1 /* tc-cris.c -- Assembler code for the CRIS CPU core.
2    Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 
4    Contributed by Axis Communications AB, Lund, Sweden.
5    Originally written for GAS 1.38.1 by Mikael Asker.
6    Updates, BFDizing, GNUifying and ELF support by Hans-Peter Nilsson.
7 
8    This file is part of GAS, the GNU Assembler.
9 
10    GAS is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2, or (at your option)
13    any later version.
14 
15    GAS is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with GAS; see the file COPYING.  If not, write to the
22    Free Software Foundation, 59 Temple Place - Suite 330, Boston,
23    MA 02111-1307, USA.  */
24 
25 #include <stdio.h>
26 #include "as.h"
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "opcode/cris.h"
30 #include "dwarf2dbg.h"
31 
32 /* Conventions used here:
33    Generally speaking, pointers to binutils types such as "fragS" and
34    "expressionS" get parameter and variable names ending in "P", such as
35    "fragP", to harmonize with the rest of the binutils code.  Other
36    pointers get a "p" suffix, such as "bufp".  Any function or type-name
37    that could clash with a current or future binutils or GAS function get
38    a "cris_" prefix.  */
39 
40 #define SYNTAX_RELAX_REG_PREFIX "no_register_prefix"
41 #define SYNTAX_ENFORCE_REG_PREFIX "register_prefix"
42 #define SYNTAX_USER_SYM_LEADING_UNDERSCORE "leading_underscore"
43 #define SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE "no_leading_underscore"
44 #define REGISTER_PREFIX_CHAR '$'
45 
46 /* True for expressions where getting X_add_symbol and X_add_number is
47    enough to get the "base" and "offset"; no need to make_expr_symbol.
48    It's not enough to check if X_op_symbol is NULL; that misses unary
49    operations like O_uminus.  */
50 #define SIMPLE_EXPR(EXP) \
51  ((EXP)->X_op == O_constant || (EXP)->X_op == O_symbol)
52 
53 /* Like in ":GOT", ":GOTOFF" etc.  Other ports use '@', but that's in
54    line_separator_chars for CRIS, so we avoid it.  */
55 #define PIC_SUFFIX_CHAR ':'
56 
57 /* This might be CRIS_INSN_NONE if we're assembling a prefix-insn only.
58    Note that some prefix-insns might be assembled as CRIS_INSN_NORMAL.  */
59 enum cris_insn_kind
60 {
61   CRIS_INSN_NORMAL, CRIS_INSN_NONE, CRIS_INSN_BRANCH, CRIS_INSN_MUL
62 };
63 
64 /* An instruction will have one of these prefixes.
65    Although the same bit-pattern, we handle BDAP with an immediate
66    expression (eventually quick or [pc+]) different from when we only have
67    register expressions.  */
68 enum prefix_kind
69 {
70   PREFIX_NONE, PREFIX_BDAP_IMM, PREFIX_BDAP, PREFIX_BIAP, PREFIX_DIP,
71   PREFIX_PUSH
72 };
73 
74 /* The prefix for an instruction.  */
75 struct cris_prefix
76 {
77   enum prefix_kind kind;
78   int base_reg_number;
79   unsigned int opcode;
80 
81   /* There might be an expression to be evaluated, like I in [rN+I].  */
82   expressionS expr;
83 
84   /* If there's an expression, we might need a relocation.  Here's the
85      type of what relocation to start relaxaton with.
86      The relocation is assumed to start immediately after the prefix insn,
87      so we don't provide an offset.  */
88   enum bfd_reloc_code_real reloc;
89 };
90 
91 /* The description of the instruction being assembled.  */
92 struct cris_instruction
93 {
94   /* If CRIS_INSN_NONE, then this insn is of zero length.  */
95   enum cris_insn_kind insn_type;
96 
97   /* If a special register was mentioned, this is its description, else
98      it is NULL.  */
99   const struct cris_spec_reg *spec_reg;
100 
101   unsigned int opcode;
102 
103   /* An insn may have at most one expression; theoretically there could be
104      another in its prefix (but I don't see how that could happen).  */
105   expressionS expr;
106 
107   /* The expression might need a relocation.  Here's one to start
108      relaxation with.  */
109   enum bfd_reloc_code_real reloc;
110 
111   /* The size in bytes of an immediate expression, or zero if
112      nonapplicable.  */
113   int imm_oprnd_size;
114 };
115 
116 static void cris_process_instruction PARAMS ((char *,
117 					      struct cris_instruction *,
118 					      struct cris_prefix *));
119 static int get_bwd_size_modifier PARAMS ((char **, int *));
120 static int get_bw_size_modifier PARAMS ((char **, int *));
121 static int get_gen_reg PARAMS ((char **, int *));
122 static int get_spec_reg PARAMS ((char **,
123 				 const struct cris_spec_reg **));
124 static int get_autoinc_prefix_or_indir_op PARAMS ((char **,
125 						   struct cris_prefix *,
126 						   int *, int *, int *,
127 						   expressionS *));
128 static int get_3op_or_dip_prefix_op PARAMS ((char **,
129 					     struct cris_prefix *));
130 static int cris_get_expression PARAMS ((char **, expressionS *));
131 static int get_flags PARAMS ((char **, int *));
132 static void gen_bdap PARAMS ((int, expressionS *));
133 static int branch_disp PARAMS ((int));
134 static void gen_cond_branch_32 PARAMS ((char *, char *, fragS *,
135 					symbolS *, symbolS *, long int));
136 static void cris_number_to_imm PARAMS ((char *, long, int, fixS *, segT));
137 static void cris_create_short_jump PARAMS ((char *, addressT, addressT,
138 					    fragS *, symbolS *));
139 static void s_syntax PARAMS ((int));
140 static void s_cris_file PARAMS ((int));
141 static void s_cris_loc PARAMS ((int));
142 
143 /* Get ":GOT", ":GOTOFF", ":PLT" etc. suffixes.  */
144 static void cris_get_pic_suffix PARAMS ((char **,
145 					 bfd_reloc_code_real_type *,
146 					 expressionS *));
147 static unsigned int cris_get_pic_reloc_size
148   PARAMS ((bfd_reloc_code_real_type));
149 
150 /* All the .syntax functions.  */
151 static void cris_force_reg_prefix PARAMS ((void));
152 static void cris_relax_reg_prefix PARAMS ((void));
153 static void cris_sym_leading_underscore PARAMS ((void));
154 static void cris_sym_no_leading_underscore PARAMS ((void));
155 static char *cris_insn_first_word_frag PARAMS ((void));
156 
157 /* Handle to the opcode hash table.  */
158 static struct hash_control *op_hash = NULL;
159 
160 /* If we target cris-axis-linux-gnu (as opposed to generic cris-axis-elf),
161    we default to no underscore and required register-prefixes.  The
162    difference is in the default values.  */
163 #ifdef TE_LINUX
164 #define DEFAULT_CRIS_AXIS_LINUX_GNU TRUE
165 #else
166 #define DEFAULT_CRIS_AXIS_LINUX_GNU FALSE
167 #endif
168 
169 /* Whether we demand that registers have a `$' prefix.  Default here.  */
170 static bfd_boolean demand_register_prefix = DEFAULT_CRIS_AXIS_LINUX_GNU;
171 
172 /* Whether global user symbols have a leading underscore.  Default here.  */
173 static bfd_boolean symbols_have_leading_underscore
174   = !DEFAULT_CRIS_AXIS_LINUX_GNU;
175 
176 /* Whether or not we allow PIC, and expand to PIC-friendly constructs.  */
177 static bfd_boolean pic = FALSE;
178 
179 const pseudo_typeS md_pseudo_table[] =
180 {
181   {"dword", cons, 4},
182   {"syntax", s_syntax, 0},
183   {"file", s_cris_file, 0},
184   {"loc", s_cris_loc, 0},
185   {NULL, 0, 0}
186 };
187 
188 static int warn_for_branch_expansion = 0;
189 
190 /* Whether to emit error when a MULS/MULU could be located last on a
191    cache-line.  */
192 static int err_for_dangerous_mul_placement = 1;
193 
194 const char cris_comment_chars[] = ";";
195 
196 /* This array holds the chars that only start a comment at the beginning of
197    a line.  If the line seems to have the form '# 123 filename'
198    .line and .file directives will appear in the pre-processed output.  */
199 /* Note that input_file.c hand-checks for '#' at the beginning of the
200    first line of the input file.  This is because the compiler outputs
201    #NO_APP at the beginning of its output.  */
202 /* Also note that slash-star will always start a comment.  */
203 const char line_comment_chars[] = "#";
204 const char line_separator_chars[] = "@";
205 
206 /* Now all floating point support is shut off.  See md_atof.  */
207 const char EXP_CHARS[] = "";
208 const char FLT_CHARS[] = "";
209 
210 /* For CRIS, we encode the relax_substateTs (in e.g. fr_substate) as:
211 		       2		 1		   0
212       ---/ /--+-----------------+-----------------+-----------------+
213 	      |	 what state ?	|	     how long ?		    |
214       ---/ /--+-----------------+-----------------+-----------------+
215 
216    The "how long" bits are 00 = byte, 01 = word, 10 = dword (long).
217    This is a Un*x convention.
218    Not all lengths are legit for a given value of (what state).
219 
220    Groups for CRIS address relaxing:
221 
222    1. Bcc
223       length: byte, word, 10-byte expansion
224 
225    2. BDAP
226       length: byte, word, dword
227 
228    3. MULS/MULU
229       Not really a relaxation (no infrastructure to get delay-slots
230       right), just an alignment and placement checker for the v10
231       multiply/cache-bug.  */
232 
233 #define STATE_CONDITIONAL_BRANCH    (1)
234 #define STATE_BASE_PLUS_DISP_PREFIX (2)
235 #define STATE_MUL		    (3)
236 
237 #define STATE_LENGTH_MASK	    (3)
238 #define STATE_BYTE		    (0)
239 #define STATE_WORD		    (1)
240 #define STATE_DWORD		    (2)
241 /* Symbol undefined.  */
242 #define STATE_UNDF		    (3)
243 #define STATE_MAX_LENGTH	    (3)
244 
245 /* These displacements are relative to the address following the opcode
246    word of the instruction.  The first letter is Byte, Word.  The 2nd
247    letter is Forward, Backward.  */
248 
249 #define BRANCH_BF ( 254)
250 #define BRANCH_BB (-256)
251 #define BRANCH_WF (2 +  32767)
252 #define BRANCH_WB (2 + -32768)
253 
254 #define BDAP_BF	  ( 127)
255 #define BDAP_BB	  (-128)
256 #define BDAP_WF	  ( 32767)
257 #define BDAP_WB	  (-32768)
258 
259 #define ENCODE_RELAX(what, length) (((what) << 2) + (length))
260 
261 const relax_typeS md_cris_relax_table[] =
262 {
263   /* Error sentinel (0, 0).  */
264   {1,	      1,	 0,  0},
265 
266   /* Unused (0, 1).  */
267   {1,	      1,	 0,  0},
268 
269   /* Unused (0, 2).  */
270   {1,	      1,	 0,  0},
271 
272   /* Unused (0, 3).  */
273   {1,	      1,	 0,  0},
274 
275   /* Bcc o (1, 0).  */
276   {BRANCH_BF, BRANCH_BB, 0,  ENCODE_RELAX (1, 1)},
277 
278   /* Bcc [PC+] (1, 1).  */
279   {BRANCH_WF, BRANCH_WB, 2,  ENCODE_RELAX (1, 2)},
280 
281   /* BEXT/BWF, BA, JUMP (external), JUMP (always), Bnot_cc, JUMP (default)
282      (1, 2).  */
283   {0,	      0,	 10, 0},
284 
285   /* Unused (1, 3).  */
286   {1,	      1,	 0,  0},
287 
288   /* BDAP o (2, 0).  */
289   {BDAP_BF,   BDAP_BB,	 0,  ENCODE_RELAX (2, 1)},
290 
291   /* BDAP.[bw] [PC+] (2, 1).  */
292   {BDAP_WF,   BDAP_WB,	 2,  ENCODE_RELAX (2, 2)},
293 
294   /* BDAP.d [PC+] (2, 2).  */
295   {0,	      0,	 4,  0},
296 
297   /* Unused (2, 3).  */
298   {0,	      0,	 0,  0},
299 
300   /* MULS/MULU (3, 0).  Positions (3, 1..3) are unused.  */
301   {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}
302 };
303 
304 #undef BRANCH_BF
305 #undef BRANCH_BB
306 #undef BRANCH_WF
307 #undef BRANCH_WB
308 #undef BDAP_BF
309 #undef BDAP_BB
310 #undef BDAP_WF
311 #undef BDAP_WB
312 
313 /* Target-specific multicharacter options, not const-declared at usage
314    in 2.9.1 and CVS of 2000-02-16.  */
315 struct option md_longopts[] =
316 {
317 #define OPTION_NO_US (OPTION_MD_BASE + 0)
318   {"no-underscore", no_argument, NULL, OPTION_NO_US},
319 #define OPTION_US (OPTION_MD_BASE + 1)
320   {"underscore", no_argument, NULL, OPTION_US},
321 #define OPTION_PIC (OPTION_MD_BASE + 2)
322   {"pic", no_argument, NULL, OPTION_PIC},
323 #define OPTION_MULBUG_ABORT_ON (OPTION_MD_BASE + 3)
324   {"mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_ON},
325 #define OPTION_MULBUG_ABORT_OFF (OPTION_MD_BASE + 4)
326   {"no-mul-bug-abort", no_argument, NULL, OPTION_MULBUG_ABORT_OFF},
327   {NULL, no_argument, NULL, 0}
328 };
329 
330 /* Not const-declared at usage in 2.9.1.  */
331 size_t md_longopts_size = sizeof (md_longopts);
332 const char *md_shortopts = "hHN";
333 
334 /* At first glance, this may seems wrong and should be 4 (ba + nop); but
335    since a short_jump must skip a *number* of long jumps, it must also be
336    a long jump.  Here, we hope to make it a "ba [16bit_offs]" and a "nop"
337    for the delay slot and hope that the jump table at most needs
338    32767/4=8191 long-jumps.  A branch is better than a jump, since it is
339    relative; we will not have a reloc to fix up somewhere.
