1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 addressing mode implementation stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CS_AARCH64_ADDRESSINGMODES_H
15 #define CS_AARCH64_ADDRESSINGMODES_H
16 
17 /* Capstone Disassembly Engine */
18 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
19 
20 #include "../../MathExtras.h"
21 
22 /// AArch64_AM - AArch64 Addressing Mode Stuff
23 
24 //===----------------------------------------------------------------------===//
25 // Shifts
26 //
27 typedef enum AArch64_AM_ShiftExtendType {
28 	AArch64_AM_InvalidShiftExtend = -1,
29 	AArch64_AM_LSL = 0,
30 	AArch64_AM_LSR,
31 	AArch64_AM_ASR,
32 	AArch64_AM_ROR,
33 	AArch64_AM_MSL,
34 
35 	AArch64_AM_UXTB,
36 	AArch64_AM_UXTH,
37 	AArch64_AM_UXTW,
38 	AArch64_AM_UXTX,
39 
40 	AArch64_AM_SXTB,
41 	AArch64_AM_SXTH,
42 	AArch64_AM_SXTW,
43 	AArch64_AM_SXTX,
44 } AArch64_AM_ShiftExtendType;
45 
46 /// getShiftName - Get the string encoding for the shift type.
AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST)47 static inline const char *AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST)
48 {
49 	switch (ST) {
50 		default: return NULL; // never reach
51 		case AArch64_AM_LSL: return "lsl";
52 		case AArch64_AM_LSR: return "lsr";
53 		case AArch64_AM_ASR: return "asr";
54 		case AArch64_AM_ROR: return "ror";
55 		case AArch64_AM_MSL: return "msl";
56 		case AArch64_AM_UXTB: return "uxtb";
57 		case AArch64_AM_UXTH: return "uxth";
58 		case AArch64_AM_UXTW: return "uxtw";
59 		case AArch64_AM_UXTX: return "uxtx";
60 		case AArch64_AM_SXTB: return "sxtb";
61 		case AArch64_AM_SXTH: return "sxth";
62 		case AArch64_AM_SXTW: return "sxtw";
63 		case AArch64_AM_SXTX: return "sxtx";
64 	}
65 }
66 
67 /// getShiftType - Extract the shift type.
AArch64_AM_getShiftType(unsigned Imm)68 static inline AArch64_AM_ShiftExtendType AArch64_AM_getShiftType(unsigned Imm)
69 {
70 	switch ((Imm >> 6) & 0x7) {
71 		default: return AArch64_AM_InvalidShiftExtend;
72 		case 0: return AArch64_AM_LSL;
73 		case 1: return AArch64_AM_LSR;
74 		case 2: return AArch64_AM_ASR;
75 		case 3: return AArch64_AM_ROR;
76 		case 4: return AArch64_AM_MSL;
77 	}
78 }
79 
80 /// getShiftValue - Extract the shift value.
AArch64_AM_getShiftValue(unsigned Imm)81 static inline unsigned AArch64_AM_getShiftValue(unsigned Imm)
82 {
83 	return Imm & 0x3f;
84 }
85 
AArch64_AM_getShifterImm(AArch64_AM_ShiftExtendType ST,unsigned Imm)86 static inline unsigned AArch64_AM_getShifterImm(AArch64_AM_ShiftExtendType ST, unsigned Imm)
87 {
88 	// assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
89 	unsigned STEnc = 0;
90 
91 	switch (ST) {
92 		default:  // llvm_unreachable("Invalid shift requested");
93 		case AArch64_AM_LSL: STEnc = 0; break;
94 		case AArch64_AM_LSR: STEnc = 1; break;
95 		case AArch64_AM_ASR: STEnc = 2; break;
96 		case AArch64_AM_ROR: STEnc = 3; break;
97 		case AArch64_AM_MSL: STEnc = 4; break;
98 	}
99 
100 	return (STEnc << 6) | (Imm & 0x3f);
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // Extends
105 //
106 
107 /// getArithShiftValue - get the arithmetic shift value.
AArch64_AM_getArithShiftValue(unsigned Imm)108 static inline unsigned AArch64_AM_getArithShiftValue(unsigned Imm)
109 {
110 	return Imm & 0x7;
111 }
112 
113 /// getExtendType - Extract the extend type for operands of arithmetic ops.
