->getOutputCharacteristics());
883     pSec->chunks.push_back(c);
884   }
885 
886   fixPartialSectionChars(".rsrc", data | r);
887   fixPartialSectionChars(".edata", data | r);
888   // Even in non MinGW cases, we might need to link against GNU import
889   // libraries.
890   bool hasIdata = fixGnuImportChunks();
891   if (!idata.empty())
892     hasIdata = true;
893 
894   if (hasIdata)
895     addSyntheticIdata();
896 
897   sortSections();
898 
899   if (hasIdata)
900     locateImportTables();
901 
902   // Then create an OutputSection for each section.
903   // '$' and all following characters in input section names are
904   // discarded when determining output section. So, .text$foo
905   // contributes to .text, for example. See PE/COFF spec 3.2.
906   for (auto it : partialSections) {
907     PartialSection *pSec = it.second;
908     StringRef name = getOutputSectionName(pSec->name);
909     uint32_t outChars = pSec->characteristics;
910 
911     if (name == ".CRT") {
912       // In link.exe, there is a special case for the I386 target where .CRT
913       // sections are treated as if they have output characteristics DATA | R if
914       // their characteristics are DATA | R | W. This implements the same
915       // special case for all architectures.
916       outChars = data | r;
917 
918       log("Processing section " + pSec->name + " -> " + name);
919 
920       sortCRTSectionChunks(pSec->chunks);
921     }
922 
923     OutputSection *sec = createSection(name, outChars);
924     for (Chunk *c : pSec->chunks)
925       sec->addChunk(c);
926 
927     sec->addContributingPartialSection(pSec);
928   }
929 
930   // Finally, move some output sections to the end.
931   auto sectionOrder = [&](const OutputSection *s) {
932     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
933     // because the loader cannot handle holes. Stripping can remove other
934     // discardable ones than .reloc, which is first of them (created early).
935     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
936       return 2;
937     // .rsrc should come at the end of the non-discardable sections because its
938     // size may change by the Win32 UpdateResources() function, causing
939     // subsequent sections to move (see https://crbug.com/827082).
940     if (s == rsrcSec)
941       return 1;
942     return 0;
943   };
944   llvm::stable_sort(outputSections,
945                     [&](const OutputSection *s, const OutputSection *t) {
946                       return sectionOrder(s) < sectionOrder(t);
947                     });
948 }
949 
createMiscChunks()950 void Writer::createMiscChunks() {
951   for (MergeChunk *p : MergeChunk::instances) {
952     if (p) {
953       p->finalizeContents();
954       rdataSec->addChunk(p);
955     }
956   }
957 
958   // Create thunks for locally-dllimported symbols.
959   if (!symtab->localImportChunks.empty()) {
960     for (Chunk *c : symtab->localImportChunks)
961       rdataSec->addChunk(c);
962   }
963 
964   // Create Debug Information Chunks
965   OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
966   if (config->debug || config->repro || config->cetCompat) {
967     debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
968     debugDirectory->setAlignment(4);
969     debugInfoSec->addChunk(debugDirectory);
970   }
971 
972   if (config->debug) {
973     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
974     // output a PDB no matter what, and this chunk provides the only means of
975     // allowing a debugger to match a PDB and an executable.  So we need it even
976     // if we're ultimately not going to write CodeView data to the PDB.
977     buildId = make<CVDebugRecordChunk>();
978     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
979   }
980 
981   if (config->cetCompat) {
982     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
983                             make<ExtendedDllCharacteristicsChunk>(
984                                 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
985   }
986 
987   // Align and add each chunk referenced by the debug data directory.
988   for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
989     r.second->setAlignment(4);
990     debugInfoSec->addChunk(r.second);
991   }
992 
993   // Create SEH table. x86-only.
994   if (config->safeSEH)
995     createSEHTable();
996 
997   // Create /guard:cf tables if requested.
998   if (config->guardCF != GuardCFLevel::Off)
999     createGuardCFTables();
1000 
1001   if (config->autoImport)
1002     createRuntimePseudoRelocs();
1003 
1004   if (config->mingw)
1005     insertCtorDtorSymbols();
1006 }
1007 
1008 // Create .idata section for the DLL-imported symbol table.
1009 // The format of this section is inherently Windows-specific.
1010 // IdataContents class abstracted away the details for us,
1011 // so we just let it create chunks and add them to the section.
createImportTables()1012 void Writer::createImportTables() {
1013   // Initialize DLLOrder so that import entries are ordered in
1014   // the same order as in the command line. (That affects DLL
1015   // initialization order, and this ordering is MSVC-compatible.)
