1 /*  $OpenBSD: queue.h,v 1.32 2007/04/30 18:42:34 pedro Exp $    */
2 /*  $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $   */
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *  The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *  @(#)queue.h 8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef _SYS_QUEUE_H_
36 #define _SYS_QUEUE_H_
37 
38 /*
39  * This file defines five types of data structures: singly-linked lists,
40  * lists, simple queues, tail queues, and circular queues.
41  *
42  *
43  * A singly-linked list is headed by a single forward pointer. The elements
44  * are singly linked for minimum space and pointer manipulation overhead at
45  * the expense of O(n) removal for arbitrary elements. New elements can be
46  * added to the list after an existing element or at the head of the list.
47  * Elements being removed from the head of the list should use the explicit
48  * macro for this purpose for optimum efficiency. A singly-linked list may
49  * only be traversed in the forward direction.  Singly-linked lists are ideal
50  * for applications with large datasets and few or no removals or for
51  * implementing a LIFO queue.
52  *
53  * A list is headed by a single forward pointer (or an array of forward
54  * pointers for a hash table header). The elements are doubly linked
55  * so that an arbitrary element can be removed without a need to
56  * traverse the list. New elements can be added to the list before
57  * or after an existing element or at the head of the list. A list
58  * may only be traversed in the forward direction.
59  *
60  * A simple queue is headed by a pair of pointers, one the head of the
61  * list and the other to the tail of the list. The elements are singly
62  * linked to save space, so elements can only be removed from the
63  * head of the list. New elements can be added to the list before or after
64  * an existing element, at the head of the list, or at the end of the
65  * list. A simple queue may only be traversed in the forward direction.
66  *
67  * A tail queue is headed by a pair of pointers, one to the head of the
68  * list and the other to the tail of the list. The elements are doubly
69  * linked so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before or
71  * after an existing element, at the head of the list, or at the end of
72  * the list. A tail queue may be traversed in either direction.
73  *
74  * A circle queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or after
78  * an existing element, at the head of the list, or at the end of the list.
79  * A circle queue may be traversed in either direction, but has a more
80  * complex end of list detection.
81  *
82  * For details on the use of these macros, see the queue(3) manual page.
83  */
84 
85 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
86 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90 
91 /*
92  * Singly-linked List definitions.
93  */
94 #define SLIST_HEAD(name, type)                      \
95     struct name {                               \
96         struct type *slh_first; /* first element */         \
97     }
98 
99 #define SLIST_HEAD_INITIALIZER(head)                    \
100     { NULL }
101 
102 #define SLIST_ENTRY(type)                       \
103     struct {                                \
104         struct type *sle_next;  /* next element */          \
105     }
106 
107 /*
108  * Singly-linked List access methods.
109  */
110 #define SLIST_FIRST(head)   ((head)->slh_first)
111 #define SLIST_END(head)     NULL
112 #define SLIST_EMPTY(head)   (SLIST_FIRST(head) == SLIST_END(head))
113 #define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)
114 
115 #define SLIST_FOREACH(var, head, field)                 \
116     for((var) = SLIST_FIRST(head);                  \
117             (var) != SLIST_END(head);                   \
118             (var) = SLIST_NEXT(var, field))
119 
120 #define SLIST_FOREACH_PREVPTR(var, varp, head, field)           \
121     for ((varp) = &SLIST_FIRST((head));             \
122             ((var) = *(varp)) != SLIST_END(head);           \
123             (varp) = &SLIST_NEXT((var), field))
124 
125 /*
126  * Singly-linked List functions.
