1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
__kmp_print_cond(char * buffer,kmp_cond_align_t * cond)98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101                cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
__kmp_affinity_bind_thread(int which)109 void __kmp_affinity_bind_thread(int which) {
110   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111               "Illegal set affinity operation when not capable");
112 
113   kmp_affin_mask_t *mask;
114   KMP_CPU_ALLOC_ON_STACK(mask);
115   KMP_CPU_ZERO(mask);
116   KMP_CPU_SET(which, mask);
117   __kmp_set_system_affinity(mask, TRUE);
118   KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
__kmp_affinity_determine_capable(const char * env_var)124 void __kmp_affinity_determine_capable(const char *env_var) {
125   // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130 #elif KMP_OS_FREEBSD
131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132 #endif
133 
134 #if KMP_OS_LINUX
135   long gCode;
136   unsigned char *buf;
137   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
138 
139   // If the syscall returns a suggestion for the size,
140   // then we don't have to search for an appropriate size.
141   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
142   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143                 "initial getaffinity call returned %ld errno = %d\n",
144                 gCode, errno));
145 
146   if (gCode < 0 && errno != EINVAL) {
147     // System call not supported
148     if (__kmp_affinity_verbose ||
149         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150          (__kmp_affinity_type != affinity_default) &&
151          (__kmp_affinity_type != affinity_disabled))) {
152       int error = errno;
153       kmp_msg_t err_code = KMP_ERR(error);
154       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155                 err_code, __kmp_msg_null);
156       if (__kmp_generate_warnings == kmp_warnings_off) {
157         __kmp_str_free(&err_code.str);
158       }
159     }
160     KMP_AFFINITY_DISABLE();
161     KMP_INTERNAL_FREE(buf);
162     return;
163   } else if (gCode > 0) {
164     // The optimal situation: the OS returns the size of the buffer it expects.
165     KMP_AFFINITY_ENABLE(gCode);
166     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
167                   "affinity supported (mask size %d)\n",
168                   (int)__kmp_affin_mask_size));
169     KMP_INTERNAL_FREE(buf);
170     return;
171   }
172 
173   // Call the getaffinity system call repeatedly with increasing set sizes
174   // until we succeed, or reach an upper bound on the search.
175   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
176                 "searching for proper set size\n"));
177   int size;
178   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
179     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
180     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
181                   "getaffinity for mask size %ld returned %ld errno = %d\n",
182                   size, gCode, errno));
183 
184     if (gCode < 0) {
185       if (errno == ENOSYS) {
186         // We shouldn't get here
187         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
188                       "inconsistent OS call behavior: errno == ENOSYS for mask "
189                       "size %d\n",
190                       size));
191         if (__kmp_affinity_verbose ||
192             (__kmp_affinity_warnings &&
193              (__kmp_affinity_type != affinity_none) &&
194              (__kmp_affinity_type != affinity_default) &&
195              (__kmp_affinity_type != affinity_disabled))) {
196           int error = errno;
197           kmp_msg_t err_code = KMP_ERR(error);
198           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
199                     err_code, __kmp_msg_null);
200           if (__kmp_generate_warnings == kmp_warnings_off) {
201             __kmp_str_free(&err_code.str);
202           }
203         }
204         KMP_AFFINITY_DISABLE();
205         KMP_INTERNAL_FREE(buf);
206         return;
207       }
208       continue;
209     }
210 
211     KMP_AFFINITY_ENABLE(gCode);
212     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
213                   "affinity supported (mask size %d)\n",
214                   (int)__kmp_affin_mask_size));
215     KMP_INTERNAL_FREE(buf);
216     return;
217   }
218 #elif KMP_OS_FREEBSD
219   long gCode;
220   unsigned char *buf;
221   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
222   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
223                                  reinterpret_cast<cpuset_t *>(buf));
224   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
225                 "initial getaffinity call returned %d errno = %d\n",
226                 gCode, errno));
227   if (gCode == 0) {
228     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
229     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
230                   "affinity supported (mask size %d)\n",
231                   (int)__kmp_affin_mask_size));
232     KMP_INTERNAL_FREE(buf);
233     return;
234   }
235 #endif
236   KMP_INTERNAL_FREE(buf);
237 
238   // Affinity is not supported
239   KMP_AFFINITY_DISABLE();
240   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
241                 "cannot determine mask size - affinity not supported\n"));
242   if (__kmp_affinity_verbose ||
243       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
244        (__kmp_affinity_type != affinity_default) &&
245        (__kmp_affinity_type != affinity_disabled))) {
246     KMP_WARNING(AffCantGetMaskSize, env_var);
247   }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
__kmp_futex_determine_capable()254 int __kmp_futex_determine_capable() {
255   int loc = 0;
256   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257   int retval = (rc == 0) || (errno != ENOSYS);
258 
259   KA_TRACE(10,
260            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262                 retval ? "" : " not"));
263 
264   return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271    use compare_and_store for these routines */
272 
__kmp_test_then_or8(volatile kmp_int8 * p,kmp_int8 d)273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274   kmp_int8 old_value, new_value;
275 
276   old_value = TCR_1(*p);
277   new_value = old_value | d;
278 
279   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280     KMP_CPU_PAUSE();
281     old_value = TCR_1(*p);
282     new_value = old_value | d;
283   }
284   return old_value;
285 }
286 
__kmp_test_then_and8(volatile kmp_int8 * p,kmp_int8 d)287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288   kmp_int8 old_value, new_value;
289 
290   old_value = TCR_1(*p);
291   new_value = old_value & d;
292 
293   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294     KMP_CPU_PAUSE();
295     old_value = TCR_1(*p);
296     new_value = old_value & d;
297   }
298   return old_value;
299 }
300 
__kmp_test_then_or32(volatile kmp_uint32 * p,kmp_uint32 d)301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302   kmp_uint32 old_value, new_value;
303 
304   old_value = TCR_4(*p);
305   new_value = old_value | d;
306 
307   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308     KMP_CPU_PAUSE();
309     old_value = TCR_4(*p);
310     new_value = old_value | d;
311   }
312   return old_value;
313 }
314 
__kmp_test_then_and32(volatile kmp_uint32 * p,kmp_uint32 d)315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316   kmp_uint32 old_value, new_value;
317 
318   old_value = TCR_4(*p);
319   new_value = old_value & d;
320 
321   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322     KMP_CPU_PAUSE();
323     old_value = TCR_4(*p);
324     new_value = old_value & d;
325   }
326   return old_value;
327 }
328 
329 #if KMP_ARCH_X86
__kmp_test_then_add8(volatile kmp_int8 * p,kmp_int8 d)330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331   kmp_int8 old_value, new_value;
332 
333   old_value = TCR_1(*p);
334   new_value = old_value + d;
335 
336   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337     KMP_CPU_PAUSE();
338     old_value = TCR_1(*p);
339     new_value = old_value + d;
340   }
341   return old_value;
342 }
343 
__kmp_test_then_add64(volatile kmp_int64 * p,kmp_int64 d)344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345   kmp_int64 old_value, new_value;
346 
347   old_value = TCR_8(*p);
348   new_value = old_value + d;
349 
350   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351     KMP_CPU_PAUSE();
352     old_value = TCR_8(*p);
353     new_value = old_value + d;
354   }
355   return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
__kmp_test_then_or64(volatile kmp_uint64 * p,kmp_uint64 d)359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360   kmp_uint64 old_value, new_value;
361 
362   old_value = TCR_8(*p);
363   new_value = old_value | d;
364   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365     KMP_CPU_PAUSE();
366     old_value = TCR_8(*p);
367     new_value = old_value | d;
368   }
369   return old_value;
370 }
371 
__kmp_test_then_and64(volatile kmp_uint64 * p,kmp_uint64 d)372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373   kmp_uint64 old_value, new_value;
374 
375   old_value = TCR_8(*p);
376   new_value = old_value & d;
377   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378     KMP_CPU_PAUSE();
379     old_value = TCR_8(*p);
380     new_value = old_value & d;
381   }
382   return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
__kmp_terminate_thread(int gtid)387 void __kmp_terminate_thread(int gtid) {
388   int status;
389   kmp_info_t *th = __kmp_threads[gtid];
390 
391   if (!th)
392     return;
393 
394 #ifdef KMP_CANCEL_THREADS
395   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396   status = pthread_cancel(th->th.th_info.ds.ds_thread);
397   if (status != 0 && status != ESRCH) {
398     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399                 __kmp_msg_null);
400   }
401 #endif
402   KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406    If values are unreasonable, assume call failed and use incremental stack
407    refinement method instead. Returns TRUE if the stack parameters could be
408    determined exactly, FALSE if incremental refinement is necessary. */
__kmp_set_stack_info(int gtid,kmp_info_t * th)409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410   int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
412     KMP_OS_HURD
413   pthread_attr_t attr;
414   int status;
415   size_t size = 0;
416   void *addr = 0;
417 
418   /* Always do incremental stack refinement for ubermaster threads since the
419      initial thread stack range can be reduced by sibling thread creation so
420      pthread_attr_getstack may cause thread gtid aliasing */
421   if (!KMP_UBER_GTID(gtid)) {
422 
423     /* Fetch the real thread attributes */
424     status = pthread_attr_init(&attr);
425     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427     status = pthread_attr_get_np(pthread_self(), &attr);
428     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430     status = pthread_getattr_np(pthread_self(), &attr);
431     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433     status = pthread_attr_getstack(&attr, &addr, &size);
434     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435     KA_TRACE(60,
436              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437               " %lu, low addr: %p\n",
438               gtid, size, addr));
439     status = pthread_attr_destroy(&attr);
440     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441   }
442 
443   if (size != 0 && addr != 0) { // was stack parameter determination successful?