1016   for (ImportFile *file : ImportFile::instances) {
1017     if (!file->live)
1018       continue;
1019 
1020     std::string dll = StringRef(file->dllName).lower();
1021     if (config->dllOrder.count(dll) == 0)
1022       config->dllOrder[dll] = config->dllOrder.size();
1023 
1024     if (file->impSym && !isa<DefinedImportData>(file->impSym))
1025       fatal(toString(*file->impSym) + " was replaced");
1026     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1027     if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1028       if (!file->thunkSym)
1029         fatal("cannot delay-load " + toString(file) +
1030               " due to import of data: " + toString(*impSym));
1031       delayIdata.add(impSym);
1032     } else {
1033       idata.add(impSym);
1034     }
1035   }
1036 }
1037 
appendImportThunks()1038 void Writer::appendImportThunks() {
1039   if (ImportFile::instances.empty())
1040     return;
1041 
1042   for (ImportFile *file : ImportFile::instances) {
1043     if (!file->live)
1044       continue;
1045 
1046     if (!file->thunkSym)
1047       continue;
1048 
1049     if (!isa<DefinedImportThunk>(file->thunkSym))
1050       fatal(toString(*file->thunkSym) + " was replaced");
1051     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1052     if (file->thunkLive)
1053       textSec->addChunk(thunk->getChunk());
1054   }
1055 
1056   if (!delayIdata.empty()) {
1057     Defined *helper = cast<Defined>(config->delayLoadHelper);
1058     delayIdata.create(helper);
1059     for (Chunk *c : delayIdata.getChunks())
1060       didatSec->addChunk(c);
1061     for (Chunk *c : delayIdata.getDataChunks())
1062       dataSec->addChunk(c);
1063     for (Chunk *c : delayIdata.getCodeChunks())
1064       textSec->addChunk(c);
1065   }
1066 }
1067 
createExportTable()1068 void Writer::createExportTable() {
1069   if (!edataSec->chunks.empty()) {
1070     // Allow using a custom built export table from input object files, instead
1071     // of having the linker synthesize the tables.
1072     if (config->hadExplicitExports)
1073       warn("literal .edata sections override exports");
1074   } else if (!config->exports.empty()) {
1075     for (Chunk *c : edata.chunks)
1076       edataSec->addChunk(c);
1077   }
1078   if (!edataSec->chunks.empty()) {
1079     edataStart = edataSec->chunks.front();
1080     edataEnd = edataSec->chunks.back();
1081   }
1082   // Warn on exported deleting destructor.
1083   for (auto e : config->exports)
1084     if (e.sym && e.sym->getName().startswith("??_G"))
1085       warn("export of deleting dtor: " + toString(*e.sym));
1086 }
1087 
removeUnusedSections()1088 void Writer::removeUnusedSections() {
1089   // Remove sections that we can be sure won't get content, to avoid
1090   // allocating space for their section headers.
1091   auto isUnused = [this](OutputSection *s) {
1092     if (s == relocSec)
1093       return false; // This section is populated later.
1094     // MergeChunks have zero size at this point, as their size is finalized
1095     // later. Only remove sections that have no Chunks at all.
1096     return s->chunks.empty();
1097   };
1098   outputSections.erase(
1099       std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1100       outputSections.end());
1101 }
1102 
1103 // The Windows loader doesn't seem to like empty sections,
1104 // so we remove them if any.
removeEmptySections()1105 void Writer::removeEmptySections() {
1106   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1107   outputSections.erase(
1108       std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1109       outputSections.end());
1110 }
1111 
assignOutputSectionIndices()1112 void Writer::assignOutputSectionIndices() {
1113   // Assign final output section indices, and assign each chunk to its output
1114   // section.
1115   uint32_t idx = 1;
1116   for (OutputSection *os : outputSections) {
1117     os->sectionIndex = idx;
1118     for (Chunk *c : os->chunks)
1119       c->setOutputSectionIdx(idx);
1120     ++idx;
1121   }
1122 
1123   // Merge chunks are containers of chunks, so assign those an output section
1124   // too.
1125   for (MergeChunk *mc : MergeChunk::instances)
1126     if (mc)
1127       for (SectionChunk *sc : mc->sections)
1128         if (sc && sc->live)
1129           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1130 }
1131 
addEntryToStringTable(StringRef str)1132 size_t Writer::addEntryToStringTable(StringRef str) {
1133   assert(str.size() > COFF::NameSize);
1134   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1135   strtab.insert(strtab.end(), str.begin(), str.end());
1136   strtab.push_back('\0');
1137   return offsetOfEntry;
1138 }
1139 
createSymbol(Defined * def)1140 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1141   coff_symbol16 sym;
1142   switch (def->kind()) {
1143   case Symbol::DefinedAbsoluteKind:
1144     sym.Value = def->getRVA();
1145     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1146     break;
1147   case Symbol::DefinedSyntheticKind:
1148     // Relative symbols are unrepresentable in a COFF symbol table.
1149     return None;
1150   default: {
1151     // Don't write symbols that won't be written to the output to the symbol
1152     // table.
1153     Chunk *c = def->getChunk();
1154     if (!c)
1155       return None;
1156     OutputSection *os = c->getOutputSection();
1157     if (!os)
1158       return None;
1159 
1160     sym.Value = def->getRVA() - os->getRVA();
1161     sym.SectionNumber = os->sectionIndex;
1162     break;
1163   }
1164   }
1165 
1166   // Symbols that are runtime pseudo relocations don't point to the actual
1167   // symbol data itself (as they are imported), but points to the IAT entry
1168   // instead. Avoid emitting them to the symbol table, as they can confuse
1169   // debuggers.
1170   if (def->isRuntimePseudoReloc)
1171     return None;
1172 
1173   StringRef name = def->getName();
1174   if (name.size() > COFF::NameSize) {
1175     sym.Name.Offset.Zeroes = 0;
1176     sym.Name.Offset.Offset = addEntryToStringTable(name);
1177   } else {
1178     memset(sym.Name.ShortName, 0, COFF::NameSize);
1179     memcpy(sym.Name.ShortName, name.data(), name.size());
1180   }
1181 
1182   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1183     COFFSymbolRef ref = d->getCOFFSymbol();
1184     sym.Type = ref.getType();
1185     sym.StorageClass = ref.getStorageClass();
1186   } else {
1187     sym.Type = IMAGE_SYM_TYPE_NULL;
1188     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1189   }
1190   sym.NumberOfAuxSymbols = 0;
1191   return sym;
1192 }
1193 
createSymbolAndStringTable()1194 void Writer::createSymbolAndStringTable() {
1195   // PE/COFF images are limited to 8 byte section names. Longer names can be
1196   // supported by writing a non-standard string table, but this string table is
1197   // not mapped at runtime and the long names will therefore be inaccessible.