AArch64_AM_getExtendType(unsigned Imm)114 static inline AArch64_AM_ShiftExtendType AArch64_AM_getExtendType(unsigned Imm)
115 {
116 	// assert((Imm & 0x7) == Imm && "invalid immediate!");
117 	switch (Imm) {
118 		default: // llvm_unreachable("Compiler bug!");
119 		case 0: return AArch64_AM_UXTB;
120 		case 1: return AArch64_AM_UXTH;
121 		case 2: return AArch64_AM_UXTW;
122 		case 3: return AArch64_AM_UXTX;
123 		case 4: return AArch64_AM_SXTB;
124 		case 5: return AArch64_AM_SXTH;
125 		case 6: return AArch64_AM_SXTW;
126 		case 7: return AArch64_AM_SXTX;
127 	}
128 }
129 
AArch64_AM_getArithExtendType(unsigned Imm)130 static inline AArch64_AM_ShiftExtendType AArch64_AM_getArithExtendType(unsigned Imm)
131 {
132 	return AArch64_AM_getExtendType((Imm >> 3) & 0x7);
133 }
134 
135 /// Mapping from extend bits to required operation:
136 ///   shifter: 000 ==> uxtb
137 ///            001 ==> uxth
138 ///            010 ==> uxtw
139 ///            011 ==> uxtx
140 ///            100 ==> sxtb
141 ///            101 ==> sxth
142 ///            110 ==> sxtw
143 ///            111 ==> sxtx
AArch64_AM_getExtendEncoding(AArch64_AM_ShiftExtendType ET)144 static inline unsigned AArch64_AM_getExtendEncoding(AArch64_AM_ShiftExtendType ET)
145 {
146 	switch (ET) {
147 		default: // llvm_unreachable("Invalid extend type requested");
148 		case AArch64_AM_UXTB: return 0; break;
149 		case AArch64_AM_UXTH: return 1; break;
150 		case AArch64_AM_UXTW: return 2; break;
151 		case AArch64_AM_UXTX: return 3; break;
152 		case AArch64_AM_SXTB: return 4; break;
153 		case AArch64_AM_SXTH: return 5; break;
154 		case AArch64_AM_SXTW: return 6; break;
155 		case AArch64_AM_SXTX: return 7; break;
156 	}
157 }
158 
159 /// getArithExtendImm - Encode the extend type and shift amount for an
160 ///                     arithmetic instruction:
161 ///   imm:     3-bit extend amount
162 ///   {5-3}  = shifter
163 ///   {2-0}  = imm3
AArch64_AM_getArithExtendImm(AArch64_AM_ShiftExtendType ET,unsigned Imm)164 static inline unsigned AArch64_AM_getArithExtendImm(AArch64_AM_ShiftExtendType ET, unsigned Imm)
165 {
166 	// assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
167 	return (AArch64_AM_getExtendEncoding(ET) << 3) | (Imm & 0x7);
168 }
169 
170 /// getMemDoShift - Extract the "do shift" flag value for load/store
171 /// instructions.
AArch64_AM_getMemDoShift(unsigned Imm)172 static inline bool AArch64_AM_getMemDoShift(unsigned Imm)
173 {
174 	return (Imm & 0x1) != 0;
175 }
176 
177 /// getExtendType - Extract the extend type for the offset operand of
178 /// loads/stores.
AArch64_AM_getMemExtendType(unsigned Imm)179 static inline AArch64_AM_ShiftExtendType AArch64_AM_getMemExtendType(unsigned Imm)
180 {
181 	return AArch64_AM_getExtendType((Imm >> 1) & 0x7);
182 }
183 
ror(uint64_t elt,unsigned size)184 static inline uint64_t ror(uint64_t elt, unsigned size)
185 {
186 	return ((elt & 1) << (size-1)) | (elt >> 1);
187 }
188 
189 /// processLogicalImmediate - Determine if an immediate value can be encoded
190 /// as the immediate operand of a logical instruction for the given register
191 /// size.  If so, return true with "encoding" set to the encoded value in
192 /// the form N:immr:imms.
AArch64_AM_processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t * Encoding)193 static inline bool AArch64_AM_processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t *Encoding)
194 {
195 	unsigned Size, Immr, N;
196 	uint32_t CTO, I;
197 	uint64_t Mask, NImms;
198 
199 	if (Imm == 0ULL || Imm == ~0ULL ||
200 		(RegSize != 64 && (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize))))) {
201 		return false;
202 	}
203 
204 	// First, determine the element size.
