1 //===-- AVRAsmBackend.cpp - AVR Asm Backend ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AVRAsmBackend class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MCTargetDesc/AVRAsmBackend.h"
14 #include "MCTargetDesc/AVRFixupKinds.h"
15 #include "MCTargetDesc/AVRMCTargetDesc.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAssembler.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDirectives.h"
20 #include "llvm/MC/MCELFObjectWriter.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCValue.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 // FIXME: we should be doing checks to make sure asm operands
31 // are not out of bounds.
32
33 namespace adjust {
34
35 using namespace llvm;
36
signed_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)37 static void signed_width(unsigned Width, uint64_t Value,
38 std::string Description, const MCFixup &Fixup,
39 MCContext *Ctx = nullptr) {
40 if (!isIntN(Width, Value)) {
41 std::string Diagnostic = "out of range " + Description;
42
43 int64_t Min = minIntN(Width);
44 int64_t Max = maxIntN(Width);
45
46 Diagnostic += " (expected an integer in the range " + std::to_string(Min) +
47 " to " + std::to_string(Max) + ")";
48
49 if (Ctx) {
50 Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
51 } else {
52 llvm_unreachable(Diagnostic.c_str());
53 }
54 }
55 }
56
unsigned_width(unsigned Width,uint64_t Value,std::string Description,const MCFixup & Fixup,MCContext * Ctx=nullptr)57 static void unsigned_width(unsigned Width, uint64_t Value,
58 std::string Description, const MCFixup &Fixup,
59 MCContext *Ctx = nullptr) {
60 if (!isUIntN(Width, Value)) {
61 std::string Diagnostic = "out of range " + Description;
62
63 int64_t Max = maxUIntN(Width);
64
65 Diagnostic += " (expected an integer in the range 0 to " +
66 std::to_string(Max) + ")";
67
68 if (Ctx) {
69 Ctx->reportFatalError(Fixup.getLoc(), Diagnostic);
70 } else {
71 llvm_unreachable(Diagnostic.c_str());
72 }
73 }
74 }
75
76 /// Adjusts the value of a branch target before fixup application.
adjustBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)77 static void adjustBranch(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
78 MCContext *Ctx = nullptr) {
79 // We have one extra bit of precision because the value is rightshifted by
80 // one.
81 unsigned_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
82
83 // Rightshifts the value by one.
84 AVR::fixups::adjustBranchTarget(Value);
85 }
86
87 /// Adjusts the value of a relative branch target before fixup application.
adjustRelativeBranch(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)88 static void adjustRelativeBranch(unsigned Size, const MCFixup &Fixup,
89 uint64_t &Value, MCContext *Ctx = nullptr) {
90 // We have one extra bit of precision because the value is rightshifted by
91 // one.
92 signed_width(Size + 1, Value, std::string("branch target"), Fixup, Ctx);
93
94 // Rightshifts the value by one.
95 AVR::fixups::adjustBranchTarget(Value);
96 }
97
98 /// 22-bit absolute fixup.
99 ///
100 /// Resolves to:
101 /// 1001 kkkk 010k kkkk kkkk kkkk 111k kkkk
102 ///
103 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_call(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)104 static void fixup_call(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
105 MCContext *Ctx = nullptr) {
106 adjustBranch(Size, Fixup, Value, Ctx);
107
108 auto top = Value & (0xf00000 << 6); // the top four bits
109 auto middle = Value & (0x1ffff << 5); // the middle 13 bits
110 auto bottom = Value & 0x1f; // end bottom 5 bits
111
112 Value = (top << 6) | (middle << 3) | (bottom << 0);
113 }
114
115 /// 7-bit PC-relative fixup.
116 ///
117 /// Resolves to:
118 /// 0000 00kk kkkk k000
119 /// Offset of 0 (so the result is left shifted by 3 bits before application).
fixup_7_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)120 static void fixup_7_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
121 MCContext *Ctx = nullptr) {
122 adjustRelativeBranch(Size, Fixup, Value, Ctx);
123
124 // Because the value may be negative, we must mask out the sign bits
125 Value &= 0x7f;
126 }
127
128 /// 12-bit PC-relative fixup.
129 /// Yes, the fixup is 12 bits even though the name says otherwise.
130 ///
131 /// Resolves to:
132 /// 0000 kkkk kkkk kkkk
133 /// Offset of 0 (so the result isn't left-shifted before application).
fixup_13_pcrel(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)134 static void fixup_13_pcrel(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
135 MCContext *Ctx = nullptr) {
136 adjustRelativeBranch(Size, Fixup, Value, Ctx);
137
138 // Because the value may be negative, we must mask out the sign bits
139 Value &= 0xfff;
140 }
141
142 /// 6-bit fixup for the immediate operand of the STD/LDD family of
143 /// instructions.
