1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
17 
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/ilist.h"
22 #include "llvm/ADT/ilist_node.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/PseudoProbe.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/TrailingObjects.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <utility>
38 
39 namespace llvm {
40 
41 class AAResults;
42 template <typename T> class ArrayRef;
43 class DIExpression;
44 class DILocalVariable;
45 class MachineBasicBlock;
46 class MachineFunction;
47 class MachineRegisterInfo;
48 class ModuleSlotTracker;
49 class raw_ostream;
50 template <typename T> class SmallVectorImpl;
51 class SmallBitVector;
52 class StringRef;
53 class TargetInstrInfo;
54 class TargetRegisterClass;
55 class TargetRegisterInfo;
56 
57 //===----------------------------------------------------------------------===//
58 /// Representation of each machine instruction.
59 ///
60 /// This class isn't a POD type, but it must have a trivial destructor. When a
61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62 /// without having their destructor called.
63 ///
64 class MachineInstr
65     : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66                                     ilist_sentinel_tracking<true>> {
67 public:
68   using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 
70   /// Flags to specify different kinds of comments to output in
71   /// assembly code.  These flags carry semantic information not
72   /// otherwise easily derivable from the IR text.
73   ///
74   enum CommentFlag {
75     ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
76     NoSchedComment = 0x2,
77     TAsmComments = 0x4    // Target Asm comments should start from this value.
78   };
79 
80   enum MIFlag {
81     NoFlags      = 0,
82     FrameSetup   = 1 << 0,              // Instruction is used as a part of
83                                         // function frame setup code.
84     FrameDestroy = 1 << 1,              // Instruction is used as a part of
85                                         // function frame destruction code.
86     BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
87     BundledSucc  = 1 << 3,              // Instruction has bundled successors.
88     FmNoNans     = 1 << 4,              // Instruction does not support Fast
89                                         // math nan values.
90     FmNoInfs     = 1 << 5,              // Instruction does not support Fast
91                                         // math infinity values.
92     FmNsz        = 1 << 6,              // Instruction is not required to retain
93                                         // signed zero values.
94     FmArcp       = 1 << 7,              // Instruction supports Fast math
95                                         // reciprocal approximations.
96     FmContract   = 1 << 8,              // Instruction supports Fast math
97                                         // contraction operations like fma.
98     FmAfn        = 1 << 9,              // Instruction may map to Fast math
99                                         // instrinsic approximation.
100     FmReassoc    = 1 << 10,             // Instruction supports Fast math
101                                         // reassociation of operand order.
102     NoUWrap      = 1 << 11,             // Instruction supports binary operator
103                                         // no unsigned wrap.
104     NoSWrap      = 1 << 12,             // Instruction supports binary operator
105                                         // no signed wrap.
106     IsExact      = 1 << 13,             // Instruction supports division is
107                                         // known to be exact.
108     NoFPExcept   = 1 << 14,             // Instruction does not raise
109                                         // floatint-point exceptions.
110     NoMerge      = 1 << 15,             // Passes that drop source location info
111                                         // (e.g. branch folding) should skip
112                                         // this instruction.
113   };
114 
115 private:
116   const MCInstrDesc *MCID;              // Instruction descriptor.
117   MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
118 
119   // Operands are allocated by an ArrayRecycler.
120   MachineOperand *Operands = nullptr;   // Pointer to the first operand.
121   unsigned NumOperands = 0;             // Number of operands on instruction.
122 
123   uint16_t Flags = 0;                   // Various bits of additional
124                                         // information about machine
125                                         // instruction.
126 
127   uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
128                                         // the AsmPrinter to emit helpful
129                                         // comments.  This is *not* semantic
130                                         // information.  Do not use this for
131                                         // anything other than to convey comment
132                                         // information to AsmPrinter.
133 
134   // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
135   // to properly pack.
136   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
137   OperandCapacity CapOperands;          // Capacity of the Operands array.
138 
139   /// Internal implementation detail class that provides out-of-line storage for
140   /// extra info used by the machine instruction when this info cannot be stored
141   /// in-line within the instruction itself.
142   ///
143   /// This has to be defined eagerly due to the implementation constraints of
144   /// `PointerSumType` where it is used.
145   class ExtraInfo final
146       : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
147   public:
148     static ExtraInfo *create(BumpPtrAllocator &Allocator,
149                              ArrayRef<MachineMemOperand *> MMOs,
150                              MCSymbol *PreInstrSymbol = nullptr,
151                              MCSymbol *PostInstrSymbol = nullptr,
152                              MDNode *HeapAllocMarker = nullptr) {
153       bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
154       bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
155       bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
156       auto *Result = new (Allocator.Allocate(
157           totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
158               MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
159               HasHeapAllocMarker),
160           alignof(ExtraInfo)))
161           ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
162                     HasHeapAllocMarker);
163 
164       // Copy the actual data into the trailing objects.
165       std::copy(MMOs.begin(), MMOs.end(),
166                 Result->getTrailingObjects<MachineMemOperand *>());
167 
168       if (HasPreInstrSymbol)
169         Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
170       if (HasPostInstrSymbol)
171         Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
172             PostInstrSymbol;
173       if (HasHeapAllocMarker)
174         Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
175 
176       return Result;
177     }
178 
getMMOs()179     ArrayRef<MachineMemOperand *> getMMOs() const {
180       return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
181     }
182 
getPreInstrSymbol()183     MCSymbol *getPreInstrSymbol() const {
184       return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
185     }
186 
getPostInstrSymbol()187     MCSymbol *getPostInstrSymbol() const {
188       return HasPostInstrSymbol
189                  ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
190                  : nullptr;
191     }
192 
getHeapAllocMarker()193     MDNode *getHeapAllocMarker() const {
194       return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
195     }
196 
197   private:
198     friend TrailingObjects;
199 
200     // Description of the extra info, used to interpret the actual optional
201     // data appended.
202     //
203     // Note that this is not terribly space optimized. This leaves a great deal
204     // of flexibility to fit more in here later.
205     const int NumMMOs;
206     const bool HasPreInstrSymbol;
207     const bool HasPostInstrSymbol;
208     const bool HasHeapAllocMarker;
209 
210     // Implement the `TrailingObjects` internal API.
numTrailingObjects(OverloadToken<MachineMemOperand * >)211     size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
212       return NumMMOs;
213     }
numTrailingObjects(OverloadToken<MCSymbol * >)214     size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
215       return HasPreInstrSymbol + HasPostInstrSymbol;
216     }
numTrailingObjects(OverloadToken<MDNode * >)217     size_t numTrailingObjects(OverloadToken<MDNode *>) const {
218       return HasHeapAllocMarker;
219     }
220 
221     // Just a boring constructor to allow us to initialize the sizes. Always use
222     // the `create` routine above.
ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker)223     ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
224               bool HasHeapAllocMarker)
225         : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
226           HasPostInstrSymbol(HasPostInstrSymbol),
227           HasHeapAllocMarker(HasHeapAllocMarker) {}
228   };
229 
230   /// Enumeration of the kinds of inline extra info available. It is important
231   /// that the `MachineMemOperand` inline kind has a tag value of zero to make
232   /// it accessible as an `ArrayRef`.
233   enum ExtraInfoInlineKinds {
234     EIIK_MMO = 0,
235     EIIK_PreInstrSymbol,
236     EIIK_PostInstrSymbol,
237     EIIK_OutOfLine
238   };
239 
240   // We store extra information about the instruction here. The common case is
241   // expected to be nothing or a single pointer (typically a MMO or a symbol).
242   // We work to optimize this common case by storing it inline here rather than
243   // requiring a separate allocation, but we fall back to an allocation when
244   // multiple pointers are needed.
245   PointerSumType<ExtraInfoInlineKinds,
246                  PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
247                  PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
248                  PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
249                  PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
250       Info;
251 
252   DebugLoc debugLoc;                    // Source line information.
253 
254   /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
255   /// defined by this instruction.
256   unsigned DebugInstrNum;
257 
258   // Intrusive list support
259   friend struct ilist_traits<MachineInstr>;
260   friend struct ilist_callback_traits<MachineBasicBlock>;
261   void setParent(MachineBasicBlock *P) { Parent = P; }
262 
263   /// This constructor creates a copy of the given
264   /// MachineInstr in the given MachineFunction.
265   MachineInstr(MachineFunction &, const MachineInstr &);
266 
267   /// This constructor create a MachineInstr and add the implicit operands.
268   /// It reserves space for number of operands specified by
269   /// MCInstrDesc.  An explicit DebugLoc is supplied.
270   MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
271                bool NoImp = false);
272 
273   // MachineInstrs are pool-allocated and owned by MachineFunction.
274   friend class MachineFunction;
275 
276   void
277   dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
278             SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
279 
280 public:
281   MachineInstr(const MachineInstr &) = delete;
282   MachineInstr &operator=(const MachineInstr &) = delete;
283   // Use MachineFunction::DeleteMachineInstr() instead.
