1=======================
2Writing an LLVM Backend
3=======================
4
5.. toctree::
6   :hidden:
7
8   HowToUseInstrMappings
9
10.. contents::
11   :local:
12
13Introduction
14============
15
16This document describes techniques for writing compiler backends that convert
17the LLVM Intermediate Representation (IR) to code for a specified machine or
18other languages.  Code intended for a specific machine can take the form of
19either assembly code or binary code (usable for a JIT compiler).
20
21The backend of LLVM features a target-independent code generator that may
22create output for several types of target CPUs --- including X86, PowerPC,
23ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
24of the Cell processor or GPUs to support the execution of compute kernels.
25
26The document focuses on existing examples found in subdirectories of
27``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
28focuses on the example of creating a static compiler (one that emits text
29assembly) for a SPARC target, because SPARC has fairly standard
30characteristics, such as a RISC instruction set and straightforward calling
31conventions.
32
33Audience
34--------
35
36The audience for this document is anyone who needs to write an LLVM backend to
37generate code for a specific hardware or software target.
38
39Prerequisite Reading
40--------------------
41
42These essential documents must be read before reading this document:
43
44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
45  the LLVM assembly language.
46
47* :doc:`CodeGenerator` --- a guide to the components (classes and code
48  generation algorithms) for translating the LLVM internal representation into
49  machine code for a specified target.  Pay particular attention to the
50  descriptions of code generation stages: Instruction Selection, Scheduling and
51  Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
52  Insertion, Late Machine Code Optimizations, and Code Emission.
53
54* :doc:`TableGen/index` --- a document that describes the TableGen
55  (``tblgen``) application that manages domain-specific information to support
56  LLVM code generation.  TableGen processes input from a target description
57  file (``.td`` suffix) and generates C++ code that can be used for code
58  generation.
59
60* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
61  are several ``SelectionDAG`` processing steps.
62
63To follow the SPARC examples in this document, have a copy of `The SPARC
64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
65reference.  For details about the ARM instruction set, refer to the `ARM
66Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
67the GNU Assembler format (``GAS``), see `Using As
68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
69assembly printer.  "Using As" contains a list of target machine dependent
70features.
71
72Basic Steps
73-----------
74
75To write a compiler backend for LLVM that converts the LLVM IR to code for a
76specified target (machine or other language), follow these steps:
77
78* Create a subclass of the ``TargetMachine`` class that describes
79  characteristics of your target machine.  Copy existing examples of specific
80  ``TargetMachine`` class and header files; for example, start with
81  ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
82  names for your target.  Similarly, change code that references "``Sparc``" to
83  reference your target.
84
85* Describe the register set of the target.  Use TableGen to generate code for
86  register definition, register aliases, and register classes from a
87  target-specific ``RegisterInfo.td`` input file.  You should also write
88  additional code for a subclass of the ``TargetRegisterInfo`` class that
89  represents the class register file data used for register allocation and also
90  describes the interactions between registers.
91
92* Describe the instruction set of the target.  Use TableGen to generate code
93  for target-specific instructions from target-specific versions of
94  ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
95  additional code for a subclass of the ``TargetInstrInfo`` class to represent
96  machine instructions supported by the target machine.
97
98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic
99  Graph (DAG) representation of instructions to native target-specific
100  instructions.  Use TableGen to generate code that matches patterns and
101  selects instructions based on additional information in a target-specific
102  version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
103  where ``XXX`` identifies the specific target, to perform pattern matching and
104  DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
105  to replace or remove operations and data types that are not supported
106  natively in a SelectionDAG.
107
108* Write code for an assembly printer that converts LLVM IR to a GAS format for
109  your target machine.  You should add assembly strings to the instructions
110  defined in your target-specific version of ``TargetInstrInfo.td``.  You
111  should also write code for a subclass of ``AsmPrinter`` that performs the
112  LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
113
114* Optionally, add support for subtargets (i.e., variants with different
115  capabilities).  You should also write code for a subclass of the
116  ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
117  ``-mattr=`` command-line options.
118
119* Optionally, add JIT support and create a machine code emitter (subclass of
120  ``TargetJITInfo``) that is used to emit binary code directly into memory.
121
122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
123implement them later.  Initially, you may not know which private members that
124the class will need and which components will need to be subclassed.
125
126Preliminaries
127-------------
128
129To actually create your compiler backend, you need to create and modify a few
130files.  The absolute minimum is discussed here.  But to actually use the LLVM
131target-independent code generator, you must perform the steps described in the
132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
133
134First, you should create a subdirectory under ``lib/Target`` to hold all the
135files related to your target.  If your target is called "Dummy", create the
136directory ``lib/Target/Dummy``.
137
138In this new directory, create a ``CMakeLists.txt``.  It is easiest to copy a
139``CMakeLists.txt`` of another target and modify it.  It should at least contain
140the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy``
141(for example, see the MIPS target).  Alternatively, you can split the library
142into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which
143should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example,
144see the PowerPC target).
145
146Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
147any other naming scheme will confuse ``llvm-config`` and produce a lot of
148(seemingly unrelated) linker errors when linking ``llc``.
149
150To make your target actually do something, you need to implement a subclass of
151``TargetMachine``.  This implementation should typically be in the file
152``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
153directory will be built and should work.  To use LLVM's target independent code
154generator, you should do what all current machine backends do: create a
155subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
156subclass of ``TargetMachine``.)
157
158To get LLVM to actually build and link your target, you need to run ``cmake``
159with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your
160target without needing to add it to the list of all the targets.
161
162Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable
163located in the main ``CMakeLists.txt``.
164
165Target Machine
166==============
167
168``LLVMTargetMachine`` is designed as a base class for targets implemented with
169the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
170should be specialized by a concrete target class that implements the various
171virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
172``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
173``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
174numerous command-line options.
175
176To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
177by copying an existing ``TargetMachine`` class and header.  You should name the
178files that you create to reflect your specific target.  For instance, for the
179SPARC target, name the files ``SparcTargetMachine.h`` and
180``SparcTargetMachine.cpp``.
181
182For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
183have access methods to obtain objects that represent target components.  These
184methods are named ``get*Info``, and are intended to obtain the instruction set
185(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
186(``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
187implement the ``getDataLayout`` method to access an object with target-specific
188data characteristics, such as data type size and alignment requirements.
189
190For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
191declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
192simply return a class member.
193
194.. code-block:: c++
195
196  namespace llvm {
197
198  class Module;
199
200  class SparcTargetMachine : public LLVMTargetMachine {
201    const DataLayout DataLayout;       // Calculates type size & alignment
202    SparcSubtarget Subtarget;
203    SparcInstrInfo InstrInfo;
204    TargetFrameInfo FrameInfo;
205
206  protected:
207    virtual const TargetAsmInfo *createTargetAsmInfo() const;
208
209  public:
210    SparcTargetMachine(const Module &M, const std::string &FS);
211
212    virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
213    virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
214    virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
215    virtual const TargetRegisterInfo *getRegisterInfo() const {
216      return &InstrInfo.getRegisterInfo();
217    }
218    virtual const DataLayout *getDataLayout() const { return &DataLayout; }
219    static unsigned getModuleMatchQuality(const Module &M);
220
221    // Pass Pipeline Configuration
222    virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
223    virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
224  };
225
226  } // end namespace llvm
227
228* ``getInstrInfo()``
229* ``getRegisterInfo()``
230* ``getFrameInfo()``
231* ``getDataLayout()``
232* ``getSubtargetImpl()``
233
234For some targets, you also need to support the following methods:
235
236* ``getTargetLowering()``
237* ``getJITInfo()``
238
239Some architectures, such as GPUs, do not support jumping to an arbitrary
240program location and implement branching using masked execution and loop using
241special instructions around the loop body. In order to avoid CFG modifications
242that introduce irreducible control flow not handled by such hardware, a target
243must call `setRequiresStructuredCFG(true)` when being initialized.