144 ///
145 /// Resolves to:
146 /// 10q0 qq10 0000 1qqq
fixup_6(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)147 static void fixup_6(const MCFixup &Fixup, uint64_t &Value,
148 MCContext *Ctx = nullptr) {
149 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
150
151 Value = ((Value & 0x20) << 8) | ((Value & 0x18) << 7) | (Value & 0x07);
152 }
153
154 /// 6-bit fixup for the immediate operand of the ADIW family of
155 /// instructions.
156 ///
157 /// Resolves to:
158 /// 0000 0000 kk00 kkkk
fixup_6_adiw(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)159 static void fixup_6_adiw(const MCFixup &Fixup, uint64_t &Value,
160 MCContext *Ctx = nullptr) {
161 unsigned_width(6, Value, std::string("immediate"), Fixup, Ctx);
162
163 Value = ((Value & 0x30) << 2) | (Value & 0x0f);
164 }
165
166 /// 5-bit port number fixup on the SBIC family of instructions.
167 ///
168 /// Resolves to:
169 /// 0000 0000 AAAA A000
fixup_port5(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)170 static void fixup_port5(const MCFixup &Fixup, uint64_t &Value,
171 MCContext *Ctx = nullptr) {
172 unsigned_width(5, Value, std::string("port number"), Fixup, Ctx);
173
174 Value &= 0x1f;
175
176 Value <<= 3;
177 }
178
179 /// 6-bit port number fixup on the `IN` family of instructions.
180 ///
181 /// Resolves to:
182 /// 1011 0AAd dddd AAAA
fixup_port6(const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)183 static void fixup_port6(const MCFixup &Fixup, uint64_t &Value,
184 MCContext *Ctx = nullptr) {
185 unsigned_width(6, Value, std::string("port number"), Fixup, Ctx);
186
187 Value = ((Value & 0x30) << 5) | (Value & 0x0f);
188 }
189
190 /// Adjusts a program memory address.
191 /// This is a simple right-shift.
pm(uint64_t & Value)192 static void pm(uint64_t &Value) { Value >>= 1; }
193
194 /// Fixups relating to the LDI instruction.
195 namespace ldi {
196
197 /// Adjusts a value to fix up the immediate of an `LDI Rd, K` instruction.
198 ///
199 /// Resolves to:
200 /// 0000 KKKK 0000 KKKK
201 /// Offset of 0 (so the result isn't left-shifted before application).
fixup(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)202 static void fixup(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
203 MCContext *Ctx = nullptr) {
204 uint64_t upper = Value & 0xf0;
205 uint64_t lower = Value & 0x0f;
206
207 Value = (upper << 4) | lower;
208 }
209
neg(uint64_t & Value)210 static void neg(uint64_t &Value) { Value *= -1; }
211
lo8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)212 static void lo8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
213 MCContext *Ctx = nullptr) {
214 Value &= 0xff;
215 ldi::fixup(Size, Fixup, Value, Ctx);
216 }
217
hi8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)218 static void hi8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
219 MCContext *Ctx = nullptr) {
220 Value = (Value & 0xff00) >> 8;
221 ldi::fixup(Size, Fixup, Value, Ctx);
222 }
223
hh8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)224 static void hh8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
225 MCContext *Ctx = nullptr) {
226 Value = (Value & 0xff0000) >> 16;
227 ldi::fixup(Size, Fixup, Value, Ctx);
228 }
229
ms8(unsigned Size,const MCFixup & Fixup,uint64_t & Value,MCContext * Ctx=nullptr)230 static void ms8(unsigned Size, const MCFixup &Fixup, uint64_t &Value,
231 MCContext *Ctx = nullptr) {
232 Value = (Value & 0xff000000) >> 24;
233 ldi::fixup(Size, Fixup, Value, Ctx);
234 }
235
236 } // end of ldi namespace
237 } // end of adjust namespace
238
239 namespace llvm {
240
241 // Prepare value for the target space for it
adjustFixupValue(const MCFixup & Fixup,const MCValue & Target,uint64_t & Value,MCContext * Ctx) const242 void AVRAsmBackend::adjustFixupValue(const MCFixup &Fixup,
243 const MCValue &Target,
244 uint64_t &Value,
245 MCContext *Ctx) const {
246 // The size of the fixup in bits.