205 	Size = RegSize;
206 	do {
207 		uint64_t Mask;
208 
209 		Size /= 2;
210 		Mask = (1ULL << Size) - 1;
211 		if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
212 			Size *= 2;
213 			break;
214 		}
215 	} while (Size > 2);
216 
217 	// Second, determine the rotation to make the element be: 0^m 1^n.
218 	Mask = ((uint64_t)-1LL) >> (64 - Size);
219 	Imm &= Mask;
220 
221 	if (isShiftedMask_64(Imm)) {
222 		I = CountTrailingZeros_32(Imm);
223 		// assert(I < 64 && "undefined behavior");
224 		CTO = CountTrailingOnes_32(Imm >> I);
225 	} else {
226 		unsigned CLO;
227 
228 		Imm |= ~Mask;
229 		if (!isShiftedMask_64(~Imm))
230 			return false;
231 
232 		CLO = CountLeadingOnes_32(Imm);
233 		I = 64 - CLO;
234 		CTO = CLO + CountTrailingOnes_32(Imm) - (64 - Size);
235 	}
236 
237 	// Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
238 	// to our target value, where I is the number of RORs to go the opposite
239 	// direction.
240 	// assert(Size > I && "I should be smaller than element size");
241 	Immr = (Size - I) & (Size - 1);
242 
243 	// If size has a 1 in the n'th bit, create a value that has zeroes in
244 	// bits [0, n] and ones above that.
245 	NImms = ~(Size-1) << 1;
246 
247 	// Or the CTO value into the low bits, which must be below the Nth bit
248 	// bit mentioned above.
249 	NImms |= (CTO-1);
250 
251 	// Extract the seventh bit and toggle it to create the N field.
252 	N = ((NImms >> 6) & 1) ^ 1;
253 
254 	*Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
255 
256 	return true;
257 }
258 
259 /// isLogicalImmediate - Return true if the immediate is valid for a logical
260 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)261 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize)
262 {
263 	uint64_t encoding;
264 	return AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
265 }
266 
267 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
268 /// immediate instruction of the given register size.
AArch64_AM_encodeLogicalImmediate(uint64_t imm,unsigned regSize)269 static inline uint64_t AArch64_AM_encodeLogicalImmediate(uint64_t imm, unsigned regSize)
270 {
271 	uint64_t encoding = 0;
272 
273 	bool res = AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
274 	// assert(res && "invalid logical immediate");
275 	(void)res;
276 
277 	return encoding;
278 }
279 
280 /// decodeLogicalImmediate - Decode a logical immediate value in the form
281 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
282 /// integer value it represents with regSize bits.
AArch64_AM_decodeLogicalImmediate(uint64_t val,unsigned regSize)283 static inline uint64_t AArch64_AM_decodeLogicalImmediate(uint64_t val, unsigned regSize)
284 {
285 	// Extract the N, imms, and immr fields.
286 	unsigned N = (val >> 12) & 1;
287 	unsigned immr = (val >> 6) & 0x3f;
288 	unsigned imms = val & 0x3f;
289 	unsigned i, size, R, S;
290 	uint64_t pattern;
291 
292 	// assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
293 	int len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f));
294 
295 	// assert(len >= 0 && "undefined logical immediate encoding");
296 	size = (1 << len);
297 	R = immr & (size - 1);
298 	S = imms & (size - 1);
299 
300 	// assert(S != size - 1 && "undefined logical immediate encoding");
301 	pattern = (1ULL << (S + 1)) - 1;
302 
303 	for (i = 0; i < R; ++i)
304 		pattern = ror(pattern, size);
305 
306 	// Replicate the pattern to fill the regSize.
307 	while (size != regSize) {
308 		pattern |= (pattern << size);
309 		size *= 2;
310 	}
311 
312 	return pattern;
313 }
314 
315 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
316 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
317 /// is a valid encoding for an integer value with regSize bits.
AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)318 static inline bool AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize)
319 {
320 	unsigned size, S;
321 	int len;
322 	// Extract the N and imms fields needed for checking.
323 	unsigned N = (val >> 12) & 1;
324 	unsigned imms = val & 0x3f;
325 
326 	if (regSize == 32 && N != 0) // undefined logical immediate encoding
327 		return false;
328 	len = 31 - CountLeadingZeros_32((N << 6) | (~imms & 0x3f));
329 	if (len < 0) // undefined logical immediate encoding
330 		return false;
331 	size = (1 << len);
332 	S = imms & (size - 1);
333 	if (S == size - 1) // undefined logical immediate encoding
334 		return false;
335 
336 	return true;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 // Floating-point Immediates
341 //
AArch64_AM_getFPImmFloat(unsigned Imm)342 static inline float AArch64_AM_getFPImmFloat(unsigned Imm)
343 {
344 	// We expect an 8-bit binary encoding of a floating-point number here.