340 
341    Note that we can't add relocs, because relaxation uses these fixed
342    numbers, and md_create_short_jump is called after relaxation.  */
343 
344 const int md_short_jump_size = 6;
345 const int md_long_jump_size = 6;
346 
347 /* Report output format.  Small changes in output format (like elf
348    variants below) can happen until all options are parsed, but after
349    that, the output format must remain fixed.  */
350 
351 const char *
cris_target_format()352 cris_target_format ()
353 {
354   switch (OUTPUT_FLAVOR)
355     {
356     case bfd_target_aout_flavour:
357       return "a.out-cris";
358 
359     case bfd_target_elf_flavour:
360       if (symbols_have_leading_underscore)
361 	return "elf32-us-cris";
362       return "elf32-cris";
363 
364     default:
365       abort ();
366       return NULL;
367     }
368 }
369 
370 /* We need a port-specific relaxation function to cope with sym2 - sym1
371    relative expressions with both symbols in the same segment (but not
372    necessarily in the same frag as this insn), for example:
373      move.d [pc+sym2-(sym1-2)],r10
374     sym1:
375    The offset can be 8, 16 or 32 bits long.  */
376 
377 long
cris_relax_frag(seg,fragP,stretch)378 cris_relax_frag (seg, fragP, stretch)
379      segT seg ATTRIBUTE_UNUSED;
380      fragS *fragP;
381      long stretch ATTRIBUTE_UNUSED;
382 {
383   long growth;
384   offsetT aim = 0;
385   symbolS *symbolP;
386   const relax_typeS *this_type;
387   const relax_typeS *start_type;
388   relax_substateT next_state;
389   relax_substateT this_state;
390   const relax_typeS *table = TC_GENERIC_RELAX_TABLE;
391 
392   /* We only have to cope with frags as prepared by
393      md_estimate_size_before_relax.  The dword cases may get here
394      because of the different reasons that they aren't relaxable.  */
395   switch (fragP->fr_subtype)
396     {
397     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
398     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
399       /* When we get to these states, the frag won't grow any more.  */
400       return 0;
401 
402     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
403     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
404       if (fragP->fr_symbol == NULL
405 	  || S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
406 	as_fatal (_("internal inconsistency problem in %s: fr_symbol %lx"),
407 		  __FUNCTION__, (long) fragP->fr_symbol);
408       symbolP = fragP->fr_symbol;
409       if (symbol_resolved_p (symbolP))
410 	as_fatal (_("internal inconsistency problem in %s: resolved symbol"),
411 		  __FUNCTION__);
412       aim = S_GET_VALUE (symbolP);
413       break;
414 
415     case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
416       /* Nothing to do here.  */
417       return 0;
418 
419     default:
420       as_fatal (_("internal inconsistency problem in %s: fr_subtype %d"),
421 		  __FUNCTION__, fragP->fr_subtype);
422     }
423 
424   /* The rest is stolen from relax_frag.  There's no obvious way to
425      share the code, but fortunately no requirement to keep in sync as
426      long as fragP->fr_symbol does not have its segment changed.  */
427 
428   this_state = fragP->fr_subtype;
429   start_type = this_type = table + this_state;
430 
431   if (aim < 0)
432     {
433       /* Look backwards.  */
434       for (next_state = this_type->rlx_more; next_state;)
435 	if (aim >= this_type->rlx_backward)
436 	  next_state = 0;
437 	else
438 	  {
439 	    /* Grow to next state.  */
440 	    this_state = next_state;
441 	    this_type = table + this_state;
442 	    next_state = this_type->rlx_more;
443 	  }
444     }
445   else
446     {
447       /* Look forwards.  */
448       for (next_state = this_type->rlx_more; next_state;)
449 	if (aim <= this_type->rlx_forward)
450 	  next_state = 0;
451 	else
452 	  {
453 	    /* Grow to next state.  */
454 	    this_state = next_state;
455 	    this_type = table + this_state;
456 	    next_state = this_type->rlx_more;
457 	  }
458     }
459 
460   growth = this_type->rlx_length - start_type->rlx_length;
461   if (growth != 0)
462     fragP->fr_subtype = this_state;
463   return growth;
464 }
465 
466 /* Prepare machine-dependent frags for relaxation.
467 
468    Called just before relaxation starts. Any symbol that is now undefined
469    will not become defined.
470 
471    Return the correct fr_subtype in the frag.
472 
473    Return the initial "guess for fr_var" to caller.  The guess for fr_var
474    is *actually* the growth beyond fr_fix. Whatever we do to grow fr_fix
475    or fr_var contributes to our returned value.
476 
477    Although it may not be explicit in the frag, pretend
478    fr_var starts with a value.  */
479 
480 int
md_estimate_size_before_relax(fragP,segment_type)481 md_estimate_size_before_relax (fragP, segment_type)
482      fragS *fragP;
483      /* The segment is either N_DATA or N_TEXT.  */
484      segT segment_type;
485 {
486   int old_fr_fix;
487 
488   old_fr_fix = fragP->fr_fix;
489 
490   switch (fragP->fr_subtype)
491     {
492     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
493       if (S_GET_SEGMENT (fragP->fr_symbol) == segment_type)
494 	/* The symbol lies in the same segment - a relaxable case.  */
495 	fragP->fr_subtype
496 	  = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
497       else
498 	/* Unknown or not the same segment, so not relaxable.  */
499 	fragP->fr_subtype
500 	  = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD);
501       fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
502       break;
503 
504     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF):
505       /* Note that we can not do anything sane with relaxing
506 	 [rX + a_known_symbol_in_text], it will have to be a 32-bit
507 	 value.
508 
509 	 We could play tricks with managing a constant pool and make
510 	 a_known_symbol_in_text a "bdap [pc + offset]" pointing there
511 	 (like the GOT for ELF shared libraries), but that's no use, it
512 	 would in general be no shorter or faster code, only more
513 	 complicated.  */
514 
515       if (S_GET_SEGMENT (fragP->fr_symbol) != absolute_section)
516 	{
517 	  /* Go for dword if not absolute or same segment.  */
518 	  fragP->fr_subtype
519 	    = ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD);
520 	  fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
521 	}
522       else if (!symbol_resolved_p (fragP->fr_symbol))
523 	{
524 	  /* The symbol will eventually be completely resolved as an
525 	     absolute expression, but right now it depends on the result
526 	     of relaxation and we don't know anything else about the
527 	     value.  We start relaxation with the assumption that it'll
528 	     fit in a byte.  */
529 	  fragP->fr_subtype
530 	    = ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE);
531 	  fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
532 	}
533       else
534 	{
535 	  /* Absolute expression.  */
536 	  long int value;
537 	  value = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
538 
539 	  if (value >= -128 && value <= 127)
540 	    {
541 	      /* Byte displacement.  */
542 	      (fragP->fr_opcode)[0] = value;
543 	    }
544 	  else
545 	    {
546 	      /* Word or dword displacement.  */
547 	      int pow2_of_size = 1;
548 	      char *writep;
549 
550 	      if (value < -32768 || value > 32767)
551 		{
552 		  /* Outside word range, make it a dword.  */
553 		  pow2_of_size = 2;
554 		}
555 
556 	      /* Modify the byte-offset BDAP into a word or dword offset
557 		 BDAP.	Or really, a BDAP rX,8bit into a
558 		 BDAP.[wd] rX,[PC+] followed by a word or dword.  */
559 	      (fragP->fr_opcode)[0] = BDAP_PC_LOW + pow2_of_size * 16;
560 
561 	      /* Keep the register number in the highest four bits.  */
562 	      (fragP->fr_opcode)[1] &= 0xF0;
563 	      (fragP->fr_opcode)[1] |= BDAP_INCR_HIGH;
564 
565 	      /* It grew by two or four bytes.  */
566 	      fragP->fr_fix += 1 << pow2_of_size;
567 	      writep = fragP->fr_literal + old_fr_fix;
568 	      md_number_to_chars (writep, value, 1 << pow2_of_size);
569 	    }
570 	  frag_wane (fragP);
571 	}
572       break;
573 
574     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
575     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
576     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
577     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
578     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
579     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
580       /* When relaxing a section for the second time, we don't need to
581 	 do anything except making sure that fr_var is set right.  */
582       fragP->fr_var = md_cris_relax_table[fragP->fr_subtype].rlx_length;
583       break;
584 
585     case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
586       /* Nothing to do here.  */
587       break;
588 
589     default:
590       BAD_CASE (fragP->fr_subtype);
591     }
592 
593   return fragP->fr_var + (fragP->fr_fix - old_fr_fix);
594 }
595 
596 /* Perform post-processing of machine-dependent frags after relaxation.
597    Called after relaxation is finished.
598    In:	Address of frag.
599 	fr_type == rs_machine_dependent.
600 	fr_subtype is what the address relaxed to.
601 
602    Out: Any fixS:s and constants are set up.
603 
604    The caller will turn the frag into a ".space 0".  */
605 
606 void
md_convert_frag(abfd,sec,fragP)607 md_convert_frag (abfd, sec, fragP)
608      bfd *abfd ATTRIBUTE_UNUSED;
609      segT sec ATTRIBUTE_UNUSED;
610      fragS *fragP;
611 {
612   /* Pointer to first byte in variable-sized part of the frag.  */
613   char *var_partp;
614 
615   /* Pointer to first opcode byte in frag.  */
616   char *opcodep;
617 
618   /* Used to check integrity of the relaxation.
619      One of 2 = long, 1 = word, or 0 = byte.  */
620   int length_code;
621 
622   /* Size in bytes of variable-sized part of frag.  */
623   int var_part_size = 0;
624 
625   /* This is part of *fragP.  It contains all information about addresses
626      and offsets to varying parts.  */
627   symbolS *symbolP;
628   unsigned long var_part_offset;
629 
630   /* Where, in file space, is _var of *fragP?  */
631   unsigned long address_of_var_part = 0;
632 
633   /* Where, in file space, does addr point?  */
634   unsigned long target_address;
635 
636   know (fragP->fr_type == rs_machine_dependent);
637 
638   length_code = fragP->fr_subtype & STATE_LENGTH_MASK;
639   know (length_code >= 0 && length_code < STATE_MAX_LENGTH);
640 
641   var_part_offset = fragP->fr_fix;
642   var_partp = fragP->fr_literal + var_part_offset;
643   opcodep = fragP->fr_opcode;
644 
645   symbolP = fragP->fr_symbol;
646   target_address = (symbolP ? S_GET_VALUE (symbolP) : 0) + fragP->fr_offset;
647   address_of_var_part = fragP->fr_address + var_part_offset;
648 
649   switch (fragP->fr_subtype)
650     {
651     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
652       opcodep[0] = branch_disp ((target_address - address_of_var_part));
653       var_part_size = 0;
654       break;
655 
656     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
657       /* We had a quick immediate branch, now turn it into a word one i.e. a
658 	 PC autoincrement.  */
659       opcodep[0] = BRANCH_PC_LOW;
660       opcodep[1] &= 0xF0;
661       opcodep[1] |= BRANCH_INCR_HIGH;
662       md_number_to_chars (var_partp,
663 			  (long) (target_address - (address_of_var_part + 2)),
664 			  2);
665       var_part_size = 2;
666       break;
667 
668     case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_DWORD):
669       gen_cond_branch_32 (fragP->fr_opcode, var_partp, fragP,
670 			  fragP->fr_symbol, (symbolS *) NULL,
671 			  fragP->fr_offset);
672       /* Ten bytes added: a branch, nop and a jump.  */
673       var_part_size = 2 + 2 + 4 + 2;
674       break;
675 
676     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_BYTE):
677       if (symbolP == NULL)
678 	as_fatal (_("internal inconsistency in %s: bdapq no symbol"),
679 		    __FUNCTION__);
680       opcodep[0] = S_GET_VALUE (symbolP);
681       var_part_size = 0;
682       break;
683 
684     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_WORD):
685       /* We had a BDAP 8-bit "quick immediate", now turn it into a 16-bit
686 	 one that uses PC autoincrement.  */
687       opcodep[0] = BDAP_PC_LOW + (1 << 4);
688       opcodep[1] &= 0xF0;
689       opcodep[1] |= BDAP_INCR_HIGH;
690       if (symbolP == NULL)
691 	as_fatal (_("internal inconsistency in %s: bdap.w with no symbol"),
692 		  __FUNCTION__);
693       md_number_to_chars (var_partp, S_GET_VALUE (symbolP), 2);
694       var_part_size = 2;
695       break;
696 
697     case ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_DWORD):
698       /* We had a BDAP 16-bit "word", change the offset to a dword.  */
699       opcodep[0] = BDAP_PC_LOW + (2 << 4);
700       opcodep[1] &= 0xF0;
701       opcodep[1] |= BDAP_INCR_HIGH;
702       if (fragP->fr_symbol == NULL)
703 	md_number_to_chars (var_partp, fragP->fr_offset, 4);
704       else
705 	fix_new (fragP, var_partp - fragP->fr_literal, 4, fragP->fr_symbol,
706 		 fragP->fr_offset, 0, BFD_RELOC_32);
707       var_part_size = 4;
708       break;
709 
710     case ENCODE_RELAX (STATE_MUL, STATE_BYTE):
711       /* This is the only time we check position and aligmnent of the
712 	 placement-tracking frag.  */
713       if (sec->alignment_power < 2)
714 	as_bad_where (fragP->fr_file, fragP->fr_line,
715 		      _("section alignment must be >= 4 bytes to check MULS/MULU safeness"));
716       else
717 	{
718 	  /* If the address after the MULS/MULU has alignment which is
719 	     that of the section and may be that of a cache-size of the
720 	     buggy versions, then the MULS/MULU can be placed badly.  */
721 	  if ((address_of_var_part
722 	       & ((1 << sec->alignment_power) - 1) & 31) == 0)
723 	    as_bad_where (fragP->fr_file, fragP->fr_line,
724 			  _("dangerous MULS/MULU location; give it higher alignment"));
725 	}
726       break;
727 
728     default:
729       BAD_CASE (fragP->fr_subtype);
730       break;
731     }
732 
733   fragP->fr_fix += var_part_size;
734 }
735 
736 /* Generate a short jump around a secondary jump table.
737    Used by md_create_long_jump.
738 
739    This used to be md_create_short_jump, but is now called from
740    md_create_long_jump instead, when sufficient.
741    since the sizes of the jumps are the same.  It used to be brittle,
742    making possibilities for creating bad code.  */
743 
744 static void
cris_create_short_jump(storep,from_addr,to_addr,fragP,to_symbol)745 cris_create_short_jump (storep, from_addr, to_addr, fragP, to_symbol)
746      char *storep;
747      addressT from_addr;
748      addressT to_addr;
749      fragS *fragP ATTRIBUTE_UNUSED;
750      symbolS *to_symbol ATTRIBUTE_UNUSED;
751 {
752   long int distance;
753 
754   distance = to_addr - from_addr;
755 
756   if (-254 <= distance && distance <= 256)
757     {
758       /* Create a "short" short jump: "BA distance - 2".  */
759       storep[0] = branch_disp (distance - 2);
760       storep[1] = BA_QUICK_HIGH;
761 
762       /* A nop for the delay slot.  */
763       md_number_to_chars (storep + 2, NOP_OPCODE, 2);
764 
765       /* The extra word should be filled with something sane too.  Make it
766 	 a nop to keep disassembly sane.  */
767       md_number_to_chars (storep + 4, NOP_OPCODE, 2);
768     }
769   else
770     {
771       /* Make it a "long" short jump: "BA (PC+)".  */
772       md_number_to_chars (storep, BA_PC_INCR_OPCODE, 2);
773 
774       /* ".WORD distance - 4".  */
775       md_number_to_chars (storep + 2, (long) (distance - 4), 2);
776 
777       /* A nop for the delay slot.  */
778       md_number_to_chars (storep + 4, NOP_OPCODE, 2);
779     }
780 }
781 
782 /* Generate a long jump in a secondary jump table.