284   ~MachineInstr() = delete;
285 
286   const MachineBasicBlock* getParent() const { return Parent; }
287   MachineBasicBlock* getParent() { return Parent; }
288 
289   /// Move the instruction before \p MovePos.
290   void moveBefore(MachineInstr *MovePos);
291 
292   /// Return the function that contains the basic block that this instruction
293   /// belongs to.
294   ///
295   /// Note: this is undefined behaviour if the instruction does not have a
296   /// parent.
297   const MachineFunction *getMF() const;
298   MachineFunction *getMF() {
299     return const_cast<MachineFunction *>(
300         static_cast<const MachineInstr *>(this)->getMF());
301   }
302 
303   /// Return the asm printer flags bitvector.
304   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
305 
306   /// Clear the AsmPrinter bitvector.
307   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
308 
309   /// Return whether an AsmPrinter flag is set.
310   bool getAsmPrinterFlag(CommentFlag Flag) const {
311     return AsmPrinterFlags & Flag;
312   }
313 
314   /// Set a flag for the AsmPrinter.
315   void setAsmPrinterFlag(uint8_t Flag) {
316     AsmPrinterFlags |= Flag;
317   }
318 
319   /// Clear specific AsmPrinter flags.
320   void clearAsmPrinterFlag(CommentFlag Flag) {
321     AsmPrinterFlags &= ~Flag;
322   }
323 
324   /// Return the MI flags bitvector.
325   uint16_t getFlags() const {
326     return Flags;
327   }
328 
329   /// Return whether an MI flag is set.
330   bool getFlag(MIFlag Flag) const {
331     return Flags & Flag;
332   }
333 
334   /// Set a MI flag.
335   void setFlag(MIFlag Flag) {
336     Flags |= (uint16_t)Flag;
337   }
338 
339   void setFlags(unsigned flags) {
340     // Filter out the automatically maintained flags.
341     unsigned Mask = BundledPred | BundledSucc;
342     Flags = (Flags & Mask) | (flags & ~Mask);
343   }
344 
345   /// clearFlag - Clear a MI flag.
346   void clearFlag(MIFlag Flag) {
347     Flags &= ~((uint16_t)Flag);
348   }
349 
350   /// Return true if MI is in a bundle (but not the first MI in a bundle).
351   ///
352   /// A bundle looks like this before it's finalized:
353   ///   ----------------
354   ///   |      MI      |
355   ///   ----------------
356   ///          |
357   ///   ----------------
358   ///   |      MI    * |
359   ///   ----------------
360   ///          |
361   ///   ----------------
362   ///   |      MI    * |
363   ///   ----------------
364   /// In this case, the first MI starts a bundle but is not inside a bundle, the
365   /// next 2 MIs are considered "inside" the bundle.
366   ///
367   /// After a bundle is finalized, it looks like this:
368   ///   ----------------
369   ///   |    Bundle    |
370   ///   ----------------
371   ///          |
372   ///   ----------------
373   ///   |      MI    * |
374   ///   ----------------
375   ///          |
376   ///   ----------------
377   ///   |      MI    * |
378   ///   ----------------
379   ///          |
380   ///   ----------------
381   ///   |      MI    * |
382   ///   ----------------
383   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
384   /// a bundle, but the next three MIs are.
385   bool isInsideBundle() const {
386     return getFlag(BundledPred);
387   }
388 
389   /// Return true if this instruction part of a bundle. This is true
390   /// if either itself or its following instruction is marked "InsideBundle".
391   bool isBundled() const {
392     return isBundledWithPred() || isBundledWithSucc();
393   }
394 
395   /// Return true if this instruction is part of a bundle, and it is not the
396   /// first instruction in the bundle.
397   bool isBundledWithPred() const { return getFlag(BundledPred); }
398 
399   /// Return true if this instruction is part of a bundle, and it is not the
400   /// last instruction in the bundle.
401   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
402 
403   /// Bundle this instruction with its predecessor. This can be an unbundled
404   /// instruction, or it can be the first instruction in a bundle.
405   void bundleWithPred();
406 
407   /// Bundle this instruction with its successor. This can be an unbundled
408   /// instruction, or it can be the last instruction in a bundle.
409   void bundleWithSucc();
410 
411   /// Break bundle above this instruction.
412   void unbundleFromPred();
413 
414   /// Break bundle below this instruction.
415   void unbundleFromSucc();
416 
417   /// Returns the debug location id of this MachineInstr.
418   const DebugLoc &getDebugLoc() const { return debugLoc; }
419 
420   /// Return the operand containing the offset to be used if this DBG_VALUE
421   /// instruction is indirect; will be an invalid register if this value is
422   /// not indirect, and an immediate with value 0 otherwise.
423   const MachineOperand &getDebugOffset() const {
424     assert(isNonListDebugValue() && "not a DBG_VALUE");
425     return getOperand(1);
426   }
427   MachineOperand &getDebugOffset() {
428     assert(isNonListDebugValue() && "not a DBG_VALUE");
429     return getOperand(1);
430   }
431 
432   /// Return the operand for the debug variable referenced by
433   /// this DBG_VALUE instruction.
434   const MachineOperand &getDebugVariableOp() const;
435   MachineOperand &getDebugVariableOp();
436 
437   /// Return the debug variable referenced by
438   /// this DBG_VALUE instruction.
439   const DILocalVariable *getDebugVariable() const;
440 
441   /// Return the operand for the complex address expression referenced by
442   /// this DBG_VALUE instruction.
443   const MachineOperand &getDebugExpressionOp() const;
444   MachineOperand &getDebugExpressionOp();
445 
446   /// Return the complex address expression referenced by
447   /// this DBG_VALUE instruction.
448   const DIExpression *getDebugExpression() const;
449 
450   /// Return the debug label referenced by
451   /// this DBG_LABEL instruction.
452   const DILabel *getDebugLabel() const;
453 
454   /// Fetch the instruction number of this MachineInstr. If it does not have
455   /// one already, a new and unique number will be assigned.
456   unsigned getDebugInstrNum();
457 
458   /// Fetch instruction number of this MachineInstr -- but before it's inserted
459   /// into \p MF. Needed for transformations that create an instruction but
460   /// don't immediately insert them.
461   unsigned getDebugInstrNum(MachineFunction &MF);
462 
463   /// Examine the instruction number of this MachineInstr. May be zero if
464   /// it hasn't been assigned a number yet.
465   unsigned peekDebugInstrNum() const { return DebugInstrNum; }
466 
467   /// Set instruction number of this MachineInstr. Avoid using unless you're
468   /// deserializing this information.
469   void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
470 
471   /// Drop any variable location debugging information associated with this
472   /// instruction. Use when an instruction is modified in such a way that it no
473   /// longer defines the value it used to. Variable locations using that value
474   /// will be dropped.
475   void dropDebugNumber() { DebugInstrNum = 0; }
476 
477   /// Emit an error referring to the source location of this instruction.
478   /// This should only be used for inline assembly that is somehow
479   /// impossible to compile. Other errors should have been handled much
480   /// earlier.
481   ///
482   /// If this method returns, the caller should try to recover from the error.
483   void emitError(StringRef Msg) const;
484 
485   /// Returns the target instruction descriptor of this MachineInstr.
486   const MCInstrDesc &getDesc() const { return *MCID; }
487 
488   /// Returns the opcode of this MachineInstr.
489   unsigned getOpcode() const { return MCID->Opcode; }
490 
491   /// Retuns the total number of operands.
492   unsigned getNumOperands() const { return NumOperands; }
493 
494   /// Returns the total number of operands which are debug locations.
495   unsigned getNumDebugOperands() const {
496     return std::distance(debug_operands().begin(), debug_operands().end());
497   }
498 
499   const MachineOperand& getOperand(unsigned i) const {
500     assert(i < getNumOperands() && "getOperand() out of range!");
501     return Operands[i];
502   }
503   MachineOperand& getOperand(unsigned i) {
504     assert(i < getNumOperands() && "getOperand() out of range!");
505     return Operands[i];
506   }
507 
508   MachineOperand &getDebugOperand(unsigned Index) {
509     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
510     return *(debug_operands().begin() + Index);
511   }
512   const MachineOperand &getDebugOperand(unsigned Index) const {
513     assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
514     return *(debug_operands().begin() + Index);
515   }
516 
517   SmallSet<Register, 4> getUsedDebugRegs() const {
518     assert(isDebugValue() && "not a DBG_VALUE*");
519     SmallSet<Register, 4> UsedRegs;
520     for (auto MO : debug_operands())
521       if (MO.isReg() && MO.getReg())
522         UsedRegs.insert(MO.getReg());
523     return UsedRegs;
524   }
525 
526   /// Returns whether this debug value has at least one debug operand with the
527   /// register \p Reg.