444     /* Store the correct base and size */
445     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448     return TRUE;
449   }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
451           || KMP_OS_HURD */
452   /* Use incremental refinement starting from initial conservative estimate */
453   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456   return FALSE;
457 }
458 
__kmp_launch_worker(void * thr)459 static void *__kmp_launch_worker(void *thr) {
460   int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462   sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464   void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
466     KMP_OS_OPENBSD || KMP_OS_HURD
467   void *volatile padding = 0;
468 #endif
469   int gtid;
470 
471   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472   __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474   __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477   // set thread local index to point to thread-specific stats
478   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479   __kmp_stats_thread_ptr->startLife();
480   KMP_SET_THREAD_STATE(IDLE);
481   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485   __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489   __kmp_affinity_set_init_mask(gtid, FALSE);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501   // Set FP control regs to be a copy of the parallel initialization thread's.
502   __kmp_clear_x87_fpu_status_word();
503   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504   __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508   status = sigfillset(&new_set);
509   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
515     KMP_OS_OPENBSD
516   if (__kmp_stkoffset > 0 && gtid > 0) {
517     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518     (void)padding;
519   }
520 #endif
521 
522   KMP_MB();
523   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
524 
525   __kmp_check_stack_overlap((kmp_info_t *)thr);
526 
527   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
528 
529 #ifdef KMP_BLOCK_SIGNALS
530   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
533 
534   return exit_val;
535 }
536 
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
539 
__kmp_launch_monitor(void * thr)540 static void *__kmp_launch_monitor(void *thr) {
541   int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543   sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545   struct timespec interval;
546 
547   KMP_MB(); /* Flush all pending memory write invalidates.  */
548 
549   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
550 
551   /* register us as the monitor thread */
552   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554   __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
556 
557   KMP_MB();
558 
559 #if USE_ITT_BUILD
560   // Instruct Intel(R) Threading Tools to ignore monitor thread.
561   __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
563 
564   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565                        (kmp_info_t *)thr);
566 
567   __kmp_check_stack_overlap((kmp_info_t *)thr);
568 
569 #ifdef KMP_CANCEL_THREADS
570   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
576 
577 #if KMP_REAL_TIME_FIX
578   // This is a potential fix which allows application with real-time scheduling
579   // policy work. However, decision about the fix is not made yet, so it is
580   // disabled by default.
581   { // Are program started with real-time scheduling policy?
582     int sched = sched_getscheduler(0);
583     if (sched == SCHED_FIFO || sched == SCHED_RR) {
584       // Yes, we are a part of real-time application. Try to increase the
585       // priority of the monitor.
586       struct sched_param param;
587       int max_priority = sched_get_priority_max(sched);
588       int rc;
589       KMP_WARNING(RealTimeSchedNotSupported);
590       sched_getparam(0, &param);
591       if (param.sched_priority < max_priority) {
592         param.sched_priority += 1;
593         rc = sched_setscheduler(0, sched, &param);
594         if (rc != 0) {
595           int error = errno;
596           kmp_msg_t err_code = KMP_ERR(error);
597           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599           if (__kmp_generate_warnings == kmp_warnings_off) {
600             __kmp_str_free(&err_code.str);
601           }
602         }
603       } else {
604         // We cannot abort here, because number of CPUs may be enough for all
605         // the threads, including the monitor thread, so application could
606         // potentially work...
607         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609                   __kmp_msg_null);
610       }
611     }
612     // AC: free thread that waits for monitor started
613     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
614   }
615 #endif // KMP_REAL_TIME_FIX
616 
617   KMP_MB(); /* Flush all pending memory write invalidates.  */
618 
619   if (__kmp_monitor_wakeups == 1) {
620     interval.tv_sec = 1;
621     interval.tv_nsec = 0;
622   } else {
623     interval.tv_sec = 0;
624     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
625   }
626 
627   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
628 
629   while (!TCR_4(__kmp_global.g.g_done)) {
630     struct timespec now;
631     struct timeval tval;
632 
633     /*  This thread monitors the state of the system */
634 
635     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
636 
637     status = gettimeofday(&tval, NULL);
638     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639     TIMEVAL_TO_TIMESPEC(&tval, &now);
640 
641     now.tv_sec += interval.tv_sec;
642     now.tv_nsec += interval.tv_nsec;
643 
644     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645       now.tv_sec += 1;
646       now.tv_nsec -= KMP_NSEC_PER_SEC;
647     }
648 
649     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651     // AC: the monitor should not fall asleep if g_done has been set
652     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654                                       &__kmp_wait_mx.m_mutex, &now);
655       if (status != 0) {
656         if (status != ETIMEDOUT && status != EINTR) {
657           KMP_SYSFAIL("pthread_cond_timedwait", status);
658         }
659       }
660     }
661     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
663 
664     TCW_4(__kmp_global.g.g_time.dt.t_value,
665           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
666 
667     KMP_MB(); /* Flush all pending memory write invalidates.  */
668   }
669 
670   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
671 
672 #ifdef KMP_BLOCK_SIGNALS
673   status = sigfillset(&new_set);
674   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
678 
679   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
680 
681   if (__kmp_global.g.g_abort != 0) {
682     /* now we need to terminate the worker threads  */
683     /* the value of t_abort is the signal we caught */
684 
685     int gtid;
686 
687     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688                   __kmp_global.g.g_abort));
689 
690     /* terminate the OpenMP worker threads */
691     /* TODO this is not valid for sibling threads!!
692      * the uber master might not be 0 anymore.. */
693     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694       __kmp_terminate_thread(gtid);
695 
696     __kmp_cleanup();
697 
698     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699                   __kmp_global.g.g_abort));
700 
701     if (__kmp_global.g.g_abort > 0)
702       raise(__kmp_global.g.g_abort);
703   }
704 
705   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
706 
707   return thr;
708 }
709 #endif // KMP_USE_MONITOR
710 
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712   pthread_t handle;
713   pthread_attr_t thread_attr;
714   int status;
715 
716   th->th.th_info.ds.ds_gtid = gtid;
717 
718 #if KMP_STATS_ENABLED
719   // sets up worker thread stats
720   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
721 
722   // th->th.th_stats is used to transfer thread-specific stats-pointer to
723   // __kmp_launch_worker. So when thread is created (goes into
724   // __kmp_launch_worker) it will set its thread local pointer to
725   // th->th.th_stats
726   if (!KMP_UBER_GTID(gtid)) {
727     th->th.th_stats = __kmp_stats_list->push_back(gtid);
728   } else {
729     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730     // so set the th->th.th_stats field to it.
731     th->th.th_stats = __kmp_stats_thread_ptr;
732   }
733   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
734 
735 #endif // KMP_STATS_ENABLED
736 
737   if (KMP_UBER_GTID(gtid)) {
738     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739     th->th.th_info.ds.ds_thread = pthread_self();
740     __kmp_set_stack_info(gtid, th);
741     __kmp_check_stack_overlap(th);
742     return;
743   }
744 
745   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
746 
747   KMP_MB(); /* Flush all pending memory write invalidates.  */
748 
749 #ifdef KMP_THREAD_ATTR
750   status = pthread_attr_init(&thread_attr);
751   if (status != 0) {
752     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
753   }
754   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755   if (status != 0) {
756     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
757   }
758 
759   /* Set stack size for this thread now.
760      The multiple of 2 is there because on some machines, requesting an unusual
761      stacksize causes the thread to have an offset before the dummy alloca()
762      takes place to create the offset.  Since we want the user to have a
763      sufficient stacksize AND support a stack offset, we alloca() twice the
764      offset so that the upcoming alloca() does not eliminate any premade offset,
765      and also gives the user the stack space they requested for all threads */
766   stack_size += gtid * __kmp_stkoffset * 2;
767 
768 #if defined(__ANDROID__) && __ANDROID_API__ < 19
769   // Round the stack size to a multiple of the page size. Older versions of
770   // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
771   // if the stack size was not a multiple of the page size.
772   stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
773 #endif
774 
775   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
776                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
777                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
778 
779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
780   status = pthread_attr_setstacksize(&thread_attr, stack_size);
781 #ifdef KMP_BACKUP_STKSIZE
782   if (status != 0) {
783     if (!__kmp_env_stksize) {
784       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
785       __kmp_stksize = KMP_BACKUP_STKSIZE;
786       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
787                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
788                     "bytes\n",
789                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
790       status = pthread_attr_setstacksize(&thread_attr, stack_size);
791     }
792   }
793 #endif /* KMP_BACKUP_STKSIZE */
794   if (status != 0) {
795     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
796                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
797   }
798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
799 
800 #endif /* KMP_THREAD_ATTR */
801 
802   status =
803       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
804   if (status != 0 || !handle) { // ??? Why do we check handle??