1198   // link.exe always truncates section names to 8 bytes, whereas binutils always
1199   // preserves long section names via the string table. LLD adopts a hybrid
1200   // solution where discardable sections have long names preserved and
1201   // non-discardable sections have their names truncated, to ensure that any
1202   // section which is mapped at runtime also has its name mapped at runtime.
1203   for (OutputSection *sec : outputSections) {
1204     if (sec->name.size() <= COFF::NameSize)
1205       continue;
1206     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1207       continue;
1208     if (config->warnLongSectionNames) {
1209       warn("section name " + sec->name +
1210            " is longer than 8 characters and will use a non-standard string "
1211            "table");
1212     }
1213     sec->setStringTableOff(addEntryToStringTable(sec->name));
1214   }
1215 
1216   if (config->debugDwarf || config->debugSymtab) {
1217     for (ObjFile *file : ObjFile::instances) {
1218       for (Symbol *b : file->getSymbols()) {
1219         auto *d = dyn_cast_or_null<Defined>(b);
1220         if (!d || d->writtenToSymtab)
1221           continue;
1222         d->writtenToSymtab = true;
1223 
1224         if (Optional<coff_symbol16> sym = createSymbol(d))
1225           outputSymtab.push_back(*sym);
1226       }
1227     }
1228   }
1229 
1230   if (outputSymtab.empty() && strtab.empty())
1231     return;
1232 
1233   // We position the symbol table to be adjacent to the end of the last section.
1234   uint64_t fileOff = fileSize;
1235   pointerToSymbolTable = fileOff;
1236   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1237   fileOff += 4 + strtab.size();
1238   fileSize = alignTo(fileOff, config->fileAlign);
1239 }
1240 
mergeSections()1241 void Writer::mergeSections() {
1242   if (!pdataSec->chunks.empty()) {
1243     firstPdata = pdataSec->chunks.front();
1244     lastPdata = pdataSec->chunks.back();
1245   }
1246 
1247   for (auto &p : config->merge) {
1248     StringRef toName = p.second;
1249     if (p.first == toName)
1250       continue;
1251     StringSet<> names;
1252     while (1) {
1253       if (!names.insert(toName).second)
1254         fatal("/merge: cycle found for section '" + p.first + "'");
1255       auto i = config->merge.find(toName);
1256       if (i == config->merge.end())
1257         break;
1258       toName = i->second;
1259     }
1260     OutputSection *from = findSection(p.first);
1261     OutputSection *to = findSection(toName);
1262     if (!from)
1263       continue;
1264     if (!to) {
1265       from->name = toName;
1266       continue;
1267     }
1268     to->merge(from);
1269   }
1270 }
1271 
1272 // Visits all sections to assign incremental, non-overlapping RVAs and
1273 // file offsets.
assignAddresses()1274 void Writer::assignAddresses() {
1275   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1276                   sizeof(data_directory) * numberOfDataDirectory +
1277                   sizeof(coff_section) * outputSections.size();
1278   sizeOfHeaders +=
1279       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1280   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1281   fileSize = sizeOfHeaders;
1282 
1283   // The first page is kept unmapped.
1284   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1285 
1286   for (OutputSection *sec : outputSections) {
1287     if (sec == relocSec)
1288       addBaserels();
1289     uint64_t rawSize = 0, virtualSize = 0;
1290     sec->header.VirtualAddress = rva;
1291 
1292     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1293     // hotpatchable image.
1294     const bool isCodeSection =
1295         (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1296         (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1297         (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1298     uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1299 
1300     for (Chunk *c : sec->chunks) {
1301       if (padding && c->isHotPatchable())
1302         virtualSize += padding;
1303       virtualSize = alignTo(virtualSize, c->getAlignment());
1304       c->setRVA(rva + virtualSize);
1305       virtualSize += c->getSize();
1306       if (c->hasData)
1307         rawSize = alignTo(virtualSize, config->fileAlign);
1308     }
1309     if (virtualSize > UINT32_MAX)
1310       error("section larger than 4 GiB: " + sec->name);
1311     sec->header.VirtualSize = virtualSize;
1312     sec->header.SizeOfRawData = rawSize;
1313     if (rawSize != 0)
1314       sec->header.PointerToRawData = fileSize;
1315     rva += alignTo(virtualSize, config->align);
1316     fileSize += alignTo(rawSize, config->fileAlign);
1317   }
1318   sizeOfImage = alignTo(rva, config->align);
1319 
1320   // Assign addresses to sections in MergeChunks.
1321   for (MergeChunk *mc : MergeChunk::instances)
1322     if (mc)
1323       mc->assignSubsectionRVAs();
1324 }
1325 
writeHeader()1326 template <typename PEHeaderTy> void Writer::writeHeader() {
1327   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1328   // executable consists of an MS-DOS MZ executable. If the executable is run
1329   // under DOS, that program gets run (usually to just print an error message).
1330   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1331   // the PE header instead.
1332   uint8_t *buf = buffer->getBufferStart();
1333   auto *dos = reinterpret_cast<dos_header *>(buf);
1334   buf += sizeof(dos_header);
1335   dos->Magic[0] = 'M';
1336   dos->Magic[1] = 'Z';
1337   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1338   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1339   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1340 
1341   dos->AddressOfRelocationTable = sizeof(dos_header);
1342   dos->AddressOfNewExeHeader = dosStubSize;
1343 
1344   // Write DOS program.