528   bool hasDebugOperandForReg(Register Reg) const {
529     return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
530       return Op.isReg() && Op.getReg() == Reg;
531     });
532   }
533 
534   /// Returns a range of all of the operands that correspond to a debug use of
535   /// \p Reg.
536   template <typename Operand, typename Instruction>
537   static iterator_range<
538       filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
539   getDebugOperandsForReg(Instruction *MI, Register Reg) {
540     std::function<bool(Operand & Op)> OpUsesReg(
541         [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
542     return make_filter_range(MI->debug_operands(), OpUsesReg);
543   }
544   iterator_range<filter_iterator<const MachineOperand *,
545                                  std::function<bool(const MachineOperand &Op)>>>
546   getDebugOperandsForReg(Register Reg) const {
547     return MachineInstr::getDebugOperandsForReg<const MachineOperand,
548                                                 const MachineInstr>(this, Reg);
549   }
550   iterator_range<filter_iterator<MachineOperand *,
551                                  std::function<bool(MachineOperand &Op)>>>
552   getDebugOperandsForReg(Register Reg) {
553     return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
554         this, Reg);
555   }
556 
557   bool isDebugOperand(const MachineOperand *Op) const {
558     return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
559   }
560 
561   unsigned getDebugOperandIndex(const MachineOperand *Op) const {
562     assert(isDebugOperand(Op) && "Expected a debug operand.");
563     return std::distance(adl_begin(debug_operands()), Op);
564   }
565 
566   /// Returns the total number of definitions.
567   unsigned getNumDefs() const {
568     return getNumExplicitDefs() + MCID->getNumImplicitDefs();
569   }
570 
571   /// Returns true if the instruction has implicit definition.
572   bool hasImplicitDef() const {
573     for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
574       I != E; ++I) {
575       const MachineOperand &MO = getOperand(I);
576       if (MO.isDef() && MO.isImplicit())
577         return true;
578     }
579     return false;
580   }
581 
582   /// Returns the implicit operands number.
583   unsigned getNumImplicitOperands() const {
584     return getNumOperands() - getNumExplicitOperands();
585   }
586 
587   /// Return true if operand \p OpIdx is a subregister index.
588   bool isOperandSubregIdx(unsigned OpIdx) const {
589     assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
590            "Expected MO_Immediate operand type.");
591     if (isExtractSubreg() && OpIdx == 2)
592       return true;
593     if (isInsertSubreg() && OpIdx == 3)
594       return true;
595     if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
596       return true;
597     if (isSubregToReg() && OpIdx == 3)
598       return true;
599     return false;
600   }
601 
602   /// Returns the number of non-implicit operands.
603   unsigned getNumExplicitOperands() const;
604 
605   /// Returns the number of non-implicit definitions.
606   unsigned getNumExplicitDefs() const;
607 
608   /// iterator/begin/end - Iterate over all operands of a machine instruction.
609   using mop_iterator = MachineOperand *;
610   using const_mop_iterator = const MachineOperand *;
611 
612   mop_iterator operands_begin() { return Operands; }
613   mop_iterator operands_end() { return Operands + NumOperands; }
614 
615   const_mop_iterator operands_begin() const { return Operands; }
616   const_mop_iterator operands_end() const { return Operands + NumOperands; }
617 
618   iterator_range<mop_iterator> operands() {
619     return make_range(operands_begin(), operands_end());
620   }
621   iterator_range<const_mop_iterator> operands() const {
622     return make_range(operands_begin(), operands_end());
623   }
624   iterator_range<mop_iterator> explicit_operands() {
625     return make_range(operands_begin(),
626                       operands_begin() + getNumExplicitOperands());
627   }
628   iterator_range<const_mop_iterator> explicit_operands() const {
629     return make_range(operands_begin(),
630                       operands_begin() + getNumExplicitOperands());
631   }
632   iterator_range<mop_iterator> implicit_operands() {
633     return make_range(explicit_operands().end(), operands_end());
634   }
635   iterator_range<const_mop_iterator> implicit_operands() const {
636     return make_range(explicit_operands().end(), operands_end());
637   }
638   /// Returns a range over all operands that are used to determine the variable
639   /// location for this DBG_VALUE instruction.
640   iterator_range<mop_iterator> debug_operands() {
641     assert(isDebugValue() && "Must be a debug value instruction.");
642     return isDebugValueList()
643                ? make_range(operands_begin() + 2, operands_end())
644                : make_range(operands_begin(), operands_begin() + 1);
645   }
646   /// \copydoc debug_operands()
647   iterator_range<const_mop_iterator> debug_operands() const {
648     assert(isDebugValue() && "Must be a debug value instruction.");
649     return isDebugValueList()
650                ? make_range(operands_begin() + 2, operands_end())
651                : make_range(operands_begin(), operands_begin() + 1);
652   }
653   /// Returns a range over all explicit operands that are register definitions.
654   /// Implicit definition are not included!
655   iterator_range<mop_iterator> defs() {
656     return make_range(operands_begin(),
657                       operands_begin() + getNumExplicitDefs());
658   }
659   /// \copydoc defs()
660   iterator_range<const_mop_iterator> defs() const {
661     return make_range(operands_begin(),
662                       operands_begin() + getNumExplicitDefs());
663   }
664   /// Returns a range that includes all operands that are register uses.
665   /// This may include unrelated operands which are not register uses.
666   iterator_range<mop_iterator> uses() {
667     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
668   }
669   /// \copydoc uses()
670   iterator_range<const_mop_iterator> uses() const {
671     return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
672   }
673   iterator_range<mop_iterator> explicit_uses() {
674     return make_range(operands_begin() + getNumExplicitDefs(),
675                       operands_begin() + getNumExplicitOperands());
676   }
677   iterator_range<const_mop_iterator> explicit_uses() const {
678     return make_range(operands_begin() + getNumExplicitDefs(),
679                       operands_begin() + getNumExplicitOperands());
680   }
681 
682   /// Returns the number of the operand iterator \p I points to.
683   unsigned getOperandNo(const_mop_iterator I) const {
684     return I - operands_begin();
685   }
686 
687   /// Access to memory operands of the instruction. If there are none, that does
688   /// not imply anything about whether the function accesses memory. Instead,
689   /// the caller must behave conservatively.
690   ArrayRef<MachineMemOperand *> memoperands() const {
691     if (!Info)
692       return {};
693 
694     if (Info.is<EIIK_MMO>())
695       return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
696 
697     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
698       return EI->getMMOs();
699 
700     return {};
701   }
702 
703   /// Access to memory operands of the instruction.
704   ///
705   /// If `memoperands_begin() == memoperands_end()`, that does not imply
706   /// anything about whether the function accesses memory. Instead, the caller
707   /// must behave conservatively.
708   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
709 
710   /// Access to memory operands of the instruction.
711   ///
712   /// If `memoperands_begin() == memoperands_end()`, that does not imply
713   /// anything about whether the function accesses memory. Instead, the caller
714   /// must behave conservatively.
715   mmo_iterator memoperands_end() const { return memoperands().end(); }
716 
717   /// Return true if we don't have any memory operands which described the
718   /// memory access done by this instruction.  If this is true, calling code
719   /// must be conservative.
720   bool memoperands_empty() const { return memoperands().empty(); }
721 
722   /// Return true if this instruction has exactly one MachineMemOperand.
723   bool hasOneMemOperand() const { return memoperands().size() == 1; }
724 
725   /// Return the number of memory operands.
726   unsigned getNumMemOperands() const { return memoperands().size(); }
727 
728   /// Helper to extract a pre-instruction symbol if one has been added.
729   MCSymbol *getPreInstrSymbol() const {
730     if (!Info)
731       return nullptr;
732     if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
733       return S;
734     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
735       return EI->getPreInstrSymbol();
736 
737     return nullptr;
738   }
739 
740   /// Helper to extract a post-instruction symbol if one has been added.
741   MCSymbol *getPostInstrSymbol() const {
742     if (!Info)
743       return nullptr;
744     if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
745       return S;
746     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
747       return EI->getPostInstrSymbol();
748 
749     return nullptr;
750   }
751 
752   /// Helper to extract a heap alloc marker if one has been added.
753   MDNode *getHeapAllocMarker() const {
754     if (!Info)
755       return nullptr;
756     if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
757       return EI->getHeapAllocMarker();
758 
759     return nullptr;
760   }
761 
762   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
763   /// queries but they are bundle aware.
764 
765   enum QueryType {
766     IgnoreBundle,    // Ignore bundles
767     AnyInBundle,     // Return true if any instruction in bundle has property
768     AllInBundle      // Return true if all instructions in bundle have property
769   };
770 
771   /// Return true if the instruction (or in the case of a bundle,
772   /// the instructions inside the bundle) has the specified property.
773   /// The first argument is the property being queried.
774   /// The second argument indicates whether the query should look inside
775   /// instruction bundles.
776   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
777     assert(MCFlag < 64 &&
778            "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
779     // Inline the fast path for unbundled or bundle-internal instructions.