805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
806     if (status == EINVAL) {
807       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
808                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
809     }
810     if (status == ENOMEM) {
811       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
812                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
813     }
814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
815     if (status == EAGAIN) {
816       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
817                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
818     }
819     KMP_SYSFAIL("pthread_create", status);
820   }
821 
822   th->th.th_info.ds.ds_thread = handle;
823 
824 #ifdef KMP_THREAD_ATTR
825   status = pthread_attr_destroy(&thread_attr);
826   if (status) {
827     kmp_msg_t err_code = KMP_ERR(status);
828     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
829               __kmp_msg_null);
830     if (__kmp_generate_warnings == kmp_warnings_off) {
831       __kmp_str_free(&err_code.str);
832     }
833   }
834 #endif /* KMP_THREAD_ATTR */
835 
836   KMP_MB(); /* Flush all pending memory write invalidates.  */
837 
838   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
839 
840 } // __kmp_create_worker
841 
842 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)843 void __kmp_create_monitor(kmp_info_t *th) {
844   pthread_t handle;
845   pthread_attr_t thread_attr;
846   size_t size;
847   int status;
848   int auto_adj_size = FALSE;
849 
850   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
851     // We don't need monitor thread in case of MAX_BLOCKTIME
852     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
853                   "MAX blocktime\n"));
854     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
855     th->th.th_info.ds.ds_gtid = 0;
856     return;
857   }
858   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
859 
860   KMP_MB(); /* Flush all pending memory write invalidates.  */
861 
862   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
863   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
864 #if KMP_REAL_TIME_FIX
865   TCW_4(__kmp_global.g.g_time.dt.t_value,
866         -1); // Will use it for synchronization a bit later.
867 #else
868   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
869 #endif // KMP_REAL_TIME_FIX
870 
871 #ifdef KMP_THREAD_ATTR
872   if (__kmp_monitor_stksize == 0) {
873     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
874     auto_adj_size = TRUE;
875   }
876   status = pthread_attr_init(&thread_attr);
877   if (status != 0) {
878     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
879   }
880   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
881   if (status != 0) {
882     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
883   }
884 
885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
886   status = pthread_attr_getstacksize(&thread_attr, &size);
887   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
888 #else
889   size = __kmp_sys_min_stksize;
890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
891 #endif /* KMP_THREAD_ATTR */
892 
893   if (__kmp_monitor_stksize == 0) {
894     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
895   }
896   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
897     __kmp_monitor_stksize = __kmp_sys_min_stksize;
898   }
899 
900   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
901                 "requested stacksize = %lu bytes\n",
902                 size, __kmp_monitor_stksize));
903 
904 retry:
905 
906 /* Set stack size for this thread now. */
907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
908   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
909                 __kmp_monitor_stksize));
910   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
911   if (status != 0) {
912     if (auto_adj_size) {
913       __kmp_monitor_stksize *= 2;
914       goto retry;
915     }
916     kmp_msg_t err_code = KMP_ERR(status);
917     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
918               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
919               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
920     if (__kmp_generate_warnings == kmp_warnings_off) {
921       __kmp_str_free(&err_code.str);
922     }
923   }
924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
925 
926   status =
927       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
928 
929   if (status != 0) {
930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
931     if (status == EINVAL) {
932       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
933         __kmp_monitor_stksize *= 2;
934         goto retry;
935       }
936       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
937                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
938                   __kmp_msg_null);
939     }
940     if (status == ENOMEM) {
941       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
942                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
943                   __kmp_msg_null);
944     }
945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
946     if (status == EAGAIN) {
947       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
948                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
949     }
950     KMP_SYSFAIL("pthread_create", status);
951   }
952 
953   th->th.th_info.ds.ds_thread = handle;
954 
955 #if KMP_REAL_TIME_FIX
956   // Wait for the monitor thread is really started and set its *priority*.
957   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
958                    sizeof(__kmp_global.g.g_time.dt.t_value));
959   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
960                &__kmp_neq_4, NULL);
961 #endif // KMP_REAL_TIME_FIX
962 
963 #ifdef KMP_THREAD_ATTR
964   status = pthread_attr_destroy(&thread_attr);
965   if (status != 0) {
966     kmp_msg_t err_code = KMP_ERR(status);
967     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
968               __kmp_msg_null);
969     if (__kmp_generate_warnings == kmp_warnings_off) {
970       __kmp_str_free(&err_code.str);
971     }
972   }
973 #endif
974 
975   KMP_MB(); /* Flush all pending memory write invalidates.  */
976 
977   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
978                 th->th.th_info.ds.ds_thread));
979 
980 } // __kmp_create_monitor
981 #endif // KMP_USE_MONITOR
982 
__kmp_exit_thread(int exit_status)983 void __kmp_exit_thread(int exit_status) {
984   pthread_exit((void *)(intptr_t)exit_status);
985 } // __kmp_exit_thread
986 
987 #if KMP_USE_MONITOR
988 void __kmp_resume_monitor();
989 
__kmp_reap_monitor(kmp_info_t * th)990 void __kmp_reap_monitor(kmp_info_t *th) {
991   int status;
992   void *exit_val;
993 
994   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
995                 " %#.8lx\n",
996                 th->th.th_info.ds.ds_thread));
997 
998   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
999   // If both tid and gtid are 0, it means the monitor did not ever start.
1000   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1001   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1002   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1003     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1004     return;
1005   }
1006 
1007   KMP_MB(); /* Flush all pending memory write invalidates.  */
1008 
1009   /* First, check to see whether the monitor thread exists to wake it up. This
1010      is to avoid performance problem when the monitor sleeps during
1011      blocktime-size interval */
1012 
1013   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1014   if (status != ESRCH) {
1015     __kmp_resume_monitor(); // Wake up the monitor thread
1016   }
1017   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1018   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1019   if (exit_val != th) {
1020     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1021   }
1022 
1023   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1024   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1025 
1026   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1027                 " %#.8lx\n",
1028                 th->th.th_info.ds.ds_thread));
1029 
1030   KMP_MB(); /* Flush all pending memory write invalidates.  */
1031 }
1032 #endif // KMP_USE_MONITOR
1033 
__kmp_reap_worker(kmp_info_t * th)1034 void __kmp_reap_worker(kmp_info_t *th) {
1035   int status;
1036   void *exit_val;
1037 
1038   KMP_MB(); /* Flush all pending memory write invalidates.  */
1039 
1040   KA_TRACE(
1041       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1042 
1043   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1044 #ifdef KMP_DEBUG
1045   /* Don't expose these to the user until we understand when they trigger */
1046   if (status != 0) {
1047     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1048   }
1049   if (exit_val != th) {
1050     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1051                   "exit_val = %p\n",
1052                   th->th.th_info.ds.ds_gtid, exit_val));
1053   }
1054 #endif /* KMP_DEBUG */
1055 
1056   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1057                 th->th.th_info.ds.ds_gtid));
1058 
1059   KMP_MB(); /* Flush all pending memory write invalidates.  */
1060 }
1061 
1062 #if KMP_HANDLE_SIGNALS
1063 
__kmp_null_handler(int signo)1064 static void __kmp_null_handler(int signo) {
1065   //  Do nothing, for doing SIG_IGN-type actions.
1066 } // __kmp_null_handler
1067 
__kmp_team_handler(int signo)1068 static void __kmp_team_handler(int signo) {
1069   if (__kmp_global.g.g_abort == 0) {
1070 /* Stage 1 signal handler, let's shut down all of the threads */
1071 #ifdef KMP_DEBUG
1072     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1073 #endif
1074     switch (signo) {
1075     case SIGHUP:
1076     case SIGINT:
1077     case SIGQUIT:
1078     case SIGILL:
1079     case SIGABRT:
1080     case SIGFPE:
1081     case SIGBUS:
1082     case SIGSEGV:
1083 #ifdef SIGSYS
1084     case SIGSYS:
1085 #endif
1086     case SIGTERM:
1087       if (__kmp_debug_buf) {
1088         __kmp_dump_debug_buffer();
1089       }
1090       __kmp_unregister_library(); // cleanup shared memory
1091       KMP_MB(); // Flush all pending memory write invalidates.
1092       TCW_4(__kmp_global.g.g_abort, signo);
1093       KMP_MB(); // Flush all pending memory write invalidates.
1094       TCW_4(__kmp_global.g.g_done, TRUE);
1095       KMP_MB(); // Flush all pending memory write invalidates.
1096       break;
1097     default:
1098 #ifdef KMP_DEBUG
1099       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1100 #endif
1101       break;
1102     }
1103   }
1104 } // __kmp_team_handler
1105 
__kmp_sigaction(int signum,const struct sigaction * act,struct sigaction * oldact)1106 static void __kmp_sigaction(int signum, const struct sigaction *act,
1107                             struct sigaction *oldact) {
1108   int rc = sigaction(signum, act, oldact);
1109   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1110 }
1111 
__kmp_install_one_handler(int sig,sig_func_t handler_func,int parallel_init)1112 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1113                                       int parallel_init) {
1114   KMP_MB(); // Flush all pending memory write invalidates.
1115   KB_TRACE(60,
1116            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1117   if (parallel_init) {
1118     struct sigaction new_action;
1119     struct sigaction old_action;
1120     new_action.sa_handler = handler_func;
1121     new_action.sa_flags = 0;
1122     sigfillset(&new_action.sa_mask);
1123     __kmp_sigaction(sig, &new_action, &old_action);
1124     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1125       sigaddset(&__kmp_sigset, sig);
1126     } else {
1127       // Restore/keep user's handler if one previously installed.
1128       __kmp_sigaction(sig, &old_action, NULL);
1129     }
1130   } else {
1131     // Save initial/system signal handlers to see if user handlers installed.