127  */
128 #define SLIST_INIT(head) {                      \
129         SLIST_FIRST(head) = SLIST_END(head);                \
130     }
131 
132 #define SLIST_INSERT_AFTER(slistelm, elm, field) do {           \
133         (elm)->field.sle_next = (slistelm)->field.sle_next;     \
134         (slistelm)->field.sle_next = (elm);             \
135     } while (0)
136 
137 #define SLIST_INSERT_HEAD(head, elm, field) do {            \
138         (elm)->field.sle_next = (head)->slh_first;          \
139         (head)->slh_first = (elm);                  \
140     } while (0)
141 
142 #define SLIST_REMOVE_NEXT(head, elm, field) do {            \
143         (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;  \
144     } while (0)
145 
146 #define SLIST_REMOVE_HEAD(head, field) do {             \
147         (head)->slh_first = (head)->slh_first->field.sle_next;      \
148     } while (0)
149 
150 #define SLIST_REMOVE(head, elm, type, field) do {           \
151         if ((head)->slh_first == (elm)) {               \
152             SLIST_REMOVE_HEAD((head), field);           \
153         } else {                            \
154             struct type *curelm = (head)->slh_first;        \
155             \
156             while (curelm->field.sle_next != (elm))         \
157                 curelm = curelm->field.sle_next;        \
158             curelm->field.sle_next =                \
159                                                     curelm->field.sle_next->field.sle_next;     \
160             _Q_INVALIDATE((elm)->field.sle_next);           \
161         }                               \
162     } while (0)
163 
164 /*
165  * List definitions.
166  */
167 #define LIST_HEAD(name, type)                       \
168     struct name {                               \
169         struct type *lh_first;  /* first element */         \
170     }
171 
172 #define LIST_HEAD_INITIALIZER(head)                 \
173     { NULL }
174 
175 #define LIST_ENTRY(type)                        \
176     struct {                                \
177         struct type *le_next;   /* next element */          \
178         struct type **le_prev;  /* address of previous next element */  \
179     }
180 
181 /*
182  * List access methods
183  */
184 #define LIST_FIRST(head)        ((head)->lh_first)
185 #define LIST_END(head)          NULL
186 #define LIST_EMPTY(head)        (LIST_FIRST(head) == LIST_END(head))
187 #define LIST_NEXT(elm, field)       ((elm)->field.le_next)
188 
189 #define LIST_FOREACH(var, head, field)                  \
190     for((var) = LIST_FIRST(head);                   \
191             (var)!= LIST_END(head);                 \
192             (var) = LIST_NEXT(var, field))
193 
194 /*
195  * List functions.
196  */
197 #define LIST_INIT(head) do {                        \
198         LIST_FIRST(head) = LIST_END(head);              \
199     } while (0)
200 
201 #define LIST_INSERT_AFTER(listelm, elm, field) do {         \
202         if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)  \
203             (listelm)->field.le_next->field.le_prev =       \
204                     &(elm)->field.le_next;              \
205         (listelm)->field.le_next = (elm);               \
206         (elm)->field.le_prev = &(listelm)->field.le_next;       \
207     } while (0)
208 
209 #define LIST_INSERT_BEFORE(listelm, elm, field) do {            \
210         (elm)->field.le_prev = (listelm)->field.le_prev;        \
211         (elm)->field.le_next = (listelm);               \
212         *(listelm)->field.le_prev = (elm);              \
213         (listelm)->field.le_prev = &(elm)->field.le_next;       \
214     } while (0)
215 
216 #define LIST_INSERT_HEAD(head, elm, field) do {             \
217         if (((elm)->field.le_next = (head)->lh_first) != NULL)      \
218             (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
219         (head)->lh_first = (elm);                   \
220         (elm)->field.le_prev = &(head)->lh_first;           \
221     } while (0)
222 
223 #define LIST_REMOVE(elm, field) do {                    \
224         if ((elm)->field.le_next != NULL)               \
225             (elm)->field.le_next->field.le_prev =           \
226                     (elm)->field.le_prev;               \
227         *(elm)->field.le_prev = (elm)->field.le_next;           \
228         _Q_INVALIDATE((elm)->field.le_prev);                \
229         _Q_INVALIDATE((elm)->field.le_next);                \
230     } while (0)
231 
232 #define LIST_REPLACE(elm, elm2, field) do {             \
233         if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
234             (elm2)->field.le_next->field.le_prev =          \
235                     &(elm2)->field.le_next;             \
236         (elm2)->field.le_prev = (elm)->field.le_prev;           \
237         *(elm2)->field.le_prev = (elm2);                \
238         _Q_INVALIDATE((elm)->field.le_prev);                \
239         _Q_INVALIDATE((elm)->field.le_next);                \
240     } while (0)
241 
242 /*
243  * Simple queue definitions.