780     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
781       return getDesc().getFlags() & (1ULL << MCFlag);
782 
783     // If this is the first instruction in a bundle, take the slow path.
784     return hasPropertyInBundle(1ULL << MCFlag, Type);
785   }
786 
787   /// Return true if this is an instruction that should go through the usual
788   /// legalization steps.
789   bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
790     return hasProperty(MCID::PreISelOpcode, Type);
791   }
792 
793   /// Return true if this instruction can have a variable number of operands.
794   /// In this case, the variable operands will be after the normal
795   /// operands but before the implicit definitions and uses (if any are
796   /// present).
797   bool isVariadic(QueryType Type = IgnoreBundle) const {
798     return hasProperty(MCID::Variadic, Type);
799   }
800 
801   /// Set if this instruction has an optional definition, e.g.
802   /// ARM instructions which can set condition code if 's' bit is set.
803   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
804     return hasProperty(MCID::HasOptionalDef, Type);
805   }
806 
807   /// Return true if this is a pseudo instruction that doesn't
808   /// correspond to a real machine instruction.
809   bool isPseudo(QueryType Type = IgnoreBundle) const {
810     return hasProperty(MCID::Pseudo, Type);
811   }
812 
813   bool isReturn(QueryType Type = AnyInBundle) const {
814     return hasProperty(MCID::Return, Type);
815   }
816 
817   /// Return true if this is an instruction that marks the end of an EH scope,
818   /// i.e., a catchpad or a cleanuppad instruction.
819   bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
820     return hasProperty(MCID::EHScopeReturn, Type);
821   }
822 
823   bool isCall(QueryType Type = AnyInBundle) const {
824     return hasProperty(MCID::Call, Type);
825   }
826 
827   /// Return true if this is a call instruction that may have an associated
828   /// call site entry in the debug info.
829   bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
830   /// Return true if copying, moving, or erasing this instruction requires
831   /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
832   /// \ref eraseCallSiteInfo).
833   bool shouldUpdateCallSiteInfo() const;
834 
835   /// Returns true if the specified instruction stops control flow
836   /// from executing the instruction immediately following it.  Examples include
837   /// unconditional branches and return instructions.
838   bool isBarrier(QueryType Type = AnyInBundle) const {
839     return hasProperty(MCID::Barrier, Type);
840   }
841 
842   /// Returns true if this instruction part of the terminator for a basic block.
843   /// Typically this is things like return and branch instructions.
844   ///
845   /// Various passes use this to insert code into the bottom of a basic block,
846   /// but before control flow occurs.
847   bool isTerminator(QueryType Type = AnyInBundle) const {
848     return hasProperty(MCID::Terminator, Type);
849   }
850 
851   /// Returns true if this is a conditional, unconditional, or indirect branch.
852   /// Predicates below can be used to discriminate between
853   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
854   /// get more information.
855   bool isBranch(QueryType Type = AnyInBundle) const {
856     return hasProperty(MCID::Branch, Type);
857   }
858 
859   /// Return true if this is an indirect branch, such as a
860   /// branch through a register.
861   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
862     return hasProperty(MCID::IndirectBranch, Type);
863   }
864 
865   /// Return true if this is a branch which may fall
866   /// through to the next instruction or may transfer control flow to some other
867   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
868   /// information about this branch.
869   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
870     return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
871   }
872 
873   /// Return true if this is a branch which always
874   /// transfers control flow to some other block.  The
875   /// TargetInstrInfo::analyzeBranch method can be used to get more information
876   /// about this branch.
877   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
878     return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
879   }
880 
881   /// Return true if this instruction has a predicate operand that
882   /// controls execution.  It may be set to 'always', or may be set to other
883   /// values.   There are various methods in TargetInstrInfo that can be used to
884   /// control and modify the predicate in this instruction.
885   bool isPredicable(QueryType Type = AllInBundle) const {
886     // If it's a bundle than all bundled instructions must be predicable for this
887     // to return true.
888     return hasProperty(MCID::Predicable, Type);
889   }
890 
891   /// Return true if this instruction is a comparison.
892   bool isCompare(QueryType Type = IgnoreBundle) const {
893     return hasProperty(MCID::Compare, Type);
894   }
895 
896   /// Return true if this instruction is a move immediate
897   /// (including conditional moves) instruction.
898   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
899     return hasProperty(MCID::MoveImm, Type);
900   }
901 
902   /// Return true if this instruction is a register move.
903   /// (including moving values from subreg to reg)
904   bool isMoveReg(QueryType Type = IgnoreBundle) const {
905     return hasProperty(MCID::MoveReg, Type);
906   }
907 
908   /// Return true if this instruction is a bitcast instruction.
909   bool isBitcast(QueryType Type = IgnoreBundle) const {
910     return hasProperty(MCID::Bitcast, Type);
911   }
912 
913   /// Return true if this instruction is a select instruction.
914   bool isSelect(QueryType Type = IgnoreBundle) const {
915     return hasProperty(MCID::Select, Type);
916   }
917 
918   /// Return true if this instruction cannot be safely duplicated.
919   /// For example, if the instruction has a unique labels attached
920   /// to it, duplicating it would cause multiple definition errors.
921   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
922     return hasProperty(MCID::NotDuplicable, Type);
923   }
924 
925   /// Return true if this instruction is convergent.
926   /// Convergent instructions can not be made control-dependent on any
927   /// additional values.
928   bool isConvergent(QueryType Type = AnyInBundle) const {
929     if (isInlineAsm()) {
930       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
931       if (ExtraInfo & InlineAsm::Extra_IsConvergent)
932         return true;
933     }
934     return hasProperty(MCID::Convergent, Type);
935   }
936 
937   /// Returns true if the specified instruction has a delay slot
938   /// which must be filled by the code generator.
939   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
940     return hasProperty(MCID::DelaySlot, Type);
941   }
942 
943   /// Return true for instructions that can be folded as
944   /// memory operands in other instructions. The most common use for this
945   /// is instructions that are simple loads from memory that don't modify
946   /// the loaded value in any way, but it can also be used for instructions
947   /// that can be expressed as constant-pool loads, such as V_SETALLONES
948   /// on x86, to allow them to be folded when it is beneficial.
949   /// This should only be set on instructions that return a value in their
950   /// only virtual register definition.
951   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
952     return hasProperty(MCID::FoldableAsLoad, Type);
953   }
954 
955   /// Return true if this instruction behaves
956   /// the same way as the generic REG_SEQUENCE instructions.
957   /// E.g., on ARM,
958   /// dX VMOVDRR rY, rZ
959   /// is equivalent to
960   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
961   ///
962   /// Note that for the optimizers to be able to take advantage of
963   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
964   /// override accordingly.
965   bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
966     return hasProperty(MCID::RegSequence, Type);
967   }
968 
969   /// Return true if this instruction behaves
970   /// the same way as the generic EXTRACT_SUBREG instructions.
971   /// E.g., on ARM,
972   /// rX, rY VMOVRRD dZ
973   /// is equivalent to two EXTRACT_SUBREG:
974   /// rX = EXTRACT_SUBREG dZ, ssub_0
975   /// rY = EXTRACT_SUBREG dZ, ssub_1
976   ///
977   /// Note that for the optimizers to be able to take advantage of
978   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
979   /// override accordingly.
980   bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
981     return hasProperty(MCID::ExtractSubreg, Type);
982   }
983 
984   /// Return true if this instruction behaves
985   /// the same way as the generic INSERT_SUBREG instructions.
986   /// E.g., on ARM,
987   /// dX = VSETLNi32 dY, rZ, Imm
988   /// is equivalent to a INSERT_SUBREG:
989   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
990   ///
991   /// Note that for the optimizers to be able to take advantage of
992   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
993   /// override accordingly.
994   bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
995     return hasProperty(MCID::InsertSubreg, Type);
996   }
997 
998   //===--------------------------------------------------------------------===//
999   // Side Effect Analysis
1000   //===--------------------------------------------------------------------===//
1001 
1002   /// Return true if this instruction could possibly read memory.
1003   /// Instructions with this flag set are not necessarily simple load
1004   /// instructions, they may load a value and modify it, for example.
1005   bool mayLoad(QueryType Type = AnyInBundle) const {
1006     if (isInlineAsm()) {
1007       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1008       if (ExtraInfo & InlineAsm::Extra_MayLoad)
1009         return true;
1010     }
1011     return hasProperty(MCID::MayLoad, Type);
1012   }
1013 
1014   /// Return true if this instruction could possibly modify memory.
1015   /// Instructions with this flag set are not necessarily simple store
1016   /// instructions, they may store a modified value based on their operands, or
1017   /// may not actually modify anything, for example.
1018   bool mayStore(QueryType Type = AnyInBundle) const {
1019     if (isInlineAsm()) {
1020       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1021       if (ExtraInfo & InlineAsm::Extra_MayStore)
1022         return true;
1023     }
1024     return hasProperty(MCID::MayStore, Type);
1025   }
1026 
1027   /// Return true if this instruction could possibly read or modify memory.