783 
784    storep  Where to store the jump instruction.
785    from_addr  Address of the jump instruction.
786    to_addr    Destination address of the jump.
787    fragP      Which frag the destination address operand
788 	      lies in.
789    to_symbol  Destination symbol.  */
790 
791 void
md_create_long_jump(storep,from_addr,to_addr,fragP,to_symbol)792 md_create_long_jump (storep, from_addr, to_addr, fragP, to_symbol)
793      char *storep;
794      addressT from_addr;
795      addressT to_addr;
796      fragS *fragP;
797      symbolS *to_symbol;
798 {
799   long int distance;
800 
801   distance = to_addr - from_addr;
802 
803   if (-32763 <= distance && distance <= 32772)
804     {
805       /* Then make it a "short" long jump.  */
806       cris_create_short_jump (storep, from_addr, to_addr, fragP,
807 			      to_symbol);
808     }
809   else
810     {
811       /* We have a "long" long jump: "JUMP [PC+]".
812 	 Make it an "ADD [PC+],PC" if we're supposed to emit PIC code.  */
813       md_number_to_chars (storep,
814 			  pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
815 
816       /* Follow with a ".DWORD to_addr", PC-relative for PIC.  */
817       fix_new (fragP, storep + 2 - fragP->fr_literal, 4, to_symbol,
818 	       0, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
819     }
820 }
821 
822 /* Allocate space for the first piece of an insn, and mark it as the
823    start of the insn for debug-format use.  */
824 
825 static char *
cris_insn_first_word_frag()826 cris_insn_first_word_frag ()
827 {
828   char *insnp = frag_more (2);
829 
830   /* We need to mark the start of the insn by passing dwarf2_emit_insn
831      the offset from the current fragment position.  This must be done
832      after the first fragment is created but before any other fragments
833      (fixed or varying) are created.  Note that the offset only
834      corresponds to the "size" of the insn for a fixed-size,
835      non-expanded insn.  */
836   if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
837     dwarf2_emit_insn (2);
838 
839   return insnp;
840 }
841 
842 /* Port-specific assembler initialization.  */
843 
844 void
md_begin()845 md_begin ()
846 {
847   const char *hashret = NULL;
848   int i = 0;
849 
850   /* Set up a hash table for the instructions.  */
851   op_hash = hash_new ();
852   if (op_hash == NULL)
853     as_fatal (_("Virtual memory exhausted"));
854 
855   while (cris_opcodes[i].name != NULL)
856     {
857       const char *name = cris_opcodes[i].name;
858       hashret = hash_insert (op_hash, name, (PTR) &cris_opcodes[i]);
859 
860       if (hashret != NULL && *hashret != '\0')
861 	as_fatal (_("Can't hash `%s': %s\n"), cris_opcodes[i].name,
862 		  *hashret == 0 ? _("(unknown reason)") : hashret);
863       do
864 	{
865 	  if (cris_opcodes[i].match & cris_opcodes[i].lose)
866 	    as_fatal (_("Buggy opcode: `%s' \"%s\"\n"), cris_opcodes[i].name,
867 		      cris_opcodes[i].args);
868 
869 	  ++i;
870 	}
871       while (cris_opcodes[i].name != NULL
872 	     && strcmp (cris_opcodes[i].name, name) == 0);
873     }
874 }
875 
876 /* Assemble a source line.  */
877 
878 void
md_assemble(str)879 md_assemble (str)
880      char *str;
881 {
882   struct cris_instruction output_instruction;
883   struct cris_prefix prefix;
884   char *opcodep;
885   char *p;
886 
887   know (str);
888 
889   /* Do the low-level grunt - assemble to bits and split up into a prefix
890      and ordinary insn.  */
891   cris_process_instruction (str, &output_instruction, &prefix);
892 
893   /* Handle any prefixes to the instruction.  */
894   switch (prefix.kind)
895     {
896     case PREFIX_NONE:
897       break;
898 
899       /* When the expression is unknown for a BDAP, it can need 0, 2 or 4
900 	 extra bytes, so we handle it separately.  */
901     case PREFIX_BDAP_IMM:
902       /* We only do it if the relocation is unspecified, i.e. not a PIC
903 	 relocation.  */
904       if (prefix.reloc == BFD_RELOC_NONE)
905 	{
906 	  gen_bdap (prefix.base_reg_number, &prefix.expr);
907 	  break;
908 	}
909       /* Fall through.  */
910     case PREFIX_BDAP:
911     case PREFIX_BIAP:
912     case PREFIX_DIP:
913       opcodep = cris_insn_first_word_frag ();
914 
915       /* Output the prefix opcode.  */
916       md_number_to_chars (opcodep, (long) prefix.opcode, 2);
917 
918       /* Having a specified reloc only happens for DIP and for BDAP with
919 	 PIC operands, but it is ok to drop through here for the other
920 	 prefixes as they can have no relocs specified.  */
921       if (prefix.reloc != BFD_RELOC_NONE)
922 	{
923 	  unsigned int relocsize
924 	    = (prefix.kind == PREFIX_DIP
925 	       ? 4 : cris_get_pic_reloc_size (prefix.reloc));
926 
927 	  p = frag_more (relocsize);
928 	  fix_new_exp (frag_now, (p - frag_now->fr_literal), relocsize,
929 		       &prefix.expr, 0, prefix.reloc);
930 	}
931       break;
932 
933     case PREFIX_PUSH:
934       opcodep = cris_insn_first_word_frag ();
935 
936       /* Output the prefix opcode.  Being a "push", we add the negative
937 	 size of the register to "sp".  */
938       if (output_instruction.spec_reg != NULL)
939 	{
940 	  /* Special register.  */
941 	  opcodep[0] = -output_instruction.spec_reg->reg_size;
942 	}
943       else
944 	{
945 	  /* General register.  */
946 	  opcodep[0] = -4;
947 	}
948       opcodep[1] = (REG_SP << 4) + (BDAP_QUICK_OPCODE >> 8);
949       break;
950 
951     default:
952       BAD_CASE (prefix.kind);
953     }
954 
955   /* If we only had a prefix insn, we're done.  */
956   if (output_instruction.insn_type == CRIS_INSN_NONE)
957     return;
958 
959   /* Done with the prefix.  Continue with the main instruction.  */
960   if (prefix.kind == PREFIX_NONE)
961     opcodep = cris_insn_first_word_frag ();
962   else
963     opcodep = frag_more (2);
964 
965   /* Output the instruction opcode.  */
966   md_number_to_chars (opcodep, (long) (output_instruction.opcode), 2);
967 
968   /* Output the symbol-dependent instruction stuff.  */
969   if (output_instruction.insn_type == CRIS_INSN_BRANCH)
970     {
971       segT to_seg = absolute_section;
972       int is_undefined = 0;
973       int length_code;
974 
975       if (output_instruction.expr.X_op != O_constant)
976 	{
977 	  to_seg = S_GET_SEGMENT (output_instruction.expr.X_add_symbol);
978 
979 	  if (to_seg == undefined_section)
980 	    is_undefined = 1;
981 	}
982 
983       if (to_seg == now_seg || is_undefined)
984 	{
985 	  /* Handle complex expressions.  */
986 	  valueT addvalue
987 	    = (SIMPLE_EXPR (&output_instruction.expr)
988 	       ? output_instruction.expr.X_add_number
989 	       : 0);
990 	  symbolS *sym
991 	    = (SIMPLE_EXPR (&output_instruction.expr)
992 	       ? output_instruction.expr.X_add_symbol
993 	       : make_expr_symbol (&output_instruction.expr));
994 
995 	  /* If is_undefined, then the expression may BECOME now_seg.  */
996 	  length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
997 
998 	  /* Make room for max ten bytes of variable length.  */
999 	  frag_var (rs_machine_dependent, 10, 0,
1000 		    ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
1001 		    sym, addvalue, opcodep);
1002 	}
1003       else
1004 	{
1005 	  /* We have: to_seg != now_seg && to_seg != undefined_section.
1006 	     This means it is a branch to a known symbol in another
1007 	     section, perhaps an absolute address.  Emit a 32-bit branch.  */
1008 	  char *cond_jump = frag_more (10);
1009 
1010 	  gen_cond_branch_32 (opcodep, cond_jump, frag_now,
1011 			      output_instruction.expr.X_add_symbol,
1012 			      (symbolS *) NULL,
1013 			      output_instruction.expr.X_add_number);
1014 	}
1015     }
1016   else if (output_instruction.insn_type == CRIS_INSN_MUL
1017 	   && err_for_dangerous_mul_placement)
1018     /* Create a frag which which we track the location of the mul insn
1019        (in the last two bytes before the mul-frag).  */
1020     frag_variant (rs_machine_dependent, 0, 0,
1021 		  ENCODE_RELAX (STATE_MUL, STATE_BYTE),
1022 		  NULL, 0, opcodep);
1023   else
1024     {
1025       if (output_instruction.imm_oprnd_size > 0)
1026 	{
1027 	  /* The instruction has an immediate operand.  */
1028 	  enum bfd_reloc_code_real reloc = BFD_RELOC_NONE;
1029 
1030 	  switch (output_instruction.imm_oprnd_size)
1031 	    {
1032 	      /* Any byte-size immediate constants are treated as
1033 		 word-size.  FIXME: Thus overflow check does not work
1034 		 correctly.  */
1035 
1036 	    case 2:
1037 	      /* Note that size-check for the explicit reloc has already
1038 		 been done when we get here.  */
1039 	      if (output_instruction.reloc != BFD_RELOC_NONE)
1040 		reloc = output_instruction.reloc;
1041 	      else
1042 		reloc = BFD_RELOC_16;
1043 	      break;
1044 
1045 	    case 4:
1046 	      /* Allow a relocation specified in the operand.  */
1047 	      if (output_instruction.reloc != BFD_RELOC_NONE)
1048 		reloc = output_instruction.reloc;
1049 	      else
1050 		reloc = BFD_RELOC_32;
1051 	      break;
1052 
1053 	    default:
1054 	      BAD_CASE (output_instruction.imm_oprnd_size);
1055 	    }
1056 
1057 	  p = frag_more (output_instruction.imm_oprnd_size);
1058 	  fix_new_exp (frag_now, (p - frag_now->fr_literal),
1059 		       output_instruction.imm_oprnd_size,
1060 		       &output_instruction.expr, 0, reloc);
1061 	}
1062       else if (output_instruction.reloc != BFD_RELOC_NONE)
1063 	{
1064 	  /* An immediate operand that has a relocation and needs to be
1065 	     processed further.  */
1066 
1067 	  /* It is important to use fix_new_exp here and everywhere else
1068 	     (and not fix_new), as fix_new_exp can handle "difference
1069 	     expressions" - where the expression contains a difference of
1070 	     two symbols in the same segment.  */
1071 	  fix_new_exp (frag_now, (opcodep - frag_now->fr_literal), 2,
1072 		       &output_instruction.expr, 0,
1073 		       output_instruction.reloc);
1074 	}
1075     }
1076 }
1077 
1078 /* Low level text-to-bits assembly.  */
1079 
1080 static void
cris_process_instruction(insn_text,out_insnp,prefixp)1081 cris_process_instruction (insn_text, out_insnp, prefixp)
1082      char *insn_text;
1083      struct cris_instruction *out_insnp;
1084      struct cris_prefix *prefixp;
1085 {
1086   char *s;
1087   char modified_char = 0;
1088   const char *args;
1089   struct cris_opcode *instruction;
1090   char *operands;
1091   int match = 0;
1092   int mode;
1093   int regno;
1094   int size_bits;
1095 
1096   /* Reset these fields to a harmless state in case we need to return in
1097      error.  */
1098   prefixp->kind = PREFIX_NONE;
1099   prefixp->reloc = BFD_RELOC_NONE;
1100   out_insnp->insn_type = CRIS_INSN_NORMAL;
1101   out_insnp->imm_oprnd_size = 0;
1102 
1103   /* Find the end of the opcode mnemonic.  We assume (true in 2.9.1)
1104      that the caller has translated the opcode to lower-case, up to the
1105      first non-letter.  */
1106   for (operands = insn_text; ISLOWER (*operands); ++operands)
1107     ;
1108 
1109   /* Terminate the opcode after letters, but save the character there if
1110      it was of significance.  */
1111   switch (*operands)
1112     {
1113     case '\0':
1114       break;
1115 
1116     case '.':
1117       /* Put back the modified character later.  */
1118       modified_char = *operands;
1119       /* Fall through.  */
1120 
1121     case ' ':
1122       /* Consume the character after the mnemonic
1123 	 and replace it with '\0'.  */
1124       *operands++ = '\0';
1125       break;
1126 
1127     default:
1128       as_bad (_("Unknown opcode: `%s'"), insn_text);
1129       return;
1130     }
1131 
1132   /* Find the instruction.  */
1133   instruction = (struct cris_opcode *) hash_find (op_hash, insn_text);
1134   if (instruction == NULL)
1135     {
1136       as_bad (_("Unknown opcode: `%s'"), insn_text);
1137       return;
1138     }
1139 
1140   /* Put back the modified character.  */
1141   switch (modified_char)
1142     {
1143     case 0:
1144       break;
1145 
1146     default:
1147       *--operands = modified_char;
1148     }
1149 
1150   /* Try to match an opcode table slot.  */
1151   for (s = operands;;)
1152     {
1153       int imm_expr_found;
1154 
1155       /* Initialize *prefixp, perhaps after being modified for a
1156 	 "near match".  */
1157       prefixp->kind = PREFIX_NONE;
1158       prefixp->reloc = BFD_RELOC_NONE;
1159 
1160       /* Initialize *out_insnp.  */
1161       memset (out_insnp, 0, sizeof (*out_insnp));
1162       out_insnp->opcode = instruction->match;
1163       out_insnp->reloc = BFD_RELOC_NONE;
1164       out_insnp->insn_type = CRIS_INSN_NORMAL;
1165       out_insnp->imm_oprnd_size = 0;
1166 
1167       imm_expr_found = 0;
1168 
1169       /* Build the opcode, checking as we go to make sure that the
1170 	 operands match.  */
1171       for (args = instruction->args;; ++args)
1172 	{
1173 	  switch (*args)
1174 	    {
1175 	    case '\0':
1176 	      /* If we've come to the end of arguments, we're done.  */
1177 	      if (*s == '\0')
1178 		match = 1;
1179 	      break;
1180 
1181 	    case '!':
1182 	      /* Non-matcher character for disassembly.