345 	union {
346 		uint32_t I;
347 		float F;
348 	} FPUnion;
349 
350 	uint8_t Sign = (Imm >> 7) & 0x1;
351 	uint8_t Exp = (Imm >> 4) & 0x7;
352 	uint8_t Mantissa = Imm & 0xf;
353 
354 	//   8-bit FP    iEEEE Float Encoding
355 	//   abcd efgh   aBbbbbbc defgh000 00000000 00000000
356 	//
357 	// where B = NOT(b);
358 
359 	FPUnion.I = 0;
360 	FPUnion.I |= ((uint32_t)Sign) << 31;
361 	FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
362 	FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
363 	FPUnion.I |= (Exp & 0x3) << 23;
364 	FPUnion.I |= Mantissa << 19;
365 
366 	return FPUnion.F;
367 }
368 
369 //===--------------------------------------------------------------------===//
370 // AdvSIMD Modified Immediates
371 //===--------------------------------------------------------------------===//
372 
373 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
AArch64_AM_isAdvSIMDModImmType1(uint64_t Imm)374 static inline bool AArch64_AM_isAdvSIMDModImmType1(uint64_t Imm)
375 {
376 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
377 		((Imm & 0xffffff00ffffff00ULL) == 0);
378 }
379 
AArch64_AM_encodeAdvSIMDModImmType1(uint64_t Imm)380 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType1(uint64_t Imm)
381 {
382 	return (Imm & 0xffULL);
383 }
384 
AArch64_AM_decodeAdvSIMDModImmType1(uint8_t Imm)385 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType1(uint8_t Imm)
386 {
387 	uint64_t EncVal = Imm;
388 
389 	return (EncVal << 32) | EncVal;
390 }
391 
392 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
AArch64_AM_isAdvSIMDModImmType2(uint64_t Imm)393 static inline bool AArch64_AM_isAdvSIMDModImmType2(uint64_t Imm)
394 {
395 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
396 		((Imm & 0xffff00ffffff00ffULL) == 0);
397 }
398 
AArch64_AM_encodeAdvSIMDModImmType2(uint64_t Imm)399 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType2(uint64_t Imm)
400 {
401 	return (Imm & 0xff00ULL) >> 8;
402 }
403 
AArch64_AM_decodeAdvSIMDModImmType2(uint8_t Imm)404 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType2(uint8_t Imm)
405 {
406 	uint64_t EncVal = Imm;
407 	return (EncVal << 40) | (EncVal << 8);
408 }
409 
410 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
AArch64_AM_isAdvSIMDModImmType3(uint64_t Imm)411 static inline bool AArch64_AM_isAdvSIMDModImmType3(uint64_t Imm)
412 {
413 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
414 		((Imm & 0xff00ffffff00ffffULL) == 0);
415 }
416 
AArch64_AM_encodeAdvSIMDModImmType3(uint64_t Imm)417 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType3(uint64_t Imm)
418 {
419 	return (Imm & 0xff0000ULL) >> 16;
420 }
421 
AArch64_AM_decodeAdvSIMDModImmType3(uint8_t Imm)422 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType3(uint8_t Imm)
423 {
424 	uint64_t EncVal = Imm;
425 	return (EncVal << 48) | (EncVal << 16);
426 }
427 
428 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
AArch64_AM_isAdvSIMDModImmType4(uint64_t Imm)429 static inline bool AArch64_AM_isAdvSIMDModImmType4(uint64_t Imm)
430 {
431 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
432 		((Imm & 0x00ffffff00ffffffULL) == 0);
433 }
434 
AArch64_AM_encodeAdvSIMDModImmType4(uint64_t Imm)435 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType4(uint64_t Imm)
436 {
437 	return (Imm & 0xff000000ULL) >> 24;
438 }
439 
AArch64_AM_decodeAdvSIMDModImmType4(uint8_t Imm)440 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType4(uint8_t Imm)
441 {
442 	uint64_t EncVal = Imm;
443 	return (EncVal << 56) | (EncVal << 24);
444 }
445 
446 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
AArch64_AM_isAdvSIMDModImmType5(uint64_t Imm)447 static inline bool AArch64_AM_isAdvSIMDModImmType5(uint64_t Imm)
448 {
449 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
450 		(((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