1132     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1133   }
1134   KMP_MB(); // Flush all pending memory write invalidates.
1135 } // __kmp_install_one_handler
1136 
__kmp_remove_one_handler(int sig)1137 static void __kmp_remove_one_handler(int sig) {
1138   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1139   if (sigismember(&__kmp_sigset, sig)) {
1140     struct sigaction old;
1141     KMP_MB(); // Flush all pending memory write invalidates.
1142     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1143     if ((old.sa_handler != __kmp_team_handler) &&
1144         (old.sa_handler != __kmp_null_handler)) {
1145       // Restore the users signal handler.
1146       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1147                     "restoring: sig=%d\n",
1148                     sig));
1149       __kmp_sigaction(sig, &old, NULL);
1150     }
1151     sigdelset(&__kmp_sigset, sig);
1152     KMP_MB(); // Flush all pending memory write invalidates.
1153   }
1154 } // __kmp_remove_one_handler
1155 
__kmp_install_signals(int parallel_init)1156 void __kmp_install_signals(int parallel_init) {
1157   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1158   if (__kmp_handle_signals || !parallel_init) {
1159     // If ! parallel_init, we do not install handlers, just save original
1160     // handlers. Let us do it even __handle_signals is 0.
1161     sigemptyset(&__kmp_sigset);
1162     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1163     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1164     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1165     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1166     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1167     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1168     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1169     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1170 #ifdef SIGSYS
1171     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1172 #endif // SIGSYS
1173     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1174 #ifdef SIGPIPE
1175     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1176 #endif // SIGPIPE
1177   }
1178 } // __kmp_install_signals
1179 
__kmp_remove_signals(void)1180 void __kmp_remove_signals(void) {
1181   int sig;
1182   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1183   for (sig = 1; sig < NSIG; ++sig) {
1184     __kmp_remove_one_handler(sig);
1185   }
1186 } // __kmp_remove_signals
1187 
1188 #endif // KMP_HANDLE_SIGNALS
1189 
__kmp_enable(int new_state)1190 void __kmp_enable(int new_state) {
1191 #ifdef KMP_CANCEL_THREADS
1192   int status, old_state;
1193   status = pthread_setcancelstate(new_state, &old_state);
1194   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1195   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1196 #endif
1197 }
1198 
__kmp_disable(int * old_state)1199 void __kmp_disable(int *old_state) {
1200 #ifdef KMP_CANCEL_THREADS
1201   int status;
1202   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1203   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1204 #endif
1205 }
1206 
__kmp_atfork_prepare(void)1207 static void __kmp_atfork_prepare(void) {
1208   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1209   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1210 }
1211 
__kmp_atfork_parent(void)1212 static void __kmp_atfork_parent(void) {
1213   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1214   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1215 }
1216 
1217 /* Reset the library so execution in the child starts "all over again" with
1218    clean data structures in initial states.  Don't worry about freeing memory
1219    allocated by parent, just abandon it to be safe. */
__kmp_atfork_child(void)1220 static void __kmp_atfork_child(void) {
1221   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1222   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1223   /* TODO make sure this is done right for nested/sibling */
1224   // ATT:  Memory leaks are here? TODO: Check it and fix.
1225   /* KMP_ASSERT( 0 ); */
1226 
1227   ++__kmp_fork_count;
1228 
1229 #if KMP_AFFINITY_SUPPORTED
1230 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1231   // reset the affinity in the child to the initial thread
1232   // affinity in the parent
1233   kmp_set_thread_affinity_mask_initial();
1234 #endif
1235   // Set default not to bind threads tightly in the child (we’re expecting
1236   // over-subscription after the fork and this can improve things for
1237   // scripting languages that use OpenMP inside process-parallel code).
1238   __kmp_affinity_type = affinity_none;
1239   if (__kmp_nested_proc_bind.bind_types != NULL) {
1240     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1241   }
1242   __kmp_affinity_masks = NULL;
1243   __kmp_affinity_num_masks = 0;
1244 #endif // KMP_AFFINITY_SUPPORTED
1245 
1246 #if KMP_USE_MONITOR
1247   __kmp_init_monitor = 0;
1248 #endif
1249   __kmp_init_parallel = FALSE;
1250   __kmp_init_middle = FALSE;
1251   __kmp_init_serial = FALSE;
1252   TCW_4(__kmp_init_gtid, FALSE);
1253   __kmp_init_common = FALSE;
1254 
1255   TCW_4(__kmp_init_user_locks, FALSE);
1256 #if !KMP_USE_DYNAMIC_LOCK
1257   __kmp_user_lock_table.used = 1;
1258   __kmp_user_lock_table.allocated = 0;
1259   __kmp_user_lock_table.table = NULL;
1260   __kmp_lock_blocks = NULL;
1261 #endif
1262 
1263   __kmp_all_nth = 0;
1264   TCW_4(__kmp_nth, 0);
1265 
1266   __kmp_thread_pool = NULL;
1267   __kmp_thread_pool_insert_pt = NULL;
1268   __kmp_team_pool = NULL;
1269 
1270   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1271      here so threadprivate doesn't use stale data */
1272   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1273                 __kmp_threadpriv_cache_list));
1274 
1275   while (__kmp_threadpriv_cache_list != NULL) {
1276 
1277     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1278       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1279                     &(*__kmp_threadpriv_cache_list->addr)));
1280 
1281       *__kmp_threadpriv_cache_list->addr = NULL;
1282     }
1283     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1284   }
1285 
1286   __kmp_init_runtime = FALSE;
1287 
1288   /* reset statically initialized locks */
1289   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1290   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1291   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1292   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1293 
1294 #if USE_ITT_BUILD
1295   __kmp_itt_reset(); // reset ITT's global state
1296 #endif /* USE_ITT_BUILD */
1297 
1298   __kmp_serial_initialize();
1299 
1300   /* This is necessary to make sure no stale data is left around */
1301   /* AC: customers complain that we use unsafe routines in the atfork
1302      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1303      in dynamic_link when check the presence of shared tbbmalloc library.
1304      Suggestion is to make the library initialization lazier, similar
1305      to what done for __kmpc_begin(). */
1306   // TODO: synchronize all static initializations with regular library
1307   //       startup; look at kmp_global.cpp and etc.
1308   //__kmp_internal_begin ();
1309 }
1310 
__kmp_register_atfork(void)1311 void __kmp_register_atfork(void) {
1312   if (__kmp_need_register_atfork) {
1313     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1314                                 __kmp_atfork_child);
1315     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1316     __kmp_need_register_atfork = FALSE;
1317   }
1318 }
1319 
__kmp_suspend_initialize(void)1320 void __kmp_suspend_initialize(void) {
1321   int status;
1322   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1323   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1324   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1325   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1326 }
1327 
__kmp_suspend_initialize_thread(kmp_info_t * th)1328 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1329   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1330   int new_value = __kmp_fork_count + 1;
1331   // Return if already initialized
1332   if (old_value == new_value)
1333     return;
1334   // Wait, then return if being initialized
1335   if (old_value == -1 || !__kmp_atomic_compare_store(
1336                              &th->th.th_suspend_init_count, old_value, -1)) {
1337     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1338       KMP_CPU_PAUSE();
1339     }
1340   } else {
1341     // Claim to be the initializer and do initializations
1342     int status;
1343     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1344                                &__kmp_suspend_cond_attr);
1345     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1346     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1347                                 &__kmp_suspend_mutex_attr);
1348     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1349     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1350   }
1351 }
1352 
__kmp_suspend_uninitialize_thread(kmp_info_t * th)1353 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1354   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1355     /* this means we have initialize the suspension pthread objects for this
1356        thread in this instance of the process */
1357     int status;
1358 
1359     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1360     if (status != 0 && status != EBUSY) {
1361       KMP_SYSFAIL("pthread_cond_destroy", status);
1362     }
1363     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1364     if (status != 0 && status != EBUSY) {
1365       KMP_SYSFAIL("pthread_mutex_destroy", status);
1366     }
1367     --th->th.th_suspend_init_count;
1368     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1369                      __kmp_fork_count);
1370   }
1371 }
1372 
1373 // return true if lock obtained, false otherwise
__kmp_try_suspend_mx(kmp_info_t * th)1374 int __kmp_try_suspend_mx(kmp_info_t *th) {
1375   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1376 }
1377 
__kmp_lock_suspend_mx(kmp_info_t * th)1378 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1379   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1380   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1381 }
1382 
__kmp_unlock_suspend_mx(kmp_info_t * th)1383 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1384   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1385   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1386 }
1387 
1388 /* This routine puts the calling thread to sleep after setting the
1389    sleep bit for the indicated flag variable to true. */
1390 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)1391 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1392   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1393   kmp_info_t *th = __kmp_threads[th_gtid];
1394   int status;
1395   typename C::flag_t old_spin;
1396 
1397   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1398                 flag->get()));
1399 
1400   __kmp_suspend_initialize_thread(th);
1401 
1402   __kmp_lock_suspend_mx(th);
1403 
1404   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1405                 th_gtid, flag->get()));
1406 
1407   /* TODO: shouldn't this use release semantics to ensure that
1408      __kmp_suspend_initialize_thread gets called first? */
1409   old_spin = flag->set_sleeping();
1410   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1411       __kmp_pause_status != kmp_soft_paused) {
1412     flag->unset_sleeping();
1413     __kmp_unlock_suspend_mx(th);
1414     return;
1415   }
1416   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1417                " was %x\n",
1418                th_gtid, flag->get(), flag->load(), old_spin));
1419 
1420   if (flag->done_check_val(old_spin)) {
1421     old_spin = flag->unset_sleeping();
1422     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1423                  "for spin(%p)\n",
1424                  th_gtid, flag->get()));
1425   } else {
1426     /* Encapsulate in a loop as the documentation states that this may
1427        "with low probability" return when the condition variable has
1428        not been signaled or broadcast */
1429     int deactivated = FALSE;
1430     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1431 
1432     while (flag->is_sleeping()) {
1433 #ifdef DEBUG_SUSPEND
1434       char buffer[128];
1435       __kmp_suspend_count++;
1436       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1437       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1438                    buffer);
1439 #endif
1440       // Mark the thread as no longer active (only in the first iteration of the
1441       // loop).