244
245In addition, the ``XXXTargetMachine`` constructor should specify a
246``TargetDescription`` string that determines the data layout for the target
247machine, including characteristics such as pointer size, alignment, and
248endianness.  For example, the constructor for ``SparcTargetMachine`` contains
249the following:
250
251.. code-block:: c++
252
253  SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
254    : DataLayout("E-p:32:32-f128:128:128"),
255      Subtarget(M, FS), InstrInfo(Subtarget),
256      FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
257  }
258
259Hyphens separate portions of the ``TargetDescription`` string.
260
261* An upper-case "``E``" in the string indicates a big-endian target data model.
262  A lower-case "``e``" indicates little-endian.
263
264* "``p:``" is followed by pointer information: size, ABI alignment, and
265  preferred alignment.  If only two figures follow "``p:``", then the first
266  value is pointer size, and the second value is both ABI and preferred
267  alignment.
268
269* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
270  "``a``" (corresponding to integer, floating point, vector, or aggregate).
271  "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
272  alignment. "``f``" is followed by three values: the first indicates the size
273  of a long double, then ABI alignment, and then ABI preferred alignment.
274
275Target Registration
276===================
277
278You must also register your target with the ``TargetRegistry``, which is what
279other LLVM tools use to be able to lookup and use your target at runtime.  The
280``TargetRegistry`` can be used directly, but for most targets there are helper
281templates which should take care of the work for you.
282
283All targets should declare a global ``Target`` object which is used to
284represent the target during registration.  Then, in the target's ``TargetInfo``
285library, the target should define that object and use the ``RegisterTarget``
286template to register the target.  For example, the Sparc registration code
287looks like this:
288
289.. code-block:: c++
290
291  Target llvm::getTheSparcTarget();
292
293  extern "C" void LLVMInitializeSparcTargetInfo() {
294    RegisterTarget<Triple::sparc, /*HasJIT=*/false>
295      X(getTheSparcTarget(), "sparc", "Sparc");
296  }
297
298This allows the ``TargetRegistry`` to look up the target by name or by target
299triple.  In addition, most targets will also register additional features which
300are available in separate libraries.  These registration steps are separate,
301because some clients may wish to only link in some parts of the target --- the
302JIT code generator does not require the use of the assembler printer, for
303example.  Here is an example of registering the Sparc assembly printer:
304
305.. code-block:: c++
306
307  extern "C" void LLVMInitializeSparcAsmPrinter() {
308    RegisterAsmPrinter<SparcAsmPrinter> X(getTheSparcTarget());
309  }
310
311For more information, see "`llvm/Target/TargetRegistry.h
312</doxygen/TargetRegistry_8h-source.html>`_".
313
314Register Set and Register Classes
315=================================
316
317You should describe a concrete target-specific class that represents the
318register file of a target machine.  This class is called ``XXXRegisterInfo``
319(where ``XXX`` identifies the target) and represents the class register file
320data that is used for register allocation.  It also describes the interactions
321between registers.
322
323You also need to define register classes to categorize related registers.  A
324register class should be added for groups of registers that are all treated the
325same way for some instruction.  Typical examples are register classes for
326integer, floating-point, or vector registers.  A register allocator allows an
327instruction to use any register in a specified register class to perform the
328instruction in a similar manner.  Register classes allocate virtual registers
329to instructions from these sets, and register classes let the
330target-independent register allocator automatically choose the actual
331registers.
332
333Much of the code for registers, including register definition, register
334aliases, and register classes, is generated by TableGen from
335``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
336and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
337implementation of ``XXXRegisterInfo`` requires hand-coding.
338
339Defining a Register
340-------------------
341
342The ``XXXRegisterInfo.td`` file typically starts with register definitions for
343a target machine.  The ``Register`` class (specified in ``Target.td``) is used
344to define an object for each register.  The specified string ``n`` becomes the
345``Name`` of the register.  The basic ``Register`` object does not have any
346subregisters and does not specify any aliases.
347
348.. code-block:: text
349
350  class Register<string n> {
351    string Namespace = "";
352    string AsmName = n;
353    string Name = n;
354    int SpillSize = 0;
355    int SpillAlignment = 0;
356    list<Register> Aliases = [];
357    list<Register> SubRegs = [];
358    list<int> DwarfNumbers = [];
359  }
360
361For example, in the ``X86RegisterInfo.td`` file, there are register definitions
362that utilize the ``Register`` class, such as:
363
364.. code-block:: text
365
366  def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
367
368This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
369that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
370register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
371representing 3 different modes: the first element is for X86-64, the second for
372exception handling (EH) on X86-32, and the third is generic. -1 is a special
373Dwarf number that indicates the gcc number is undefined, and -2 indicates the
374register number is invalid for this mode.
375
376From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
377generates this code in the ``X86GenRegisterInfo.inc`` file:
378
379.. code-block:: c++
380
381  static const unsigned GR8[] = { X86::AL, ... };
382
383  const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
384
385  const TargetRegisterDesc RegisterDescriptors[] = {
386    ...
387  { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
388
389From the register info file, TableGen generates a ``TargetRegisterDesc`` object
390for each register.  ``TargetRegisterDesc`` is defined in
391``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
392
393.. code-block:: c++
394
395  struct TargetRegisterDesc {
396    const char     *AsmName;      // Assembly language name for the register
397    const char     *Name;         // Printable name for the reg (for debugging)
398    const unsigned *AliasSet;     // Register Alias Set
399    const unsigned *SubRegs;      // Sub-register set
400    const unsigned *ImmSubRegs;   // Immediate sub-register set
401    const unsigned *SuperRegs;    // Super-register set
402  };
403
404TableGen uses the entire target description file (``.td``) to determine text
405names for the register (in the ``AsmName`` and ``Name`` fields of
406``TargetRegisterDesc``) and the relationships of other registers to the defined
407register (in the other ``TargetRegisterDesc`` fields).  In this example, other
408definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
409aliases for one another, so TableGen generates a null-terminated array
410(``AL_AliasSet``) for this register alias set.
411
412The ``Register`` class is commonly used as a base class for more complex
413classes.  In ``Target.td``, the ``Register`` class is the base for the
414``RegisterWithSubRegs`` class that is used to define registers that need to
415specify subregisters in the ``SubRegs`` list, as shown here:
416
417.. code-block:: text
418
419  class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
420    let SubRegs = subregs;
421  }
422
423In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
424a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
425and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
426feature common to these subclasses.  Note the use of "``let``" expressions to
427override values that are initially defined in a superclass (such as ``SubRegs``
428field in the ``Rd`` class).
429
430.. code-block:: text
431
432  class SparcReg<string n> : Register<n> {
433    field bits<5> Num;
434    let Namespace = "SP";
435  }
436  // Ri - 32-bit integer registers
437  class Ri<bits<5> num, string n> :
438  SparcReg<n> {
439    let Num = num;
440  }
441  // Rf - 32-bit floating-point registers
442  class Rf<bits<5> num, string n> :
443  SparcReg<n> {
444    let Num = num;
445  }
446  // Rd - Slots in the FP register file for 64-bit floating-point values.
447  class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
448    let Num = num;
449    let SubRegs = subregs;
450  }
451
452In the ``SparcRegisterInfo.td`` file, there are register definitions that
453utilize these subclasses of ``Register``, such as:
454
455.. code-block:: text
456
457  def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
458  def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
459  ...
460  def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
461  def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
462  ...
463  def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
464  def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
465
466The last two registers shown above (``D0`` and ``D1``) are double-precision
467floating-point registers that are aliases for pairs of single-precision
468floating-point sub-registers.  In addition to aliases, the sub-register and
469super-register relationships of the defined register are in fields of a
470register's ``TargetRegisterDesc``.
471
472Defining a Register Class
473-------------------------
474
475The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
476object that represents a group of related registers and also defines the
477default allocation order of the registers.  A target description file
478``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
479using the following class:
480
481.. code-block:: text
482
483  class RegisterClass<string namespace,
484  list<ValueType> regTypes, int alignment, dag regList> {
485    string Namespace = namespace;
486    list<ValueType> RegTypes = regTypes;
487    int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
488    int Alignment = alignment;
489
490    // CopyCost is the cost of copying a value between two registers
491    // default value 1 means a single instruction
492    // A negative value means copying is extremely expensive or impossible
493    int CopyCost = 1;
494    dag MemberList = regList;
495
496    // for register classes that are subregisters of this class
497    list<RegisterClass> SubRegClassList = [];
498
499    code MethodProtos = [{}];  // to insert arbitrary code
500    code MethodBodies = [{}];
501  }
502
503To define a ``RegisterClass``, use the following 4 arguments:
504
505* The first argument of the definition is the name of the namespace.