247 uint64_t Size = AVRAsmBackend::getFixupKindInfo(Fixup.getKind()).TargetSize;
248
249 unsigned Kind = Fixup.getKind();
250 switch (Kind) {
251 default:
252 llvm_unreachable("unhandled fixup");
253 case AVR::fixup_7_pcrel:
254 adjust::fixup_7_pcrel(Size, Fixup, Value, Ctx);
255 break;
256 case AVR::fixup_13_pcrel:
257 adjust::fixup_13_pcrel(Size, Fixup, Value, Ctx);
258 break;
259 case AVR::fixup_call:
260 adjust::fixup_call(Size, Fixup, Value, Ctx);
261 break;
262 case AVR::fixup_ldi:
263 adjust::ldi::fixup(Size, Fixup, Value, Ctx);
264 break;
265 case AVR::fixup_lo8_ldi:
266 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
267 break;
268 case AVR::fixup_lo8_ldi_pm:
269 case AVR::fixup_lo8_ldi_gs:
270 adjust::pm(Value);
271 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
272 break;
273 case AVR::fixup_hi8_ldi:
274 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
275 break;
276 case AVR::fixup_hi8_ldi_pm:
277 case AVR::fixup_hi8_ldi_gs:
278 adjust::pm(Value);
279 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
280 break;
281 case AVR::fixup_hh8_ldi:
282 case AVR::fixup_hh8_ldi_pm:
283 if (Kind == AVR::fixup_hh8_ldi_pm) adjust::pm(Value);
284
285 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
286 break;
287 case AVR::fixup_ms8_ldi:
288 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
289 break;
290
291 case AVR::fixup_lo8_ldi_neg:
292 case AVR::fixup_lo8_ldi_pm_neg:
293 if (Kind == AVR::fixup_lo8_ldi_pm_neg) adjust::pm(Value);
294
295 adjust::ldi::neg(Value);
296 adjust::ldi::lo8(Size, Fixup, Value, Ctx);
297 break;
298 case AVR::fixup_hi8_ldi_neg:
299 case AVR::fixup_hi8_ldi_pm_neg:
300 if (Kind == AVR::fixup_hi8_ldi_pm_neg) adjust::pm(Value);
301
302 adjust::ldi::neg(Value);
303 adjust::ldi::hi8(Size, Fixup, Value, Ctx);
304 break;
305 case AVR::fixup_hh8_ldi_neg:
306 case AVR::fixup_hh8_ldi_pm_neg:
307 if (Kind == AVR::fixup_hh8_ldi_pm_neg) adjust::pm(Value);
308
309 adjust::ldi::neg(Value);
310 adjust::ldi::hh8(Size, Fixup, Value, Ctx);
311 break;
312 case AVR::fixup_ms8_ldi_neg:
313 adjust::ldi::neg(Value);
314 adjust::ldi::ms8(Size, Fixup, Value, Ctx);
315 break;
316 case AVR::fixup_16:
317 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
318
319 Value &= 0xffff;
320 break;
321 case AVR::fixup_16_pm:
322 Value >>= 1; // Flash addresses are always shifted.
323 adjust::unsigned_width(16, Value, std::string("port number"), Fixup, Ctx);
324
325 Value &= 0xffff;
326 break;
327
328 case AVR::fixup_6:
329 adjust::fixup_6(Fixup, Value, Ctx);
330 break;
331 case AVR::fixup_6_adiw:
332 adjust::fixup_6_adiw(Fixup, Value, Ctx);
333 break;
334
335 case AVR::fixup_port5:
336 adjust::fixup_port5(Fixup, Value, Ctx);
337 break;
338
339 case AVR::fixup_port6:
340 adjust::fixup_port6(Fixup, Value, Ctx);
341 break;
342
343 // Fixups which do not require adjustments.
344 case FK_Data_1:
345 case FK_Data_2:
346 case FK_Data_4:
347 case FK_Data_8:
348 break;
349
350 case FK_GPRel_4:
351 llvm_unreachable("don't know how to adjust this fixup");
352 break;
353 }
354 }
355
356 std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const357 AVRAsmBackend::createObjectTargetWriter() const {
358 return createAVRELFObjectWriter(MCELFObjectTargetWriter::getOSABI(OSType));
359 }
360
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const361 void AVRAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
362 const MCValue &Target,
363 MutableArrayRef<char> Data, uint64_t Value,
364 bool IsResolved,
365 const MCSubtargetInfo *STI) const {
366 adjustFixupValue(Fixup, Target, Value, &Asm.getContext());
367 if (Value == 0)
368 return; // Doesn't change encoding.
369
370 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
371
372 // The number of bits in the fixup mask
373 auto NumBits = Info.TargetSize + Info.TargetOffset;
374 auto NumBytes = (NumBits / 8) + ((NumBits % 8) == 0 ? 0 : 1);
375
376 // Shift the value into position.
377 Value <<= Info.TargetOffset;
378
379 unsigned Offset = Fixup.getOffset();
380 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
381
382 // For each byte of the fragment that the fixup touches, mask in the
383 // bits from the fixup value.