1345   memcpy(buf, dosProgram, sizeof(dosProgram));
1346   buf += sizeof(dosProgram);
1347 
1348   // Write PE magic
1349   memcpy(buf, PEMagic, sizeof(PEMagic));
1350   buf += sizeof(PEMagic);
1351 
1352   // Write COFF header
1353   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1354   buf += sizeof(*coff);
1355   coff->Machine = config->machine;
1356   coff->NumberOfSections = outputSections.size();
1357   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1358   if (config->largeAddressAware)
1359     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1360   if (!config->is64())
1361     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1362   if (config->dll)
1363     coff->Characteristics |= IMAGE_FILE_DLL;
1364   if (config->driverUponly)
1365     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1366   if (!config->relocatable)
1367     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1368   if (config->swaprunCD)
1369     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1370   if (config->swaprunNet)
1371     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1372   coff->SizeOfOptionalHeader =
1373       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1374 
1375   // Write PE header
1376   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1377   buf += sizeof(*pe);
1378   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1379 
1380   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1381   // reason signing the resulting PE file with Authenticode produces a
1382   // signature that fails to validate on Windows 7 (but is OK on 10).
1383   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1384   // that problem.
1385   pe->MajorLinkerVersion = 14;
1386   pe->MinorLinkerVersion = 0;
1387 
1388   pe->ImageBase = config->imageBase;
1389   pe->SectionAlignment = config->align;
1390   pe->FileAlignment = config->fileAlign;
1391   pe->MajorImageVersion = config->majorImageVersion;
1392   pe->MinorImageVersion = config->minorImageVersion;
1393   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1394   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1395   pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1396   pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1397   pe->Subsystem = config->subsystem;
1398   pe->SizeOfImage = sizeOfImage;
1399   pe->SizeOfHeaders = sizeOfHeaders;
1400   if (!config->noEntry) {
1401     Defined *entry = cast<Defined>(config->entry);
1402     pe->AddressOfEntryPoint = entry->getRVA();
1403     // Pointer to thumb code must have the LSB set, so adjust it.
1404     if (config->machine == ARMNT)
1405       pe->AddressOfEntryPoint |= 1;
1406   }
1407   pe->SizeOfStackReserve = config->stackReserve;
1408   pe->SizeOfStackCommit = config->stackCommit;
1409   pe->SizeOfHeapReserve = config->heapReserve;
1410   pe->SizeOfHeapCommit = config->heapCommit;
1411   if (config->appContainer)
1412     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1413   if (config->driverWdm)
1414     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1415   if (config->dynamicBase)
1416     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1417   if (config->highEntropyVA)
1418     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1419   if (!config->allowBind)
1420     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1421   if (config->nxCompat)
1422     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1423   if (!config->allowIsolation)
1424     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1425   if (config->guardCF != GuardCFLevel::Off)
1426     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1427   if (config->integrityCheck)
1428     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1429   if (setNoSEHCharacteristic || config->noSEH)
1430     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1431   if (config->terminalServerAware)
1432     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1433   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1434   if (textSec->getVirtualSize()) {
1435     pe->BaseOfCode = textSec->getRVA();
1436     pe->SizeOfCode = textSec->getRawSize();
1437   }
1438   pe->SizeOfInitializedData = getSizeOfInitializedData();
1439 
1440   // Write data directory
1441   auto *dir = reinterpret_cast<data_directory *>(buf);
1442   buf += sizeof(*dir) * numberOfDataDirectory;
1443   if (edataStart) {
1444     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1445     dir[EXPORT_TABLE].Size =
1446         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1447   }
1448   if (importTableStart) {
1449     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1450     dir[IMPORT_TABLE].Size = importTableSize;
1451   }
1452   if (iatStart) {
1453     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1454     dir[IAT].Size = iatSize;
1455   }
1456   if (rsrcSec->getVirtualSize()) {
1457     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1458     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1459   }
1460   if (firstPdata) {
1461     dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1462     dir[EXCEPTION_TABLE].Size =
1463         lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1464   }
1465   if (relocSec->getVirtualSize()) {
1466     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1467     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1468   }
1469   if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1470     if (Defined *b = dyn_cast<Defined>(sym)) {
1471       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1472       dir[TLS_TABLE].Size = config->is64()
1473                                 ? sizeof(object::coff_tls_directory64)
1474                                 : sizeof(object::coff_tls_directory32);
1475     }
1476   }
1477   if (debugDirectory) {
1478     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1479     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1480   }
1481   if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1482     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1483       SectionChunk *sc = b->getChunk();
1484       assert(b->getRVA() >= sc->getRVA());
1485       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1486       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1487         fatal("_load_config_used is malformed");
1488 
1489       ArrayRef<uint8_t> secContents = sc->getContents();
1490       uint32_t loadConfigSize =
1491           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1492       if (offsetInChunk + loadConfigSize > sc->getSize())
1493         fatal("_load_config_used is too large");
1494       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1495       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1496     }
1497   }
1498   if (!delayIdata.empty()) {
1499     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1500         delayIdata.getDirRVA();
1501     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1502   }
1503 
1504   // Write section table
1505   for (OutputSection *sec : outputSections) {
1506     sec->writeHeaderTo(buf);
1507     buf += sizeof(coff_section);
1508   }
1509   sectionTable = ArrayRef<uint8_t>(
1510       buf - outputSections.size() * sizeof(coff_section), buf);
1511 
1512   if (outputSymtab.empty() && strtab.empty())
1513     return;
1514 
1515   coff->PointerToSymbolTable = pointerToSymbolTable;
1516   uint32_t numberOfSymbols = outputSymtab.size();
1517   coff->NumberOfSymbols = numberOfSymbols;
1518   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1519       buffer->getBufferStart() + coff->PointerToSymbolTable);
1520   for (size_t i = 0; i != numberOfSymbols; ++i)
1521     symbolTable[i] = outputSymtab[i];
1522   // Create the string table, it follows immediately after the symbol table.