506
507* The second argument is a list of ``ValueType`` register type values that are
508  defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
509  integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
510  floating-point types (``f32``, ``f64``), and vector types (for example,
511  ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
512  must have the same ``ValueType``, but some registers may store vector data in
513  different configurations.  For example a register that can process a 128-bit
514  vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
515  32-bit integers, and so on.
516
517* The third argument of the ``RegisterClass`` definition specifies the
518  alignment required of the registers when they are stored or loaded to
519  memory.
520
521* The final argument, ``regList``, specifies which registers are in this class.
522  If an alternative allocation order method is not specified, then ``regList``
523  also defines the order of allocation used by the register allocator.  Besides
524  simply listing registers with ``(add R0, R1, ...)``, more advanced set
525  operators are available.  See ``include/llvm/Target/Target.td`` for more
526  information.
527
528In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
529``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
530first argument defines the namespace with the string "``SP``".  ``FPRegs``
531defines a group of 32 single-precision floating-point registers (``F0`` to
532``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
533(``D0-D15``).
534
535.. code-block:: text
536
537  // F0, F1, F2, ..., F31
538  def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
539
540  def DFPRegs : RegisterClass<"SP", [f64], 64,
541                              (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
542                                   D9, D10, D11, D12, D13, D14, D15)>;
543
544  def IntRegs : RegisterClass<"SP", [i32], 32,
545      (add L0, L1, L2, L3, L4, L5, L6, L7,
546           I0, I1, I2, I3, I4, I5,
547           O0, O1, O2, O3, O4, O5, O7,
548           G1,
549           // Non-allocatable regs:
550           G2, G3, G4,
551           O6,        // stack ptr
552           I6,        // frame ptr
553           I7,        // return address
554           G0,        // constant zero
555           G5, G6, G7 // reserved for kernel
556      )>;
557
558Using ``SparcRegisterInfo.td`` with TableGen generates several output files
559that are intended for inclusion in other source code that you write.
560``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
561be included in the header file for the implementation of the SPARC register
562implementation that you write (``SparcRegisterInfo.h``).  In
563``SparcGenRegisterInfo.h.inc`` a new structure is defined called
564``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
565specifies types, based upon the defined register classes: ``DFPRegsClass``,
566``FPRegsClass``, and ``IntRegsClass``.
567
568``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
569included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
570implementation.  The code below shows only the generated integer registers and
571associated register classes.  The order of registers in ``IntRegs`` reflects
572the order in the definition of ``IntRegs`` in the target description file.
573
574.. code-block:: c++
575
576  // IntRegs Register Class...
577  static const unsigned IntRegs[] = {
578    SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
579    SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
580    SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
581    SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
582    SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
583    SP::G6, SP::G7,
584  };
585
586  // IntRegsVTs Register Class Value Types...
587  static const MVT::ValueType IntRegsVTs[] = {
588    MVT::i32, MVT::Other
589  };
590
591  namespace SP {   // Register class instances
592    DFPRegsClass    DFPRegsRegClass;
593    FPRegsClass     FPRegsRegClass;
594    IntRegsClass    IntRegsRegClass;
595  ...
596    // IntRegs Sub-register Classes...
597    static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
598      NULL
599    };
600  ...
601    // IntRegs Super-register Classes..
602    static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
603      NULL
604    };
605  ...
606    // IntRegs Register Class sub-classes...
607    static const TargetRegisterClass* const IntRegsSubclasses [] = {
608      NULL
609    };
610  ...
611    // IntRegs Register Class super-classes...
612    static const TargetRegisterClass* const IntRegsSuperclasses [] = {
613      NULL
614    };
615
616    IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
617      IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
618      IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
619  }
620
621The register allocators will avoid using reserved registers, and callee saved
622registers are not used until all the volatile registers have been used.  That
623is usually good enough, but in some cases it may be necessary to provide custom
624allocation orders.
625
626Implement a subclass of ``TargetRegisterInfo``
627----------------------------------------------
628
629The final step is to hand code portions of ``XXXRegisterInfo``, which
630implements the interface described in ``TargetRegisterInfo.h`` (see
631:ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
632``false``, unless overridden.  Here is a list of functions that are overridden
633for the SPARC implementation in ``SparcRegisterInfo.cpp``:
634
635* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
636  order of the desired callee-save stack frame offset.
637
638* ``getReservedRegs`` --- Returns a bitset indexed by physical register
639  numbers, indicating if a particular register is unavailable.
640
641* ``hasFP`` --- Return a Boolean indicating if a function should have a
642  dedicated frame pointer register.
643
644* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
645  instructions are used, this can be called to eliminate them.
646
647* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
648  instructions that may use them.
649
650* ``emitPrologue`` --- Insert prologue code into the function.
651
652* ``emitEpilogue`` --- Insert epilogue code into the function.
653
654.. _instruction-set:
655
656Instruction Set
657===============
658
659During the early stages of code generation, the LLVM IR code is converted to a
660``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
661containing target instructions.  An ``SDNode`` has an opcode, operands, type
662requirements, and operation properties.  For example, is an operation
663commutative, does an operation load from memory.  The various operation node
664types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
665(values of the ``NodeType`` enum in the ``ISD`` namespace).
666
667TableGen uses the following target description (``.td``) input files to
668generate much of the code for instruction definition:
669
670* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
671  other fundamental classes are defined.
672
673* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
674  generators, contains ``SDTC*`` classes (selection DAG type constraint),
675  definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
676  ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
677  ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
678
679* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
680  instructions.
681
682* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
683  condition codes, and instructions of an instruction set.  For architecture
684  modifications, a different file name may be used.  For example, for Pentium
685  with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
686  MMX, this file is ``X86InstrMMX.td``.
687
688There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
689the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
690its contents are only directly important for subtargets.
691
692You should describe a concrete target-specific class ``XXXInstrInfo`` that
693represents machine instructions supported by a target machine.
694``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
695which describes one instruction.  An instruction descriptor defines:
696
697* Opcode mnemonic
698* Number of operands
699* List of implicit register definitions and uses
700* Target-independent properties (such as memory access, is commutable)
701* Target-specific flags
702
703The Instruction class (defined in ``Target.td``) is mostly used as a base for
704more complex instruction classes.
705
706.. code-block:: text
707
708  class Instruction {
709    string Namespace = "";
710    dag OutOperandList;    // A dag containing the MI def operand list.
711    dag InOperandList;     // A dag containing the MI use operand list.
712    string AsmString = ""; // The .s format to print the instruction with.
713    list<dag> Pattern;     // Set to the DAG pattern for this instruction.
714    list<Register> Uses = [];
715    list<Register> Defs = [];
716    list<Predicate> Predicates = [];  // predicates turned into isel match code
717    ... remainder not shown for space ...
718  }
719
720A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
721target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
722instruction objects should represent instructions from the architecture manual
723of the target machine (such as the SPARC Architecture Manual for the SPARC
724target).
725
726A single instruction from the architecture manual is often modeled as multiple
727target instructions, depending upon its operands.  For example, a manual might
728describe an add instruction that takes a register or an immediate operand.  An
729LLVM target could model this with two instructions named ``ADDri`` and
730``ADDrr``.
731
732You should define a class for each instruction category and define each opcode
733as a subclass of the category with appropriate parameters such as the fixed
734binary encoding of opcodes and extended opcodes.  You should map the register
735bits to the bits of the instruction in which they are encoded (for the JIT).
736Also you should specify how the instruction should be printed when the
737automatic assembly printer is used.
738
739As is described in the SPARC Architecture Manual, Version 8, there are three
740major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
741instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
742bits of a register) instructions.  Format 3 is for other instructions.