1028   bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1029     return mayLoad(Type) || mayStore(Type);
1030   }
1031 
1032   /// Return true if this instruction could possibly raise a floating-point
1033   /// exception.  This is the case if the instruction is a floating-point
1034   /// instruction that can in principle raise an exception, as indicated
1035   /// by the MCID::MayRaiseFPException property, *and* at the same time,
1036   /// the instruction is used in a context where we expect floating-point
1037   /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1038   bool mayRaiseFPException() const {
1039     return hasProperty(MCID::MayRaiseFPException) &&
1040            !getFlag(MachineInstr::MIFlag::NoFPExcept);
1041   }
1042 
1043   //===--------------------------------------------------------------------===//
1044   // Flags that indicate whether an instruction can be modified by a method.
1045   //===--------------------------------------------------------------------===//
1046 
1047   /// Return true if this may be a 2- or 3-address
1048   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1049   /// result if Y and Z are exchanged.  If this flag is set, then the
1050   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1051   /// instruction.
1052   ///
1053   /// Note that this flag may be set on instructions that are only commutable
1054   /// sometimes.  In these cases, the call to commuteInstruction will fail.
1055   /// Also note that some instructions require non-trivial modification to
1056   /// commute them.
1057   bool isCommutable(QueryType Type = IgnoreBundle) const {
1058     return hasProperty(MCID::Commutable, Type);
1059   }
1060 
1061   /// Return true if this is a 2-address instruction
1062   /// which can be changed into a 3-address instruction if needed.  Doing this
1063   /// transformation can be profitable in the register allocator, because it
1064   /// means that the instruction can use a 2-address form if possible, but
1065   /// degrade into a less efficient form if the source and dest register cannot
1066   /// be assigned to the same register.  For example, this allows the x86
1067   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1068   /// is the same speed as the shift but has bigger code size.
1069   ///
1070   /// If this returns true, then the target must implement the
1071   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1072   /// is allowed to fail if the transformation isn't valid for this specific
1073   /// instruction (e.g. shl reg, 4 on x86).
1074   ///
1075   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1076     return hasProperty(MCID::ConvertibleTo3Addr, Type);
1077   }
1078 
1079   /// Return true if this instruction requires
1080   /// custom insertion support when the DAG scheduler is inserting it into a
1081   /// machine basic block.  If this is true for the instruction, it basically
1082   /// means that it is a pseudo instruction used at SelectionDAG time that is
1083   /// expanded out into magic code by the target when MachineInstrs are formed.
1084   ///
1085   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1086   /// is used to insert this into the MachineBasicBlock.
1087   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1088     return hasProperty(MCID::UsesCustomInserter, Type);
1089   }
1090 
1091   /// Return true if this instruction requires *adjustment*
1092   /// after instruction selection by calling a target hook. For example, this
1093   /// can be used to fill in ARM 's' optional operand depending on whether
1094   /// the conditional flag register is used.
1095   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1096     return hasProperty(MCID::HasPostISelHook, Type);
1097   }
1098 
1099   /// Returns true if this instruction is a candidate for remat.
1100   /// This flag is deprecated, please don't use it anymore.  If this
1101   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1102   /// verify the instruction is really rematable.
1103   bool isRematerializable(QueryType Type = AllInBundle) const {
1104     // It's only possible to re-mat a bundle if all bundled instructions are
1105     // re-materializable.
1106     return hasProperty(MCID::Rematerializable, Type);
1107   }
1108 
1109   /// Returns true if this instruction has the same cost (or less) than a move
1110   /// instruction. This is useful during certain types of optimizations
1111   /// (e.g., remat during two-address conversion or machine licm)
1112   /// where we would like to remat or hoist the instruction, but not if it costs
1113   /// more than moving the instruction into the appropriate register. Note, we
1114   /// are not marking copies from and to the same register class with this flag.
1115   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1116     // Only returns true for a bundle if all bundled instructions are cheap.
1117     return hasProperty(MCID::CheapAsAMove, Type);
1118   }
1119 
1120   /// Returns true if this instruction source operands
1121   /// have special register allocation requirements that are not captured by the
1122   /// operand register classes. e.g. ARM::STRD's two source registers must be an
1123   /// even / odd pair, ARM::STM registers have to be in ascending order.
1124   /// Post-register allocation passes should not attempt to change allocations
1125   /// for sources of instructions with this flag.
1126   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1127     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1128   }
1129 
1130   /// Returns true if this instruction def operands
1131   /// have special register allocation requirements that are not captured by the
1132   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1133   /// even / odd pair, ARM::LDM registers have to be in ascending order.
1134   /// Post-register allocation passes should not attempt to change allocations
1135   /// for definitions of instructions with this flag.
1136   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1137     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1138   }
1139 
1140   enum MICheckType {
1141     CheckDefs,      // Check all operands for equality
1142     CheckKillDead,  // Check all operands including kill / dead markers
1143     IgnoreDefs,     // Ignore all definitions
1144     IgnoreVRegDefs  // Ignore virtual register definitions
1145   };
1146 
1147   /// Return true if this instruction is identical to \p Other.
1148   /// Two instructions are identical if they have the same opcode and all their
1149   /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1150   /// Note that this means liveness related flags (dead, undef, kill) do not
1151   /// affect the notion of identical.
1152   bool isIdenticalTo(const MachineInstr &Other,
1153                      MICheckType Check = CheckDefs) const;
1154 
1155   /// Unlink 'this' from the containing basic block, and return it without
1156   /// deleting it.
1157   ///
1158   /// This function can not be used on bundled instructions, use
1159   /// removeFromBundle() to remove individual instructions from a bundle.
1160   MachineInstr *removeFromParent();
1161 
1162   /// Unlink this instruction from its basic block and return it without
1163   /// deleting it.
1164   ///
1165   /// If the instruction is part of a bundle, the other instructions in the
1166   /// bundle remain bundled.
1167   MachineInstr *removeFromBundle();
1168 
1169   /// Unlink 'this' from the containing basic block and delete it.
1170   ///
1171   /// If this instruction is the header of a bundle, the whole bundle is erased.
1172   /// This function can not be used for instructions inside a bundle, use
1173   /// eraseFromBundle() to erase individual bundled instructions.
1174   void eraseFromParent();
1175 
1176   /// Unlink 'this' from the containing basic block and delete it.
1177   ///
1178   /// For all definitions mark their uses in DBG_VALUE nodes
1179   /// as undefined. Otherwise like eraseFromParent().
1180   void eraseFromParentAndMarkDBGValuesForRemoval();
1181 
1182   /// Unlink 'this' form its basic block and delete it.
1183   ///
1184   /// If the instruction is part of a bundle, the other instructions in the
1185   /// bundle remain bundled.
1186   void eraseFromBundle();
1187 
1188   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1189   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1190   bool isAnnotationLabel() const {
1191     return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1192   }
1193 
1194   /// Returns true if the MachineInstr represents a label.
1195   bool isLabel() const {
1196     return isEHLabel() || isGCLabel() || isAnnotationLabel();
1197   }
1198 
1199   bool isCFIInstruction() const {
1200     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1201   }
1202 
1203   bool isPseudoProbe() const {
1204     return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1205   }
1206 
1207   // True if the instruction represents a position in the function.
1208   bool isPosition() const { return isLabel() || isCFIInstruction(); }
1209 
1210   bool isNonListDebugValue() const {
1211     return getOpcode() == TargetOpcode::DBG_VALUE;
1212   }
1213   bool isDebugValueList() const {
1214     return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1215   }
1216   bool isDebugValue() const {
1217     return isNonListDebugValue() || isDebugValueList();
1218   }
1219   bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1220   bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1221   bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1222   bool isDebugInstr() const {
1223     return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1224   }
1225   bool isDebugOrPseudoInstr() const {
1226     return isDebugInstr() || isPseudoProbe();
1227   }
1228 
1229   bool isDebugOffsetImm() const {
1230     return isNonListDebugValue() && getDebugOffset().isImm();
1231   }
1232 
1233   /// A DBG_VALUE is indirect iff the location operand is a register and
1234   /// the offset operand is an immediate.
1235   bool isIndirectDebugValue() const {
1236     return isDebugOffsetImm() && getDebugOperand(0).isReg();
1237   }
1238 
1239   /// A DBG_VALUE is an entry value iff its debug expression contains the
1240   /// DW_OP_LLVM_entry_value operation.
1241   bool isDebugEntryValue() const;
1242 
1243   /// Return true if the instruction is a debug value which describes a part of
1244   /// a variable as unavailable.
1245   bool isUndefDebugValue() const {
1246     if (!isDebugValue())
1247       return false;
1248     // If any $noreg locations are given, this DV is undef.