1523   // The first 4 bytes is length including itself.
1524   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1525   write32le(buf, strtab.size() + 4);
1526   if (!strtab.empty())
1527     memcpy(buf + 4, strtab.data(), strtab.size());
1528 }
1529 
openFile(StringRef path)1530 void Writer::openFile(StringRef path) {
1531   buffer = CHECK(
1532       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1533       "failed to open " + path);
1534 }
1535 
createSEHTable()1536 void Writer::createSEHTable() {
1537   SymbolRVASet handlers;
1538   for (ObjFile *file : ObjFile::instances) {
1539     if (!file->hasSafeSEH())
1540       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1541     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1542   }
1543 
1544   // Set the "no SEH" characteristic if there really were no handlers, or if
1545   // there is no load config object to point to the table of handlers.
1546   setNoSEHCharacteristic =
1547       handlers.empty() || !symtab->findUnderscore("_load_config_used");
1548 
1549   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1550                    "__safe_se_handler_count");
1551 }
1552 
1553 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1554 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1555 // symbol's offset into that Chunk.
addSymbolToRVASet(SymbolRVASet & rvaSet,Defined * s)1556 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1557   Chunk *c = s->getChunk();
1558   if (auto *sc = dyn_cast<SectionChunk>(c))
1559     c = sc->repl; // Look through ICF replacement.
1560   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1561   rvaSet.insert({c, off});
1562 }
1563 
1564 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1565 // symbol in an executable section.
maybeAddAddressTakenFunction(SymbolRVASet & addressTakenSyms,Symbol * s)1566 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1567                                          Symbol *s) {
1568   if (!s)
1569     return;
1570 
1571   switch (s->kind()) {
1572   case Symbol::DefinedLocalImportKind:
1573   case Symbol::DefinedImportDataKind:
1574     // Defines an __imp_ pointer, so it is data, so it is ignored.
1575     break;
1576   case Symbol::DefinedCommonKind:
1577     // Common is always data, so it is ignored.
1578     break;
1579   case Symbol::DefinedAbsoluteKind:
1580   case Symbol::DefinedSyntheticKind:
1581     // Absolute is never code, synthetic generally isn't and usually isn't
1582     // determinable.
1583     break;
1584   case Symbol::LazyArchiveKind:
1585   case Symbol::LazyObjectKind:
1586   case Symbol::LazyDLLSymbolKind:
1587   case Symbol::UndefinedKind:
1588     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1589     // symbols shouldn't have relocations.
1590     break;
1591 
1592   case Symbol::DefinedImportThunkKind:
1593     // Thunks are always code, include them.
1594     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1595     break;
1596 
1597   case Symbol::DefinedRegularKind: {
1598     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1599     // address taken if the symbol type is function and it's in an executable
1600     // section.
1601     auto *d = cast<DefinedRegular>(s);
1602     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1603       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1604       if (sc && sc->live &&
1605           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1606         addSymbolToRVASet(addressTakenSyms, d);
1607     }
1608     break;
1609   }
1610   }
1611 }
1612 
1613 // Visit all relocations from all section contributions of this object file and
1614 // mark the relocation target as address-taken.
markSymbolsWithRelocations(ObjFile * file,SymbolRVASet & usedSymbols)1615 static void markSymbolsWithRelocations(ObjFile *file,
1616                                        SymbolRVASet &usedSymbols) {
1617   for (Chunk *c : file->getChunks()) {
1618     // We only care about live section chunks. Common chunks and other chunks
1619     // don't generally contain relocations.
1620     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1621     if (!sc || !sc->live)
1622       continue;
1623 
1624     for (const coff_relocation &reloc : sc->getRelocs()) {
1625       if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1626         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1627         // since they're also used to compute absolute addresses.
1628         continue;
1629 
1630       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1631       maybeAddAddressTakenFunction(usedSymbols, ref);
1632     }
1633   }
1634 }
1635 
1636 // Create the guard function id table. This is a table of RVAs of all
1637 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1638 // table.
createGuardCFTables()1639 void Writer::createGuardCFTables() {
1640   SymbolRVASet addressTakenSyms;
1641   SymbolRVASet giatsRVASet;
1642   std::vector<Symbol *> giatsSymbols;
1643   SymbolRVASet longJmpTargets;
1644   SymbolRVASet ehContTargets;
1645   for (ObjFile *file : ObjFile::instances) {
1646     // If the object was compiled with /guard:cf, the address taken symbols
1647     // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1648     // and ehcont targets are in .gehcont$y sections. If the object was not
1649     // compiled with /guard:cf, we assume there were no setjmp and ehcont
1650     // targets, and that all code symbols with relocations are possibly
1651     // address-taken.
1652     if (file->hasGuardCF()) {
1653       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1654       markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1655       getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1656       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1657       markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1658     } else {
1659       markSymbolsWithRelocations(file, addressTakenSyms);
1660     }
1661   }
1662 
1663   // Mark the image entry as address-taken.
1664   if (config->entry)
1665     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1666 
1667   // Mark exported symbols in executable sections as address-taken.