743
744Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
745``InstSP`` is a base class for other instruction classes.  Additional base
746classes are specified for more precise formats: for example in
747``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
748branches.  There are three other base classes: ``F3_1`` for register/register
749operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
750floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
751``Pseudo`` for synthetic SPARC instructions.
752
753``SparcInstrInfo.td`` largely consists of operand and instruction definitions
754for the SPARC target.  In ``SparcInstrInfo.td``, the following target
755description file entry, ``LDrr``, defines the Load Integer instruction for a
756Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
757parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
758category of operation.  The second parameter (``000000``\ :sub:`2`) is the
759specific operation value for ``LD``/Load Word.  The third parameter is the
760output destination, which is a register operand and defined in the ``Register``
761target description file (``IntRegs``).
762
763.. code-block:: text
764
765  def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
766                   "ld [$addr], $dst",
767                   [(set i32:$dst, (load ADDRrr:$addr))]>;
768
769The fourth parameter is the input source, which uses the address operand
770``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
771
772.. code-block:: text
773
774  def MEMrr : Operand<i32> {
775    let PrintMethod = "printMemOperand";
776    let MIOperandInfo = (ops IntRegs, IntRegs);
777  }
778
779The fifth parameter is a string that is used by the assembly printer and can be
780left as an empty string until the assembly printer interface is implemented.
781The sixth and final parameter is the pattern used to match the instruction
782during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
783This parameter is detailed in the next section, :ref:`instruction-selector`.
784
785Instruction class definitions are not overloaded for different operand types,
786so separate versions of instructions are needed for register, memory, or
787immediate value operands.  For example, to perform a Load Integer instruction
788for a Word from an immediate operand to a register, the following instruction
789class is defined:
790
791.. code-block:: text
792
793  def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
794                   "ld [$addr], $dst",
795                   [(set i32:$dst, (load ADDRri:$addr))]>;
796
797Writing these definitions for so many similar instructions can involve a lot of
798cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
799creation of templates to define several instruction classes at once (using the
800``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
801pattern ``F3_12`` is defined to create 2 instruction classes each time
802``F3_12`` is invoked:
803
804.. code-block:: text
805
806  multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
807    def rr  : F3_1 <2, Op3Val,
808                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
809                   !strconcat(OpcStr, " $b, $c, $dst"),
810                   [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
811    def ri  : F3_2 <2, Op3Val,
812                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
813                   !strconcat(OpcStr, " $b, $c, $dst"),
814                   [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
815  }
816
817So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
818instructions, as seen below, it creates four instruction objects: ``XORrr``,
819``XORri``, ``ADDrr``, and ``ADDri``.
820
821.. code-block:: text
822
823  defm XOR   : F3_12<"xor", 0b000011, xor>;
824  defm ADD   : F3_12<"add", 0b000000, add>;
825
826``SparcInstrInfo.td`` also includes definitions for condition codes that are
827referenced by branch instructions.  The following definitions in
828``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
829For example, the 10\ :sup:`th` bit represents the "greater than" condition for
830integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
831floats.
832
833.. code-block:: text
834
835  def ICC_NE  : ICC_VAL< 9>;  // Not Equal
836  def ICC_E   : ICC_VAL< 1>;  // Equal
837  def ICC_G   : ICC_VAL<10>;  // Greater
838  ...
839  def FCC_U   : FCC_VAL<23>;  // Unordered
840  def FCC_G   : FCC_VAL<22>;  // Greater
841  def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
842  ...
843
844(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
845condition codes.  Care must be taken to ensure the values in ``Sparc.h``
846correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
847``SPCC::FCC_U = 23`` and so on.)
848
849Instruction Operand Mapping
850---------------------------
851
852The code generator backend maps instruction operands to fields in the
853instruction.  Operands are assigned to unbound fields in the instruction in the
854order they are defined.  Fields are bound when they are assigned a value.  For
855example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
856format instruction having three operands.
857
858.. code-block:: text
859
860  def XNORrr  : F3_1<2, 0b000111,
861                     (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
862                     "xnor $b, $c, $dst",
863                     [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
864
865The instruction templates in ``SparcInstrFormats.td`` show the base class for
866``F3_1`` is ``InstSP``.
867
868.. code-block:: text
869
870  class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
871    field bits<32> Inst;
872    let Namespace = "SP";
873    bits<2> op;
874    let Inst{31-30} = op;
875    dag OutOperandList = outs;
876    dag InOperandList = ins;
877    let AsmString   = asmstr;
878    let Pattern = pattern;
879  }
880
881``InstSP`` leaves the ``op`` field unbound.
882
883.. code-block:: text
884
885  class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
886      : InstSP<outs, ins, asmstr, pattern> {
887    bits<5> rd;
888    bits<6> op3;
889    bits<5> rs1;
890    let op{1} = 1;   // Op = 2 or 3
891    let Inst{29-25} = rd;
892    let Inst{24-19} = op3;
893    let Inst{18-14} = rs1;
894  }
895
896``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
897fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
898``rs1`` fields.
899
900.. code-block:: text
901
902  class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
903             string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
904    bits<8> asi = 0; // asi not currently used
905    bits<5> rs2;
906    let op         = opVal;
907    let op3        = op3val;
908    let Inst{13}   = 0;     // i field = 0
909    let Inst{12-5} = asi;   // address space identifier
910    let Inst{4-0}  = rs2;
911  }
912
913``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
914format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
915fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
916and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
917
918Instruction Operand Name Mapping
919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
920
921TableGen will also generate a function called getNamedOperandIdx() which
922can be used to look up an operand's index in a MachineInstr based on its
923TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
924TableGen definition will add all of its operands to an enumeration in the
925llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
926table, which can be queried using getNamedOperandIdx()
927
928.. code-block:: text
929
930  int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
931  int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
932  int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
933  int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
934
935  ...
936
937The entries in the OpName enum are taken verbatim from the TableGen definitions,
938so operands with lowercase names will have lower case entries in the enum.
939
940To include the getNamedOperandIdx() function in your backend, you will need
941to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
942For example:
943
944XXXInstrInfo.cpp:
945
946.. code-block:: c++
947
948  #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
949  #include "XXXGenInstrInfo.inc"
950
951XXXInstrInfo.h:
952
953.. code-block:: c++
954
955  #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
956  #include "XXXGenInstrInfo.inc"
957
958  namespace XXX {
959    int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
960  } // End namespace XXX
961
962Instruction Operand Types
963^^^^^^^^^^^^^^^^^^^^^^^^^
964
965TableGen will also generate an enumeration consisting of all named Operand
966types defined in the backend, in the llvm::XXX::OpTypes namespace.
967Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
968are defined for all targets in ``include/llvm/Target/Target.td``, and are
969available in each Target's OpTypes enum.  Also, only named Operand types appear
970in the enumeration: anonymous types are ignored.
971For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
972instances of the TableGen ``Operand`` class, which represent branch target
973operands:
974
975.. code-block:: text
976
977  def brtarget : Operand<OtherVT>;
978  def brtarget8 : Operand<OtherVT>;
979
980This results in:
981
982.. code-block:: c++
983
984  namespace X86 {
985  namespace OpTypes {
986  enum OperandType {
987    ...
988    brtarget,
989    brtarget8,
990    ...
991    i32imm,
992    i64imm,
993    ...
994    OPERAND_TYPE_LIST_END
995  } // End namespace OpTypes
996  } // End namespace X86
997
998In typical TableGen fashion, to use the enum, you will need to define a
999preprocessor macro:
1000
1001.. code-block:: c++
1002
1003  #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
1004  #include "XXXGenInstrInfo.inc"
1005
1006
1007Instruction Scheduling
1008----------------------
1009
1010Instruction itineraries can be queried using MCDesc::getSchedClass(). The
1011value can be named by an enumeration in llvm::XXX::Sched namespace generated
1012by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
1013the same as provided in XXXSchedule.td plus a default NoItinerary class.
