1 //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64ExpandImm stuff.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "AArch64.h"
14 #include "AArch64ExpandImm.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16
17 using namespace llvm;
18 using namespace llvm::AArch64_IMM;
19
20 /// Helper function which extracts the specified 16-bit chunk from a
21 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)22 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
23 assert(ChunkIdx < 4 && "Out of range chunk index specified!");
24
25 return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
26 }
27
28 /// Check whether the given 16-bit chunk replicated to full 64-bit width
29 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)30 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
31 Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
32
33 return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
34 }
35
36 /// Check for identical 16-bit chunks within the constant and if so
37 /// materialize them with a single ORR instruction. The remaining one or two
38 /// 16-bit chunks will be materialized with MOVK instructions.
39 ///
40 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42 /// an ORR instruction.
tryToreplicateChunks(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)43 static bool tryToreplicateChunks(uint64_t UImm,
44 SmallVectorImpl<ImmInsnModel> &Insn) {
45 using CountMap = DenseMap<uint64_t, unsigned>;
46
47 CountMap Counts;
48
49 // Scan the constant and count how often every chunk occurs.
50 for (unsigned Idx = 0; Idx < 4; ++Idx)
51 ++Counts[getChunk(UImm, Idx)];
52
53 // Traverse the chunks to find one which occurs more than once.
54 for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
55 Chunk != End; ++Chunk) {
56 const uint64_t ChunkVal = Chunk->first;
57 const unsigned Count = Chunk->second;
58
59 uint64_t Encoding = 0;
60
61 // We are looking for chunks which have two or three instances and can be
62 // materialized with an ORR instruction.
63 if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
64 continue;
65
66 const bool CountThree = Count == 3;
67
68 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
69
70 unsigned ShiftAmt = 0;
71 uint64_t Imm16 = 0;
72 // Find the first chunk not materialized with the ORR instruction.
73 for (; ShiftAmt < 64; ShiftAmt += 16) {
74 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
75
76 if (Imm16 != ChunkVal)
77 break;
78 }
79
80 // Create the first MOVK instruction.
81 Insn.push_back({ AArch64::MOVKXi, Imm16,
82 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
83
84 // In case we have three instances the whole constant is now materialized
85 // and we can exit.
86 if (CountThree)
87 return true;
88
89 // Find the remaining chunk which needs to be materialized.
90 for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
91 Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
92
93 if (Imm16 != ChunkVal)
94 break;
95 }
96 Insn.push_back({ AArch64::MOVKXi, Imm16,
97 AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
98 return true;
99 }
100
101 return false;
102 }
103
104 /// Check whether this chunk matches the pattern '1...0...'. This pattern
105 /// starts a contiguous sequence of ones if we look at the bits from the LSB
106 /// towards the MSB.
isStartChunk(uint64_t Chunk)107 static bool isStartChunk(uint64_t Chunk) {
108 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
109 return false;
110
111 return isMask_64(~Chunk);
112 }
113
114 /// Check whether this chunk matches the pattern '0...1...' This pattern
115 /// ends a contiguous sequence of ones if we look at the bits from the LSB
116 /// towards the MSB.
isEndChunk(uint64_t Chunk)117 static bool isEndChunk(uint64_t Chunk) {
118 if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
119 return false;
120
121 return isMask_64(Chunk);
122 }
123
124 /// Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)125 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
126 const uint64_t Mask = 0xFFFF;
127
128 if (Clear)
129 // Clear chunk in the immediate.
130 Imm &= ~(Mask << (Idx * 16));
131 else
132 // Set all bits in the immediate for the particular chunk.
133 Imm |= Mask << (Idx * 16);
134
135 return Imm;
136 }
137
138 /// Check whether the constant contains a sequence of contiguous ones,
139 /// which might be interrupted by one or two chunks. If so, materialize the
140 /// sequence of contiguous ones with an ORR instruction.
141 /// Materialize the chunks which are either interrupting the sequence or outside
142 /// of the sequence with a MOVK instruction.
143 ///
144 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
145 /// which ends the sequence (0...1...). Then we are looking for constants which
146 /// contain at least one S and E chunk.