451 		((Imm & 0xff00ff00ff00ff00ULL) == 0);
452 }
453 
AArch64_AM_encodeAdvSIMDModImmType5(uint64_t Imm)454 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType5(uint64_t Imm)
455 {
456 	return (Imm & 0xffULL);
457 }
458 
AArch64_AM_decodeAdvSIMDModImmType5(uint8_t Imm)459 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType5(uint8_t Imm)
460 {
461 	uint64_t EncVal = Imm;
462 	return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
463 }
464 
465 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
AArch64_AM_isAdvSIMDModImmType6(uint64_t Imm)466 static inline bool AArch64_AM_isAdvSIMDModImmType6(uint64_t Imm)
467 {
468 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
469 		(((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
470 		((Imm & 0x00ff00ff00ff00ffULL) == 0);
471 }
472 
AArch64_AM_encodeAdvSIMDModImmType6(uint64_t Imm)473 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType6(uint64_t Imm)
474 {
475 	return (Imm & 0xff00ULL) >> 8;
476 }
477 
AArch64_AM_decodeAdvSIMDModImmType6(uint8_t Imm)478 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType6(uint8_t Imm)
479 {
480 	uint64_t EncVal = Imm;
481 	return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
482 }
483 
484 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
AArch64_AM_isAdvSIMDModImmType7(uint64_t Imm)485 static inline bool AArch64_AM_isAdvSIMDModImmType7(uint64_t Imm)
486 {
487 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
488 		((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
489 }
490 
AArch64_AM_encodeAdvSIMDModImmType7(uint64_t Imm)491 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType7(uint64_t Imm)
492 {
493 	return (Imm & 0xff00ULL) >> 8;
494 }
495 
AArch64_AM_decodeAdvSIMDModImmType7(uint8_t Imm)496 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType7(uint8_t Imm)
497 {
498 	uint64_t EncVal = Imm;
499 	return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
500 }
501 
502 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
AArch64_AM_isAdvSIMDModImmType8(uint64_t Imm)503 static inline bool AArch64_AM_isAdvSIMDModImmType8(uint64_t Imm)
504 {
505 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
506 		((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
507 }
508 
AArch64_AM_decodeAdvSIMDModImmType8(uint8_t Imm)509 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType8(uint8_t Imm)
510 {
511 	uint64_t EncVal = Imm;
512 	return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
513 }
514 
AArch64_AM_encodeAdvSIMDModImmType8(uint64_t Imm)515 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType8(uint64_t Imm)
516 {
517 	return (Imm & 0x00ff0000ULL) >> 16;
518 }
519 
520 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
AArch64_AM_isAdvSIMDModImmType9(uint64_t Imm)521 static inline bool AArch64_AM_isAdvSIMDModImmType9(uint64_t Imm)
522 {
523 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
524 		((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
525 		((Imm >> 56) == (Imm & 0x000000ffULL));
526 }
527 
AArch64_AM_encodeAdvSIMDModImmType9(uint64_t Imm)528 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType9(uint64_t Imm)
529 {
530 	return (Imm & 0xffULL);
531 }
532 
AArch64_AM_decodeAdvSIMDModImmType9(uint8_t Imm)533 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType9(uint8_t Imm)
534 {
535 	uint64_t EncVal = Imm;
536 	EncVal |= (EncVal << 8);
537 	EncVal |= (EncVal << 16);
538 	EncVal |= (EncVal << 32);
539 
540 	return EncVal;
541 }
542 
543 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
544 // cmode: 1110, op: 1
AArch64_AM_isAdvSIMDModImmType10(uint64_t Imm)545 static inline bool AArch64_AM_isAdvSIMDModImmType10(uint64_t Imm)
546 {
547 	uint64_t ByteA = Imm & 0xff00000000000000ULL;
548 	uint64_t ByteB = Imm & 0x00ff000000000000ULL;