1014
1015The schedule models are generated by TableGen by the SubtargetEmitter,
1016using the ``CodeGenSchedModels`` class. This is distinct from the itinerary
1017method of specifying machine resource use.  The tool ``utils/schedcover.py``
1018can be used to determine which instructions have been covered by the
1019schedule model description and which haven't. The first step is to use the
1020instructions below to create an output file. Then run ``schedcover.py`` on the
1021output file:
1022
1023.. code-block:: shell
1024
1025  $ <src>/utils/schedcover.py <build>/lib/Target/AArch64/tblGenSubtarget.with
1026  instruction, default, CortexA53Model, CortexA57Model, CycloneModel, ExynosM3Model, FalkorModel, KryoModel, ThunderX2T99Model, ThunderXT8XModel
1027  ABSv16i8, WriteV, , , CyWriteV3, M3WriteNMISC1, FalkorWr_2VXVY_2cyc, KryoWrite_2cyc_XY_XY_150ln, ,
1028  ABSv1i64, WriteV, , , CyWriteV3, M3WriteNMISC1, FalkorWr_1VXVY_2cyc, KryoWrite_2cyc_XY_noRSV_67ln, ,
1029  ...
1030
1031To capture the debug output from generating a schedule model, change to the
1032appropriate target directory and use the following command:
1033command with the ``subtarget-emitter`` debug option:
1034
1035.. code-block:: shell
1036
1037  $ <build>/bin/llvm-tblgen -debug-only=subtarget-emitter -gen-subtarget \
1038    -I <src>/lib/Target/<target> -I <src>/include \
1039    -I <src>/lib/Target <src>/lib/Target/<target>/<target>.td \
1040    -o <build>/lib/Target/<target>/<target>GenSubtargetInfo.inc.tmp \
1041    > tblGenSubtarget.dbg 2>&1
1042
1043Where ``<build>`` is the build directory, ``src`` is the source directory,
1044and ``<target>`` is the name of the target.
1045To double check that the above command is what is needed, one can capture the
1046exact TableGen command from a build by using:
1047
1048.. code-block:: shell
1049
1050  $ VERBOSE=1 make ...
1051
1052and search for ``llvm-tblgen`` commands in the output.
1053
1054
1055Instruction Relation Mapping
1056----------------------------
1057
1058This TableGen feature is used to relate instructions with each other.  It is
1059particularly useful when you have multiple instruction formats and need to
1060switch between them after instruction selection.  This entire feature is driven
1061by relation models which can be defined in ``XXXInstrInfo.td`` files
1062according to the target-specific instruction set.  Relation models are defined
1063using ``InstrMapping`` class as a base.  TableGen parses all the models
1064and generates instruction relation maps using the specified information.
1065Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
1066along with the functions to query them.  For the detailed information on how to
1067use this feature, please refer to :doc:`HowToUseInstrMappings`.
1068
1069Implement a subclass of ``TargetInstrInfo``
1070-------------------------------------------
1071
1072The final step is to hand code portions of ``XXXInstrInfo``, which implements
1073the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
1074These functions return ``0`` or a Boolean or they assert, unless overridden.
1075Here's a list of functions that are overridden for the SPARC implementation in
1076``SparcInstrInfo.cpp``:
1077
1078* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
1079  load from a stack slot, return the register number of the destination and the
1080  ``FrameIndex`` of the stack slot.
1081
1082* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
1083  store to a stack slot, return the register number of the destination and the
1084  ``FrameIndex`` of the stack slot.
1085
1086* ``copyPhysReg`` --- Copy values between a pair of physical registers.
1087
1088* ``storeRegToStackSlot`` --- Store a register value to a stack slot.
1089
1090* ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
1091
1092* ``storeRegToAddr`` --- Store a register value to memory.
1093
1094* ``loadRegFromAddr`` --- Load a register value from memory.
1095
1096* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
1097  store instruction for the specified operand(s).
1098
1099Branch Folding and If Conversion
1100--------------------------------
1101
1102Performance can be improved by combining instructions or by eliminating
1103instructions that are never reached.  The ``analyzeBranch`` method in
1104``XXXInstrInfo`` may be implemented to examine conditional instructions and
1105remove unnecessary instructions.  ``analyzeBranch`` looks at the end of a
1106machine basic block (MBB) for opportunities for improvement, such as branch
1107folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
1108function passes (see the source files ``BranchFolding.cpp`` and
1109``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``analyzeBranch``
1110to improve the control flow graph that represents the instructions.
1111
1112Several implementations of ``analyzeBranch`` (for ARM, Alpha, and X86) can be
1113examined as models for your own ``analyzeBranch`` implementation.  Since SPARC
1114does not implement a useful ``analyzeBranch``, the ARM target implementation is
1115shown below.
1116
1117``analyzeBranch`` returns a Boolean value and takes four parameters:
1118
1119* ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
1120
1121* ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
1122  conditional branch that evaluates to true, ``TBB`` is the destination.
1123
1124* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
1125  false, ``FBB`` is returned as the destination.
1126
1127* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
1128  condition for a conditional branch.
1129
1130In the simplest case, if a block ends without a branch, then it falls through
1131to the successor block.  No destination blocks are specified for either ``TBB``
1132or ``FBB``, so both parameters return ``NULL``.  The start of the
1133``analyzeBranch`` (see code below for the ARM target) shows the function
1134parameters and the code for the simplest case.
1135
1136.. code-block:: c++
1137
1138  bool ARMInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1139                                   MachineBasicBlock *&TBB,
1140                                   MachineBasicBlock *&FBB,
1141                                   std::vector<MachineOperand> &Cond) const
1142  {
1143    MachineBasicBlock::iterator I = MBB.end();
1144    if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1145      return false;
1146
1147If a block ends with a single unconditional branch instruction, then
1148``analyzeBranch`` (shown below) should return the destination of that branch in
1149the ``TBB`` parameter.
1150
1151.. code-block:: c++
1152
1153    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1154      TBB = LastInst->getOperand(0).getMBB();
1155      return false;
1156    }
1157
1158If a block ends with two unconditional branches, then the second branch is
1159never reached.  In that situation, as shown below, remove the last branch
1160instruction and return the penultimate branch in the ``TBB`` parameter.
1161
1162.. code-block:: c++
1163
1164    if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
1165        (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1166      TBB = SecondLastInst->getOperand(0).getMBB();
1167      I = LastInst;
1168      I->eraseFromParent();
1169      return false;
1170    }
1171
1172A block may end with a single conditional branch instruction that falls through
1173to successor block if the condition evaluates to false.  In that case,
1174``analyzeBranch`` (shown below) should return the destination of that
1175conditional branch in the ``TBB`` parameter and a list of operands in the
1176``Cond`` parameter to evaluate the condition.
1177
1178.. code-block:: c++
1179
1180    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1181      // Block ends with fall-through condbranch.
1182      TBB = LastInst->getOperand(0).getMBB();
1183      Cond.push_back(LastInst->getOperand(1));
1184      Cond.push_back(LastInst->getOperand(2));
1185      return false;
1186    }
1187
1188If a block ends with both a conditional branch and an ensuing unconditional
1189branch, then ``analyzeBranch`` (shown below) should return the conditional
1190branch destination (assuming it corresponds to a conditional evaluation of
1191"``true``") in the ``TBB`` parameter and the unconditional branch destination
1192in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
1193list of operands to evaluate the condition should be returned in the ``Cond``
1194parameter.
1195
1196.. code-block:: c++
1197
1198    unsigned SecondLastOpc = SecondLastInst->getOpcode();
1199
1200    if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
1201        (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
1202      TBB =  SecondLastInst->getOperand(0).getMBB();
1203      Cond.push_back(SecondLastInst->getOperand(1));
1204      Cond.push_back(SecondLastInst->getOperand(2));
1205      FBB = LastInst->getOperand(0).getMBB();
1206      return false;
1207    }
1208
1209For the last two cases (ending with a single conditional branch or ending with
1210one conditional and one unconditional branch), the operands returned in the
1211``Cond`` parameter can be passed to methods of other instructions to create new
1212branches or perform other operations.  An implementation of ``analyzeBranch``
1213requires the helper methods ``removeBranch`` and ``insertBranch`` to manage
1214subsequent operations.
1215
1216``analyzeBranch`` should return false indicating success in most circumstances.
1217``analyzeBranch`` should only return true when the method is stumped about what
1218to do, for example, if a block has three terminating branches.