1183 		 Ignore it here.  */
1184 	      continue;
1185 
1186 	    case ',':
1187 	    case ' ':
1188 	      /* These must match exactly.  */
1189 	      if (*s++ == *args)
1190 		continue;
1191 	      break;
1192 
1193 	    case 'B':
1194 	      /* This is not really an operand, but causes a "BDAP
1195 		 -size,SP" prefix to be output, for PUSH instructions.  */
1196 	      prefixp->kind = PREFIX_PUSH;
1197 	      continue;
1198 
1199 	    case 'b':
1200 	      /* This letter marks an operand that should not be matched
1201 		 in the assembler. It is a branch with 16-bit
1202 		 displacement.  The assembler will create them from the
1203 		 8-bit flavor when necessary.  The assembler does not
1204 		 support the [rN+] operand, as the [r15+] that is
1205 		 generated for 16-bit displacements.  */
1206 	      break;
1207 
1208 	    case 'c':
1209 	      /* A 5-bit unsigned immediate in bits <4:0>.  */
1210 	      if (! cris_get_expression (&s, &out_insnp->expr))
1211 		break;
1212 	      else
1213 		{
1214 		  if (out_insnp->expr.X_op == O_constant
1215 		      && (out_insnp->expr.X_add_number < 0
1216 			  || out_insnp->expr.X_add_number > 31))
1217 		    as_bad (_("Immediate value not in 5 bit unsigned range: %ld"),
1218 			    out_insnp->expr.X_add_number);
1219 
1220 		  out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_5;
1221 		  continue;
1222 		}
1223 
1224 	    case 'C':
1225 	      /* A 4-bit unsigned immediate in bits <3:0>.  */
1226 	      if (! cris_get_expression (&s, &out_insnp->expr))
1227 		break;
1228 	      else
1229 		{
1230 		  if (out_insnp->expr.X_op == O_constant
1231 		      && (out_insnp->expr.X_add_number < 0
1232 			  || out_insnp->expr.X_add_number > 15))
1233 		    as_bad (_("Immediate value not in 4 bit unsigned range: %ld"),
1234 			    out_insnp->expr.X_add_number);
1235 
1236 		  out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_4;
1237 		  continue;
1238 		}
1239 
1240 	    case 'D':
1241 	      /* General register in bits <15:12> and <3:0>.  */
1242 	      if (! get_gen_reg (&s, &regno))
1243 		break;
1244 	      else
1245 		{
1246 		  out_insnp->opcode |= regno /* << 0 */;
1247 		  out_insnp->opcode |= regno << 12;
1248 		  continue;
1249 		}
1250 
1251 	    case 'f':
1252 	      /* Flags from the condition code register.  */
1253 	      {
1254 		int flags = 0;
1255 
1256 		if (! get_flags (&s, &flags))
1257 		  break;
1258 
1259 		out_insnp->opcode |= ((flags & 0xf0) << 8) | (flags & 0xf);
1260 		continue;
1261 	      }
1262 
1263 	    case 'i':
1264 	      /* A 6-bit signed immediate in bits <5:0>.  */
1265 	      if (! cris_get_expression (&s, &out_insnp->expr))
1266 		break;
1267 	      else
1268 		{
1269 		  if (out_insnp->expr.X_op == O_constant
1270 		      && (out_insnp->expr.X_add_number < -32
1271 			  || out_insnp->expr.X_add_number > 31))
1272 		    as_bad (_("Immediate value not in 6 bit range: %ld"),
1273 			    out_insnp->expr.X_add_number);
1274 		  out_insnp->reloc = BFD_RELOC_CRIS_SIGNED_6;
1275 		  continue;
1276 		}
1277 
1278 	    case 'I':
1279 	      /* A 6-bit unsigned immediate in bits <5:0>.  */
1280 	      if (! cris_get_expression (&s, &out_insnp->expr))
1281 		break;
1282 	      else
1283 		{
1284 		  if (out_insnp->expr.X_op == O_constant
1285 		      && (out_insnp->expr.X_add_number < 0
1286 			  || out_insnp->expr.X_add_number > 63))
1287 		    as_bad (_("Immediate value not in 6 bit unsigned range: %ld"),
1288 			    out_insnp->expr.X_add_number);
1289 		  out_insnp->reloc = BFD_RELOC_CRIS_UNSIGNED_6;
1290 		  continue;
1291 		}
1292 
1293 	    case 'M':
1294 	      /* A size modifier, B, W or D, to be put in a bit position
1295 		 suitable for CLEAR instructions (i.e. reflecting a zero
1296 		 register).  */
1297 	      if (! get_bwd_size_modifier (&s, &size_bits))
1298 		break;
1299 	      else
1300 		{
1301 		  switch (size_bits)
1302 		    {
1303 		    case 0:
1304 		      out_insnp->opcode |= 0 << 12;
1305 		      break;
1306 
1307 		    case 1:
1308 		      out_insnp->opcode |= 4 << 12;
1309 		      break;
1310 
1311 		    case 2:
1312 		      out_insnp->opcode |= 8 << 12;
1313 		      break;
1314 		    }
1315 		  continue;
1316 		}
1317 
1318 	    case 'm':
1319 	      /* A size modifier, B, W or D, to be put in bits <5:4>.  */
1320 	      if (! get_bwd_size_modifier (&s, &size_bits))
1321 		break;
1322 	      else
1323 		{
1324 		  out_insnp->opcode |= size_bits << 4;
1325 		  continue;
1326 		}
1327 
1328 	    case 'o':
1329 	      /* A branch expression.  */
1330 	      if (! cris_get_expression (&s, &out_insnp->expr))
1331 		break;
1332 	      else
1333 		{
1334 		  out_insnp->insn_type = CRIS_INSN_BRANCH;
1335 		  continue;
1336 		}
1337 
1338 	    case 'O':
1339 	      /* A BDAP expression for any size, "expr,r".  */
1340 	      if (! cris_get_expression (&s, &prefixp->expr))
1341 		break;
1342 	      else
1343 		{
1344 		  if (*s != ',')
1345 		    break;
1346 
1347 		  s++;
1348 
1349 		  if (!get_gen_reg (&s, &prefixp->base_reg_number))
1350 		    break;
1351 
1352 		  /* Since 'O' is used with an explicit bdap, we have no
1353 		     "real" instruction.  */
1354 		  prefixp->kind = PREFIX_BDAP_IMM;
1355 		  prefixp->opcode
1356 		    = BDAP_QUICK_OPCODE | (prefixp->base_reg_number << 12);
1357 
1358 		  out_insnp->insn_type = CRIS_INSN_NONE;
1359 		  continue;
1360 		}
1361 
1362 	    case 'P':
1363 	      /* Special register in bits <15:12>.  */
1364 	      if (! get_spec_reg (&s, &out_insnp->spec_reg))
1365 		break;
1366 	      else
1367 		{
1368 		  /* Use of some special register names come with a
1369 		     specific warning.	Note that we have no ".cpu type"
1370 		     pseudo yet, so some of this is just unused
1371 		     framework.  */
1372 		  if (out_insnp->spec_reg->warning)
1373 		    as_warn (out_insnp->spec_reg->warning);
1374 		  else if (out_insnp->spec_reg->applicable_version
1375 			   == cris_ver_warning)
1376 		    /* Others have a generic warning.  */
1377 		    as_warn (_("Unimplemented register `%s' specified"),
1378 			     out_insnp->spec_reg->name);
1379 
1380 		  out_insnp->opcode
1381 		    |= out_insnp->spec_reg->number << 12;
1382 		  continue;
1383 		}
1384 
1385 	    case 'p':
1386 	      /* This character is used in the disassembler to
1387 		 recognize a prefix instruction to fold into the
1388 		 addressing mode for the next instruction.  It is
1389 		 ignored here.  */
1390 	      continue;
1391 
1392 	    case 'R':
1393 	      /* General register in bits <15:12>.  */
1394 	      if (! get_gen_reg (&s, &regno))
1395 		break;
1396 	      else
1397 		{
1398 		  out_insnp->opcode |= regno << 12;
1399 		  continue;
1400 		}
1401 
1402 	    case 'r':
1403 	      /* General register in bits <3:0>.  */
1404 	      if (! get_gen_reg (&s, &regno))
1405 		break;
1406 	      else
1407 		{
1408 		  out_insnp->opcode |= regno /* << 0 */;
1409 		  continue;
1410 		}
1411 
1412 	    case 'S':
1413 	      /* Source operand in bit <10> and a prefix; a 3-operand
1414 		 prefix.  */
1415 	      if (! get_3op_or_dip_prefix_op (&s, prefixp))
1416 		break;
1417 	      else
1418 		continue;
1419 
1420 	    case 's':
1421 	      /* Source operand in bits <10>, <3:0> and optionally a
1422 		 prefix; i.e. an indirect operand or an side-effect
1423 		 prefix.  */
1424 	      if (! get_autoinc_prefix_or_indir_op (&s, prefixp, &mode,
1425 						    &regno,
1426 						    &imm_expr_found,
1427 						    &out_insnp->expr))
1428 		break;
1429 	      else
1430 		{
1431 		  if (prefixp->kind != PREFIX_NONE)
1432 		    {
1433 		      /* A prefix, so it has the autoincrement bit
1434 			 set.  */
1435 		      out_insnp->opcode |= (AUTOINCR_BIT << 8);
1436 		    }
1437 		  else
1438 		    {
1439 		      /* No prefix.  The "mode" variable contains bits like
1440 			 whether or not this is autoincrement mode.  */
1441 		      out_insnp->opcode |= (mode << 10);
1442 
1443 		      /* If there was a PIC reloc specifier, then it was
1444 			 attached to the prefix.  Note that we can't check
1445 			 that the reloc size matches, since we don't have
1446 			 all the operands yet in all cases.  */
1447 		      if (prefixp->reloc != BFD_RELOC_NONE)
1448 			out_insnp->reloc = prefixp->reloc;
1449 		    }
1450 
1451 		  out_insnp->opcode |= regno /* << 0 */ ;
1452 		  continue;
1453 		}
1454 
1455 	    case 'x':
1456 	      /* Rs.m in bits <15:12> and <5:4>.  */
1457 	      if (! get_gen_reg (&s, &regno)
1458 		  || ! get_bwd_size_modifier (&s, &size_bits))
1459 		break;
1460 	      else
1461 		{
1462 		  out_insnp->opcode |= (regno << 12) | (size_bits << 4);
1463 		  continue;
1464 		}
1465 
1466 	    case 'y':
1467 	      /* Source operand in bits <10>, <3:0> and optionally a
1468 		 prefix; i.e. an indirect operand or an side-effect
1469 		 prefix.
1470 
1471 		 The difference to 's' is that this does not allow an
1472 		 "immediate" expression.  */
1473 	      if (! get_autoinc_prefix_or_indir_op (&s, prefixp,
1474 						    &mode, &regno,
1475 						    &imm_expr_found,
1476 						    &out_insnp->expr)
1477 		  || imm_expr_found)
1478 		break;
1479 	      else
1480 		{
1481 		  if (prefixp->kind != PREFIX_NONE)
1482 		    {
1483 		      /* A prefix, and those matched here always have
1484 			 side-effects (see 's' case).  */
1485 		      out_insnp->opcode |= (AUTOINCR_BIT << 8);
1486 		    }
1487 		  else
1488 		    {
1489 		      /* No prefix.  The "mode" variable contains bits
1490 			 like whether or not this is autoincrement
1491 			 mode.  */
1492 		      out_insnp->opcode |= (mode << 10);
1493 		    }
1494 
1495 		  out_insnp->opcode |= regno /* << 0 */;
1496 		  continue;
1497 		}
1498 
1499 	    case 'z':
1500 	      /* Size modifier (B or W) in bit <4>.  */
1501 	      if (! get_bw_size_modifier (&s, &size_bits))
1502 		break;
1503 	      else
1504 		{
1505 		  out_insnp->opcode |= size_bits << 4;
1506 		  continue;
1507 		}
1508 
1509 	    default:
1510 	      BAD_CASE (*args);
1511 	    }
1512 
1513 	  /* We get here when we fail a match above or we found a
1514 	     complete match.  Break out of this loop.  */
1515 	  break;
1516 	}
1517 
1518       /* Was it a match or a miss?  */
1519       if (match == 0)
1520 	{
1521 	  /* If it's just that the args don't match, maybe the next
1522 	     item in the table is the same opcode but with
1523 	     matching operands.  */
1524 	  if (instruction[1].name != NULL
1525 	      && ! strcmp (instruction->name, instruction[1].name))
1526 	    {
1527 	      /* Yep.  Restart and try that one instead.  */
1528 	      ++instruction;
1529 	      s = operands;
1530 	      continue;
1531 	    }
1532 	  else
1533 	    {
1534 	      /* We've come to the end of instructions with this
1535 		 opcode, so it must be an error.  */
1536 	      as_bad (_("Illegal operands"));
1537 	      return;
1538 	    }
1539 	}
1540       else
1541 	{
1542 	  /* We have a match.  Check if there's anything more to do.  */
1543 	  if (imm_expr_found)
1544 	    {
1545 	      /* There was an immediate mode operand, so we must check
1546 		 that it has an appropriate size.  */
1547 	      switch (instruction->imm_oprnd_size)
1548 		{
1549 		default:
1550 		case SIZE_NONE:
1551 		  /* Shouldn't happen; this one does not have immediate
1552 		     operands with different sizes.  */
1553 		  BAD_CASE (instruction->imm_oprnd_size);
1554 		  break;
1555 
1556 		case SIZE_FIX_32:
1557 		  out_insnp->imm_oprnd_size = 4;
1558 		  break;
1559 
1560 		case SIZE_SPEC_REG:
1561 		  switch (out_insnp->spec_reg->reg_size)
1562 		    {
1563 		    case 1:
1564 		      if (out_insnp->expr.X_op == O_constant
1565 			  && (out_insnp->expr.X_add_number < -128
1566 			      || out_insnp->expr.X_add_number > 255))
1567 			as_bad (_("Immediate value not in 8 bit range: %ld"),
1568 				out_insnp->expr.X_add_number);
1569 		      /* Fall through.  */
1570 		    case 2:
1571 		      /* FIXME:  We need an indicator in the instruction
1572 			 table to pass on, to indicate if we need to check
1573 			 overflow for a signed or unsigned number.  */
1574 		      if (out_insnp->expr.X_op == O_constant
1575 			  && (out_insnp->expr.X_add_number < -32768
1576 			      || out_insnp->expr.X_add_number > 65535))
1577 			as_bad (_("Immediate value not in 16 bit range: %ld"),
1578 				out_insnp->expr.X_add_number);
1579 		      out_insnp->imm_oprnd_size = 2;
1580 		      break;
1581 
1582 		    case 4:
1583 		      out_insnp->imm_oprnd_size = 4;
1584 		      break;
1585 
1586 		    default:
1587 		      BAD_CASE (out_insnp->spec_reg->reg_size);
1588 		    }
1589 		  break;
1590 
1591 		case SIZE_FIELD:
1592 		  switch (size_bits)
1593 		    {
1594 		    case 0:
1595 		      if (out_insnp->expr.X_op == O_constant
1596 			  && (out_insnp->expr.X_add_number < -128
1597 			      || out_insnp->expr.X_add_number > 255))
1598 			as_bad (_("Immediate value not in 8 bit range: %ld"),
1599 				out_insnp->expr.X_add_number);
1600 		      /* Fall through.  */
1601 		    case 1:
1602 		      if (out_insnp->expr.X_op == O_constant
1603 			  && (out_insnp->expr.X_add_number < -32768
1604 			      || out_insnp->expr.X_add_number > 65535))
1605 			as_bad (_("Immediate value not in 16 bit range: %ld"),
1606 				out_insnp->expr.X_add_number);
1607 		      out_insnp->imm_oprnd_size = 2;
1608 		      break;
1609 
1610 		    case 2:
1611 		      out_insnp->imm_oprnd_size = 4;
1612 		      break;
1613 
1614 		    default:
1615 		      BAD_CASE (out_insnp->spec_reg->reg_size);
1616 		    }
1617 		}
1618 
1619 	      /* If there was a relocation specified for the immediate
1620 		 expression (i.e. it had a PIC modifier) check that the
1621 		 size of the PIC relocation matches the size specified by
1622 		 the opcode.  */
1623 	      if (out_insnp->reloc != BFD_RELOC_NONE
1624 		  && (cris_get_pic_reloc_size (out_insnp->reloc)
1625 		      != (unsigned int) out_insnp->imm_oprnd_size))
1626 		as_bad (_("PIC relocation size does not match operand size"));
1627 	    }
1628 	  else if (instruction->op == cris_muls_op
1629 		   || instruction->op == cris_mulu_op)
1630 	    out_insnp->insn_type = CRIS_INSN_MUL;
1631 	}
1632       break;
1633     }
1634 }
1635 
1636 /* Get a B, W, or D size modifier from the string pointed out by *cPP,
1637    which must point to a '.' in front of the modifier.	On successful
1638    return, *cPP is advanced to the character following the size
1639    modifier, and is undefined otherwise.