549 	uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
550 	uint64_t ByteD = Imm & 0x000000ff00000000ULL;
551 	uint64_t ByteE = Imm & 0x00000000ff000000ULL;
552 	uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
553 	uint64_t ByteG = Imm & 0x000000000000ff00ULL;
554 	uint64_t ByteH = Imm & 0x00000000000000ffULL;
555 
556 	return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
557 		(ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
558 		(ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
559 		(ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
560 		(ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
561 		(ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
562 		(ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
563 		(ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
564 }
565 
AArch64_AM_encodeAdvSIMDModImmType10(uint64_t Imm)566 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType10(uint64_t Imm)
567 {
568 	uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
569 	uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
570 	uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
571 	uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
572 	uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
573 	uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
574 	uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
575 	uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
576 
577 	uint8_t EncVal = BitA;
578 
579 	EncVal <<= 1;
580 	EncVal |= BitB;
581 	EncVal <<= 1;
582 	EncVal |= BitC;
583 	EncVal <<= 1;
584 	EncVal |= BitD;
585 	EncVal <<= 1;
586 	EncVal |= BitE;
587 	EncVal <<= 1;
588 	EncVal |= BitF;
589 	EncVal <<= 1;
590 	EncVal |= BitG;
591 	EncVal <<= 1;
592 	EncVal |= BitH;
593 
594 	return EncVal;
595 }
596 
AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm)597 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm)
598 {
599 	uint64_t EncVal = 0;
600 
601 	if (Imm & 0x80)
602 		EncVal |= 0xff00000000000000ULL;
603 
604 	if (Imm & 0x40)
605 		EncVal |= 0x00ff000000000000ULL;
606 
607 	if (Imm & 0x20)
608 		EncVal |= 0x0000ff0000000000ULL;
609 
610 	if (Imm & 0x10)
611 		EncVal |= 0x000000ff00000000ULL;
612 
613 	if (Imm & 0x08)
614 		EncVal |= 0x00000000ff000000ULL;
615 
616 	if (Imm & 0x04)
617 		EncVal |= 0x0000000000ff0000ULL;
618 
619 	if (Imm & 0x02)
620 		EncVal |= 0x000000000000ff00ULL;
621 
622 	if (Imm & 0x01)
623 		EncVal |= 0x00000000000000ffULL;
624 
625 	return EncVal;
626 }
627 
628 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
AArch64_AM_isAdvSIMDModImmType11(uint64_t Imm)629 static inline bool AArch64_AM_isAdvSIMDModImmType11(uint64_t Imm)
630 {
631 	uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
632 
633 	return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
634 		(BString == 0x1f || BString == 0x20) &&
635 		((Imm & 0x0007ffff0007ffffULL) == 0);
636 }
637 
AArch64_AM_encodeAdvSIMDModImmType11(uint64_t Imm)638 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType11(uint64_t Imm)
639 {
640 	uint8_t BitA = (Imm & 0x80000000ULL) != 0;
641 	uint8_t BitB = (Imm & 0x20000000ULL) != 0;
642 	uint8_t BitC = (Imm & 0x01000000ULL) != 0;
643 	uint8_t BitD = (Imm & 0x00800000ULL) != 0;
644 	uint8_t BitE = (Imm & 0x00400000ULL) != 0;
645 	uint8_t BitF = (Imm & 0x00200000ULL) != 0;
646 	uint8_t BitG = (Imm & 0x00100000ULL) != 0;
647 	uint8_t BitH = (Imm & 0x00080000ULL) != 0;
648 
649 	uint8_t EncVal = BitA;
650 	EncVal <<= 1;
651 	EncVal |= BitB;
652 	EncVal <<= 1;
653 	EncVal |= BitC;
654 	EncVal <<= 1;
655 	EncVal |= BitD;
656 	EncVal <<= 1;
657 	EncVal |= BitE;
658 	EncVal <<= 1;
659 	EncVal |= BitF;
660 	EncVal <<= 1;
661 	EncVal |= BitG;
662 	EncVal <<= 1;
663 	EncVal |= BitH;
664 
665 	return EncVal;
666 }
667 