1442       if (!deactivated) {
1443         th->th.th_active = FALSE;
1444         if (th->th.th_active_in_pool) {
1445           th->th.th_active_in_pool = FALSE;
1446           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1447           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1448         }
1449         deactivated = TRUE;
1450       }
1451 
1452 #if USE_SUSPEND_TIMEOUT
1453       struct timespec now;
1454       struct timeval tval;
1455       int msecs;
1456 
1457       status = gettimeofday(&tval, NULL);
1458       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1459       TIMEVAL_TO_TIMESPEC(&tval, &now);
1460 
1461       msecs = (4 * __kmp_dflt_blocktime) + 200;
1462       now.tv_sec += msecs / 1000;
1463       now.tv_nsec += (msecs % 1000) * 1000;
1464 
1465       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1466                     "pthread_cond_timedwait\n",
1467                     th_gtid));
1468       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1469                                       &th->th.th_suspend_mx.m_mutex, &now);
1470 #else
1471       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1472                     " pthread_cond_wait\n",
1473                     th_gtid));
1474       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1475                                  &th->th.th_suspend_mx.m_mutex);
1476 #endif // USE_SUSPEND_TIMEOUT
1477 
1478       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1479         KMP_SYSFAIL("pthread_cond_wait", status);
1480       }
1481 #ifdef KMP_DEBUG
1482       if (status == ETIMEDOUT) {
1483         if (flag->is_sleeping()) {
1484           KF_TRACE(100,
1485                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1486         } else {
1487           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1488                        "not set!\n",
1489                        th_gtid));
1490         }
1491       } else if (flag->is_sleeping()) {
1492         KF_TRACE(100,
1493                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1494       }
1495 #endif
1496     } // while
1497 
1498     // Mark the thread as active again (if it was previous marked as inactive)
1499     if (deactivated) {
1500       th->th.th_active = TRUE;
1501       if (TCR_4(th->th.th_in_pool)) {
1502         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1503         th->th.th_active_in_pool = TRUE;
1504       }
1505     }
1506   }
1507 #ifdef DEBUG_SUSPEND
1508   {
1509     char buffer[128];
1510     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1511     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1512                  buffer);
1513   }
1514 #endif
1515 
1516   __kmp_unlock_suspend_mx(th);
1517   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1518 }
1519 
1520 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)1521 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1522   __kmp_suspend_template(th_gtid, flag);
1523 }
1524 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)1525 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1526   __kmp_suspend_template(th_gtid, flag);
1527 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)1528 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1529   __kmp_suspend_template(th_gtid, flag);
1530 }
1531 
1532 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1533 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1534 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1535 
1536 /* This routine signals the thread specified by target_gtid to wake up
1537    after setting the sleep bit indicated by the flag argument to FALSE.
1538    The target thread must already have called __kmp_suspend_template() */
1539 template <class C>
__kmp_resume_template(int target_gtid,C * flag)1540 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1541   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1542   kmp_info_t *th = __kmp_threads[target_gtid];
1543   int status;
1544 
1545 #ifdef KMP_DEBUG
1546   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1547 #endif
1548 
1549   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1550                 gtid, target_gtid));
1551   KMP_DEBUG_ASSERT(gtid != target_gtid);
1552 
1553   __kmp_suspend_initialize_thread(th);
1554 
1555   __kmp_lock_suspend_mx(th);
1556 
1557   if (!flag) { // coming from __kmp_null_resume_wrapper
1558     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1559   }
1560 
1561   // First, check if the flag is null or its type has changed. If so, someone
1562   // else woke it up.
1563   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1564     // simply shows what flag was cast to
1565     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1566                  "awake: flag(%p)\n",
1567                  gtid, target_gtid, NULL));
1568     __kmp_unlock_suspend_mx(th);
1569     return;
1570   } else { // if multiple threads are sleeping, flag should be internally
1571     // referring to a specific thread here
1572     typename C::flag_t old_spin = flag->unset_sleeping();
1573     if (!flag->is_sleeping_val(old_spin)) {
1574       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1575                    "awake: flag(%p): "
1576                    "%u => %u\n",
1577                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1578       __kmp_unlock_suspend_mx(th);
1579       return;
1580     }
1581     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1582                  "sleep bit for flag's loc(%p): "
1583                  "%u => %u\n",
1584                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1585   }
1586   TCW_PTR(th->th.th_sleep_loc, NULL);
1587 
1588 #ifdef DEBUG_SUSPEND
1589   {
1590     char buffer[128];
1591     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1592     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1593                  target_gtid, buffer);
1594   }
1595 #endif
1596   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1597   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1598   __kmp_unlock_suspend_mx(th);
1599   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1600                 " for T#%d\n",
1601                 gtid, target_gtid));
1602 }
1603 
1604 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)1605 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1606   __kmp_resume_template(target_gtid, flag);
1607 }
1608 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)1609 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1610   __kmp_resume_template(target_gtid, flag);
1611 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)1612 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1613   __kmp_resume_template(target_gtid, flag);
1614 }
1615 
1616 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1617 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1618 
1619 #if KMP_USE_MONITOR
__kmp_resume_monitor()1620 void __kmp_resume_monitor() {
1621   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1622   int status;
1623 #ifdef KMP_DEBUG
1624   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1625   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1626                 KMP_GTID_MONITOR));
1627   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1628 #endif
1629   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1630   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1631 #ifdef DEBUG_SUSPEND
1632   {
1633     char buffer[128];
1634     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1635     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1636                  KMP_GTID_MONITOR, buffer);
1637   }
1638 #endif
1639   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1640   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1641   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1642   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1643   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1644                 " for T#%d\n",
1645                 gtid, KMP_GTID_MONITOR));
1646 }
1647 #endif // KMP_USE_MONITOR
1648 
__kmp_yield()1649 void __kmp_yield() { sched_yield(); }
1650 
__kmp_gtid_set_specific(int gtid)1651 void __kmp_gtid_set_specific(int gtid) {
1652   if (__kmp_init_gtid) {
1653     int status;
1654     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1655                                  (void *)(intptr_t)(gtid + 1));
1656     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1657   } else {
1658     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1659   }
1660 }
1661 
__kmp_gtid_get_specific()1662 int __kmp_gtid_get_specific() {
1663   int gtid;
1664   if (!__kmp_init_gtid) {
1665     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1666                   "KMP_GTID_SHUTDOWN\n"));
1667     return KMP_GTID_SHUTDOWN;
1668   }
1669   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1670   if (gtid == 0) {
1671     gtid = KMP_GTID_DNE;
1672   } else {
1673     gtid--;
1674   }
1675   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1676                 __kmp_gtid_threadprivate_key, gtid));
1677   return gtid;
1678 }
1679 
__kmp_read_cpu_time(void)1680 double __kmp_read_cpu_time(void) {
1681   /*clock_t   t;*/
1682   struct tms buffer;
1683 
1684   /*t =*/times(&buffer);
1685 
1686   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1687          (double)CLOCKS_PER_SEC;
1688 }
1689 
__kmp_read_system_info(struct kmp_sys_info * info)1690 int __kmp_read_system_info(struct kmp_sys_info *info) {
1691   int status;
1692   struct rusage r_usage;
1693 
1694   memset(info, 0, sizeof(*info));
1695 
1696   status = getrusage(RUSAGE_SELF, &r_usage);
1697   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1698 
1699   // The maximum resident set size utilized (in kilobytes)
1700   info->maxrss = r_usage.ru_maxrss;
1701   // The number of page faults serviced without any I/O
1702   info->minflt = r_usage.ru_minflt;
1703   // The number of page faults serviced that required I/O
1704   info->majflt = r_usage.ru_majflt;
1705   // The number of times a process was "swapped" out of memory
1706   info->nswap = r_usage.ru_nswap;
1707   // The number of times the file system had to perform input
1708   info->inblock = r_usage.ru_inblock;
1709   // The number of times the file system had to perform output
1710   info->oublock = r_usage.ru_oublock;
1711   // The number of times a context switch was voluntarily
1712   info->nvcsw = r_usage.ru_nvcsw;
1713   // The number of times a context switch was forced
1714   info->nivcsw = r_usage.ru_nivcsw;
1715 
1716   return (status != 0);
1717 }
1718 
__kmp_read_system_time(double * delta)1719 void __kmp_read_system_time(double *delta) {
1720   double t_ns;
1721   struct timeval tval;
1722   struct timespec stop;
1723   int status;
1724 
1725   status = gettimeofday(&tval, NULL);
1726   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1727   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1728   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1729   *delta = (t_ns * 1e-9);
1730 }
1731 
__kmp_clear_system_time(void)1732 void __kmp_clear_system_time(void) {
1733   struct timeval tval;
1734   int status;
1735   status = gettimeofday(&tval, NULL);
1736   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1737   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1738 }
1739 
__kmp_get_xproc(void)1740 static int __kmp_get_xproc(void) {
1741 
1742   int r = 0;
1743 
1744 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1745     KMP_OS_OPENBSD || KMP_OS_HURD
1746 
1747   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1748 
1749 #elif KMP_OS_DARWIN
1750 
1751   // Bug C77011 High "OpenMP Threads and number of active cores".