147 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
148 ///
149 /// We are also looking for constants like |S|A|B|E| where the contiguous
150 /// sequence of ones wraps around the MSB into the LSB.
trySequenceOfOnes(uint64_t UImm,SmallVectorImpl<ImmInsnModel> & Insn)151 static bool trySequenceOfOnes(uint64_t UImm,
152 SmallVectorImpl<ImmInsnModel> &Insn) {
153 const int NotSet = -1;
154 const uint64_t Mask = 0xFFFF;
155
156 int StartIdx = NotSet;
157 int EndIdx = NotSet;
158 // Try to find the chunks which start/end a contiguous sequence of ones.
159 for (int Idx = 0; Idx < 4; ++Idx) {
160 int64_t Chunk = getChunk(UImm, Idx);
161 // Sign extend the 16-bit chunk to 64-bit.
162 Chunk = (Chunk << 48) >> 48;
163
164 if (isStartChunk(Chunk))
165 StartIdx = Idx;
166 else if (isEndChunk(Chunk))
167 EndIdx = Idx;
168 }
169
170 // Early exit in case we can't find a start/end chunk.
171 if (StartIdx == NotSet || EndIdx == NotSet)
172 return false;
173
174 // Outside of the contiguous sequence of ones everything needs to be zero.
175 uint64_t Outside = 0;
176 // Chunks between the start and end chunk need to have all their bits set.
177 uint64_t Inside = Mask;
178
179 // If our contiguous sequence of ones wraps around from the MSB into the LSB,
180 // just swap indices and pretend we are materializing a contiguous sequence
181 // of zeros surrounded by a contiguous sequence of ones.
182 if (StartIdx > EndIdx) {
183 std::swap(StartIdx, EndIdx);
184 std::swap(Outside, Inside);
185 }
186
187 uint64_t OrrImm = UImm;
188 int FirstMovkIdx = NotSet;
189 int SecondMovkIdx = NotSet;
190
191 // Find out which chunks we need to patch up to obtain a contiguous sequence
192 // of ones.
193 for (int Idx = 0; Idx < 4; ++Idx) {
194 const uint64_t Chunk = getChunk(UImm, Idx);
195
196 // Check whether we are looking at a chunk which is not part of the
197 // contiguous sequence of ones.
198 if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
199 OrrImm = updateImm(OrrImm, Idx, Outside == 0);
200
201 // Remember the index we need to patch.
202 if (FirstMovkIdx == NotSet)
203 FirstMovkIdx = Idx;
204 else
205 SecondMovkIdx = Idx;
206
207 // Check whether we are looking a chunk which is part of the contiguous
208 // sequence of ones.
209 } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
210 OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
211
212 // Remember the index we need to patch.
213 if (FirstMovkIdx == NotSet)
214 FirstMovkIdx = Idx;
215 else
216 SecondMovkIdx = Idx;
217 }
218 }
219 assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
220
221 // Create the ORR-immediate instruction.
222 uint64_t Encoding = 0;
223 AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
224 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
225
226 const bool SingleMovk = SecondMovkIdx == NotSet;
227 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
228 AArch64_AM::getShifterImm(AArch64_AM::LSL,
229 FirstMovkIdx * 16) });
230
231 // Early exit in case we only need to emit a single MOVK instruction.
232 if (SingleMovk)
233 return true;
234
235 // Create the second MOVK instruction.
236 Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
237 AArch64_AM::getShifterImm(AArch64_AM::LSL,
238 SecondMovkIdx * 16) });
239
240 return true;
241 }
242
243 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
244 /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
expandMOVImmSimple(uint64_t Imm,unsigned BitSize,unsigned OneChunks,unsigned ZeroChunks,SmallVectorImpl<ImmInsnModel> & Insn)245 static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
246 unsigned OneChunks, unsigned ZeroChunks,
247 SmallVectorImpl<ImmInsnModel> &Insn) {
248 const unsigned Mask = 0xFFFF;
249
250 // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
251 // more MOVK instructions to insert additional 16-bit portions into the
252 // lower bits.
253 bool isNeg = false;
254
255 // Use MOVN to materialize the high bits if we have more all one chunks
256 // than all zero chunks.