1219``analyzeBranch`` may return true if it encounters a terminator it cannot
1220handle, such as an indirect branch.
1221
1222.. _instruction-selector:
1223
1224Instruction Selector
1225====================
1226
1227LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
1228the ``SelectionDAG`` ideally represent native target instructions.  During code
1229generation, instruction selection passes are performed to convert non-native
1230DAG instructions into native target-specific instructions.  The pass described
1231in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
1232instruction selection.  Optionally, a pass may be defined (in
1233``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
1234instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
1235operations and data types not supported natively (legalizes) in a
1236``SelectionDAG``.
1237
1238TableGen generates code for instruction selection using the following target
1239description input files:
1240
1241* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
1242  target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
1243  included in ``XXXISelDAGToDAG.cpp``.
1244
1245* ``XXXCallingConv.td`` --- Contains the calling and return value conventions
1246  for the target architecture, and it generates ``XXXGenCallingConv.inc``,
1247  which is included in ``XXXISelLowering.cpp``.
1248
1249The implementation of an instruction selection pass must include a header that
1250declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
1251``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
1252selection pass into the queue of passes to run.
1253
1254The LLVM static compiler (``llc``) is an excellent tool for visualizing the
1255contents of DAGs.  To display the ``SelectionDAG`` before or after specific
1256processing phases, use the command line options for ``llc``, described at
1257:ref:`SelectionDAG-Process`.
1258
1259To describe instruction selector behavior, you should add patterns for lowering
1260LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
1261definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
1262this entry defines a register store operation, and the last parameter describes
1263a pattern with the store DAG operator.
1264
1265.. code-block:: text
1266
1267  def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1268                   "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
1269
1270``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
1271
1272.. code-block:: text
1273
1274  def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
1275
1276The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
1277defined in an implementation of the Instructor Selector (such as
1278``SparcISelDAGToDAG.cpp``).
1279
1280In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
1281below:
1282
1283.. code-block:: text
1284
1285  def store : PatFrag<(ops node:$val, node:$ptr),
1286                      (st node:$val, node:$ptr), [{
1287    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
1288      return !ST->isTruncatingStore() &&
1289             ST->getAddressingMode() == ISD::UNINDEXED;
1290    return false;
1291  }]>;
1292
1293``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
1294``SelectCode`` method that is used to call the appropriate processing method
1295for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
1296for the ``ISD::STORE`` opcode.
1297
1298.. code-block:: c++
1299
1300  SDNode *SelectCode(SDValue N) {
1301    ...
1302    MVT::ValueType NVT = N.getNode()->getValueType(0);
1303    switch (N.getOpcode()) {
1304    case ISD::STORE: {
1305      switch (NVT) {
1306      default:
1307        return Select_ISD_STORE(N);
1308        break;
1309      }
1310      break;
1311    }
1312    ...
1313
1314The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
1315code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
1316is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
1317instruction.
1318
1319.. code-block:: c++
1320
1321  SDNode *Select_ISD_STORE(const SDValue &N) {
1322    SDValue Chain = N.getOperand(0);
1323    if (Predicate_store(N.getNode())) {
1324      SDValue N1 = N.getOperand(1);
1325      SDValue N2 = N.getOperand(2);
1326      SDValue CPTmp0;
1327      SDValue CPTmp1;
1328
1329      // Pattern: (st:void i32:i32:$src,
1330      //           ADDRrr:i32:$addr)<<P:Predicate_store>>
1331      // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1332      // Pattern complexity = 13  cost = 1  size = 0
1333      if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
1334          N1.getNode()->getValueType(0) == MVT::i32 &&
1335          N2.getNode()->getValueType(0) == MVT::i32) {
1336        return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1337      }
1338  ...
1339
1340The SelectionDAG Legalize Phase
1341-------------------------------
1342
1343The Legalize phase converts a DAG to use types and operations that are natively
1344supported by the target.  For natively unsupported types and operations, you
1345need to add code to the target-specific ``XXXTargetLowering`` implementation to
1346convert unsupported types and operations to supported ones.
1347
1348In the constructor for the ``XXXTargetLowering`` class, first use the
1349``addRegisterClass`` method to specify which types are supported and which
1350register classes are associated with them.  The code for the register classes
1351are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
1352``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
1353constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
1354starts with the following code:
1355
1356.. code-block:: c++
1357
1358  addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1359  addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1360  addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1361
1362You should examine the node types in the ``ISD`` namespace
1363(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
1364the target natively supports.  For operations that do **not** have native
1365support, add a callback to the constructor for the ``XXXTargetLowering`` class,
1366so the instruction selection process knows what to do.  The ``TargetLowering``
1367class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
1368
1369* ``setOperationAction`` --- General operation.
1370* ``setLoadExtAction`` --- Load with extension.
1371* ``setTruncStoreAction`` --- Truncating store.
1372* ``setIndexedLoadAction`` --- Indexed load.
1373* ``setIndexedStoreAction`` --- Indexed store.
1374* ``setConvertAction`` --- Type conversion.
1375* ``setCondCodeAction`` --- Support for a given condition code.
1376
1377Note: on older releases, ``setLoadXAction`` is used instead of
1378``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
1379be supported.  Examine your release to see what methods are specifically
1380supported.
1381
1382These callbacks are used to determine that an operation does or does not work
1383with a specified type (or types).  And in all cases, the third parameter is a
1384``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
1385``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
1386``LegalAction`` values.
1387
1388Promote
1389^^^^^^^
1390
1391For an operation without native support for a given type, the specified type
1392may be promoted to a larger type that is supported.  For example, SPARC does
1393not support a sign-extending load for Boolean values (``i1`` type), so in
1394``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
1395``i1`` type values to a large type before loading.
1396
1397.. code-block:: c++
1398
1399  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1400
1401Expand
1402^^^^^^
1403
1404For a type without native support, a value may need to be broken down further,
1405rather than promoted.  For an operation without native support, a combination
1406of other operations may be used to similar effect.  In SPARC, the
1407floating-point sine and cosine trig operations are supported by expansion to
1408other operations, as indicated by the third parameter, ``Expand``, to
1409``setOperationAction``:
1410
1411.. code-block:: c++
1412
1413  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1414  setOperationAction(ISD::FCOS, MVT::f32, Expand);
1415
1416Custom
1417^^^^^^
1418
1419For some operations, simple type promotion or operation expansion may be
1420insufficient.  In some cases, a special intrinsic function must be implemented.
1421
1422For example, a constant value may require special treatment, or an operation
1423may require spilling and restoring registers in the stack and working with
1424register allocators.
1425
1426As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
1427from a floating point value to a signed integer, first the
1428``setOperationAction`` should be called with ``Custom`` as the third parameter:
1429
1430.. code-block:: c++
1431
1432  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1433
1434In the ``LowerOperation`` method, for each ``Custom`` operation, a case
1435statement should be added to indicate what function to call.  In the following
1436code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
1437
1438.. code-block:: c++
1439
1440  SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
1441    switch (Op.getOpcode()) {
1442    case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1443    ...
1444    }
1445  }
1446
1447Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
1448convert the floating-point value to an integer.
1449
1450.. code-block:: c++
1451
1452  static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
1453    assert(Op.getValueType() == MVT::i32);
1454    Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1455    return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1456  }
1457
1458Legal
1459^^^^^
1460
1461The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
1462**is** natively supported.  ``Legal`` represents the default condition, so it
1463is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
1464operation to count the bits set in an integer) is natively supported only for
1465SPARC v9.  The following code enables the ``Expand`` conversion technique for
1466non-v9 SPARC implementations.
1467
1468.. code-block:: c++
1469
1470  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1471  ...
1472  if (TM.getSubtarget<SparcSubtarget>().isV9())
1473    setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1474
1475Calling Conventions
1476-------------------
1477
1478To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
1479interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
1480``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
1481file ``XXXGenCallingConv.td`` and generate the header file
1482``XXXGenCallingConv.inc``, which is typically included in
1483``XXXISelLowering.cpp``.  You can use the interfaces in
1484``TargetCallingConv.td`` to specify:
1485
1486* The order of parameter allocation.