384 for (unsigned i = 0; i < NumBytes; ++i) {
385 uint8_t mask = (((Value >> (i * 8)) & 0xff));
386 Data[Offset + i] |= mask;
387 }
388 }
389
getFixupKindInfo(MCFixupKind Kind) const390 MCFixupKindInfo const &AVRAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
391 // NOTE: Many AVR fixups work on sets of non-contignous bits. We work around
392 // this by saying that the fixup is the size of the entire instruction.
393 const static MCFixupKindInfo Infos[AVR::NumTargetFixupKinds] = {
394 // This table *must* be in same the order of fixup_* kinds in
395 // AVRFixupKinds.h.
396 //
397 // name offset bits flags
398 {"fixup_32", 0, 32, 0},
399
400 {"fixup_7_pcrel", 3, 7, MCFixupKindInfo::FKF_IsPCRel},
401 {"fixup_13_pcrel", 0, 12, MCFixupKindInfo::FKF_IsPCRel},
402
403 {"fixup_16", 0, 16, 0},
404 {"fixup_16_pm", 0, 16, 0},
405
406 {"fixup_ldi", 0, 8, 0},
407
408 {"fixup_lo8_ldi", 0, 8, 0},
409 {"fixup_hi8_ldi", 0, 8, 0},
410 {"fixup_hh8_ldi", 0, 8, 0},
411 {"fixup_ms8_ldi", 0, 8, 0},
412
413 {"fixup_lo8_ldi_neg", 0, 8, 0},
414 {"fixup_hi8_ldi_neg", 0, 8, 0},
415 {"fixup_hh8_ldi_neg", 0, 8, 0},
416 {"fixup_ms8_ldi_neg", 0, 8, 0},
417
418 {"fixup_lo8_ldi_pm", 0, 8, 0},
419 {"fixup_hi8_ldi_pm", 0, 8, 0},
420 {"fixup_hh8_ldi_pm", 0, 8, 0},
421
422 {"fixup_lo8_ldi_pm_neg", 0, 8, 0},
423 {"fixup_hi8_ldi_pm_neg", 0, 8, 0},
424 {"fixup_hh8_ldi_pm_neg", 0, 8, 0},
425
426 {"fixup_call", 0, 22, 0},
427
428 {"fixup_6", 0, 16, 0}, // non-contiguous
429 {"fixup_6_adiw", 0, 6, 0},
430
431 {"fixup_lo8_ldi_gs", 0, 8, 0},
432 {"fixup_hi8_ldi_gs", 0, 8, 0},
433
434 {"fixup_8", 0, 8, 0},
435 {"fixup_8_lo8", 0, 8, 0},
436 {"fixup_8_hi8", 0, 8, 0},
437 {"fixup_8_hlo8", 0, 8, 0},
438
439 {"fixup_diff8", 0, 8, 0},
440 {"fixup_diff16", 0, 16, 0},
441 {"fixup_diff32", 0, 32, 0},
442
443 {"fixup_lds_sts_16", 0, 16, 0},
444
445 {"fixup_port6", 0, 16, 0}, // non-contiguous
446 {"fixup_port5", 3, 5, 0},
447 };
448
449 if (Kind < FirstTargetFixupKind)
450 return MCAsmBackend::getFixupKindInfo(Kind);
451
452 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
453 "Invalid kind!");
454
455 return Infos[Kind - FirstTargetFixupKind];
456 }
457
writeNopData(raw_ostream & OS,uint64_t Count) const458 bool AVRAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
459 // If the count is not 2-byte aligned, we must be writing data into the text
460 // section (otherwise we have unaligned instructions, and thus have far
461 // bigger problems), so just write zeros instead.
462 assert((Count % 2) == 0 && "NOP instructions must be 2 bytes");
463
464 OS.write_zeros(Count);
465 return true;
466 }
467
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)468 bool AVRAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
469 const MCFixup &Fixup,
470 const MCValue &Target) {
471 switch ((unsigned) Fixup.getKind()) {
472 default: return false;
473 // Fixups which should always be recorded as relocations.
474 case AVR::fixup_7_pcrel:
475 case AVR::fixup_13_pcrel:
476 case AVR::fixup_call:
477 return true;
478 }
479 }
480
createAVRAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const llvm::MCTargetOptions & TO)481 MCAsmBackend *createAVRAsmBackend(const Target &T, const MCSubtargetInfo &STI,
482 const MCRegisterInfo &MRI,
483 const llvm::MCTargetOptions &TO) {
484 return new AVRAsmBackend(STI.getTargetTriple().getOS());
485 }
486
487 } // end of namespace llvm
488
489