244  */
245 #define SIMPLEQ_HEAD(name, type)                    \
246     struct name {                               \
247         struct type *sqh_first; /* first element */         \
248         struct type **sqh_last; /* addr of last next element */     \
249     }
250 
251 #define SIMPLEQ_HEAD_INITIALIZER(head)                  \
252     { NULL, &(head).sqh_first }
253 
254 #define SIMPLEQ_ENTRY(type)                     \
255     struct {                                \
256         struct type *sqe_next;  /* next element */          \
257     }
258 
259 /*
260  * Simple queue access methods.
261  */
262 #define SIMPLEQ_FIRST(head)     ((head)->sqh_first)
263 #define SIMPLEQ_END(head)       NULL
264 #define SIMPLEQ_EMPTY(head)     (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
265 #define SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
266 
267 #define SIMPLEQ_FOREACH(var, head, field)               \
268     for((var) = SIMPLEQ_FIRST(head);                \
269             (var) != SIMPLEQ_END(head);                 \
270             (var) = SIMPLEQ_NEXT(var, field))
271 
272 /*
273  * Simple queue functions.
274  */
275 #define SIMPLEQ_INIT(head) do {                     \
276         (head)->sqh_first = NULL;                   \
277         (head)->sqh_last = &(head)->sqh_first;              \
278     } while (0)
279 
280 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {          \
281         if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)    \
282             (head)->sqh_last = &(elm)->field.sqe_next;      \
283         (head)->sqh_first = (elm);                  \
284     } while (0)
285 
286 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {          \
287         (elm)->field.sqe_next = NULL;                   \
288         *(head)->sqh_last = (elm);                  \
289         (head)->sqh_last = &(elm)->field.sqe_next;          \
290     } while (0)
291 
292 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \
293         if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
294             (head)->sqh_last = &(elm)->field.sqe_next;      \
295         (listelm)->field.sqe_next = (elm);              \
296     } while (0)
297 
298 #define SIMPLEQ_REMOVE_HEAD(head, field) do {           \
299         if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
300             (head)->sqh_last = &(head)->sqh_first;          \
301     } while (0)
302 
303 /*
304  * Tail queue definitions.
305  */
306 #define TAILQ_HEAD(name, type)                      \
307     struct name {                               \
308         struct type *tqh_first; /* first element */         \
309         struct type **tqh_last; /* addr of last next element */     \
310     }
311 
312 #define TAILQ_HEAD_INITIALIZER(head)                    \
313     { NULL, &(head).tqh_first }
314 
315 #define TAILQ_ENTRY(type)                       \
316     struct {                                \
317         struct type *tqe_next;  /* next element */          \
318         struct type **tqe_prev; /* address of previous next element */  \
319     }
320 
321 /*
322  * tail queue access methods
323  */
324 #define TAILQ_FIRST(head)       ((head)->tqh_first)
325 #define TAILQ_END(head)         NULL
326 #define TAILQ_NEXT(elm, field)      ((elm)->field.tqe_next)
327 #define TAILQ_LAST(head, headname)                  \
328     (*(((struct headname *)((head)->tqh_last))->tqh_last))
329 /* XXX */
330 #define TAILQ_PREV(elm, headname, field)                \
331     (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
332 #define TAILQ_EMPTY(head)                       \
333     (TAILQ_FIRST(head) == TAILQ_END(head))
334 
335 #define TAILQ_FOREACH(var, head, field)                 \
336     for((var) = TAILQ_FIRST(head);                  \
337             (var) != TAILQ_END(head);                   \
338             (var) = TAILQ_NEXT(var, field))
339 
340 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)       \
341     for((var) = TAILQ_LAST(head, headname);             \
342             (var) != TAILQ_END(head);                   \
343             (var) = TAILQ_PREV(var, headname, field))
344 
345 /*
346  * Tail queue functions.