AArch64_AM_decodeAdvSIMDModImmType11(uint8_t Imm)668 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType11(uint8_t Imm)
669 {
670 	uint64_t EncVal = 0;
671 
672 	if (Imm & 0x80)
673 		EncVal |= 0x80000000ULL;
674 
675 	if (Imm & 0x40)
676 		EncVal |= 0x3e000000ULL;
677 	else
678 		EncVal |= 0x40000000ULL;
679 
680 	if (Imm & 0x20)
681 		EncVal |= 0x01000000ULL;
682 
683 	if (Imm & 0x10)
684 		EncVal |= 0x00800000ULL;
685 
686 	if (Imm & 0x08)
687 		EncVal |= 0x00400000ULL;
688 
689 	if (Imm & 0x04)
690 		EncVal |= 0x00200000ULL;
691 
692 	if (Imm & 0x02)
693 		EncVal |= 0x00100000ULL;
694 
695 	if (Imm & 0x01)
696 		EncVal |= 0x00080000ULL;
697 
698 	return (EncVal << 32) | EncVal;
699 }
700 
701 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
AArch64_AM_isAdvSIMDModImmType12(uint64_t Imm)702 static inline bool AArch64_AM_isAdvSIMDModImmType12(uint64_t Imm)
703 {
704 	uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
705 	return ((BString == 0xff || BString == 0x100) &&
706 		((Imm & 0x0000ffffffffffffULL) == 0));
707 }
708 
AArch64_AM_encodeAdvSIMDModImmType12(uint64_t Imm)709 static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType12(uint64_t Imm)
710 {
711 	uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
712 	uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
713 	uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
714 	uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
715 	uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
716 	uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
717 	uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
718 	uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
719 
720 	uint8_t EncVal = BitA;
721 	EncVal <<= 1;
722 	EncVal |= BitB;
723 	EncVal <<= 1;
724 	EncVal |= BitC;
725 	EncVal <<= 1;
726 	EncVal |= BitD;
727 	EncVal <<= 1;
728 	EncVal |= BitE;
729 	EncVal <<= 1;
730 	EncVal |= BitF;
731 	EncVal <<= 1;
732 	EncVal |= BitG;
733 	EncVal <<= 1;
734 	EncVal |= BitH;
735 
736 	return EncVal;
737 }
738 
AArch64_AM_decodeAdvSIMDModImmType12(uint8_t Imm)739 static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType12(uint8_t Imm)
740 {
741 	uint64_t EncVal = 0;
742 	if (Imm & 0x80)
743 		EncVal |= 0x8000000000000000ULL;
744 
745 	if (Imm & 0x40)
746 		EncVal |= 0x3fc0000000000000ULL;
747 	else
748 		EncVal |= 0x4000000000000000ULL;
749 
750 	if (Imm & 0x20)
751 		EncVal |= 0x0020000000000000ULL;
752 
753 	if (Imm & 0x10)
754 		EncVal |= 0x0010000000000000ULL;
755 
756 	if (Imm & 0x08)
757 		EncVal |= 0x0008000000000000ULL;
758 
759 	if (Imm & 0x04)
760 		EncVal |= 0x0004000000000000ULL;
761 
762 	if (Imm & 0x02)
763 		EncVal |= 0x0002000000000000ULL;
764 
765 	if (Imm & 0x01)
766 		EncVal |= 0x0001000000000000ULL;
767 
768 	return (EncVal << 32) | EncVal;
769 }
770 
771 /// Returns true if Imm is the concatenation of a repeating pattern of type T.
AArch64_AM_isSVEMaskOfIdenticalElements8(int64_t Imm)772 static inline bool AArch64_AM_isSVEMaskOfIdenticalElements8(int64_t Imm)
773 {
774 #define _VECSIZE (sizeof(int64_t)/sizeof(int8_t))
775 	unsigned int i;
776 	union {
777 		int64_t Whole;
778 		int8_t Parts[_VECSIZE];
779 	} Vec;
780 
781 	Vec.Whole = Imm;
782 
783 	for(i = 1; i < _VECSIZE; i++) {
784 		if (Vec.Parts[i] != Vec.Parts[0])
785 			return false;
786 	}
787 #undef _VECSIZE
788 
789 	return true;
790 }
791 
AArch64_AM_isSVEMaskOfIdenticalElements16(int64_t Imm)792 static inline bool AArch64_AM_isSVEMaskOfIdenticalElements16(int64_t Imm)
793 {
794 #define _VECSIZE (sizeof(int64_t)/sizeof(int16_t))
795 	unsigned int i;
796 	union {
797 		int64_t Whole;
798 		int16_t Parts[_VECSIZE];
799 	} Vec;
800 
801 	Vec.Whole = Imm;
802 
803 	for(i = 1; i < _VECSIZE; i++) {
804 		if (Vec.Parts[i] != Vec.Parts[0])
805 			return false;
806 	}
807 #undef _VECSIZE
808 
809 	return true;
810 }
811 