1668   for (Export &e : config->exports)
1669     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1670 
1671   // For each entry in the .giats table, check if it has a corresponding load
1672   // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1673   // so, add the load thunk to the address taken (.gfids) table.
1674   for (Symbol *s : giatsSymbols) {
1675     if (auto *di = dyn_cast<DefinedImportData>(s)) {
1676       if (di->loadThunkSym)
1677         addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1678     }
1679   }
1680 
1681   // Ensure sections referenced in the gfid table are 16-byte aligned.
1682   for (const ChunkAndOffset &c : addressTakenSyms)
1683     if (c.inputChunk->getAlignment() < 16)
1684       c.inputChunk->setAlignment(16);
1685 
1686   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1687                    "__guard_fids_count");
1688 
1689   // Add the Guard Address Taken IAT Entry Table (.giats).
1690   maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1691                    "__guard_iat_count");
1692 
1693   // Add the longjmp target table unless the user told us not to.
1694   if (config->guardCF & GuardCFLevel::LongJmp)
1695     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1696                      "__guard_longjmp_count");
1697 
1698   // Add the ehcont target table unless the user told us not to.
1699   if (config->guardCF & GuardCFLevel::EHCont)
1700     maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1701                      "__guard_eh_cont_count", true);
1702 
1703   // Set __guard_flags, which will be used in the load config to indicate that
1704   // /guard:cf was enabled.
1705   uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1706                         uint32_t(coff_guard_flags::HasFidTable);
1707   if (config->guardCF & GuardCFLevel::LongJmp)
1708     guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1709   if (config->guardCF & GuardCFLevel::EHCont)
1710     guardFlags |= uint32_t(coff_guard_flags::HasEHContTable);
1711   Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1712   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1713 }
1714 
1715 // Take a list of input sections containing symbol table indices and add those
1716 // symbols to a vector. The challenge is that symbol RVAs are not known and
1717 // depend on the table size, so we can't directly build a set of integers.
getSymbolsFromSections(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,std::vector<Symbol * > & symbols)1718 void Writer::getSymbolsFromSections(ObjFile *file,
1719                                     ArrayRef<SectionChunk *> symIdxChunks,
1720                                     std::vector<Symbol *> &symbols) {
1721   for (SectionChunk *c : symIdxChunks) {
1722     // Skip sections discarded by linker GC. This comes up when a .gfids section
1723     // is associated with something like a vtable and the vtable is discarded.
1724     // In this case, the associated gfids section is discarded, and we don't
1725     // mark the virtual member functions as address-taken by the vtable.
1726     if (!c->live)
1727       continue;
1728 
1729     // Validate that the contents look like symbol table indices.
1730     ArrayRef<uint8_t> data = c->getContents();
1731     if (data.size() % 4 != 0) {
1732       warn("ignoring " + c->getSectionName() +
1733            " symbol table index section in object " + toString(file));
1734       continue;
1735     }
1736 
1737     // Read each symbol table index and check if that symbol was included in the
1738     // final link. If so, add it to the vector of symbols.
1739     ArrayRef<ulittle32_t> symIndices(
1740         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1741     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1742     for (uint32_t symIndex : symIndices) {
1743       if (symIndex >= objSymbols.size()) {
1744         warn("ignoring invalid symbol table index in section " +
1745              c->getSectionName() + " in object " + toString(file));
1746         continue;
1747       }
1748       if (Symbol *s = objSymbols[symIndex]) {
1749         if (s->isLive())
1750           symbols.push_back(cast<Symbol>(s));
1751       }
1752     }
1753   }
1754 }
1755 
1756 // Take a list of input sections containing symbol table indices and add those
1757 // symbols to an RVA table.
markSymbolsForRVATable(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,SymbolRVASet & tableSymbols)1758 void Writer::markSymbolsForRVATable(ObjFile *file,
1759                                     ArrayRef<SectionChunk *> symIdxChunks,
1760                                     SymbolRVASet &tableSymbols) {
1761   std::vector<Symbol *> syms;
1762   getSymbolsFromSections(file, symIdxChunks, syms);
1763 
1764   for (Symbol *s : syms)
1765     addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1766 }
1767 
1768 // Replace the absolute table symbol with a synthetic symbol pointing to
1769 // tableChunk so that we can emit base relocations for it and resolve section
1770 // relative relocations.
maybeAddRVATable(SymbolRVASet tableSymbols,StringRef tableSym,StringRef countSym,bool hasFlag)1771 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1772                               StringRef countSym, bool hasFlag) {
1773   if (tableSymbols.empty())
1774     return;
1775 
1776   NonSectionChunk *tableChunk;
1777   if (hasFlag)
1778     tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
1779   else
1780     tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1781   rdataSec->addChunk(tableChunk);
1782 
1783   Symbol *t = symtab->findUnderscore(tableSym);
1784   Symbol *c = symtab->findUnderscore(countSym);
1785   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1786   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
1787 }
1788 
1789 // MinGW specific. Gather all relocations that are imported from a DLL even
1790 // though the code didn't expect it to, produce the table that the runtime
1791 // uses for fixing them up, and provide the synthetic symbols that the
1792 // runtime uses for finding the table.
createRuntimePseudoRelocs()1793 void Writer::createRuntimePseudoRelocs() {
1794   std::vector<RuntimePseudoReloc> rels;
1795 
1796   for (Chunk *c : symtab->getChunks()) {
1797     auto *sc = dyn_cast<SectionChunk>(c);
1798     if (!sc || !sc->live)
1799       continue;
1800     sc->getRuntimePseudoRelocs(rels);
1801   }
1802 
1803   if (!config->pseudoRelocs) {
1804     // Not writing any pseudo relocs; if some were needed, error out and
1805     // indicate what required them.