347  */
348 #define TAILQ_INIT(head) do {                       \
349         (head)->tqh_first = NULL;                   \
350         (head)->tqh_last = &(head)->tqh_first;              \
351     } while (0)
352 
353 #define TAILQ_INSERT_HEAD(head, elm, field) do {            \
354         if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)    \
355             (head)->tqh_first->field.tqe_prev =         \
356                     &(elm)->field.tqe_next;             \
357         else                                \
358             (head)->tqh_last = &(elm)->field.tqe_next;      \
359         (head)->tqh_first = (elm);                  \
360         (elm)->field.tqe_prev = &(head)->tqh_first;         \
361     } while (0)
362 
363 #define TAILQ_INSERT_TAIL(head, elm, field) do {            \
364         (elm)->field.tqe_next = NULL;                   \
365         (elm)->field.tqe_prev = (head)->tqh_last;           \
366         *(head)->tqh_last = (elm);                  \
367         (head)->tqh_last = &(elm)->field.tqe_next;          \
368     } while (0)
369 
370 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {      \
371         if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
372             (elm)->field.tqe_next->field.tqe_prev =         \
373                     &(elm)->field.tqe_next;             \
374         else                                \
375             (head)->tqh_last = &(elm)->field.tqe_next;      \
376         (listelm)->field.tqe_next = (elm);              \
377         (elm)->field.tqe_prev = &(listelm)->field.tqe_next;     \
378     } while (0)
379 
380 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do {           \
381         (elm)->field.tqe_prev = (listelm)->field.tqe_prev;      \
382         (elm)->field.tqe_next = (listelm);              \
383         *(listelm)->field.tqe_prev = (elm);             \
384         (listelm)->field.tqe_prev = &(elm)->field.tqe_next;     \
385     } while (0)
386 
387 #define TAILQ_REMOVE(head, elm, field) do {             \
388         if (((elm)->field.tqe_next) != NULL)                \
389             (elm)->field.tqe_next->field.tqe_prev =         \
390                     (elm)->field.tqe_prev;              \
391         else                                \
392             (head)->tqh_last = (elm)->field.tqe_prev;       \
393         *(elm)->field.tqe_prev = (elm)->field.tqe_next;         \
394         _Q_INVALIDATE((elm)->field.tqe_prev);               \
395         _Q_INVALIDATE((elm)->field.tqe_next);               \
396     } while (0)
397 
398 #define TAILQ_REPLACE(head, elm, elm2, field) do {          \
399         if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)   \
400             (elm2)->field.tqe_next->field.tqe_prev =        \
401                     &(elm2)->field.tqe_next;                \
402         else                                \
403             (head)->tqh_last = &(elm2)->field.tqe_next;     \
404         (elm2)->field.tqe_prev = (elm)->field.tqe_prev;         \
405         *(elm2)->field.tqe_prev = (elm2);               \
406         _Q_INVALIDATE((elm)->field.tqe_prev);               \
407         _Q_INVALIDATE((elm)->field.tqe_next);               \
408     } while (0)
409 
410 /*
411  * Circular queue definitions.
412  */
413 #define CIRCLEQ_HEAD(name, type)                    \
414     struct name {                               \
415         struct type *cqh_first;     /* first element */     \
416         struct type *cqh_last;      /* last element */      \
417     }
418 
419 #define CIRCLEQ_HEAD_INITIALIZER(head)                  \
420     { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
421 
422 #define CIRCLEQ_ENTRY(type)                     \
423     struct {                                \
424         struct type *cqe_next;      /* next element */      \
425         struct type *cqe_prev;      /* previous element */      \
426     }
427 
428 /*
429  * Circular queue access methods
430  */
431 #define CIRCLEQ_FIRST(head)     ((head)->cqh_first)
432 #define CIRCLEQ_LAST(head)      ((head)->cqh_last)
433 #define CIRCLEQ_END(head)       ((void *)(head))
434 #define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
435 #define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)
436 #define CIRCLEQ_EMPTY(head)                     \
437     (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
438 
439 #define CIRCLEQ_FOREACH(var, head, field)               \
440     for((var) = CIRCLEQ_FIRST(head);                \
441             (var) != CIRCLEQ_END(head);                 \
442             (var) = CIRCLEQ_NEXT(var, field))
443 
444 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)           \
445     for((var) = CIRCLEQ_LAST(head);                 \
446             (var) != CIRCLEQ_END(head);                 \
447             (var) = CIRCLEQ_PREV(var, field))
448 
449 /*
450  * Circular queue functions.