AArch64_AM_isSVEMaskOfIdenticalElements32(int64_t Imm)812 static inline bool AArch64_AM_isSVEMaskOfIdenticalElements32(int64_t Imm)
813 {
814 #define _VECSIZE (sizeof(int64_t)/sizeof(int32_t))
815 	unsigned int i;
816 	union {
817 		int64_t Whole;
818 		int32_t Parts[_VECSIZE];
819 	} Vec;
820 
821 	Vec.Whole = Imm;
822 
823 	for(i = 1; i < _VECSIZE; i++) {
824 		if (Vec.Parts[i] != Vec.Parts[0])
825 			return false;
826 	}
827 #undef _VECSIZE
828 
829 	return true;
830 }
831 
AArch64_AM_isSVEMaskOfIdenticalElements64(int64_t Imm)832 static inline bool AArch64_AM_isSVEMaskOfIdenticalElements64(int64_t Imm)
833 {
834 	return true;
835 }
836 
isSVECpyImm8(int64_t Imm)837 static inline bool isSVECpyImm8(int64_t Imm)
838 {
839 	bool IsImm8 = (int8_t)Imm == Imm;
840 
841 	return IsImm8 || (uint8_t)Imm == Imm;
842 }
843 
isSVECpyImm16(int64_t Imm)844 static inline bool isSVECpyImm16(int64_t Imm)
845 {
846 	bool IsImm8 = (int8_t)Imm == Imm;
847 	bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
848 
849 	return IsImm8 || IsImm16 || (uint16_t)(Imm & ~0xff) == Imm;
850 }
851 
isSVECpyImm32(int64_t Imm)852 static inline bool isSVECpyImm32(int64_t Imm)
853 {
854 	bool IsImm8 = (int8_t)Imm == Imm;
855 	bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
856 
857 	return IsImm8 || IsImm16;
858 }
859 
isSVECpyImm64(int64_t Imm)860 static inline bool isSVECpyImm64(int64_t Imm)
861 {
862 	bool IsImm8 = (int8_t)Imm == Imm;
863 	bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
864 
865 	return IsImm8 || IsImm16;
866 }
867 
868 /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
AArch64_AM_isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)869 static inline bool AArch64_AM_isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)
870 {
871 	union {
872 		int64_t D;
873 		int32_t S[2];
874 		int16_t H[4];
875 		int8_t B[8];
876 	} Vec = {Imm};
877 
878 	if (isSVECpyImm64(Vec.D))
879 		return false;
880 
881 	if (AArch64_AM_isSVEMaskOfIdenticalElements32(Imm) &&
882 			isSVECpyImm32(Vec.S[0]))
883 		return false;
884 
885 	if (AArch64_AM_isSVEMaskOfIdenticalElements16(Imm) &&
886 			isSVECpyImm16(Vec.H[0]))
887 		return false;
888 
889 	if (AArch64_AM_isSVEMaskOfIdenticalElements8(Imm) &&
890 			isSVECpyImm8(Vec.B[0]))
891 		return false;
892 
893 	return isLogicalImmediate(Vec.D, 64);
894 }
895 
isAnyMOVZMovAlias(uint64_t Value,int RegWidth)896 inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth)
897 {
898 	int Shift;
899 
900 	for (Shift = 0; Shift <= RegWidth - 16; Shift += 16)
901 		if ((Value & ~(0xffffULL << Shift)) == 0)
902 			return true;
903 
904 	return false;
905 }
906 
isMOVZMovAlias(uint64_t Value,int Shift,int RegWidth)907 inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth)
908 {
909 	if (RegWidth == 32)
910 		Value &= 0xffffffffULL;
911 
912 	// "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
913 	if (Value == 0 && Shift != 0)
914 		return false;
915 
916 	return (Value & ~(0xffffULL << Shift)) == 0;
917 }
918 
AArch64_AM_isMOVNMovAlias(uint64_t Value,int Shift,int RegWidth)919 inline static bool AArch64_AM_isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth)
920 {
921 	// MOVZ takes precedence over MOVN.
922 	if (isAnyMOVZMovAlias(Value, RegWidth))
923 		return false;
924 
925 	Value = ~Value;
926 	if (RegWidth == 32)
927 		Value &= 0xffffffffULL;
928 
929 	return isMOVZMovAlias(Value, Shift, RegWidth);
930 }
931 
AArch64_AM_isAnyMOVWMovAlias(uint64_t Value,int RegWidth)932 inline static bool AArch64_AM_isAnyMOVWMovAlias(uint64_t Value, int RegWidth)
933 {
934 	if (isAnyMOVZMovAlias(Value, RegWidth))
935 		return true;
936 
937 	// It's not a MOVZ, but it might be a MOVN.
938 	Value = ~Value;
939 	if (RegWidth == 32)
940 		Value &= 0xffffffffULL;
941 
942 	return isAnyMOVZMovAlias(Value, RegWidth);
943 }
944 
945 #endif
946