1640 
1641    cPP		Pointer to pointer to string starting
1642 		with the size modifier.
1643 
1644    size_bitsp	Pointer to variable to contain the size bits on
1645 		successful return.
1646 
1647    Return 1 iff a correct size modifier is found, else 0.  */
1648 
1649 static int
get_bwd_size_modifier(cPP,size_bitsp)1650 get_bwd_size_modifier (cPP, size_bitsp)
1651      char **cPP;
1652      int *size_bitsp;
1653 {
1654   if (**cPP != '.')
1655     return 0;
1656   else
1657     {
1658       /* Consume the '.'.  */
1659       (*cPP)++;
1660 
1661       switch (**cPP)
1662 	{
1663 	case 'B':
1664 	case 'b':
1665 	  *size_bitsp = 0;
1666 	  break;
1667 
1668 	case 'W':
1669 	case 'w':
1670 	  *size_bitsp = 1;
1671 	  break;
1672 
1673 	case 'D':
1674 	case 'd':
1675 	  *size_bitsp = 2;
1676 	  break;
1677 
1678 	default:
1679 	  return 0;
1680 	}
1681 
1682       /* Consume the size letter.  */
1683       (*cPP)++;
1684       return 1;
1685     }
1686 }
1687 
1688 /* Get a B or W size modifier from the string pointed out by *cPP,
1689    which must point to a '.' in front of the modifier.	On successful
1690    return, *cPP is advanced to the character following the size
1691    modifier, and is undefined otherwise.
1692 
1693    cPP		Pointer to pointer to string starting
1694 		with the size modifier.
1695 
1696    size_bitsp	Pointer to variable to contain the size bits on
1697 		successful return.
1698 
1699    Return 1 iff a correct size modifier is found, else 0.  */
1700 
1701 static int
get_bw_size_modifier(cPP,size_bitsp)1702 get_bw_size_modifier (cPP, size_bitsp)
1703      char **cPP;
1704      int *size_bitsp;
1705 {
1706   if (**cPP != '.')
1707     return 0;
1708   else
1709     {
1710       /* Consume the '.'.  */
1711       (*cPP)++;
1712 
1713       switch (**cPP)
1714 	{
1715 	case 'B':
1716 	case 'b':
1717 	  *size_bitsp = 0;
1718 	  break;
1719 
1720 	case 'W':
1721 	case 'w':
1722 	  *size_bitsp = 1;
1723 	  break;
1724 
1725 	default:
1726 	  return 0;
1727 	}
1728 
1729       /* Consume the size letter.  */
1730       (*cPP)++;
1731       return 1;
1732     }
1733 }
1734 
1735 /* Get a general register from the string pointed out by *cPP.  The
1736    variable *cPP is advanced to the character following the general
1737    register name on a successful return, and has its initial position
1738    otherwise.
1739 
1740    cPP	    Pointer to pointer to string, beginning with a general
1741 	    register name.
1742 
1743    regnop   Pointer to int containing the register number.
1744 
1745    Return 1 iff a correct general register designator is found,
1746 	    else 0.  */
1747 
1748 static int
get_gen_reg(cPP,regnop)1749 get_gen_reg (cPP, regnop)
1750      char **cPP;
1751      int *regnop;
1752 {
1753   char *oldp;
1754   oldp = *cPP;
1755 
1756   /* Handle a sometimes-mandatory dollar sign as register prefix.  */
1757   if (**cPP == REGISTER_PREFIX_CHAR)
1758     (*cPP)++;
1759   else if (demand_register_prefix)
1760     return 0;
1761 
1762   switch (**cPP)
1763     {
1764     case 'P':
1765     case 'p':
1766       /* "P" as in "PC"?  Consume the "P".  */
1767       (*cPP)++;
1768 
1769       if ((**cPP == 'C' || **cPP == 'c')
1770 	  && ! ISALNUM ((*cPP)[1]))
1771 	{
1772 	  /* It's "PC": consume the "c" and we're done.  */
1773 	  (*cPP)++;
1774 	  *regnop = REG_PC;
1775 	  return 1;
1776 	}
1777       break;
1778 
1779     case 'R':
1780     case 'r':
1781       /* Hopefully r[0-9] or r1[0-5].  Consume 'R' or 'r'.  */
1782       (*cPP)++;
1783 
1784       if (ISDIGIT (**cPP))
1785 	{
1786 	  /* It's r[0-9].  Consume and check the next digit.  */
1787 	  *regnop = **cPP - '0';
1788 	  (*cPP)++;
1789 
1790 	  if (! ISALNUM (**cPP))
1791 	    {
1792 	      /* No more digits, we're done.  */
1793 	      return 1;
1794 	    }
1795 	  else
1796 	    {
1797 	      /* One more digit.  Consume and add.  */
1798 	      *regnop = *regnop * 10 + (**cPP - '0');
1799 
1800 	      /* We need to check for a valid register number; Rn,
1801 		 0 <= n <= MAX_REG.  */
1802 	      if (*regnop <= MAX_REG)
1803 		{
1804 		  /* Consume second digit.  */
1805 		  (*cPP)++;
1806 		  return 1;
1807 		}
1808 	    }
1809 	}
1810       break;
1811 
1812     case 'S':
1813     case 's':
1814       /* "S" as in "SP"?  Consume the "S".  */
1815       (*cPP)++;
1816       if (**cPP == 'P' || **cPP == 'p')
1817 	{
1818 	  /* It's "SP": consume the "p" and we're done.  */
1819 	  (*cPP)++;
1820 	  *regnop = REG_SP;
1821 	  return 1;
1822 	}
1823       break;
1824 
1825     default:
1826       /* Just here to silence compilation warnings.  */
1827       ;
1828     }
1829 
1830   /* We get here if we fail.  Restore the pointer.  */
1831   *cPP = oldp;
1832   return 0;
1833 }
1834 
1835 /* Get a special register from the string pointed out by *cPP. The
1836    variable *cPP is advanced to the character following the special
1837    register name if one is found, and retains its original position
1838    otherwise.
1839 
1840    cPP	    Pointer to pointer to string starting with a special register
1841 	    name.
1842 
1843    sregpp   Pointer to Pointer to struct spec_reg, where a pointer to the
1844 	    register description will be stored.
1845 
1846    Return 1 iff a correct special register name is found.  */
1847 
1848 static int
get_spec_reg(cPP,sregpp)1849 get_spec_reg (cPP, sregpp)
1850      char **cPP;
1851      const struct cris_spec_reg **sregpp;
1852 {
1853   char *s1;
1854   const char *s2;
1855   char *name_begin = *cPP;
1856 
1857   const struct cris_spec_reg *sregp;
1858 
1859   /* Handle a sometimes-mandatory dollar sign as register prefix.  */
1860   if (*name_begin == REGISTER_PREFIX_CHAR)
1861     name_begin++;
1862   else if (demand_register_prefix)
1863     return 0;
1864 
1865   /* Loop over all special registers.  */
1866   for (sregp = cris_spec_regs; sregp->name != NULL; sregp++)
1867     {
1868       /* Start over from beginning of the supposed name.  */
1869       s1 = name_begin;
1870       s2 = sregp->name;
1871 
1872       while (*s2 != '\0' && TOLOWER (*s1) == *s2)
1873 	{
1874 	  s1++;
1875 	  s2++;
1876 	}
1877 
1878       /* For a match, we must have consumed the name in the table, and we
1879 	 must be outside what could be part of a name.	Assume here that a
1880 	 test for alphanumerics is sufficient for a name test.  */
1881       if (*s2 == 0 && ! ISALNUM (*s1))
1882 	{
1883 	  /* We have a match.  Update the pointer and be done.  */
1884 	  *cPP = s1;
1885 	  *sregpp = sregp;
1886 	  return 1;
1887 	}
1888     }
1889 
1890   /* If we got here, we did not find any name.  */
1891   return 0;
1892 }
1893 
1894 /* Get an unprefixed or side-effect-prefix operand from the string pointed
1895    out by *cPP.  The pointer *cPP is advanced to the character following
1896    the indirect operand if we have success, else it contains an undefined
1897    value.
1898 
1899    cPP		 Pointer to pointer to string beginning with the first
1900 		 character of the supposed operand.
1901 
1902    prefixp	 Pointer to structure containing an optional instruction
1903 		 prefix.
1904 
1905    is_autoincp	 Pointer to int indicating the indirect or autoincrement
1906 		 bits.
1907 
1908    src_regnop	 Pointer to int containing the source register number in
1909 		 the instruction.
1910 
1911    imm_foundp	 Pointer to an int indicating if an immediate expression
1912 		 is found.
1913 
1914    imm_exprP	 Pointer to a structure containing an immediate
1915 		 expression, if success and if *imm_foundp is nonzero.
1916 
1917    Return 1 iff a correct indirect operand is found.  */
1918 
1919 static int
get_autoinc_prefix_or_indir_op(cPP,prefixp,is_autoincp,src_regnop,imm_foundp,imm_exprP)1920 get_autoinc_prefix_or_indir_op (cPP, prefixp, is_autoincp, src_regnop,
1921 				imm_foundp, imm_exprP)
1922      char **cPP;
1923      struct cris_prefix *prefixp;
1924      int *is_autoincp;
1925      int *src_regnop;
1926      int *imm_foundp;
1927      expressionS *imm_exprP;
1928 {
1929   /* Assume there was no immediate mode expression.  */
1930   *imm_foundp = 0;
1931 
1932   if (**cPP == '[')
1933     {
1934       /* So this operand is one of:
1935 	 Indirect: [rN]
1936 	 Autoincrement: [rN+]
1937 	 Indexed with assign: [rN=rM+rO.S]
1938 	 Offset with assign: [rN=rM+I], [rN=rM+[rO].s], [rN=rM+[rO+].s]
1939 
1940 	 Either way, consume the '['.  */
1941       (*cPP)++;
1942 
1943       /* Get the rN register.  */
1944       if (! get_gen_reg (cPP, src_regnop))
1945 	/* If there was no register, then this cannot match.  */
1946 	return 0;
1947       else
1948 	{
1949 	  /* We got the register, now check the next character.  */
1950 	  switch (**cPP)
1951 	    {
1952 	    case ']':
1953 	      /* Indirect mode.  We're done here.  */
1954 	      prefixp->kind = PREFIX_NONE;
1955 	      *is_autoincp = 0;
1956 	      break;
1957 
1958 	    case '+':
1959 	      /* This must be an auto-increment mode, if there's a
1960 		 match.  */
1961 	      prefixp->kind = PREFIX_NONE;
1962 	      *is_autoincp = 1;
1963 
1964 	      /* We consume this character and break out to check the
1965 		 closing ']'.  */
1966 	      (*cPP)++;
1967 	      break;
1968 
1969 	    case '=':
1970 	      /* This must be indexed with assign, or offset with assign
1971 		 to match.  */
1972 	      (*cPP)++;
1973 
1974 	      /* Either way, the next thing must be a register.  */
1975 	      if (! get_gen_reg (cPP, &prefixp->base_reg_number))
1976 		/* No register, no match.  */
1977 		return 0;
1978 	      else
1979 		{
1980 		  /* We've consumed "[rN=rM", so we must be looking at
1981 		     "+rO.s]" or "+I]", or "-I]", or "+[rO].s]" or
1982 		     "+[rO+].s]".  */
1983 		  if (**cPP == '+')
1984 		    {
1985 		      int index_reg_number;
1986 		      (*cPP)++;
1987 
1988 		      if (**cPP == '[')
1989 			{
1990 			  int size_bits;
1991 			  /* This must be [rx=ry+[rz].s] or
1992 			     [rx=ry+[rz+].s] or no match.  We must be
1993 			     looking at rz after consuming the '['.  */
1994 			  (*cPP)++;
1995 
1996 			  if (!get_gen_reg (cPP, &index_reg_number))
1997 			    return 0;
1998 
1999 			  prefixp->kind = PREFIX_BDAP;
2000 			  prefixp->opcode
2001 			    = (BDAP_INDIR_OPCODE
2002 			       + (prefixp->base_reg_number << 12)
2003 			       + index_reg_number);
2004 
2005 			  if (**cPP == '+')
2006 			    {
2007 			      /* We've seen "[rx=ry+[rz+" here, so now we
2008 				 know that there must be "].s]" left to
2009 				 check.  */
2010 			      (*cPP)++;
2011 			      prefixp->opcode |= AUTOINCR_BIT << 8;
2012 			    }
2013 
2014 			  /* If it wasn't autoincrement, we don't need to
2015 			     add anything.  */
2016 
2017 			  /* Check the next-to-last ']'.  */
2018 			  if (**cPP != ']')
2019 			    return 0;
2020 
2021 			  (*cPP)++;
2022 
2023 			  /* Check the ".s" modifier.  */
2024 			  if (! get_bwd_size_modifier (cPP, &size_bits))
2025 			    return 0;
2026 
2027 			  prefixp->opcode |= size_bits << 4;
2028 
2029 			  /* Now we got [rx=ry+[rz+].s or [rx=ry+[rz].s.