1752 
1753   // Find the number of available CPUs.
1754   kern_return_t rc;
1755   host_basic_info_data_t info;
1756   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1757   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1758   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1759     // Cannot use KA_TRACE() here because this code works before trace support
1760     // is initialized.
1761     r = info.avail_cpus;
1762   } else {
1763     KMP_WARNING(CantGetNumAvailCPU);
1764     KMP_INFORM(AssumedNumCPU);
1765   }
1766 
1767 #else
1768 
1769 #error "Unknown or unsupported OS."
1770 
1771 #endif
1772 
1773   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1774 
1775 } // __kmp_get_xproc
1776 
__kmp_read_from_file(char const * path,char const * format,...)1777 int __kmp_read_from_file(char const *path, char const *format, ...) {
1778   int result;
1779   va_list args;
1780 
1781   va_start(args, format);
1782   FILE *f = fopen(path, "rb");
1783   if (f == NULL)
1784     return 0;
1785   result = vfscanf(f, format, args);
1786   fclose(f);
1787 
1788   return result;
1789 }
1790 
__kmp_runtime_initialize(void)1791 void __kmp_runtime_initialize(void) {
1792   int status;
1793   pthread_mutexattr_t mutex_attr;
1794   pthread_condattr_t cond_attr;
1795 
1796   if (__kmp_init_runtime) {
1797     return;
1798   }
1799 
1800 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1801   if (!__kmp_cpuinfo.initialized) {
1802     __kmp_query_cpuid(&__kmp_cpuinfo);
1803   }
1804 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1805 
1806   __kmp_xproc = __kmp_get_xproc();
1807 
1808 #if !KMP_32_BIT_ARCH
1809   struct rlimit rlim;
1810   // read stack size of calling thread, save it as default for worker threads;
1811   // this should be done before reading environment variables
1812   status = getrlimit(RLIMIT_STACK, &rlim);
1813   if (status == 0) { // success?
1814     __kmp_stksize = rlim.rlim_cur;
1815     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1816   }
1817 #endif /* KMP_32_BIT_ARCH */
1818 
1819   if (sysconf(_SC_THREADS)) {
1820 
1821     /* Query the maximum number of threads */
1822     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1823     if (__kmp_sys_max_nth == -1) {
1824       /* Unlimited threads for NPTL */
1825       __kmp_sys_max_nth = INT_MAX;
1826     } else if (__kmp_sys_max_nth <= 1) {
1827       /* Can't tell, just use PTHREAD_THREADS_MAX */
1828       __kmp_sys_max_nth = KMP_MAX_NTH;
1829     }
1830 
1831     /* Query the minimum stack size */
1832     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1833     if (__kmp_sys_min_stksize <= 1) {
1834       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1835     }
1836   }
1837 
1838   /* Set up minimum number of threads to switch to TLS gtid */
1839   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1840 
1841   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1842                               __kmp_internal_end_dest);
1843   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1844   status = pthread_mutexattr_init(&mutex_attr);
1845   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1846   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1847   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1848   status = pthread_mutexattr_destroy(&mutex_attr);
1849   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1850   status = pthread_condattr_init(&cond_attr);
1851   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1852   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1853   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1854   status = pthread_condattr_destroy(&cond_attr);
1855   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1856 #if USE_ITT_BUILD
1857   __kmp_itt_initialize();
1858 #endif /* USE_ITT_BUILD */
1859 
1860   __kmp_init_runtime = TRUE;
1861 }
1862 
__kmp_runtime_destroy(void)1863 void __kmp_runtime_destroy(void) {
1864   int status;
1865 
1866   if (!__kmp_init_runtime) {
1867     return; // Nothing to do.
1868   }
1869 
1870 #if USE_ITT_BUILD
1871   __kmp_itt_destroy();
1872 #endif /* USE_ITT_BUILD */
1873 
1874   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1875   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1876 
1877   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1878   if (status != 0 && status != EBUSY) {
1879     KMP_SYSFAIL("pthread_mutex_destroy", status);
1880   }
1881   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1882   if (status != 0 && status != EBUSY) {
1883     KMP_SYSFAIL("pthread_cond_destroy", status);
1884   }
1885 #if KMP_AFFINITY_SUPPORTED
1886   __kmp_affinity_uninitialize();
1887 #endif
1888 
1889   __kmp_init_runtime = FALSE;
1890 }
1891 
1892 /* Put the thread to sleep for a time period */
1893 /* NOTE: not currently used anywhere */
__kmp_thread_sleep(int millis)1894 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1895 
1896 /* Calculate the elapsed wall clock time for the user */
__kmp_elapsed(double * t)1897 void __kmp_elapsed(double *t) {
1898   int status;
1899 #ifdef FIX_SGI_CLOCK
1900   struct timespec ts;
1901 
1902   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1903   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1904   *t =
1905       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1906 #else
1907   struct timeval tv;
1908 
1909   status = gettimeofday(&tv, NULL);
1910   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1911   *t =
1912       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1913 #endif
1914 }
1915 
1916 /* Calculate the elapsed wall clock tick for the user */
__kmp_elapsed_tick(double * t)1917 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1918 
1919 /* Return the current time stamp in nsec */
__kmp_now_nsec()1920 kmp_uint64 __kmp_now_nsec() {
1921   struct timeval t;
1922   gettimeofday(&t, NULL);
1923   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1924                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1925   return nsec;
1926 }
1927 
1928 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1929 /* Measure clock ticks per millisecond */
__kmp_initialize_system_tick()1930 void __kmp_initialize_system_tick() {
1931   kmp_uint64 now, nsec2, diff;
1932   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1933   kmp_uint64 nsec = __kmp_now_nsec();
1934   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1935   while ((now = __kmp_hardware_timestamp()) < goal)
1936     ;
1937   nsec2 = __kmp_now_nsec();
1938   diff = nsec2 - nsec;
1939   if (diff > 0) {
1940     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
1941     if (tpms > 0)
1942       __kmp_ticks_per_msec = tpms;
1943   }
1944 }
1945 #endif
1946 
1947 /* Determine whether the given address is mapped into the current address
1948    space. */
1949 
__kmp_is_address_mapped(void * addr)1950 int __kmp_is_address_mapped(void *addr) {
1951 
1952   int found = 0;
1953   int rc;
1954 
1955 #if KMP_OS_LINUX || KMP_OS_HURD
1956 
1957   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
1958      address ranges mapped into the address space. */
1959 
1960   char *name = __kmp_str_format("/proc/%d/maps", getpid());
1961   FILE *file = NULL;
1962 
1963   file = fopen(name, "r");
1964   KMP_ASSERT(file != NULL);
1965 
1966   for (;;) {
1967 
1968     void *beginning = NULL;
1969     void *ending = NULL;
1970     char perms[5];
1971 
1972     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1973     if (rc == EOF) {
1974       break;
1975     }
1976     KMP_ASSERT(rc == 3 &&
1977                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1978 
1979     // Ending address is not included in the region, but beginning is.
1980     if ((addr >= beginning) && (addr < ending)) {
1981       perms[2] = 0; // 3th and 4th character does not matter.
1982       if (strcmp(perms, "rw") == 0) {
1983         // Memory we are looking for should be readable and writable.
1984         found = 1;
1985       }
1986       break;
1987     }
1988   }
1989 
1990   // Free resources.
1991   fclose(file);
1992   KMP_INTERNAL_FREE(name);
1993 #elif KMP_OS_FREEBSD
1994   char *buf;
1995   size_t lstsz;
1996   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
1997   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
1998   if (rc < 0)
1999     return 0;
2000   // We pass from number of vm entry's semantic
2001   // to size of whole entry map list.
2002   lstsz = lstsz * 4 / 3;
2003   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2004   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2005   if (rc < 0) {
2006     kmpc_free(buf);
2007     return 0;
2008   }
2009 
2010   char *lw = buf;
2011   char *up = buf + lstsz;
2012 
2013   while (lw < up) {
2014     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2015     size_t cursz = cur->kve_structsize;
2016     if (cursz == 0)
2017       break;
2018     void *start = reinterpret_cast<void *>(cur->kve_start);
2019     void *end = reinterpret_cast<void *>(cur->kve_end);
2020     // Readable/Writable addresses within current map entry
2021     if ((addr >= start) && (addr < end)) {
2022       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2023           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2024         found = 1;
2025         break;
2026       }
2027     }
2028     lw += cursz;
2029   }
2030   kmpc_free(buf);
2031 
2032 #elif KMP_OS_DARWIN
2033 
2034   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2035      using vm interface. */
2036 
2037   int buffer;
2038   vm_size_t count;
2039   rc = vm_read_overwrite(
2040       mach_task_self(), // Task to read memory of.
2041       (vm_address_t)(addr), // Address to read from.
2042       1, // Number of bytes to be read.
2043       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2044       &count // Address of var to save number of read bytes in.
2045   );
2046   if (rc == 0) {
2047     // Memory successfully read.