1487
1488* Where parameters and return values are placed (that is, on the stack or in
1489  registers).
1490
1491* Which registers may be used.
1492
1493* Whether the caller or callee unwinds the stack.
1494
1495The following example demonstrates the use of the ``CCIfType`` and
1496``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
1497if the current argument is of type ``f32`` or ``f64``), then the action is
1498performed.  In this case, the ``CCAssignToReg`` action assigns the argument
1499value to the first available register: either ``R0`` or ``R1``.
1500
1501.. code-block:: text
1502
1503  CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
1504
1505``SparcCallingConv.td`` contains definitions for a target-specific return-value
1506calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
1507(``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
1508which registers are used for specified scalar return types.  A single-precision
1509float is returned to register ``F0``, and a double-precision float goes to
1510register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
1511
1512.. code-block:: text
1513
1514  def RetCC_Sparc32 : CallingConv<[
1515    CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
1516    CCIfType<[f32], CCAssignToReg<[F0]>>,
1517    CCIfType<[f64], CCAssignToReg<[D0]>>
1518  ]>;
1519
1520The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
1521``CCAssignToStack``, which assigns the value to a stack slot with the specified
1522size and alignment.  In the example below, the first parameter, 4, indicates
1523the size of the slot, and the second parameter, also 4, indicates the stack
1524alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
1525size is used; if alignment is zero, then the ABI alignment is used.)
1526
1527.. code-block:: text
1528
1529  def CC_Sparc32 : CallingConv<[
1530    // All arguments get passed in integer registers if there is space.
1531    CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
1532    CCAssignToStack<4, 4>
1533  ]>;
1534
1535``CCDelegateTo`` is another commonly used interface, which tries to find a
1536specified sub-calling convention, and, if a match is found, it is invoked.  In
1537the following example (in ``X86CallingConv.td``), the definition of
1538``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
1539assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
1540invoked.
1541
1542.. code-block:: text
1543
1544  def RetCC_X86_32_C : CallingConv<[
1545    CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
1546    CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
1547    CCDelegateTo<RetCC_X86Common>
1548  ]>;
1549
1550``CCIfCC`` is an interface that attempts to match the given name to the current
1551calling convention.  If the name identifies the current calling convention,
1552then a specified action is invoked.  In the following example (in
1553``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
1554``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
1555use, then ``RetCC_X86_32_SSE`` is invoked.
1556
1557.. code-block:: text
1558
1559  def RetCC_X86_32 : CallingConv<[
1560    CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
1561    CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
1562    CCDelegateTo<RetCC_X86_32_C>
1563  ]>;
1564
1565Other calling convention interfaces include:
1566
1567* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
1568
1569* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
1570  attribute, then apply the action.
1571
1572* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
1573  attribute, then apply the action.
1574
1575* ``CCIfNotVarArg <action>`` --- If the current function does not take a
1576  variable number of arguments, apply the action.
1577
1578* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
1579  ``CCAssignToReg``, but with a shadow list of registers.
1580
1581* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
1582  minimum specified size and alignment.
1583
1584* ``CCPromoteToType <type>`` --- Promote the current value to the specified
1585  type.
1586
1587* ``CallingConv <[actions]>`` --- Define each calling convention that is
1588  supported.
1589
1590Assembly Printer
1591================
1592
1593During the code emission stage, the code generator may utilize an LLVM pass to
1594produce assembly output.  To do this, you want to implement the code for a
1595printer that converts LLVM IR to a GAS-format assembly language for your target
1596machine, using the following steps:
1597
1598* Define all the assembly strings for your target, adding them to the
1599  instructions defined in the ``XXXInstrInfo.td`` file.  (See
1600  :ref:`instruction-set`.)  TableGen will produce an output file
1601  (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
1602  method for the ``XXXAsmPrinter`` class.
1603
1604* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
1605  the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
1606
1607* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
1608  ``TargetAsmInfo`` properties and sometimes new implementations for methods.
1609
1610* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
1611  performs the LLVM-to-assembly conversion.
1612
1613The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
1614``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
1615``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
1616replacement values that override the default values in ``TargetAsmInfo.cpp``.
1617For example in ``SparcTargetAsmInfo.cpp``:
1618
1619.. code-block:: c++
1620
1621  SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
1622    Data16bitsDirective = "\t.half\t";
1623    Data32bitsDirective = "\t.word\t";
1624    Data64bitsDirective = 0;  // .xword is only supported by V9.
1625    ZeroDirective = "\t.skip\t";
1626    CommentString = "!";
1627    ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
1628  }
1629
1630The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
1631where the target specific ``TargetAsmInfo`` class uses an overridden methods:
1632``ExpandInlineAsm``.
1633
1634A target-specific implementation of ``AsmPrinter`` is written in
1635``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
1636the LLVM to printable assembly.  The implementation must include the following
1637headers that have declarations for the ``AsmPrinter`` and
1638``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
1639``FunctionPass``.
1640
1641.. code-block:: c++
1642
1643  #include "llvm/CodeGen/AsmPrinter.h"
1644  #include "llvm/CodeGen/MachineFunctionPass.h"
1645
1646As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
1647up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
1648instantiated to process variable names.
1649
1650In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
1651``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
1652``MachineFunctionPass``, the ``runOnFunction`` method invokes
1653``runOnMachineFunction``.  Target-specific implementations of
1654``runOnMachineFunction`` differ, but generally do the following to process each
1655machine function:
1656
1657* Call ``SetupMachineFunction`` to perform initialization.
1658
1659* Call ``EmitConstantPool`` to print out (to the output stream) constants which
1660  have been spilled to memory.
1661
1662* Call ``EmitJumpTableInfo`` to print out jump tables used by the current
1663  function.
1664
1665* Print out the label for the current function.
1666
1667* Print out the code for the function, including basic block labels and the
1668  assembly for the instruction (using ``printInstruction``)
1669
1670The ``XXXAsmPrinter`` implementation must also include the code generated by
1671TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
1672``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
1673method that may call these methods:
1674
1675* ``printOperand``
1676* ``printMemOperand``
1677* ``printCCOperand`` (for conditional statements)
1678* ``printDataDirective``
1679* ``printDeclare``
1680* ``printImplicitDef``
1681* ``printInlineAsm``
1682
1683The implementations of ``printDeclare``, ``printImplicitDef``,
1684``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
1685adequate for printing assembly and do not need to be overridden.
1686
1687The ``printOperand`` method is implemented with a long ``switch``/``case``
1688statement for the type of operand: register, immediate, basic block, external
1689symbol, global address, constant pool index, or jump table index.  For an
1690instruction with a memory address operand, the ``printMemOperand`` method
1691should be implemented to generate the proper output.  Similarly,
1692``printCCOperand`` should be used to print a conditional operand.
1693
1694``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
1695called to shut down the assembly printer.  During ``doFinalization``, global
1696variables and constants are printed to output.
1697
1698Subtarget Support
1699=================
1700
1701Subtarget support is used to inform the code generation process of instruction
1702set variations for a given chip set.  For example, the LLVM SPARC
1703implementation provided covers three major versions of the SPARC microprocessor
1704architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
170564-bit architecture), and the UltraSPARC architecture.  V8 has 16
1706double-precision floating-point registers that are also usable as either 32
1707single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
1708V9 has 32 double-precision floating-point registers that are also usable as 16
1709quad-precision registers, but cannot be used as single-precision registers.
1710The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
1711extensions.
1712
1713If subtarget support is needed, you should implement a target-specific
1714``XXXSubtarget`` class for your architecture.  This class should process the
1715command-line options ``-mcpu=`` and ``-mattr=``.
1716
1717TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
1718generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
1719``SubtargetFeature`` interface is defined.  The first 4 string parameters of
1720the ``SubtargetFeature`` interface are a feature name, an attribute set by the
1721feature, the value of the attribute, and a description of the feature.  (The
1722fifth parameter is a list of features whose presence is implied, and its
1723default value is an empty array.)