2030 			     We break out to check the final ']'.  */
2031 			  break;
2032 			}
2033 		      /* It wasn't an indirection.  Check if it's a
2034 			 register.  */
2035 		      else if (get_gen_reg (cPP, &index_reg_number))
2036 			{
2037 			  int size_bits;
2038 
2039 			  /* Indexed with assign mode: "[rN+rM.S]".  */
2040 			  prefixp->kind = PREFIX_BIAP;
2041 			  prefixp->opcode
2042 			    = (BIAP_OPCODE + (index_reg_number << 12)
2043 			       + prefixp->base_reg_number /* << 0 */);
2044 
2045 			  if (! get_bwd_size_modifier (cPP, &size_bits))
2046 			    /* Size missing, this isn't a match.  */
2047 			    return 0;
2048 			  else
2049 			    {
2050 			      /* Size found, break out to check the
2051 				 final ']'.  */
2052 			      prefixp->opcode |= size_bits << 4;
2053 			      break;
2054 			    }
2055 			}
2056 		      /* Not a register.  Then this must be "[rN+I]".  */
2057 		      else if (cris_get_expression (cPP, &prefixp->expr))
2058 			{
2059 			  /* We've got offset with assign mode.  Fill
2060 			     in the blanks and break out to match the
2061 			     final ']'.  */
2062 			  prefixp->kind = PREFIX_BDAP_IMM;
2063 
2064 			  /* We tentatively put an opcode corresponding to
2065 			     a 32-bit operand here, although it may be
2066 			     relaxed when there's no PIC specifier for the
2067 			     operand.  */
2068 			  prefixp->opcode
2069 			    = (BDAP_INDIR_OPCODE
2070 			       | (prefixp->base_reg_number << 12)
2071 			       | (AUTOINCR_BIT << 8)
2072 			       | (2 << 4)
2073 			       | REG_PC /* << 0 */);
2074 
2075 			  /* This can have a PIC suffix, specifying reloc
2076 			     type to use.  */
2077 			  if (pic && **cPP == PIC_SUFFIX_CHAR)
2078 			    {
2079 			      unsigned int relocsize;
2080 
2081 			      cris_get_pic_suffix (cPP, &prefixp->reloc,
2082 						   &prefixp->expr);
2083 
2084 			      /* Tweak the size of the immediate operand
2085 				 in the prefix opcode if it isn't what we
2086 				 set.  */
2087 			      relocsize
2088 				= cris_get_pic_reloc_size (prefixp->reloc);
2089 			      if (relocsize != 4)
2090 				prefixp->opcode
2091 				  = ((prefixp->opcode & ~(3 << 4))
2092 				     | ((relocsize >> 1) << 4));
2093 			    }
2094 			  break;
2095 			}
2096 		      else
2097 			/* Neither register nor expression found, so
2098 			   this can't be a match.  */
2099 			return 0;
2100 		    }
2101 		  /* Not "[rN+" but perhaps "[rN-"?  */
2102 		  else if (**cPP == '-')
2103 		    {
2104 		      /* We must have an offset with assign mode.  */
2105 		      if (! cris_get_expression (cPP, &prefixp->expr))
2106 			/* No expression, no match.  */
2107 			return 0;
2108 		      else
2109 			{
2110 			  /* We've got offset with assign mode.  Fill
2111 			     in the blanks and break out to match the
2112 			     final ']'.
2113 
2114 			     Note that we don't allow a PIC suffix for an
2115 			     operand with a minus sign.  */
2116 			  prefixp->kind = PREFIX_BDAP_IMM;
2117 			  break;
2118 			}
2119 		    }
2120 		  else
2121 		    /* Neither '+' nor '-' after "[rN=rM".  Lose.  */
2122 		    return 0;
2123 		}
2124 	    default:
2125 	      /* Neither ']' nor '+' nor '=' after "[rN".  Lose.  */
2126 	      return 0;
2127 	    }
2128 	}
2129 
2130       /* When we get here, we have a match and will just check the closing
2131 	 ']'.  We can still fail though.  */
2132       if (**cPP != ']')
2133 	return 0;
2134       else
2135 	{
2136 	  /* Don't forget to consume the final ']'.
2137 	     Then return in glory.  */
2138 	  (*cPP)++;
2139 	  return 1;
2140 	}
2141     }
2142   /* No indirection.  Perhaps a constant?  */
2143   else if (cris_get_expression (cPP, imm_exprP))
2144     {
2145       /* Expression found, this is immediate mode.  */
2146       prefixp->kind = PREFIX_NONE;
2147       *is_autoincp = 1;
2148       *src_regnop = REG_PC;
2149       *imm_foundp = 1;
2150 
2151       /* This can have a PIC suffix, specifying reloc type to use.  The
2152 	 caller must check that the reloc size matches the operand size.  */
2153       if (pic && **cPP == PIC_SUFFIX_CHAR)
2154 	cris_get_pic_suffix (cPP, &prefixp->reloc, imm_exprP);
2155 
2156       return 1;
2157     }
2158 
2159   /* No luck today.  */
2160   return 0;
2161 }
2162 
2163 /* This function gets an indirect operand in a three-address operand
2164    combination from the string pointed out by *cPP.  The pointer *cPP is
2165    advanced to the character following the indirect operand on success, or
2166    has an unspecified value on failure.
2167 
2168    cPP	     Pointer to pointer to string beginning
2169 	     with the operand
2170 
2171    prefixp   Pointer to structure containing an
2172 	     instruction prefix
2173 
2174    Returns 1 iff a correct indirect operand is found.  */
2175 
2176 static int
get_3op_or_dip_prefix_op(cPP,prefixp)2177 get_3op_or_dip_prefix_op (cPP, prefixp)
2178      char **cPP;
2179      struct cris_prefix *prefixp;
2180 {
2181   int reg_number;
2182 
2183   if (**cPP != '[')
2184     /* We must have a '[' or it's a clean failure.  */
2185     return 0;
2186 
2187   /* Eat the first '['.  */
2188   (*cPP)++;
2189 
2190   if (**cPP == '[')
2191     {
2192       /* A second '[', so this must be double-indirect mode.  */
2193       (*cPP)++;
2194       prefixp->kind = PREFIX_DIP;
2195       prefixp->opcode = DIP_OPCODE;
2196 
2197       /* Get the register or fail entirely.  */
2198       if (! get_gen_reg (cPP, &reg_number))
2199 	return 0;
2200       else
2201 	{
2202 	  prefixp->opcode |= reg_number /* << 0 */ ;
2203 	  if (**cPP == '+')
2204 	    {
2205 	      /* Since we found a '+', this must be double-indirect
2206 		 autoincrement mode.  */
2207 	      (*cPP)++;
2208 	      prefixp->opcode |= AUTOINCR_BIT << 8;
2209 	    }
2210 
2211 	  /* There's nothing particular to do, if this was a
2212 	     double-indirect *without* autoincrement.  */
2213 	}
2214 
2215       /* Check the first ']'.  The second one is checked at the end.  */
2216       if (**cPP != ']')
2217 	return 0;
2218 
2219       /* Eat the first ']', so we'll be looking at a second ']'.  */
2220       (*cPP)++;
2221     }
2222   /* No second '['.  Then we should have a register here, making
2223      it "[rN".  */
2224   else if (get_gen_reg (cPP, &prefixp->base_reg_number))
2225     {
2226       /* This must be indexed or offset mode: "[rN+I]" or
2227 	 "[rN+rM.S]" or "[rN+[rM].S]" or "[rN+[rM+].S]".  */
2228       if (**cPP == '+')
2229 	{
2230 	  int index_reg_number;
2231 
2232 	  (*cPP)++;
2233 
2234 	  if (**cPP == '[')
2235 	    {
2236 	      /* This is "[rx+["...  Expect a register next.  */
2237 	      int size_bits;
2238 	      (*cPP)++;
2239 
2240 	      if (!get_gen_reg (cPP, &index_reg_number))
2241 		return 0;
2242 
2243 	      prefixp->kind = PREFIX_BDAP;
2244 	      prefixp->opcode
2245 		= (BDAP_INDIR_OPCODE
2246 		   + (prefixp->base_reg_number << 12)
2247 		   + index_reg_number);
2248 
2249 	      /* We've seen "[rx+[ry", so check if this is
2250 		 autoincrement.  */
2251 	      if (**cPP == '+')
2252 		{
2253 		  /* Yep, now at "[rx+[ry+".  */
2254 		  (*cPP)++;
2255 		  prefixp->opcode |= AUTOINCR_BIT << 8;
2256 		}
2257 	      /* If it wasn't autoincrement, we don't need to
2258 		 add anything.  */
2259 
2260 	      /* Check a first closing ']': "[rx+[ry]" or
2261 		 "[rx+[ry+]".  */
2262 	      if (**cPP != ']')
2263 		return 0;
2264 	      (*cPP)++;
2265 
2266 	      /* Now expect a size modifier ".S".  */
2267 	      if (! get_bwd_size_modifier (cPP, &size_bits))
2268 		return 0;
2269 
2270 	      prefixp->opcode |= size_bits << 4;
2271 
2272 	      /* Ok, all interesting stuff has been seen:
2273 		 "[rx+[ry+].S" or "[rx+[ry].S".  We only need to
2274 		 expect a final ']', which we'll do in a common
2275 		 closing session.  */
2276 	    }
2277 	  /* Seen "[rN+", but not a '[', so check if we have a
2278 	     register.  */
2279 	  else if (get_gen_reg (cPP, &index_reg_number))
2280 	    {
2281 	      /* This is indexed mode: "[rN+rM.S]" or
2282 		 "[rN+rM.S+]".  */
2283 	      int size_bits;
2284 	      prefixp->kind = PREFIX_BIAP;
2285 	      prefixp->opcode
2286 		= (BIAP_OPCODE
2287 		   | prefixp->base_reg_number /* << 0 */
2288 		   | (index_reg_number << 12));
2289 
2290 	      /* Consume the ".S".  */
2291 	      if (! get_bwd_size_modifier (cPP, &size_bits))
2292 		/* Missing size, so fail.  */
2293 		return 0;
2294 	      else
2295 		/* Size found.  Add that piece and drop down to
2296 		   the common checking of the closing ']'.  */
2297 		prefixp->opcode |= size_bits << 4;
2298 	    }
2299 	  /* Seen "[rN+", but not a '[' or a register, so then
2300 	     it must be a constant "I".  */
2301 	  else if (cris_get_expression (cPP, &prefixp->expr))
2302 	    {
2303 	      /* Expression found, so fill in the bits of offset
2304 		 mode and drop down to check the closing ']'.  */
2305 	      prefixp->kind = PREFIX_BDAP_IMM;
2306 
2307 	      /* We tentatively put an opcode corresponding to a 32-bit
2308 		 operand here, although it may be relaxed when there's no
2309 		 PIC specifier for the operand.  */
2310 	      prefixp->opcode
2311 		= (BDAP_INDIR_OPCODE
2312 		   | (prefixp->base_reg_number << 12)
2313 		   | (AUTOINCR_BIT << 8)
2314 		   | (2 << 4)
2315 		   | REG_PC /* << 0 */);
2316 
2317 	      /* This can have a PIC suffix, specifying reloc type to use.  */
2318 	      if (pic && **cPP == PIC_SUFFIX_CHAR)
2319 		{
2320 		  unsigned int relocsize;
2321 
2322 		  cris_get_pic_suffix (cPP, &prefixp->reloc, &prefixp->expr);
2323 
2324 		  /* Tweak the size of the immediate operand in the prefix
2325 		     opcode if it isn't what we set.  */
2326 		  relocsize = cris_get_pic_reloc_size (prefixp->reloc);
2327 		  if (relocsize != 4)
2328 		    prefixp->opcode
2329 		      = ((prefixp->opcode & ~(3 << 4))
2330 			 | ((relocsize >> 1) << 4));
2331 		}
2332 	    }
2333 	  else
2334 	    /* Nothing valid here: lose.  */
2335 	    return 0;
2336 	}
2337       /* Seen "[rN" but no '+', so check if it's a '-'.  */
2338       else if (**cPP == '-')
2339 	{
2340 	  /* Yep, we must have offset mode.  */
2341 	  if (! cris_get_expression (cPP, &prefixp->expr))
2342 	    /* No expression, so we lose.  */
2343 	    return 0;
2344 	  else
2345 	    {
2346 	      /* Expression found to make this offset mode, so
2347 		 fill those bits and drop down to check the
2348 		 closing ']'.
2349 
2350 		 Note that we don't allow a PIC suffix for
2351 		 an operand with a minus sign like this.  */
2352 	      prefixp->kind = PREFIX_BDAP_IMM;
2353 	    }
2354 	}
2355       else
2356 	{
2357 	  /* We've seen "[rN", but not '+' or '-'; rather a ']'.
2358 	     Hmm.  Normally this is a simple indirect mode that we
2359 	     shouldn't match, but if we expect ']', then we have a
2360 	     zero offset, so it can be a three-address-operand,
2361 	     like "[rN],rO,rP", thus offset mode.
2362 
2363 	     Don't eat the ']', that will be done in the closing
2364 	     ceremony.  */
2365 	  prefixp->expr.X_op = O_constant;
2366 	  prefixp->expr.X_add_number = 0;
2367 	  prefixp->expr.X_add_symbol = NULL;
2368 	  prefixp->expr.X_op_symbol = NULL;
2369 	  prefixp->kind = PREFIX_BDAP_IMM;
2370 	}
2371     }
2372   /* A '[', but no second '[', and no register.  Check if we
2373      have an expression, making this "[I]" for a double-indirect
2374      prefix.  */
2375   else if (cris_get_expression (cPP, &prefixp->expr))
2376     {
2377       /* Expression found, the so called absolute mode for a
2378 	 double-indirect prefix on PC.  */
2379       prefixp->kind = PREFIX_DIP;
2380       prefixp->opcode = DIP_OPCODE | (AUTOINCR_BIT << 8) | REG_PC;
2381       prefixp->reloc = BFD_RELOC_32;
2382     }
2383   else
2384     /* Neither '[' nor register nor expression.  We lose.  */
2385     return 0;
2386 
2387   /* We get here as a closing ceremony to a successful match.  We just
2388      need to check the closing ']'.  */
2389   if (**cPP != ']')
2390     /* Oops.  Close but no air-polluter.  */
2391     return 0;
2392 
2393   /* Don't forget to consume that ']', before returning in glory.  */
2394   (*cPP)++;
2395   return 1;
2396 }
2397 
2398 /* Get an expression from the string pointed out by *cPP.
2399    The pointer *cPP is advanced to the character following the expression
2400    on a success, or retains its original value otherwise.