257 if (OneChunks > ZeroChunks) {
258 isNeg = true;
259 Imm = ~Imm;
260 }
261
262 unsigned FirstOpc;
263 if (BitSize == 32) {
264 Imm &= (1LL << 32) - 1;
265 FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
266 } else {
267 FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
268 }
269 unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
270 unsigned LastShift = 0; // LSL amount for last MOVK
271 if (Imm != 0) {
272 unsigned LZ = countLeadingZeros(Imm);
273 unsigned TZ = countTrailingZeros(Imm);
274 Shift = (TZ / 16) * 16;
275 LastShift = ((63 - LZ) / 16) * 16;
276 }
277 unsigned Imm16 = (Imm >> Shift) & Mask;
278
279 Insn.push_back({ FirstOpc, Imm16,
280 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
281
282 if (Shift == LastShift)
283 return;
284
285 // If a MOVN was used for the high bits of a negative value, flip the rest
286 // of the bits back for use with MOVK.
287 if (isNeg)
288 Imm = ~Imm;
289
290 unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
291 while (Shift < LastShift) {
292 Shift += 16;
293 Imm16 = (Imm >> Shift) & Mask;
294 if (Imm16 == (isNeg ? Mask : 0))
295 continue; // This 16-bit portion is already set correctly.
296
297 Insn.push_back({ Opc, Imm16,
298 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
299 }
300 }
301
302 /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
303 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(uint64_t Imm,unsigned BitSize,SmallVectorImpl<ImmInsnModel> & Insn)304 void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize,
305 SmallVectorImpl<ImmInsnModel> &Insn) {
306 const unsigned Mask = 0xFFFF;
307
308 // Scan the immediate and count the number of 16-bit chunks which are either
309 // all ones or all zeros.
310 unsigned OneChunks = 0;
311 unsigned ZeroChunks = 0;
312 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
313 const unsigned Chunk = (Imm >> Shift) & Mask;
314 if (Chunk == Mask)
315 OneChunks++;
316 else if (Chunk == 0)
317 ZeroChunks++;
318 }
319
320 // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
321 if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
322 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
323 return;
324 }
325
326 // Try a single ORR.
327 uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
328 uint64_t Encoding;
329 if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
330 unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
331 Insn.push_back({ Opc, 0, Encoding });
332 return;
333 }
334
335 // One to up three instruction sequences.
336 //
337 // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
338 // fastest sequence with fast literal generation.
339 if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
340 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
341 return;
342 }
343
344 assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
345 "MOVZ/MOVK pair");
346
347 // Try other two-instruction sequences.
348
349 // 64-bit ORR followed by MOVK.
350 // We try to construct the ORR immediate in three different ways: either we
351 // zero out the chunk which will be replaced, we fill the chunk which will
352 // be replaced with ones, or we take the bit pattern from the other half of
353 // the 64-bit immediate. This is comprehensive because of the way ORR
354 // immediates are constructed.
355 for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
356 uint64_t ShiftedMask = (0xFFFFULL << Shift);
357 uint64_t ZeroChunk = UImm & ~ShiftedMask;
358 uint64_t OneChunk = UImm | ShiftedMask;
359 uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
360 uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
361 if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
362 AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
363 AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
364 Encoding)) {
365 // Create the ORR-immediate instruction.
366 Insn.push_back({ AArch64::ORRXri, 0, Encoding });
367
368 // Create the MOVK instruction.
369 const unsigned Imm16 = getChunk(UImm, Shift / 16);
370 Insn.push_back({ AArch64::MOVKXi, Imm16,
371 AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
372 return;
373 }
374 }
375
376 // FIXME: Add more two-instruction sequences.
377
378 // Three instruction sequences.
379 //
380 // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
381 // the fastest sequence with fast literal generation. (If neither MOVK is
382 // part of a fast literal generation pair, it could be slower than the
383 // four-instruction sequence, but we won't worry about that for now.)
384 if (OneChunks || ZeroChunks) {
385 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
386 return;
387 }
388
389 // Check for identical 16-bit chunks within the constant and if so materialize
390 // them with a single ORR instruction. The remaining one or two 16-bit chunks
391 // will be materialized with MOVK instructions.
392 if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
393 return;
394
395 // Check whether the constant contains a sequence of contiguous ones, which
396 // might be interrupted by one or two chunks. If so, materialize the sequence
397 // of contiguous ones with an ORR instruction. Materialize the chunks which
398 // are either interrupting the sequence or outside of the sequence with a
399 // MOVK instruction.
400 if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
401 return;
402
403 // We found no possible two or three instruction sequence; use the general
404 // four-instruction sequence.
405 expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
406 }
407