1249     for (const MachineOperand &Op : debug_operands())
1250       if (Op.isReg() && !Op.getReg().isValid())
1251         return true;
1252     return false;
1253   }
1254 
1255   bool isPHI() const {
1256     return getOpcode() == TargetOpcode::PHI ||
1257            getOpcode() == TargetOpcode::G_PHI;
1258   }
1259   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1260   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1261   bool isInlineAsm() const {
1262     return getOpcode() == TargetOpcode::INLINEASM ||
1263            getOpcode() == TargetOpcode::INLINEASM_BR;
1264   }
1265 
1266   /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1267   /// specific, be attached to a generic MachineInstr.
1268   bool isMSInlineAsm() const {
1269     return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1270   }
1271 
1272   bool isStackAligningInlineAsm() const;
1273   InlineAsm::AsmDialect getInlineAsmDialect() const;
1274 
1275   bool isInsertSubreg() const {
1276     return getOpcode() == TargetOpcode::INSERT_SUBREG;
1277   }
1278 
1279   bool isSubregToReg() const {
1280     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1281   }
1282 
1283   bool isRegSequence() const {
1284     return getOpcode() == TargetOpcode::REG_SEQUENCE;
1285   }
1286 
1287   bool isBundle() const {
1288     return getOpcode() == TargetOpcode::BUNDLE;
1289   }
1290 
1291   bool isCopy() const {
1292     return getOpcode() == TargetOpcode::COPY;
1293   }
1294 
1295   bool isFullCopy() const {
1296     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1297   }
1298 
1299   bool isExtractSubreg() const {
1300     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1301   }
1302 
1303   /// Return true if the instruction behaves like a copy.
1304   /// This does not include native copy instructions.
1305   bool isCopyLike() const {
1306     return isCopy() || isSubregToReg();
1307   }
1308 
1309   /// Return true is the instruction is an identity copy.
1310   bool isIdentityCopy() const {
1311     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1312       getOperand(0).getSubReg() == getOperand(1).getSubReg();
1313   }
1314 
1315   /// Return true if this instruction doesn't produce any output in the form of
1316   /// executable instructions.
1317   bool isMetaInstruction() const {
1318     switch (getOpcode()) {
1319     default:
1320       return false;
1321     case TargetOpcode::IMPLICIT_DEF:
1322     case TargetOpcode::KILL:
1323     case TargetOpcode::CFI_INSTRUCTION:
1324     case TargetOpcode::EH_LABEL:
1325     case TargetOpcode::GC_LABEL:
1326     case TargetOpcode::DBG_VALUE:
1327     case TargetOpcode::DBG_VALUE_LIST:
1328     case TargetOpcode::DBG_INSTR_REF:
1329     case TargetOpcode::DBG_PHI:
1330     case TargetOpcode::DBG_LABEL:
1331     case TargetOpcode::LIFETIME_START:
1332     case TargetOpcode::LIFETIME_END:
1333     case TargetOpcode::PSEUDO_PROBE:
1334       return true;
1335     }
1336   }
1337 
1338   /// Return true if this is a transient instruction that is either very likely
1339   /// to be eliminated during register allocation (such as copy-like
1340   /// instructions), or if this instruction doesn't have an execution-time cost.
1341   bool isTransient() const {
1342     switch (getOpcode()) {
1343     default:
1344       return isMetaInstruction();
1345     // Copy-like instructions are usually eliminated during register allocation.
1346     case TargetOpcode::PHI:
1347     case TargetOpcode::G_PHI:
1348     case TargetOpcode::COPY:
1349     case TargetOpcode::INSERT_SUBREG:
1350     case TargetOpcode::SUBREG_TO_REG:
1351     case TargetOpcode::REG_SEQUENCE:
1352       return true;
1353     }
1354   }
1355 
1356   /// Return the number of instructions inside the MI bundle, excluding the
1357   /// bundle header.
1358   ///
1359   /// This is the number of instructions that MachineBasicBlock::iterator
1360   /// skips, 0 for unbundled instructions.
1361   unsigned getBundleSize() const;
1362 
1363   /// Return true if the MachineInstr reads the specified register.
1364   /// If TargetRegisterInfo is passed, then it also checks if there
1365   /// is a read of a super-register.
1366   /// This does not count partial redefines of virtual registers as reads:
1367   ///   %reg1024:6 = OP.
1368   bool readsRegister(Register Reg,
1369                      const TargetRegisterInfo *TRI = nullptr) const {
1370     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1371   }
1372 
1373   /// Return true if the MachineInstr reads the specified virtual register.
1374   /// Take into account that a partial define is a
1375   /// read-modify-write operation.
1376   bool readsVirtualRegister(Register Reg) const {
1377     return readsWritesVirtualRegister(Reg).first;
1378   }
1379 
1380   /// Return a pair of bools (reads, writes) indicating if this instruction
1381   /// reads or writes Reg. This also considers partial defines.
1382   /// If Ops is not null, all operand indices for Reg are added.
1383   std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1384                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1385 
1386   /// Return true if the MachineInstr kills the specified register.
1387   /// If TargetRegisterInfo is passed, then it also checks if there is
1388   /// a kill of a super-register.
1389   bool killsRegister(Register Reg,
1390                      const TargetRegisterInfo *TRI = nullptr) const {
1391     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1392   }
1393 
1394   /// Return true if the MachineInstr fully defines the specified register.
1395   /// If TargetRegisterInfo is passed, then it also checks
1396   /// if there is a def of a super-register.
1397   /// NOTE: It's ignoring subreg indices on virtual registers.
1398   bool definesRegister(Register Reg,
1399                        const TargetRegisterInfo *TRI = nullptr) const {
1400     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1401   }
1402 
1403   /// Return true if the MachineInstr modifies (fully define or partially
1404   /// define) the specified register.
1405   /// NOTE: It's ignoring subreg indices on virtual registers.
1406   bool modifiesRegister(Register Reg,
1407                         const TargetRegisterInfo *TRI = nullptr) const {
1408     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1409   }
1410 
1411   /// Returns true if the register is dead in this machine instruction.
1412   /// If TargetRegisterInfo is passed, then it also checks
1413   /// if there is a dead def of a super-register.
1414   bool registerDefIsDead(Register Reg,
1415                          const TargetRegisterInfo *TRI = nullptr) const {
1416     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1417   }
1418 
1419   /// Returns true if the MachineInstr has an implicit-use operand of exactly
1420   /// the given register (not considering sub/super-registers).
1421   bool hasRegisterImplicitUseOperand(Register Reg) const;
1422 
1423   /// Returns the operand index that is a use of the specific register or -1
1424   /// if it is not found. It further tightens the search criteria to a use
1425   /// that kills the register if isKill is true.
1426   int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1427                                 const TargetRegisterInfo *TRI = nullptr) const;
1428 
1429   /// Wrapper for findRegisterUseOperandIdx, it returns
1430   /// a pointer to the MachineOperand rather than an index.
1431   MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1432                                       const TargetRegisterInfo *TRI = nullptr) {
1433     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1434     return (Idx == -1) ? nullptr : &getOperand(Idx);
1435   }
1436 
1437   const MachineOperand *findRegisterUseOperand(
1438     Register Reg, bool isKill = false,
1439     const TargetRegisterInfo *TRI = nullptr) const {
1440     return const_cast<MachineInstr *>(this)->
1441       findRegisterUseOperand(Reg, isKill, TRI);
1442   }
1443 
1444   /// Returns the operand index that is a def of the specified register or
1445   /// -1 if it is not found. If isDead is true, defs that are not dead are
1446   /// skipped. If Overlap is true, then it also looks for defs that merely
1447   /// overlap the specified register. If TargetRegisterInfo is non-null,
1448   /// then it also checks if there is a def of a super-register.
1449   /// This may also return a register mask operand when Overlap is true.
1450   int findRegisterDefOperandIdx(Register Reg,
1451                                 bool isDead = false, bool Overlap = false,
1452                                 const TargetRegisterInfo *TRI = nullptr) const;
1453 
1454   /// Wrapper for findRegisterDefOperandIdx, it returns
1455   /// a pointer to the MachineOperand rather than an index.
1456   MachineOperand *
1457   findRegisterDefOperand(Register Reg, bool isDead = false,
1458                          bool Overlap = false,
1459                          const TargetRegisterInfo *TRI = nullptr) {
1460     int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1461     return (Idx == -1) ? nullptr : &getOperand(Idx);
1462   }
1463 
1464   const MachineOperand *
1465   findRegisterDefOperand(Register Reg, bool isDead = false,
1466                          bool Overlap = false,
1467                          const TargetRegisterInfo *TRI = nullptr) const {
1468     return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1469         Reg, isDead, Overlap, TRI);
1470   }
1471 
1472   /// Find the index of the first operand in the
1473   /// operand list that is used to represent the predicate. It returns -1 if
1474   /// none is found.
1475   int findFirstPredOperandIdx() const;
1476 
1477   /// Find the index of the flag word operand that
1478   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
1479   /// getOperand(OpIdx) does not belong to an inline asm operand group.