2401 
2402    cPP	   Pointer to pointer to string beginning with the expression.
2403 
2404    exprP   Pointer to structure containing the expression.
2405 
2406    Return 1 iff a correct expression is found.  */
2407 
2408 static int
cris_get_expression(cPP,exprP)2409 cris_get_expression (cPP, exprP)
2410      char **cPP;
2411      expressionS *exprP;
2412 {
2413   char *saved_input_line_pointer;
2414   segT exp;
2415 
2416   /* The "expression" function expects to find an expression at the
2417      global variable input_line_pointer, so we have to save it to give
2418      the impression that we don't fiddle with global variables.  */
2419   saved_input_line_pointer = input_line_pointer;
2420   input_line_pointer = *cPP;
2421 
2422   exp = expression (exprP);
2423   if (exprP->X_op == O_illegal || exprP->X_op == O_absent)
2424     {
2425       input_line_pointer = saved_input_line_pointer;
2426       return 0;
2427     }
2428 
2429   /* Everything seems to be fine, just restore the global
2430      input_line_pointer and say we're successful.  */
2431   *cPP = input_line_pointer;
2432   input_line_pointer = saved_input_line_pointer;
2433   return 1;
2434 }
2435 
2436 /* Get a sequence of flag characters from *spp.  The pointer *cPP is
2437    advanced to the character following the expression.	The flag
2438    characters are consecutive, no commas or spaces.
2439 
2440    cPP	     Pointer to pointer to string beginning with the expression.
2441 
2442    flagp     Pointer to int to return the flags expression.
2443 
2444    Return 1 iff a correct flags expression is found.  */
2445 
2446 static int
get_flags(cPP,flagsp)2447 get_flags (cPP, flagsp)
2448      char **cPP;
2449      int *flagsp;
2450 {
2451   for (;;)
2452     {
2453       switch (**cPP)
2454 	{
2455 	case 'd':
2456 	case 'D':
2457 	case 'm':
2458 	case 'M':
2459 	  *flagsp |= 0x80;
2460 	  break;
2461 
2462 	case 'e':
2463 	case 'E':
2464 	case 'b':
2465 	case 'B':
2466 	  *flagsp |= 0x40;
2467 	  break;
2468 
2469 	case 'i':
2470 	case 'I':
2471 	  *flagsp |= 0x20;
2472 	  break;
2473 
2474 	case 'x':
2475 	case 'X':
2476 	  *flagsp |= 0x10;
2477 	  break;
2478 
2479 	case 'n':
2480 	case 'N':
2481 	  *flagsp |= 0x8;
2482 	  break;
2483 
2484 	case 'z':
2485 	case 'Z':
2486 	  *flagsp |= 0x4;
2487 	  break;
2488 
2489 	case 'v':
2490 	case 'V':
2491 	  *flagsp |= 0x2;
2492 	  break;
2493 
2494 	case 'c':
2495 	case 'C':
2496 	  *flagsp |= 1;
2497 	  break;
2498 
2499 	default:
2500 	  /* We consider this successful if we stop at a comma or
2501 	     whitespace.  Anything else, and we consider it a failure.  */
2502 	  if (**cPP != ','
2503 	      && **cPP != 0
2504 	      && ! ISSPACE (**cPP))
2505 	    return 0;
2506 	  else
2507 	    return 1;
2508 	}
2509 
2510       /* Don't forget to consume each flag character.  */
2511       (*cPP)++;
2512     }
2513 }
2514 
2515 /* Generate code and fixes for a BDAP prefix.
2516 
2517    base_regno	Int containing the base register number.
2518 
2519    exprP	Pointer to structure containing the offset expression.  */
2520 
2521 static void
gen_bdap(base_regno,exprP)2522 gen_bdap (base_regno, exprP)
2523      int base_regno;
2524      expressionS *exprP;
2525 {
2526   unsigned int opcode;
2527   char *opcodep;
2528 
2529   /* Put out the prefix opcode; assume quick immediate mode at first.  */
2530   opcode = BDAP_QUICK_OPCODE | (base_regno << 12);
2531   opcodep = cris_insn_first_word_frag ();
2532   md_number_to_chars (opcodep, opcode, 2);
2533 
2534   if (exprP->X_op == O_constant)
2535     {
2536       /* We have an absolute expression that we know the size of right
2537 	 now.  */
2538       long int value;
2539       int size;
2540 
2541       value = exprP->X_add_number;
2542       if (value < -32768 || value > 32767)
2543 	/* Outside range for a "word", make it a dword.  */
2544 	size = 2;
2545       else
2546 	/* Assume "word" size.  */
2547 	size = 1;
2548 
2549       /* If this is a signed-byte value, we can fit it into the prefix
2550 	 insn itself.  */
2551       if (value >= -128 && value <= 127)
2552 	opcodep[0] = value;
2553       else
2554 	{
2555 	  /* This is a word or dword displacement, which will be put in a
2556 	     word or dword after the prefix.  */
2557 	  char *p;
2558 
2559 	  opcodep[0] = BDAP_PC_LOW + (size << 4);
2560 	  opcodep[1] &= 0xF0;
2561 	  opcodep[1] |= BDAP_INCR_HIGH;
2562 	  p = frag_more (1 << size);
2563 	  md_number_to_chars (p, value, 1 << size);
2564 	}
2565     }
2566   else
2567     {
2568       /* Handle complex expressions.  */
2569       valueT addvalue
2570 	= SIMPLE_EXPR (exprP) ? exprP->X_add_number : 0;
2571       symbolS *sym
2572 	= (SIMPLE_EXPR (exprP)
2573 	   ? exprP->X_add_symbol : make_expr_symbol (exprP));
2574 
2575       /* The expression is not defined yet but may become absolute.  We
2576 	 make it a relocation to be relaxed.  */
2577       frag_var (rs_machine_dependent, 4, 0,
2578 		ENCODE_RELAX (STATE_BASE_PLUS_DISP_PREFIX, STATE_UNDF),
2579 		sym, addvalue, opcodep);
2580     }
2581 }
2582 
2583 /* Encode a branch displacement in the range -256..254 into the form used
2584    by CRIS conditional branch instructions.
2585 
2586    offset  The displacement value in bytes.  */
2587 
2588 static int
branch_disp(offset)2589 branch_disp (offset)
2590      int offset;
2591 {
2592   int disp;
2593 
2594   disp = offset & 0xFE;
2595 
2596   if (offset < 0)
2597     disp |= 1;
2598 
2599   return disp;
2600 }
2601 
2602 /* Generate code and fixes for a 32-bit conditional branch instruction
2603    created by "extending" an existing 8-bit branch instruction.
2604 
2605    opcodep    Pointer to the word containing the original 8-bit branch
2606 	      instruction.
2607 
2608    writep     Pointer to "extension area" following the first instruction
2609 	      word.
2610 
2611    fragP      Pointer to the frag containing the instruction.
2612 
2613    add_symP,  Parts of the destination address expression.
2614    sub_symP,
2615    add_num.  */
2616 
2617 static void
gen_cond_branch_32(opcodep,writep,fragP,add_symP,sub_symP,add_num)2618 gen_cond_branch_32 (opcodep, writep, fragP, add_symP, sub_symP, add_num)
2619      char *opcodep;
2620      char *writep;
2621      fragS *fragP;
2622      symbolS *add_symP;
2623      symbolS *sub_symP;
2624      long int add_num;
2625 {
2626   if (warn_for_branch_expansion)
2627     as_warn_where (fragP->fr_file, fragP->fr_line,
2628 		   _("32-bit conditional branch generated"));
2629 
2630   /* Here, writep points to what will be opcodep + 2.  First, we change
2631      the actual branch in opcodep[0] and opcodep[1], so that in the
2632      final insn, it will look like:
2633        opcodep+10: Bcc .-6
2634 
2635      This means we don't have to worry about changing the opcode or
2636      messing with the delay-slot instruction.  So, we move it to last in
2637      the "extended" branch, and just change the displacement.  Admittedly,
2638      it's not the optimal extended construct, but we should get this
2639      rarely enough that it shouldn't matter.  */
2640 
2641   writep[8] = branch_disp (-2 - 6);
2642   writep[9] = opcodep[1];
2643 
2644   /* Then, we change the branch to an unconditional branch over the
2645      extended part, to the new location of the Bcc:
2646        opcodep:	  BA .+10
2647        opcodep+2: NOP
2648 
2649      Note that these two writes are to currently different locations,
2650      merged later.  */
2651 
2652   md_number_to_chars (opcodep, BA_QUICK_OPCODE + 8, 2);
2653   md_number_to_chars (writep, NOP_OPCODE, 2);
2654 
2655   /* Then the extended thing, the 32-bit jump insn.
2656        opcodep+4: JUMP [PC+]
2657      or, in the PIC case,
2658        opcodep+4: ADD [PC+],PC.  */
2659 
2660   md_number_to_chars (writep + 2,
2661 		      pic ? ADD_PC_INCR_OPCODE : JUMP_PC_INCR_OPCODE, 2);
2662 
2663   /* We have to fill in the actual value too.
2664        opcodep+6: .DWORD
2665      This is most probably an expression, but we can cope with an absolute
2666      value too.  FIXME: Testcase needed with and without pic.  */
2667 
2668   if (add_symP == NULL && sub_symP == NULL)
2669     {
2670       /* An absolute address.  */
2671       if (pic)
2672 	fix_new (fragP, writep + 4 - fragP->fr_literal, 4,
2673 		 section_symbol (absolute_section),
2674 		 add_num, 1, BFD_RELOC_32_PCREL);
2675       else
2676 	md_number_to_chars (writep + 4, add_num, 4);
2677     }
2678   else
2679     {
2680       if (sub_symP != NULL)
2681 	as_bad_where (fragP->fr_file, fragP->fr_line,
2682 		      _("Complex expression not supported"));
2683 
2684       /* Not absolute, we have to make it a frag for later evaluation.  */
2685       fix_new (fragP, writep + 4 - fragP->fr_literal, 4, add_symP,
2686 	       add_num, pic ? 1 : 0, pic ? BFD_RELOC_32_PCREL : BFD_RELOC_32);
2687     }
2688 }
2689 
2690 /* Get the size of an immediate-reloc in bytes.  Only valid for PIC
2691    relocs.  */
2692 
2693 static unsigned int
cris_get_pic_reloc_size(reloc)2694 cris_get_pic_reloc_size (reloc)
2695      bfd_reloc_code_real_type reloc;
2696 {
2697   return reloc == BFD_RELOC_CRIS_16_GOTPLT || reloc == BFD_RELOC_CRIS_16_GOT
2698     ? 2 : 4;
2699 }
2700 
2701 /* Store a reloc type at *RELOCP corresponding to the PIC suffix at *CPP.
2702    Adjust *EXPRP with any addend found after the PIC suffix.  */
2703 
2704 static void
cris_get_pic_suffix(cPP,relocp,exprP)2705 cris_get_pic_suffix (cPP, relocp, exprP)
2706      char **cPP;
2707      bfd_reloc_code_real_type *relocp;
2708      expressionS *exprP;
2709 {
2710   char *s = *cPP;
2711   unsigned int i;
2712   expressionS const_expr;
2713 
2714   const struct pic_suffixes_struct
2715   {
2716     const char *const suffix;
2717     unsigned int len;
2718     bfd_reloc_code_real_type reloc;
2719   } pic_suffixes[] =
2720     {
2721 #undef PICMAP
2722 #define PICMAP(s, r) {s, sizeof (s) - 1, r}
2723       /* Keep this in order with longest unambiguous prefix first.  */
2724       PICMAP ("GOTPLT16", BFD_RELOC_CRIS_16_GOTPLT),
2725       PICMAP ("GOTPLT", BFD_RELOC_CRIS_32_GOTPLT),
2726       PICMAP ("PLTG", BFD_RELOC_CRIS_32_PLT_GOTREL),
2727       PICMAP ("PLT", BFD_RELOC_CRIS_32_PLT_PCREL),
2728       PICMAP ("GOTOFF", BFD_RELOC_CRIS_32_GOTREL),
2729       PICMAP ("GOT16", BFD_RELOC_CRIS_16_GOT),
2730       PICMAP ("GOT", BFD_RELOC_CRIS_32_GOT)
2731     };
2732 
2733   /* We've already seen the ':', so consume it.  */
2734   s++;
2735 
2736   for (i = 0; i < sizeof (pic_suffixes)/sizeof (pic_suffixes[0]); i++)
2737     {
2738       if (strncmp (s, pic_suffixes[i].suffix, pic_suffixes[i].len) == 0
2739 	  && ! is_part_of_name (s[pic_suffixes[i].len]))
2740 	{
2741 	  /* We have a match.  Consume the suffix and set the relocation
2742 	     type.   */
2743 	  s += pic_suffixes[i].len;
2744 
2745 	  /* There can be a constant term appended.  If so, we will add it
2746 	     to *EXPRP.  */
2747 	  if (*s == '+' || *s == '-')
2748 	    {
2749 	      if (! cris_get_expression (&s, &const_expr))
2750 		/* There was some kind of syntax error.  Bail out.  */
2751 		break;
2752 
2753 	      /* Allow complex expressions as the constant part.  It still
2754 		 has to be an assembly-time constant or there will be an
2755 		 error emitting the reloc.  This makes the PIC qualifiers
2756 		 idempotent; foo:GOTOFF+32 == foo+32:GOTOFF.  The former we
2757 		 recognize here; the latter is parsed in the incoming
2758 		 expression.  */
2759 	      exprP->X_add_symbol = make_expr_symbol (exprP);
2760 	      exprP->X_op = O_add;
2761 	      exprP->X_add_number = 0;
2762 	      exprP->X_op_symbol = make_expr_symbol (&const_expr);
2763 	    }
2764 
2765 	  *relocp = pic_suffixes[i].reloc;
2766 	  *cPP = s;
2767 	  return;
2768 	}
2769     }
2770 
2771   /* No match.  Don't consume anything; fall back and there will be a
2772      syntax error.  */
2773 }
2774 
2775 /* This *could* be:
2776 
2777    Turn a string in input_line_pointer into a floating point constant
2778    of type TYPE, and store the appropriate bytes in *LITP.  The number
2779    of LITTLENUMS emitted is stored in *SIZEP.
2780 
2781    type	  A character from FLTCHARS that describes what kind of
2782 	  floating-point number is wanted.
2783 
2784    litp	  A pointer to an array that the result should be stored in.
2785 
2786    sizep  A pointer to an integer where the size of the result is stored.