1806     for (const RuntimePseudoReloc &rpr : rels)
1807       error("automatic dllimport of " + rpr.sym->getName() + " in " +
1808             toString(rpr.target->file) + " requires pseudo relocations");
1809     return;
1810   }
1811 
1812   if (!rels.empty())
1813     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1814   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1815   rdataSec->addChunk(table);
1816   EmptyChunk *endOfList = make<EmptyChunk>();
1817   rdataSec->addChunk(endOfList);
1818 
1819   Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1820   Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1821   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1822   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1823 }
1824 
1825 // MinGW specific.
1826 // The MinGW .ctors and .dtors lists have sentinels at each end;
1827 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1828 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1829 // and __DTOR_LIST__ respectively.
insertCtorDtorSymbols()1830 void Writer::insertCtorDtorSymbols() {
1831   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1832   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1833   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1834   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1835   ctorsSec->insertChunkAtStart(ctorListHead);
1836   ctorsSec->addChunk(ctorListEnd);
1837   dtorsSec->insertChunkAtStart(dtorListHead);
1838   dtorsSec->addChunk(dtorListEnd);
1839 
1840   Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1841   Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1842   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1843                                   ctorListHead);
1844   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1845                                   dtorListHead);
1846 }
1847 
1848 // Handles /section options to allow users to overwrite
1849 // section attributes.
setSectionPermissions()1850 void Writer::setSectionPermissions() {
1851   for (auto &p : config->section) {
1852     StringRef name = p.first;
1853     uint32_t perm = p.second;
1854     for (OutputSection *sec : outputSections)
1855       if (sec->name == name)
1856         sec->setPermissions(perm);
1857   }
1858 }
1859 
1860 // Write section contents to a mmap'ed file.
writeSections()1861 void Writer::writeSections() {
1862   // Record the number of sections to apply section index relocations
1863   // against absolute symbols. See applySecIdx in Chunks.cpp..
1864   DefinedAbsolute::numOutputSections = outputSections.size();
1865 
1866   uint8_t *buf = buffer->getBufferStart();
1867   for (OutputSection *sec : outputSections) {
1868     uint8_t *secBuf = buf + sec->getFileOff();
1869     // Fill gaps between functions in .text with INT3 instructions
1870     // instead of leaving as NUL bytes (which can be interpreted as
1871     // ADD instructions).
1872     if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1873       memset(secBuf, 0xCC, sec->getRawSize());
1874     parallelForEach(sec->chunks, [&](Chunk *c) {
1875       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1876     });
1877   }
1878 }
1879 
writeBuildId()1880 void Writer::writeBuildId() {
1881   // There are two important parts to the build ID.
1882   // 1) If building with debug info, the COFF debug directory contains a
1883   //    timestamp as well as a Guid and Age of the PDB.
1884   // 2) In all cases, the PE COFF file header also contains a timestamp.
1885   // For reproducibility, instead of a timestamp we want to use a hash of the
1886   // PE contents.
1887   if (config->debug) {
1888     assert(buildId && "BuildId is not set!");
1889     // BuildId->BuildId was filled in when the PDB was written.
1890   }
1891 
1892   // At this point the only fields in the COFF file which remain unset are the
1893   // "timestamp" in the COFF file header, and the ones in the coff debug
1894   // directory.  Now we can hash the file and write that hash to the various
1895   // timestamp fields in the file.
1896   StringRef outputFileData(
1897       reinterpret_cast<const char *>(buffer->getBufferStart()),
1898       buffer->getBufferSize());
1899 
1900   uint32_t timestamp = config->timestamp;
1901   uint64_t hash = 0;
1902   bool generateSyntheticBuildId =
1903       config->mingw && config->debug && config->pdbPath.empty();
1904 
1905   if (config->repro || generateSyntheticBuildId)
1906     hash = xxHash64(outputFileData);
1907 
1908   if (config->repro)
1909     timestamp = static_cast<uint32_t>(hash);
1910 
1911   if (generateSyntheticBuildId) {
1912     // For MinGW builds without a PDB file, we still generate a build id
1913     // to allow associating a crash dump to the executable.
1914     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1915     buildId->buildId->PDB70.Age = 1;
1916     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1917     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1918     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1919   }
1920 
1921   if (debugDirectory)
1922     debugDirectory->setTimeDateStamp(timestamp);
1923 
1924   uint8_t *buf = buffer->getBufferStart();
1925   buf += dosStubSize + sizeof(PEMagic);
1926   object::coff_file_header *coffHeader =
1927       reinterpret_cast<coff_file_header *>(buf);
1928   coffHeader->TimeDateStamp = timestamp;
1929 }
1930 
1931 // Sort .pdata section contents according to PE/COFF spec 5.5.
sortExceptionTable()1932 void Writer::sortExceptionTable() {
1933   if (!firstPdata)
1934     return;
1935   // We assume .pdata contains function table entries only.