2048     found = 1;
2049   }
2050 
2051 #elif KMP_OS_NETBSD
2052 
2053   int mib[5];
2054   mib[0] = CTL_VM;
2055   mib[1] = VM_PROC;
2056   mib[2] = VM_PROC_MAP;
2057   mib[3] = getpid();
2058   mib[4] = sizeof(struct kinfo_vmentry);
2059 
2060   size_t size;
2061   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2062   KMP_ASSERT(!rc);
2063   KMP_ASSERT(size);
2064 
2065   size = size * 4 / 3;
2066   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2067   KMP_ASSERT(kiv);
2068 
2069   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2070   KMP_ASSERT(!rc);
2071   KMP_ASSERT(size);
2072 
2073   for (size_t i = 0; i < size; i++) {
2074     if (kiv[i].kve_start >= (uint64_t)addr &&
2075         kiv[i].kve_end <= (uint64_t)addr) {
2076       found = 1;
2077       break;
2078     }
2079   }
2080   KMP_INTERNAL_FREE(kiv);
2081 #elif KMP_OS_OPENBSD
2082 
2083   int mib[3];
2084   mib[0] = CTL_KERN;
2085   mib[1] = KERN_PROC_VMMAP;
2086   mib[2] = getpid();
2087 
2088   size_t size;
2089   uint64_t end;
2090   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2091   KMP_ASSERT(!rc);
2092   KMP_ASSERT(size);
2093   end = size;
2094 
2095   struct kinfo_vmentry kiv = {.kve_start = 0};
2096 
2097   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2098     KMP_ASSERT(size);
2099     if (kiv.kve_end == end)
2100       break;
2101 
2102     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2103       found = 1;
2104       break;
2105     }
2106     kiv.kve_start += 1;
2107   }
2108 #elif KMP_OS_DRAGONFLY
2109 
2110   // FIXME(DragonFly): Implement this
2111   found = 1;
2112 
2113 #else
2114 
2115 #error "Unknown or unsupported OS"
2116 
2117 #endif
2118 
2119   return found;
2120 
2121 } // __kmp_is_address_mapped
2122 
2123 #ifdef USE_LOAD_BALANCE
2124 
2125 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2126 
2127 // The function returns the rounded value of the system load average
2128 // during given time interval which depends on the value of
2129 // __kmp_load_balance_interval variable (default is 60 sec, other values
2130 // may be 300 sec or 900 sec).
2131 // It returns -1 in case of error.
__kmp_get_load_balance(int max)2132 int __kmp_get_load_balance(int max) {
2133   double averages[3];
2134   int ret_avg = 0;
2135 
2136   int res = getloadavg(averages, 3);
2137 
2138   // Check __kmp_load_balance_interval to determine which of averages to use.
2139   // getloadavg() may return the number of samples less than requested that is
2140   // less than 3.
2141   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2142     ret_avg = (int)averages[0]; // 1 min
2143   } else if ((__kmp_load_balance_interval >= 180 &&
2144               __kmp_load_balance_interval < 600) &&
2145              (res >= 2)) {
2146     ret_avg = (int)averages[1]; // 5 min
2147   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2148     ret_avg = (int)averages[2]; // 15 min
2149   } else { // Error occurred
2150     return -1;
2151   }
2152 
2153   return ret_avg;
2154 }
2155 
2156 #else // Linux* OS
2157 
2158 // The function returns number of running (not sleeping) threads, or -1 in case
2159 // of error. Error could be reported if Linux* OS kernel too old (without
2160 // "/proc" support). Counting running threads stops if max running threads
2161 // encountered.
__kmp_get_load_balance(int max)2162 int __kmp_get_load_balance(int max) {
2163   static int permanent_error = 0;
2164   static int glb_running_threads = 0; // Saved count of the running threads for
2165   // the thread balance algorithm
2166   static double glb_call_time = 0; /* Thread balance algorithm call time */
2167 
2168   int running_threads = 0; // Number of running threads in the system.
2169 
2170   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2171   struct dirent *proc_entry = NULL;
2172 
2173   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2174   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2175   struct dirent *task_entry = NULL;
2176   int task_path_fixed_len;
2177 
2178   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2179   int stat_file = -1;
2180   int stat_path_fixed_len;
2181 
2182   int total_processes = 0; // Total number of processes in system.
2183   int total_threads = 0; // Total number of threads in system.
2184 
2185   double call_time = 0.0;
2186 
2187   __kmp_str_buf_init(&task_path);
2188   __kmp_str_buf_init(&stat_path);
2189 
2190   __kmp_elapsed(&call_time);
2191 
2192   if (glb_call_time &&
2193       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2194     running_threads = glb_running_threads;
2195     goto finish;
2196   }
2197 
2198   glb_call_time = call_time;
2199 
2200   // Do not spend time on scanning "/proc/" if we have a permanent error.
2201   if (permanent_error) {
2202     running_threads = -1;
2203     goto finish;
2204   }
2205 
2206   if (max <= 0) {
2207     max = INT_MAX;
2208   }
2209 
2210   // Open "/proc/" directory.
2211   proc_dir = opendir("/proc");
2212   if (proc_dir == NULL) {
2213     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2214     // error now and in subsequent calls.
2215     running_threads = -1;
2216     permanent_error = 1;
2217     goto finish;
2218   }
2219 
2220   // Initialize fixed part of task_path. This part will not change.
2221   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2222   task_path_fixed_len = task_path.used; // Remember number of used characters.
2223 
2224   proc_entry = readdir(proc_dir);
2225   while (proc_entry != NULL) {
2226     // Proc entry is a directory and name starts with a digit. Assume it is a
2227     // process' directory.
2228     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2229 
2230       ++total_processes;
2231       // Make sure init process is the very first in "/proc", so we can replace
2232       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2233       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2234       // true (where "=>" is implication). Since C++ does not have => operator,
2235       // let us replace it with its equivalent: a => b == ! a || b.
2236       KMP_DEBUG_ASSERT(total_processes != 1 ||
2237                        strcmp(proc_entry->d_name, "1") == 0);
2238 
2239       // Construct task_path.
2240       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2241       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2242                         KMP_STRLEN(proc_entry->d_name));
2243       __kmp_str_buf_cat(&task_path, "/task", 5);
2244 
2245       task_dir = opendir(task_path.str);
2246       if (task_dir == NULL) {
2247         // Process can finish between reading "/proc/" directory entry and
2248         // opening process' "task/" directory. So, in general case we should not
2249         // complain, but have to skip this process and read the next one. But on
2250         // systems with no "task/" support we will spend lot of time to scan
2251         // "/proc/" tree again and again without any benefit. "init" process
2252         // (its pid is 1) should exist always, so, if we cannot open
2253         // "/proc/1/task/" directory, it means "task/" is not supported by
2254         // kernel. Report an error now and in the future.
2255         if (strcmp(proc_entry->d_name, "1") == 0) {
2256           running_threads = -1;
2257           permanent_error = 1;
2258           goto finish;
2259         }
2260       } else {
2261         // Construct fixed part of stat file path.
2262         __kmp_str_buf_clear(&stat_path);
2263         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2264         __kmp_str_buf_cat(&stat_path, "/", 1);
2265         stat_path_fixed_len = stat_path.used;
2266 
2267         task_entry = readdir(task_dir);
2268         while (task_entry != NULL) {
2269           // It is a directory and name starts with a digit.
2270           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2271             ++total_threads;
2272 
2273             // Construct complete stat file path. Easiest way would be:
2274             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2275             //  task_entry->d_name );
2276             // but seriae of __kmp_str_buf_cat works a bit faster.
2277             stat_path.used =
2278                 stat_path_fixed_len; // Reset stat path to its fixed part.
2279             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2280                               KMP_STRLEN(task_entry->d_name));
2281             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2282 
2283             // Note: Low-level API (open/read/close) is used. High-level API
2284             // (fopen/fclose)  works ~ 30 % slower.
2285             stat_file = open(stat_path.str, O_RDONLY);
2286             if (stat_file == -1) {
2287               // We cannot report an error because task (thread) can terminate
2288               // just before reading this file.
2289             } else {
2290               /* Content of "stat" file looks like:
2291                  24285 (program) S ...
2292 
2293                  It is a single line (if program name does not include funny
2294                  symbols). First number is a thread id, then name of executable
2295                  file name in paretheses, then state of the thread. We need just
2296                  thread state.
2297 
2298                  Good news: Length of program name is 15 characters max. Longer
2299                  names are truncated.
2300 
2301                  Thus, we need rather short buffer: 15 chars for program name +
2302                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2303 
2304                  Bad news: Program name may contain special symbols like space,
2305                  closing parenthesis, or even new line. This makes parsing
2306                  "stat" file not 100 % reliable. In case of fanny program names
2307                  parsing may fail (report incorrect thread state).
2308 
2309                  Parsing "status" file looks more promissing (due to different
2310                  file structure and escaping special symbols) but reading and
2311                  parsing of "status" file works slower.
2312                   -- ln
2313               */
2314               char buffer[65];
2315               ssize_t len;
2316               len = read(stat_file, buffer, sizeof(buffer) - 1);
2317               if (len >= 0) {
2318                 buffer[len] = 0;
2319                 // Using scanf:
2320                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2321                 // looks very nice, but searching for a closing parenthesis
2322                 // works a bit faster.