1724
1725.. code-block:: text
1726
1727  class SubtargetFeature<string n, string a, string v, string d,
1728                         list<SubtargetFeature> i = []> {
1729    string Name = n;
1730    string Attribute = a;
1731    string Value = v;
1732    string Desc = d;
1733    list<SubtargetFeature> Implies = i;
1734  }
1735
1736In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
1737following features.
1738
1739.. code-block:: text
1740
1741  def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
1742                       "Enable SPARC-V9 instructions">;
1743  def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
1744                       "V8DeprecatedInsts", "true",
1745                       "Enable deprecated V8 instructions in V9 mode">;
1746  def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
1747                       "Enable UltraSPARC Visual Instruction Set extensions">;
1748
1749Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
1750define particular SPARC processor subtypes that may have the previously
1751described features.
1752
1753.. code-block:: text
1754
1755  class Proc<string Name, list<SubtargetFeature> Features>
1756    : Processor<Name, NoItineraries, Features>;
1757
1758  def : Proc<"generic",         []>;
1759  def : Proc<"v8",              []>;
1760  def : Proc<"supersparc",      []>;
1761  def : Proc<"sparclite",       []>;
1762  def : Proc<"f934",            []>;
1763  def : Proc<"hypersparc",      []>;
1764  def : Proc<"sparclite86x",    []>;
1765  def : Proc<"sparclet",        []>;
1766  def : Proc<"tsc701",          []>;
1767  def : Proc<"v9",              [FeatureV9]>;
1768  def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
1769  def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
1770  def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
1771
1772From ``Target.td`` and ``Sparc.td`` files, the resulting
1773``SparcGenSubtarget.inc`` specifies enum values to identify the features,
1774arrays of constants to represent the CPU features and CPU subtypes, and the
1775``ParseSubtargetFeatures`` method that parses the features string that sets
1776specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
1777should be included in the ``SparcSubtarget.cpp``.  The target-specific
1778implementation of the ``XXXSubtarget`` method should follow this pseudocode:
1779
1780.. code-block:: c++
1781
1782  XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
1783    // Set the default features
1784    // Determine default and user specified characteristics of the CPU
1785    // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
1786    // Perform any additional operations
1787  }
1788
1789JIT Support
1790===========
1791
1792The implementation of a target machine optionally includes a Just-In-Time (JIT)
1793code generator that emits machine code and auxiliary structures as binary
1794output that can be written directly to memory.  To do this, implement JIT code
1795generation by performing the following steps:
1796
1797* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
1798  that transforms target-machine instructions into relocatable machine
1799  code.
1800
1801* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
1802  target-specific code-generation activities, such as emitting machine code and
1803  stubs.
1804
1805* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
1806  through its ``getJITInfo`` method.
1807
1808There are several different approaches to writing the JIT support code.  For
1809instance, TableGen and target descriptor files may be used for creating a JIT
1810code generator, but are not mandatory.  For the Alpha and PowerPC target
1811machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
1812contains the binary coding of machine instructions and the
1813``getBinaryCodeForInstr`` method to access those codes.  Other JIT
1814implementations do not.
1815
1816Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
1817``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
1818``MachineCodeEmitter`` class containing code for several callback functions
1819that write data (in bytes, words, strings, etc.) to the output stream.
1820
1821Machine Code Emitter
1822--------------------
1823
1824In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
1825implemented as a function pass (subclass of ``MachineFunctionPass``).  The
1826target-specific implementation of ``runOnMachineFunction`` (invoked by
1827``runOnFunction`` in ``MachineFunctionPass``) iterates through the
1828``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
1829emit binary code.  ``emitInstruction`` is largely implemented with case
1830statements on the instruction types defined in ``XXXInstrInfo.h``.  For
1831example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
1832around the following ``switch``/``case`` statements:
1833
1834.. code-block:: c++
1835
1836  switch (Desc->TSFlags & X86::FormMask) {
1837  case X86II::Pseudo:  // for not yet implemented instructions
1838     ...               // or pseudo-instructions
1839     break;
1840  case X86II::RawFrm:  // for instructions with a fixed opcode value
1841     ...
1842     break;
1843  case X86II::AddRegFrm: // for instructions that have one register operand
1844     ...                 // added to their opcode
1845     break;
1846  case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
1847     ...                 // to specify a destination (register)
1848     break;
1849  case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
1850     ...                 // to specify a destination (memory)
1851     break;
1852  case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
1853     ...                 // to specify a source (register)
1854     break;
1855  case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
1856     ...                 // to specify a source (memory)
1857     break;
1858  case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
1859  case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
1860  case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
1861  case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
1862     ...
1863     break;
1864  case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
1865  case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
1866  case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
1867  case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
1868     ...
1869     break;
1870  case X86II::MRMInitReg: // for instructions whose source and
1871     ...                  // destination are the same register
1872     break;
1873  }
1874
1875The implementations of these case statements often first emit the opcode and
1876then get the operand(s).  Then depending upon the operand, helper methods may
1877be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
1878for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
1879the opcode added to the register operand.  Then an object representing the
1880machine operand, ``MO1``, is extracted.  The helper methods such as
1881``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
1882``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
1883(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
1884``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
1885and ``emitJumpTableAddress`` that emit the data into the output stream.)
1886
1887.. code-block:: c++
1888
1889  case X86II::AddRegFrm:
1890    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
1891
1892    if (CurOp != NumOps) {
1893      const MachineOperand &MO1 = MI.getOperand(CurOp++);
1894      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
1895      if (MO1.isImmediate())
1896        emitConstant(MO1.getImm(), Size);
1897      else {
1898        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1899          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1900        if (Opcode == X86::MOV64ri)
1901          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
1902        if (MO1.isGlobalAddress()) {
1903          bool NeedStub = isa<Function>(MO1.getGlobal());
1904          bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
1905          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1906                            NeedStub, isLazy);
1907        } else if (MO1.isExternalSymbol())
1908          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1909        else if (MO1.isConstantPoolIndex())
1910          emitConstPoolAddress(MO1.getIndex(), rt);
1911        else if (MO1.isJumpTableIndex())
1912          emitJumpTableAddress(MO1.getIndex(), rt);
1913      }
1914    }
1915    break;
1916
1917In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
1918is a ``RelocationType`` enum that may be used to relocate addresses (for
1919example, a global address with a PIC base offset).  The ``RelocationType`` enum
1920for that target is defined in the short target-specific ``XXXRelocations.h``
1921file.  The ``RelocationType`` is used by the ``relocate`` method defined in
1922``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
1923
1924For example, ``X86Relocations.h`` specifies the following relocation types for
1925the X86 addresses.  In all four cases, the relocated value is added to the
1926value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
1927there is an additional initial adjustment.
1928
1929.. code-block:: c++
1930
1931  enum RelocationType {
1932    reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
1933    reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
1934    reloc_absolute_word = 2, // absolute relocation; no additional adjustment
1935    reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
1936  };
1937
1938Target JIT Info
1939---------------
1940
1941``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
1942code-generation activities, such as emitting machine code and stubs.  At
1943minimum, a target-specific version of ``XXXJITInfo`` implements the following:
1944
1945* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
1946  function that is used for compilation.
1947
1948* ``emitFunctionStub`` --- Returns a native function with a specified address
1949  for a callback function.
1950
1951* ``relocate`` --- Changes the addresses of referenced globals, based on
1952  relocation types.
1953
1954* Callback function that are wrappers to a function stub that is used when the
1955  real target is not initially known.
1956
1957``getLazyResolverFunction`` is generally trivial to implement.  It makes the
1958incoming parameter as the global ``JITCompilerFunction`` and returns the
1959callback function that will be used a function wrapper.  For the Alpha target
1960(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
1961simply:
1962
1963.. code-block:: c++
1964
1965  TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
1966                                              JITCompilerFn F) {
1967    JITCompilerFunction = F;
1968    return AlphaCompilationCallback;
1969  }
1970
1971For the X86 target, the ``getLazyResolverFunction`` implementation is a little
1972more complicated, because it returns a different callback function for
1973processors with SSE instructions and XMM registers.
1974
1975The callback function initially saves and later restores the callee register
1976values, incoming arguments, and frame and return address.  The callback
1977function needs low-level access to the registers or stack, so it is typically
1978implemented with assembler.
1979
1980