1936   auto bufAddr = [&](Chunk *c) {
1937     OutputSection *os = c->getOutputSection();
1938     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1939            os->getRVA();
1940   };
1941   uint8_t *begin = bufAddr(firstPdata);
1942   uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1943   if (config->machine == AMD64) {
1944     struct Entry { ulittle32_t begin, end, unwind; };
1945     if ((end - begin) % sizeof(Entry) != 0) {
1946       fatal("unexpected .pdata size: " + Twine(end - begin) +
1947             " is not a multiple of " + Twine(sizeof(Entry)));
1948     }
1949     parallelSort(
1950         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1951         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1952     return;
1953   }
1954   if (config->machine == ARMNT || config->machine == ARM64) {
1955     struct Entry { ulittle32_t begin, unwind; };
1956     if ((end - begin) % sizeof(Entry) != 0) {
1957       fatal("unexpected .pdata size: " + Twine(end - begin) +
1958             " is not a multiple of " + Twine(sizeof(Entry)));
1959     }
1960     parallelSort(
1961         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1962         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1963     return;
1964   }
1965   lld::errs() << "warning: don't know how to handle .pdata.\n";
1966 }
1967 
1968 // The CRT section contains, among other things, the array of function
1969 // pointers that initialize every global variable that is not trivially
1970 // constructed. The CRT calls them one after the other prior to invoking
1971 // main().
1972 //
1973 // As per C++ spec, 3.6.2/2.3,
1974 // "Variables with ordered initialization defined within a single
1975 // translation unit shall be initialized in the order of their definitions
1976 // in the translation unit"
1977 //
1978 // It is therefore critical to sort the chunks containing the function
1979 // pointers in the order that they are listed in the object file (top to
1980 // bottom), otherwise global objects might not be initialized in the
1981 // correct order.
sortCRTSectionChunks(std::vector<Chunk * > & chunks)1982 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1983   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1984     auto sa = dyn_cast<SectionChunk>(a);
1985     auto sb = dyn_cast<SectionChunk>(b);
1986     assert(sa && sb && "Non-section chunks in CRT section!");
1987 
1988     StringRef sAObj = sa->file->mb.getBufferIdentifier();
1989     StringRef sBObj = sb->file->mb.getBufferIdentifier();
1990 
1991     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1992   };
1993   llvm::stable_sort(chunks, sectionChunkOrder);
1994 
1995   if (config->verbose) {
1996     for (auto &c : chunks) {
1997       auto sc = dyn_cast<SectionChunk>(c);
1998       log("  " + sc->file->mb.getBufferIdentifier().str() +
1999           ", SectionID: " + Twine(sc->getSectionNumber()));
2000     }
2001   }
2002 }
2003 
findSection(StringRef name)2004 OutputSection *Writer::findSection(StringRef name) {
2005   for (OutputSection *sec : outputSections)
2006     if (sec->name == name)
2007       return sec;
2008   return nullptr;
2009 }
2010 
getSizeOfInitializedData()2011 uint32_t Writer::getSizeOfInitializedData() {
2012   uint32_t res = 0;
2013   for (OutputSection *s : outputSections)
2014     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2015       res += s->getRawSize();
2016   return res;
2017 }
2018 
2019 // Add base relocations to .reloc section.
addBaserels()2020 void Writer::addBaserels() {
2021   if (!config->relocatable)
2022     return;
2023   relocSec->chunks.clear();
2024   std::vector<Baserel> v;
2025   for (OutputSection *sec : outputSections) {
2026     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2027       continue;
2028     // Collect all locations for base relocations.
2029     for (Chunk *c : sec->chunks)
2030       c->getBaserels(&v);
2031     // Add the addresses to .reloc section.
2032     if (!v.empty())
2033       addBaserelBlocks(v);
2034     v.clear();
2035   }
2036 }
2037 
2038 // Add addresses to .reloc section. Note that addresses are grouped by page.
addBaserelBlocks(std::vector<Baserel> & v)2039 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2040   const uint32_t mask = ~uint32_t(pageSize - 1);
2041   uint32_t page = v[0].rva & mask;
2042   size_t i = 0, j = 1;
2043   for (size_t e = v.size(); j < e; ++j) {
2044     uint32_t p = v[j].rva & mask;
2045     if (p == page)
2046       continue;
2047     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2048     i = j;
2049     page = p;
2050   }
2051   if (i == j)
2052     return;
2053   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2054 }
2055 
createPartialSection(StringRef name,uint32_t outChars)2056 PartialSection *Writer::createPartialSection(StringRef name,
2057                                              uint32_t outChars) {
2058   PartialSection *&pSec = partialSections[{name, outChars}];
2059   if (pSec)
2060     return pSec;
2061   pSec = make<PartialSection>(name, outChars);
2062   return pSec;
2063 }
2064 
findPartialSection(StringRef name,uint32_t outChars)2065 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2066   auto it = partialSections.find({name, outChars});
2067   if (it != partialSections.end())
2068     return it->second;
2069   return nullptr;
2070 }
2071 
fixTlsAlignment()2072 void Writer::fixTlsAlignment() {
2073   Defined *tlsSym =
2074       dyn_cast_or_null<Defined>(symtab->findUnderscore("_tls_used"));
2075   if (!tlsSym)
2076     return;
2077 
2078   OutputSection *sec = tlsSym->getChunk()->getOutputSection();
2079   assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2080          "no output section for _tls_used");
2081 
2082   uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2083   uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2084   uint64_t directorySize = config->is64()
2085                                ? sizeof(object::coff_tls_directory64)
2086                                : sizeof(object::coff_tls_directory32);
2087 
2088   if (tlsOffset + directorySize > sec->getRawSize())
2089     fatal("_tls_used sym is malformed");
2090 
2091   if (config->is64()) {
2092     object::coff_tls_directory64 *tlsDir =
2093         reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2094     tlsDir->setAlignment(tlsAlignment);
2095   } else {
2096     object::coff_tls_directory32 *tlsDir =
2097         reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2098     tlsDir->setAlignment(tlsAlignment);
2099   }
2100 }
2101