1480   ///
1481   /// If GroupNo is not NULL, it will receive the number of the operand group
1482   /// containing OpIdx.
1483   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1484 
1485   /// Compute the static register class constraint for operand OpIdx.
1486   /// For normal instructions, this is derived from the MCInstrDesc.
1487   /// For inline assembly it is derived from the flag words.
1488   ///
1489   /// Returns NULL if the static register class constraint cannot be
1490   /// determined.
1491   const TargetRegisterClass*
1492   getRegClassConstraint(unsigned OpIdx,
1493                         const TargetInstrInfo *TII,
1494                         const TargetRegisterInfo *TRI) const;
1495 
1496   /// Applies the constraints (def/use) implied by this MI on \p Reg to
1497   /// the given \p CurRC.
1498   /// If \p ExploreBundle is set and MI is part of a bundle, all the
1499   /// instructions inside the bundle will be taken into account. In other words,
1500   /// this method accumulates all the constraints of the operand of this MI and
1501   /// the related bundle if MI is a bundle or inside a bundle.
1502   ///
1503   /// Returns the register class that satisfies both \p CurRC and the
1504   /// constraints set by MI. Returns NULL if such a register class does not
1505   /// exist.
1506   ///
1507   /// \pre CurRC must not be NULL.
1508   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1509       Register Reg, const TargetRegisterClass *CurRC,
1510       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1511       bool ExploreBundle = false) const;
1512 
1513   /// Applies the constraints (def/use) implied by the \p OpIdx operand
1514   /// to the given \p CurRC.
1515   ///
1516   /// Returns the register class that satisfies both \p CurRC and the
1517   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1518   /// does not exist.
1519   ///
1520   /// \pre CurRC must not be NULL.
1521   /// \pre The operand at \p OpIdx must be a register.
1522   const TargetRegisterClass *
1523   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1524                               const TargetInstrInfo *TII,
1525                               const TargetRegisterInfo *TRI) const;
1526 
1527   /// Add a tie between the register operands at DefIdx and UseIdx.
1528   /// The tie will cause the register allocator to ensure that the two
1529   /// operands are assigned the same physical register.
1530   ///
1531   /// Tied operands are managed automatically for explicit operands in the
1532   /// MCInstrDesc. This method is for exceptional cases like inline asm.
1533   void tieOperands(unsigned DefIdx, unsigned UseIdx);
1534 
1535   /// Given the index of a tied register operand, find the
1536   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1537   /// index of the tied operand which must exist.
1538   unsigned findTiedOperandIdx(unsigned OpIdx) const;
1539 
1540   /// Given the index of a register def operand,
1541   /// check if the register def is tied to a source operand, due to either
1542   /// two-address elimination or inline assembly constraints. Returns the
1543   /// first tied use operand index by reference if UseOpIdx is not null.
1544   bool isRegTiedToUseOperand(unsigned DefOpIdx,
1545                              unsigned *UseOpIdx = nullptr) const {
1546     const MachineOperand &MO = getOperand(DefOpIdx);
1547     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1548       return false;
1549     if (UseOpIdx)
1550       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1551     return true;
1552   }
1553 
1554   /// Return true if the use operand of the specified index is tied to a def
1555   /// operand. It also returns the def operand index by reference if DefOpIdx
1556   /// is not null.
1557   bool isRegTiedToDefOperand(unsigned UseOpIdx,
1558                              unsigned *DefOpIdx = nullptr) const {
1559     const MachineOperand &MO = getOperand(UseOpIdx);
1560     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1561       return false;
1562     if (DefOpIdx)
1563       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1564     return true;
1565   }
1566 
1567   /// Clears kill flags on all operands.
1568   void clearKillInfo();
1569 
1570   /// Replace all occurrences of FromReg with ToReg:SubIdx,
1571   /// properly composing subreg indices where necessary.
1572   void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1573                           const TargetRegisterInfo &RegInfo);
1574 
1575   /// We have determined MI kills a register. Look for the
1576   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1577   /// add a implicit operand if it's not found. Returns true if the operand
1578   /// exists / is added.
1579   bool addRegisterKilled(Register IncomingReg,
1580                          const TargetRegisterInfo *RegInfo,
1581                          bool AddIfNotFound = false);
1582 
1583   /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
1584   /// all aliasing registers.
1585   void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1586 
1587   /// We have determined MI defined a register without a use.
1588   /// Look for the operand that defines it and mark it as IsDead. If
1589   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1590   /// true if the operand exists / is added.
1591   bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1592                        bool AddIfNotFound = false);
1593 
1594   /// Clear all dead flags on operands defining register @p Reg.
1595   void clearRegisterDeads(Register Reg);
1596 
1597   /// Mark all subregister defs of register @p Reg with the undef flag.
1598   /// This function is used when we determined to have a subregister def in an
1599   /// otherwise undefined super register.
1600   void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1601 
1602   /// We have determined MI defines a register. Make sure there is an operand
1603   /// defining Reg.
1604   void addRegisterDefined(Register Reg,
1605                           const TargetRegisterInfo *RegInfo = nullptr);
1606 
1607   /// Mark every physreg used by this instruction as
1608   /// dead except those in the UsedRegs list.
1609   ///
1610   /// On instructions with register mask operands, also add implicit-def
1611   /// operands for all registers in UsedRegs.
1612   void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1613                              const TargetRegisterInfo &TRI);
1614 
1615   /// Return true if it is safe to move this instruction. If
1616   /// SawStore is set to true, it means that there is a store (or call) between
1617   /// the instruction's location and its intended destination.
1618   bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1619 
1620   /// Returns true if this instruction's memory access aliases the memory
1621   /// access of Other.
1622   //
1623   /// Assumes any physical registers used to compute addresses
1624   /// have the same value for both instructions.  Returns false if neither
1625   /// instruction writes to memory.
1626   ///
1627   /// @param AA Optional alias analysis, used to compare memory operands.
1628   /// @param Other MachineInstr to check aliasing against.
1629   /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1630   bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1631 
1632   /// Return true if this instruction may have an ordered
1633   /// or volatile memory reference, or if the information describing the memory
1634   /// reference is not available. Return false if it is known to have no
1635   /// ordered or volatile memory references.
1636   bool hasOrderedMemoryRef() const;
1637 
1638   /// Return true if this load instruction never traps and points to a memory
1639   /// location whose value doesn't change during the execution of this function.
1640   ///
1641   /// Examples include loading a value from the constant pool or from the
1642   /// argument area of a function (if it does not change).  If the instruction
1643   /// does multiple loads, this returns true only if all of the loads are
1644   /// dereferenceable and invariant.
1645   bool isDereferenceableInvariantLoad(AAResults *AA) const;
1646 
1647   /// If the specified instruction is a PHI that always merges together the
1648   /// same virtual register, return the register, otherwise return 0.
1649   unsigned isConstantValuePHI() const;
1650 
1651   /// Return true if this instruction has side effects that are not modeled
1652   /// by mayLoad / mayStore, etc.
1653   /// For all instructions, the property is encoded in MCInstrDesc::Flags
1654   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1655   /// INLINEASM instruction, in which case the side effect property is encoded
1656   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1657   ///
1658   bool hasUnmodeledSideEffects() const;
1659 
1660   /// Returns true if it is illegal to fold a load across this instruction.
1661   bool isLoadFoldBarrier() const;
1662 
1663   /// Return true if all the defs of this instruction are dead.
1664   bool allDefsAreDead() const;
1665 
1666   /// Return a valid size if the instruction is a spill instruction.
1667   Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1668 
1669   /// Return a valid size if the instruction is a folded spill instruction.
1670   Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1671 
1672   /// Return a valid size if the instruction is a restore instruction.
1673   Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1674 
1675   /// Return a valid size if the instruction is a folded restore instruction.
1676   Optional<unsigned>
1677   getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1678 
1679   /// Copy implicit register operands from specified
1680   /// instruction to this instruction.
1681   void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1682 
1683   /// Debugging support
1684   /// @{
1685   /// Determine the generic type to be printed (if needed) on uses and defs.
1686   LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1687                      const MachineRegisterInfo &MRI) const;
1688 
1689   /// Return true when an instruction has tied register that can't be determined
1690   /// by the instruction's descriptor. This is useful for MIR printing, to
1691   /// determine whether we need to print the ties or not.
1692   bool hasComplexRegisterTies() const;
1693 
1694   /// Print this MI to \p OS.
1695   /// Don't print information that can be inferred from other instructions if
1696   /// \p IsStandalone is false. It is usually true when only a fragment of the
1697   /// function is printed.
1698   /// Only print the defs and the opcode if \p SkipOpers is true.
1699   /// Otherwise, also print operands if \p SkipDebugLoc is true.
1700   /// Otherwise, also print the debug loc, with a terminating newline.
1701   /// \p TII is used to print the opcode name.  If it's not present, but the
1702   /// MI is in a function, the opcode will be printed using the function's TII.