2323                 char *close_parent = strstr(buffer, ") ");
2324                 if (close_parent != NULL) {
2325                   char state = *(close_parent + 2);
2326                   if (state == 'R') {
2327                     ++running_threads;
2328                     if (running_threads >= max) {
2329                       goto finish;
2330                     }
2331                   }
2332                 }
2333               }
2334               close(stat_file);
2335               stat_file = -1;
2336             }
2337           }
2338           task_entry = readdir(task_dir);
2339         }
2340         closedir(task_dir);
2341         task_dir = NULL;
2342       }
2343     }
2344     proc_entry = readdir(proc_dir);
2345   }
2346 
2347   // There _might_ be a timing hole where the thread executing this
2348   // code get skipped in the load balance, and running_threads is 0.
2349   // Assert in the debug builds only!!!
2350   KMP_DEBUG_ASSERT(running_threads > 0);
2351   if (running_threads <= 0) {
2352     running_threads = 1;
2353   }
2354 
2355 finish: // Clean up and exit.
2356   if (proc_dir != NULL) {
2357     closedir(proc_dir);
2358   }
2359   __kmp_str_buf_free(&task_path);
2360   if (task_dir != NULL) {
2361     closedir(task_dir);
2362   }
2363   __kmp_str_buf_free(&stat_path);
2364   if (stat_file != -1) {
2365     close(stat_file);
2366   }
2367 
2368   glb_running_threads = running_threads;
2369 
2370   return running_threads;
2371 
2372 } // __kmp_get_load_balance
2373 
2374 #endif // KMP_OS_DARWIN
2375 
2376 #endif // USE_LOAD_BALANCE
2377 
2378 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2379       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2380       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2381 
2382 // we really only need the case with 1 argument, because CLANG always build
2383 // a struct of pointers to shared variables referenced in the outlined function
__kmp_invoke_microtask(microtask_t pkfn,int gtid,int tid,int argc,void * p_argv[],void ** exit_frame_ptr)2384 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2385                            void *p_argv[]
2386 #if OMPT_SUPPORT
2387                            ,
2388                            void **exit_frame_ptr
2389 #endif
2390 ) {
2391 #if OMPT_SUPPORT
2392   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2393 #endif
2394 
2395   switch (argc) {
2396   default:
2397     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2398     fflush(stderr);
2399     exit(-1);
2400   case 0:
2401     (*pkfn)(&gtid, &tid);
2402     break;
2403   case 1:
2404     (*pkfn)(&gtid, &tid, p_argv[0]);
2405     break;
2406   case 2:
2407     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2408     break;
2409   case 3:
2410     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2411     break;
2412   case 4:
2413     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2414     break;
2415   case 5:
2416     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2417     break;
2418   case 6:
2419     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2420             p_argv[5]);
2421     break;
2422   case 7:
2423     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2424             p_argv[5], p_argv[6]);
2425     break;
2426   case 8:
2427     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2428             p_argv[5], p_argv[6], p_argv[7]);
2429     break;
2430   case 9:
2431     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2432             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2433     break;
2434   case 10:
2435     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2436             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2437     break;
2438   case 11:
2439     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2440             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2441     break;
2442   case 12:
2443     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2444             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2445             p_argv[11]);
2446     break;
2447   case 13:
2448     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2449             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2450             p_argv[11], p_argv[12]);
2451     break;
2452   case 14:
2453     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2454             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2455             p_argv[11], p_argv[12], p_argv[13]);
2456     break;
2457   case 15:
2458     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2459             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2460             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2461     break;
2462   }
2463 
2464   return 1;
2465 }
2466 
2467 #endif
2468 
2469 #if KMP_OS_LINUX
2470 // Functions for hidden helper task
2471 namespace {
2472 // Condition variable for initializing hidden helper team
2473 pthread_cond_t hidden_helper_threads_initz_cond_var;
2474 pthread_mutex_t hidden_helper_threads_initz_lock;
2475 volatile int hidden_helper_initz_signaled = FALSE;
2476 
2477 // Condition variable for deinitializing hidden helper team
2478 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2479 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2480 volatile int hidden_helper_deinitz_signaled = FALSE;
2481 
2482 // Condition variable for the wrapper function of main thread
2483 pthread_cond_t hidden_helper_main_thread_cond_var;
2484 pthread_mutex_t hidden_helper_main_thread_lock;
2485 volatile int hidden_helper_main_thread_signaled = FALSE;
2486 
2487 // Semaphore for worker threads. We don't use condition variable here in case
2488 // that when multiple signals are sent at the same time, only one thread might
2489 // be waken.
2490 sem_t hidden_helper_task_sem;
2491 } // namespace
2492 
__kmp_hidden_helper_worker_thread_wait()2493 void __kmp_hidden_helper_worker_thread_wait() {
2494   int status = sem_wait(&hidden_helper_task_sem);
2495   KMP_CHECK_SYSFAIL("sem_wait", status);
2496 }
2497 
__kmp_do_initialize_hidden_helper_threads()2498 void __kmp_do_initialize_hidden_helper_threads() {
2499   // Initialize condition variable
2500   int status =
2501       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2502   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2503 
2504   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2505   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2506 
2507   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2508   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2509 
2510   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2511   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2512 
2513   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2514   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2515 
2516   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2517   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2518 
2519   // Initialize the semaphore
2520   status = sem_init(&hidden_helper_task_sem, 0, 0);
2521   KMP_CHECK_SYSFAIL("sem_init", status);
2522 
2523   // Create a new thread to finish initialization
2524   pthread_t handle;
2525   status = pthread_create(
2526       &handle, nullptr,
2527       [](void *) -> void * {
2528         __kmp_hidden_helper_threads_initz_routine();
2529         return nullptr;
2530       },
2531       nullptr);
2532   KMP_CHECK_SYSFAIL("pthread_create", status);
2533 }
2534 
__kmp_hidden_helper_threads_initz_wait()2535 void __kmp_hidden_helper_threads_initz_wait() {
2536   // Initial thread waits here for the completion of the initialization. The
2537   // condition variable will be notified by main thread of hidden helper teams.
2538   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2539   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2540 
2541   if (!TCR_4(hidden_helper_initz_signaled)) {
2542     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2543                                &hidden_helper_threads_initz_lock);
2544     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2545   }
2546 
2547   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2548   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2549 }
2550 
__kmp_hidden_helper_initz_release()2551 void __kmp_hidden_helper_initz_release() {
2552   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2553   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2554   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2555 
2556   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2557   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2558 
2559   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2560 
2561   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2562   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2563 }
2564 
__kmp_hidden_helper_main_thread_wait()2565 void __kmp_hidden_helper_main_thread_wait() {
2566   // The main thread of hidden helper team will be blocked here. The
2567   // condition variable can only be signal in the destructor of RTL.
2568   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2569   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2570 
2571   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2572     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2573                                &hidden_helper_main_thread_lock);
2574     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2575   }
2576 
2577   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2578   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2579 }
2580 
__kmp_hidden_helper_main_thread_release()2581 void __kmp_hidden_helper_main_thread_release() {
2582   // The initial thread of OpenMP RTL should call this function to wake up the
2583   // main thread of hidden helper team.
2584   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2585   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2586 
2587   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2588   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2589 
2590   // The hidden helper team is done here
2591   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2592 
2593   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2594   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2595 }
2596 
__kmp_hidden_helper_worker_thread_signal()2597 void __kmp_hidden_helper_worker_thread_signal() {
2598   int status = sem_post(&hidden_helper_task_sem);
2599   KMP_CHECK_SYSFAIL("sem_post", status);
2600 }
2601 
__kmp_hidden_helper_threads_deinitz_wait()2602 void __kmp_hidden_helper_threads_deinitz_wait() {
2603   // Initial thread waits here for the completion of the deinitialization. The
2604   // condition variable will be notified by main thread of hidden helper teams.
2605   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2606   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2607 
2608   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2609     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2610                                &hidden_helper_threads_deinitz_lock);
2611     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2612   }
2613 
2614   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2615   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2616 }
2617 
__kmp_hidden_helper_threads_deinitz_release()2618 void __kmp_hidden_helper_threads_deinitz_release() {
2619   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2620   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2621 
2622   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2623   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2624 
2625   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2626 
2627   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2628   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2629 }
2630 #else // KMP_OS_LINUX
__kmp_hidden_helper_worker_thread_wait()2631 void __kmp_hidden_helper_worker_thread_wait() {
2632   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2633 }
2634 
__kmp_do_initialize_hidden_helper_threads()2635 void __kmp_do_initialize_hidden_helper_threads() {
2636   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2637 }
2638 
__kmp_hidden_helper_threads_initz_wait()2639 void __kmp_hidden_helper_threads_initz_wait() {
2640   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2641 }
2642 
__kmp_hidden_helper_initz_release()2643 void __kmp_hidden_helper_initz_release() {
2644   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2645 }
2646 
__kmp_hidden_helper_main_thread_wait()2647 void __kmp_hidden_helper_main_thread_wait() {
2648   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2649 }
2650 
__kmp_hidden_helper_main_thread_release()2651 void __kmp_hidden_helper_main_thread_release() {
2652   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2653 }
2654 
__kmp_hidden_helper_worker_thread_signal()2655 void __kmp_hidden_helper_worker_thread_signal() {
2656   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2657 }
2658 
__kmp_hidden_helper_threads_deinitz_wait()2659 void __kmp_hidden_helper_threads_deinitz_wait() {
2660   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2661 }
2662 
__kmp_hidden_helper_threads_deinitz_release()2663 void __kmp_hidden_helper_threads_deinitz_release() {
2664   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2665 }
2666 #endif // KMP_OS_LINUX
2667 
2668 // end of file //
2669