451  */
452 #define CIRCLEQ_INIT(head) do {                     \
453         (head)->cqh_first = CIRCLEQ_END(head);              \
454         (head)->cqh_last = CIRCLEQ_END(head);               \
455     } while (0)
456 
457 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {        \
458         (elm)->field.cqe_next = (listelm)->field.cqe_next;      \
459         (elm)->field.cqe_prev = (listelm);              \
460         if ((listelm)->field.cqe_next == CIRCLEQ_END(head))     \
461             (head)->cqh_last = (elm);               \
462         else                                \
463             (listelm)->field.cqe_next->field.cqe_prev = (elm);  \
464         (listelm)->field.cqe_next = (elm);              \
465     } while (0)
466 
467 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {       \
468         (elm)->field.cqe_next = (listelm);              \
469         (elm)->field.cqe_prev = (listelm)->field.cqe_prev;      \
470         if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))     \
471             (head)->cqh_first = (elm);              \
472         else                                \
473             (listelm)->field.cqe_prev->field.cqe_next = (elm);  \
474         (listelm)->field.cqe_prev = (elm);              \
475     } while (0)
476 
477 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {          \
478         (elm)->field.cqe_next = (head)->cqh_first;          \
479         (elm)->field.cqe_prev = CIRCLEQ_END(head);          \
480         if ((head)->cqh_last == CIRCLEQ_END(head))          \
481             (head)->cqh_last = (elm);               \
482         else                                \
483             (head)->cqh_first->field.cqe_prev = (elm);      \
484         (head)->cqh_first = (elm);                  \
485     } while (0)
486 
487 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {          \
488         (elm)->field.cqe_next = CIRCLEQ_END(head);          \
489         (elm)->field.cqe_prev = (head)->cqh_last;           \
490         if ((head)->cqh_first == CIRCLEQ_END(head))         \
491             (head)->cqh_first = (elm);              \
492         else                                \
493             (head)->cqh_last->field.cqe_next = (elm);       \
494         (head)->cqh_last = (elm);                   \
495     } while (0)
496 
497 #define CIRCLEQ_REMOVE(head, elm, field) do {               \
498         if ((elm)->field.cqe_next == CIRCLEQ_END(head))         \
499             (head)->cqh_last = (elm)->field.cqe_prev;       \
500         else                                \
501             (elm)->field.cqe_next->field.cqe_prev =         \
502                     (elm)->field.cqe_prev;              \
503         if ((elm)->field.cqe_prev == CIRCLEQ_END(head))         \
504             (head)->cqh_first = (elm)->field.cqe_next;      \
505         else                                \
506             (elm)->field.cqe_prev->field.cqe_next =         \
507                     (elm)->field.cqe_next;              \
508         _Q_INVALIDATE((elm)->field.cqe_prev);               \
509         _Q_INVALIDATE((elm)->field.cqe_next);               \
510     } while (0)
511 
512 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {            \
513         if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==     \
514                 CIRCLEQ_END(head))                      \
515             (head).cqh_last = (elm2);               \
516         else                                \
517             (elm2)->field.cqe_next->field.cqe_prev = (elm2);    \
518         if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==     \
519                 CIRCLEQ_END(head))                      \
520             (head).cqh_first = (elm2);              \
521         else                                \
522             (elm2)->field.cqe_prev->field.cqe_next = (elm2);    \
523         _Q_INVALIDATE((elm)->field.cqe_prev);               \
524         _Q_INVALIDATE((elm)->field.cqe_next);               \
525     } while (0)
526 
527 #endif  /* !_SYS_QUEUE_H_ */
528