1703   void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1704              bool SkipDebugLoc = false, bool AddNewLine = true,
1705              const TargetInstrInfo *TII = nullptr) const;
1706   void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1707              bool SkipOpers = false, bool SkipDebugLoc = false,
1708              bool AddNewLine = true,
1709              const TargetInstrInfo *TII = nullptr) const;
1710   void dump() const;
1711   /// Print on dbgs() the current instruction and the instructions defining its
1712   /// operands and so on until we reach \p MaxDepth.
1713   void dumpr(const MachineRegisterInfo &MRI,
1714              unsigned MaxDepth = UINT_MAX) const;
1715   /// @}
1716 
1717   //===--------------------------------------------------------------------===//
1718   // Accessors used to build up machine instructions.
1719 
1720   /// Add the specified operand to the instruction.  If it is an implicit
1721   /// operand, it is added to the end of the operand list.  If it is an
1722   /// explicit operand it is added at the end of the explicit operand list
1723   /// (before the first implicit operand).
1724   ///
1725   /// MF must be the machine function that was used to allocate this
1726   /// instruction.
1727   ///
1728   /// MachineInstrBuilder provides a more convenient interface for creating
1729   /// instructions and adding operands.
1730   void addOperand(MachineFunction &MF, const MachineOperand &Op);
1731 
1732   /// Add an operand without providing an MF reference. This only works for
1733   /// instructions that are inserted in a basic block.
1734   ///
1735   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1736   /// preferred.
1737   void addOperand(const MachineOperand &Op);
1738 
1739   /// Replace the instruction descriptor (thus opcode) of
1740   /// the current instruction with a new one.
1741   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1742 
1743   /// Replace current source information with new such.
1744   /// Avoid using this, the constructor argument is preferable.
1745   void setDebugLoc(DebugLoc dl) {
1746     debugLoc = std::move(dl);
1747     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1748   }
1749 
1750   /// Erase an operand from an instruction, leaving it with one
1751   /// fewer operand than it started with.
1752   void RemoveOperand(unsigned OpNo);
1753 
1754   /// Clear this MachineInstr's memory reference descriptor list.  This resets
1755   /// the memrefs to their most conservative state.  This should be used only
1756   /// as a last resort since it greatly pessimizes our knowledge of the memory
1757   /// access performed by the instruction.
1758   void dropMemRefs(MachineFunction &MF);
1759 
1760   /// Assign this MachineInstr's memory reference descriptor list.
1761   ///
1762   /// Unlike other methods, this *will* allocate them into a new array
1763   /// associated with the provided `MachineFunction`.
1764   void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1765 
1766   /// Add a MachineMemOperand to the machine instruction.
1767   /// This function should be used only occasionally. The setMemRefs function
1768   /// is the primary method for setting up a MachineInstr's MemRefs list.
1769   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1770 
1771   /// Clone another MachineInstr's memory reference descriptor list and replace
1772   /// ours with it.
1773   ///
1774   /// Note that `*this` may be the incoming MI!
1775   ///
1776   /// Prefer this API whenever possible as it can avoid allocations in common
1777   /// cases.
1778   void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1779 
1780   /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1781   /// list and replace ours with it.
1782   ///
1783   /// Note that `*this` may be one of the incoming MIs!
1784   ///
1785   /// Prefer this API whenever possible as it can avoid allocations in common
1786   /// cases.
1787   void cloneMergedMemRefs(MachineFunction &MF,
1788                           ArrayRef<const MachineInstr *> MIs);
1789 
1790   /// Set a symbol that will be emitted just prior to the instruction itself.
1791   ///
1792   /// Setting this to a null pointer will remove any such symbol.
1793   ///
1794   /// FIXME: This is not fully implemented yet.
1795   void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1796 
1797   /// Set a symbol that will be emitted just after the instruction itself.
1798   ///
1799   /// Setting this to a null pointer will remove any such symbol.
1800   ///
1801   /// FIXME: This is not fully implemented yet.
1802   void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1803 
1804   /// Clone another MachineInstr's pre- and post- instruction symbols and
1805   /// replace ours with it.
1806   void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1807 
1808   /// Set a marker on instructions that denotes where we should create and emit
1809   /// heap alloc site labels. This waits until after instruction selection and
1810   /// optimizations to create the label, so it should still work if the
1811   /// instruction is removed or duplicated.
1812   void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1813 
1814   /// Return the MIFlags which represent both MachineInstrs. This
1815   /// should be used when merging two MachineInstrs into one. This routine does
1816   /// not modify the MIFlags of this MachineInstr.
1817   uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1818 
1819   static uint16_t copyFlagsFromInstruction(const Instruction &I);
1820 
1821   /// Copy all flags to MachineInst MIFlags
1822   void copyIRFlags(const Instruction &I);
1823 
1824   /// Break any tie involving OpIdx.
1825   void untieRegOperand(unsigned OpIdx) {
1826     MachineOperand &MO = getOperand(OpIdx);
1827     if (MO.isReg() && MO.isTied()) {
1828       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1829       MO.TiedTo = 0;
1830     }
1831   }
1832 
1833   /// Add all implicit def and use operands to this instruction.
1834   void addImplicitDefUseOperands(MachineFunction &MF);
1835 
1836   /// Scan instructions immediately following MI and collect any matching
1837   /// DBG_VALUEs.
1838   void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1839 
1840   /// Find all DBG_VALUEs that point to the register def in this instruction
1841   /// and point them to \p Reg instead.
1842   void changeDebugValuesDefReg(Register Reg);
1843 
1844   /// Returns the Intrinsic::ID for this instruction.
1845   /// \pre Must have an intrinsic ID operand.
1846   unsigned getIntrinsicID() const {
1847     return getOperand(getNumExplicitDefs()).getIntrinsicID();
1848   }
1849 
1850   /// Sets all register debug operands in this debug value instruction to be
1851   /// undef.
1852   void setDebugValueUndef() {
1853     assert(isDebugValue() && "Must be a debug value instruction.");
1854     for (MachineOperand &MO : debug_operands()) {
1855       if (MO.isReg()) {
1856         MO.setReg(0);
1857         MO.setSubReg(0);
1858       }
1859     }
1860   }
1861 
1862   PseudoProbeAttributes getPseudoProbeAttribute() const {
1863     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1864     return (PseudoProbeAttributes)getOperand(3).getImm();
1865   }
1866 
1867   void addPseudoProbeAttribute(PseudoProbeAttributes Attr) {
1868     assert(isPseudoProbe() && "Must be a pseudo probe instruction");
1869     MachineOperand &AttrOperand = getOperand(3);
1870     AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr);
1871   }
1872 
1873 private:
1874   /// If this instruction is embedded into a MachineFunction, return the
1875   /// MachineRegisterInfo object for the current function, otherwise
1876   /// return null.
1877   MachineRegisterInfo *getRegInfo();
1878 
1879   /// Unlink all of the register operands in this instruction from their
1880   /// respective use lists.  This requires that the operands already be on their
1881   /// use lists.
1882   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1883 
1884   /// Add all of the register operands in this instruction from their
1885   /// respective use lists.  This requires that the operands not be on their
1886   /// use lists yet.
1887   void AddRegOperandsToUseLists(MachineRegisterInfo&);
1888 
1889   /// Slow path for hasProperty when we're dealing with a bundle.
1890   bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1891 
1892   /// Implements the logic of getRegClassConstraintEffectForVReg for the
1893   /// this MI and the given operand index \p OpIdx.
1894   /// If the related operand does not constrained Reg, this returns CurRC.
1895   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1896       unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1897       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1898 
1899   /// Stores extra instruction information inline or allocates as ExtraInfo
1900   /// based on the number of pointers.
1901   void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1902                     MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1903                     MDNode *HeapAllocMarker);
1904 };
1905 
1906 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1907 /// instruction rather than by pointer value.
1908 /// The hashing and equality testing functions ignore definitions so this is
1909 /// useful for CSE, etc.
1910 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1911   static inline MachineInstr *getEmptyKey() {
1912     return nullptr;
1913   }
1914 
1915   static inline MachineInstr *getTombstoneKey() {
1916     return reinterpret_cast<MachineInstr*>(-1);
1917   }
1918 
1919   static unsigned getHashValue(const MachineInstr* const &MI);
1920 
1921   static bool isEqual(const MachineInstr* const &LHS,
1922                       const MachineInstr* const &RHS) {
1923     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1924         LHS == getEmptyKey() || LHS == getTombstoneKey())
1925       return LHS == RHS;
1926     return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1927   }
1928 };
1929 
1930 //===----------------------------------------------------------------------===//
1931 // Debugging Support
1932 
1933 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1934   MI.print(OS);
1935   return OS;
1936 }
1937 
1938 } // end namespace llvm
1939 
1940 #endif // LLVM_CODEGEN_MACHINEINSTR_H
1941