2787 
2788    But we don't support floating point constants in assembly code *at all*,
2789    since it's suboptimal and just opens up bug opportunities.  GCC emits
2790    the bit patterns as hex.  All we could do here is to emit what GCC
2791    would have done in the first place.	*Nobody* writes floating-point
2792    code as assembly code, but if they do, they should be able enough to
2793    find out the correct bit patterns and use them.  */
2794 
2795 char *
md_atof(type,litp,sizep)2796 md_atof (type, litp, sizep)
2797      char type ATTRIBUTE_UNUSED;
2798      char *litp ATTRIBUTE_UNUSED;
2799      int *sizep ATTRIBUTE_UNUSED;
2800 {
2801   /* FIXME:  Is this function mentioned in the internals.texi manual?  If
2802      not, add it.  */
2803   return  _("Bad call to md_atof () - floating point formats are not supported");
2804 }
2805 
2806 /* Turn a number as a fixS * into a series of bytes that represents the
2807    number on the target machine.  The purpose of this procedure is the
2808    same as that of md_number_to_chars but this procedure is supposed to
2809    handle general bit field fixes and machine-dependent fixups.
2810 
2811    bufp	       Pointer to an array where the result should be stored.
2812 
2813    val	      The value to store.
2814 
2815    n	      The number of bytes in "val" that should be stored.
2816 
2817    fixP	      The fix to be applied to the bit field starting at bufp.
2818 
2819    seg	      The segment containing this number.  */
2820 
2821 static void
cris_number_to_imm(bufp,val,n,fixP,seg)2822 cris_number_to_imm (bufp, val, n, fixP, seg)
2823      char *bufp;
2824      long val;
2825      int n;
2826      fixS *fixP;
2827      segT seg;
2828 {
2829   segT sym_seg;
2830 
2831   know (n <= 4);
2832   know (fixP);
2833 
2834   /* We put the relative "vma" for the other segment for inter-segment
2835      relocations in the object data to stay binary "compatible" (with an
2836      uninteresting old version) for the relocation.
2837      Maybe delete some day.  */
2838   if (fixP->fx_addsy
2839       && (sym_seg = S_GET_SEGMENT (fixP->fx_addsy)) != seg)
2840     val += sym_seg->vma;
2841 
2842   if (fixP->fx_addsy != NULL || fixP->fx_pcrel)
2843     switch (fixP->fx_r_type)
2844       {
2845 	/* These must be fully resolved when getting here.  */
2846       case BFD_RELOC_32_PCREL:
2847       case BFD_RELOC_16_PCREL:
2848       case BFD_RELOC_8_PCREL:
2849 	as_bad_where (fixP->fx_frag->fr_file, fixP->fx_frag->fr_line,
2850 		      _("PC-relative relocation must be trivially resolved"));
2851       default:
2852 	;
2853       }
2854 
2855   switch (fixP->fx_r_type)
2856     {
2857       /* Ditto here, we put the addend into the object code as
2858 	 well as the reloc addend.  Keep it that way for now, to simplify
2859 	 regression tests on the object file contents.	FIXME:	Seems
2860 	 uninteresting now that we have a test suite.  */
2861 
2862     case BFD_RELOC_CRIS_16_GOT:
2863     case BFD_RELOC_CRIS_32_GOT:
2864     case BFD_RELOC_CRIS_32_GOTREL:
2865     case BFD_RELOC_CRIS_16_GOTPLT:
2866     case BFD_RELOC_CRIS_32_GOTPLT:
2867     case BFD_RELOC_CRIS_32_PLT_GOTREL:
2868     case BFD_RELOC_CRIS_32_PLT_PCREL:
2869       /* We don't want to put in any kind of non-zero bits in the data
2870 	 being relocated for these.  */
2871       break;
2872 
2873     case BFD_RELOC_32:
2874     case BFD_RELOC_32_PCREL:
2875       /* No use having warnings here, since most hosts have a 32-bit type
2876 	 for "long" (which will probably change soon, now that I wrote
2877 	 this).  */
2878       bufp[3] = (val >> 24) & 0xFF;
2879       bufp[2] = (val >> 16) & 0xFF;
2880       bufp[1] = (val >> 8) & 0xFF;
2881       bufp[0] = val & 0xFF;
2882       break;
2883 
2884       /* FIXME: The 16 and 8-bit cases should have a way to check
2885 	 whether a signed or unsigned (or any signedness) number is
2886 	 accepted.
2887 	 FIXME: Does the as_bad calls find the line number by themselves,
2888 	 or should we change them into as_bad_where?  */
2889 
2890     case BFD_RELOC_16:
2891     case BFD_RELOC_16_PCREL:
2892       if (val > 0xffff || val < -32768)
2893 	as_bad (_("Value not in 16 bit range: %ld"), val);
2894       if (! fixP->fx_addsy)
2895 	{
2896 	  bufp[1] = (val >> 8) & 0xFF;
2897 	  bufp[0] = val & 0xFF;
2898 	}
2899       break;
2900 
2901     case BFD_RELOC_8:
2902     case BFD_RELOC_8_PCREL:
2903       if (val > 255 || val < -128)
2904 	as_bad (_("Value not in 8 bit range: %ld"), val);
2905       if (! fixP->fx_addsy)
2906 	bufp[0] = val & 0xFF;
2907       break;
2908 
2909     case BFD_RELOC_CRIS_UNSIGNED_4:
2910       if (val > 15 || val < 0)
2911 	as_bad (_("Value not in 4 bit unsigned range: %ld"), val);
2912       if (! fixP->fx_addsy)
2913 	bufp[0] |= val & 0x0F;
2914       break;
2915 
2916     case BFD_RELOC_CRIS_UNSIGNED_5:
2917       if (val > 31 || val < 0)
2918 	as_bad (_("Value not in 5 bit unsigned range: %ld"), val);
2919       if (! fixP->fx_addsy)
2920 	bufp[0] |= val & 0x1F;
2921       break;
2922 
2923     case BFD_RELOC_CRIS_SIGNED_6:
2924       if (val > 31 || val < -32)
2925 	as_bad (_("Value not in 6 bit range: %ld"), val);
2926       if (! fixP->fx_addsy)
2927 	bufp[0] |= val & 0x3F;
2928       break;
2929 
2930     case BFD_RELOC_CRIS_UNSIGNED_6:
2931       if (val > 63 || val < 0)
2932 	as_bad (_("Value not in 6 bit unsigned range: %ld"), val);
2933       if (! fixP->fx_addsy)
2934 	bufp[0] |= val & 0x3F;
2935       break;
2936 
2937     case BFD_RELOC_CRIS_BDISP8:
2938       if (! fixP->fx_addsy)
2939 	bufp[0] = branch_disp (val);
2940       break;
2941 
2942     case BFD_RELOC_NONE:
2943       /* May actually happen automatically.  For example at broken
2944 	 words, if the word turns out not to be broken.
2945 	 FIXME: When?  Which testcase?  */
2946       if (! fixP->fx_addsy)
2947 	md_number_to_chars (bufp, val, n);
2948       break;
2949 
2950     case BFD_RELOC_VTABLE_INHERIT:
2951       /* This borrowed from tc-ppc.c on a whim.  */
2952       if (fixP->fx_addsy
2953 	  && !S_IS_DEFINED (fixP->fx_addsy)
2954 	  && !S_IS_WEAK (fixP->fx_addsy))
2955 	S_SET_WEAK (fixP->fx_addsy);
2956       /* Fall through.  */
2957 
2958     case BFD_RELOC_VTABLE_ENTRY:
2959       fixP->fx_done = 0;
2960       break;
2961 
2962     default:
2963       BAD_CASE (fixP->fx_r_type);
2964     }
2965 }
2966 
2967 /* Processes machine-dependent command line options.  Called once for
2968    each option on the command line that the machine-independent part of
2969    GAS does not understand.  */
2970 
2971 int
md_parse_option(arg,argp)2972 md_parse_option (arg, argp)
2973      int arg;
2974      char *argp ATTRIBUTE_UNUSED;
2975 {
2976   switch (arg)
2977     {
2978     case 'H':
2979     case 'h':
2980       printf (_("Please use --help to see usage and options for this assembler.\n"));
2981       md_show_usage (stdout);
2982       exit (EXIT_SUCCESS);
2983 
2984     case 'N':
2985       warn_for_branch_expansion = 1;
2986       return 1;
2987 
2988     case OPTION_NO_US:
2989       demand_register_prefix = TRUE;
2990 
2991       if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
2992 	as_bad (_("--no-underscore is invalid with a.out format"));
2993       else
2994 	symbols_have_leading_underscore = FALSE;
2995       return 1;
2996 
2997     case OPTION_US:
2998       demand_register_prefix = FALSE;
2999       symbols_have_leading_underscore = TRUE;
3000       return 1;
3001 
3002     case OPTION_PIC:
3003       pic = TRUE;
3004       return 1;
3005 
3006     case OPTION_MULBUG_ABORT_OFF:
3007       err_for_dangerous_mul_placement = 0;
3008       return 1;
3009 
3010     case OPTION_MULBUG_ABORT_ON:
3011       err_for_dangerous_mul_placement = 1;
3012       return 1;
3013 
3014     default:
3015       return 0;
3016     }
3017 }
3018 
3019 /* Round up a section size to the appropriate boundary.  */
3020 valueT
md_section_align(segment,size)3021 md_section_align (segment, size)
3022      segT segment;
3023      valueT size;
3024 {
3025   /* Round all sects to multiple of 4, except the bss section, which
3026      we'll round to word-size.
3027 
3028      FIXME: Check if this really matters.  All sections should be
3029      rounded up, and all sections should (optionally) be assumed to be
3030      dword-aligned, it's just that there is actual usage of linking to a
3031      multiple of two.  */
3032   if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
3033     {
3034       if (segment == bss_section)
3035 	return (size + 1) & ~1;
3036       return (size + 3) & ~3;
3037     }
3038   else
3039     {
3040       /* FIXME: Is this wanted?  It matches the testsuite, but that's not
3041 	 really a valid reason.  */
3042       if (segment == text_section)
3043 	return (size + 3) & ~3;
3044     }
3045 
3046   return size;
3047 }
3048 
3049 /* Generate a machine-dependent relocation.  */
3050 arelent *
tc_gen_reloc(section,fixP)3051 tc_gen_reloc (section, fixP)
3052      asection *section ATTRIBUTE_UNUSED;
3053      fixS *fixP;
3054 {
3055   arelent *relP;
3056   bfd_reloc_code_real_type code;
3057 
3058   switch (fixP->fx_r_type)
3059     {
3060     case BFD_RELOC_CRIS_16_GOT:
3061     case BFD_RELOC_CRIS_32_GOT:
3062     case BFD_RELOC_CRIS_16_GOTPLT:
3063     case BFD_RELOC_CRIS_32_GOTPLT:
3064     case BFD_RELOC_CRIS_32_GOTREL:
3065     case BFD_RELOC_CRIS_32_PLT_GOTREL:
3066     case BFD_RELOC_CRIS_32_PLT_PCREL:
3067     case BFD_RELOC_32:
3068     case BFD_RELOC_16:
3069     case BFD_RELOC_8:
3070     case BFD_RELOC_VTABLE_INHERIT:
3071     case BFD_RELOC_VTABLE_ENTRY:
3072       code = fixP->fx_r_type;
3073       break;
3074     default:
3075       as_bad_where (fixP->fx_file, fixP->fx_line,
3076 		    _("Semantics error.  This type of operand can not be relocated, it must be an assembly-time constant"));
3077       return 0;
3078     }
3079 
3080   relP = (arelent *) xmalloc (sizeof (arelent));
3081   assert (relP != 0);
3082   relP->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
3083   *relP->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy);
3084   relP->address = fixP->fx_frag->fr_address + fixP->fx_where;
3085 
3086   if (fixP->fx_pcrel)
3087     relP->addend = 0;
3088   else
3089     relP->addend = fixP->fx_offset;
3090 
3091   /* This is the standard place for KLUDGEs to work around bugs in
3092      bfd_install_relocation (first such note in the documentation
3093      appears with binutils-2.8).
3094 
3095      That function bfd_install_relocation does the wrong thing with
3096      putting stuff into the addend of a reloc (it should stay out) for a
3097      weak symbol.  The really bad thing is that it adds the
3098      "segment-relative offset" of the symbol into the reloc.  In this
3099      case, the reloc should instead be relative to the symbol with no
3100      other offset than the assembly code shows; and since the symbol is
3101      weak, any local definition should be ignored until link time (or
3102      thereafter).
3103      To wit:  weaksym+42  should be weaksym+42 in the reloc,
3104      not weaksym+(offset_from_segment_of_local_weaksym_definition)
3105 
3106      To "work around" this, we subtract the segment-relative offset of
3107      "known" weak symbols.  This evens out the extra offset.
3108 
3109      That happens for a.out but not for ELF, since for ELF,
3110      bfd_install_relocation uses the "special function" field of the
3111      howto, and does not execute the code that needs to be undone.  */
3112 
3113   if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3114       && fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy)
3115       && ! bfd_is_und_section (S_GET_SEGMENT (fixP->fx_addsy)))
3116     {
3117       relP->addend -= S_GET_VALUE (fixP->fx_addsy);
3118     }
3119 
3120   relP->howto = bfd_reloc_type_lookup (stdoutput, code);
3121   if (! relP->howto)
3122     {
3123       const char *name;
3124 
3125       name = S_GET_NAME (fixP->fx_addsy);
3126       if (name == NULL)
3127 	name = _("<unknown>");
3128       as_fatal (_("Cannot generate relocation type for symbol %s, code %s"),
3129 		name, bfd_get_reloc_code_name (code));
3130     }
3131 
3132   return relP;
3133 }
3134 
3135 /* Machine-dependent usage-output.  */
3136 
3137 void
md_show_usage(stream)3138 md_show_usage (stream)
3139      FILE *stream;
3140 {
3141   /* The messages are formatted to line up with the generic options.  */
3142   fprintf (stream, _("CRIS-specific options:\n"));
3143   fprintf (stream, "%s",
3144 	   _("  -h, -H                  Don't execute, print this help text.  Deprecated.\n"));
3145   fprintf (stream, "%s",
3146 	   _("  -N                      Warn when branches are expanded to jumps.\n"));
3147   fprintf (stream, "%s",
3148 	   _("  --underscore            User symbols are normally prepended with underscore.\n"));
3149   fprintf (stream, "%s",
3150 	   _("                          Registers will not need any prefix.\n"));
3151   fprintf (stream, "%s",
3152 	   _("  --no-underscore         User symbols do not have any prefix.\n"));
3153   fprintf (stream, "%s",
3154 	   _("                          Registers will require a `$'-prefix.\n"));
3155   fprintf (stream, "%s",
3156 	   _("  --pic			Enable generation of position-independent code.\n"));
3157 }
3158 
3159 /* Apply a fixS (fixup of an instruction or data that we didn't have
3160    enough info to complete immediately) to the data in a frag.  */
3161 
3162 void
md_apply_fix3(fixP,valP,seg)3163 md_apply_fix3 (fixP, valP, seg)
3164      fixS *fixP;
3165      valueT *valP;
3166      segT seg;
3167 {
3168   /* This assignment truncates upper bits if valueT is 64 bits (as with
3169      --enable-64-bit-bfd), which is fine here, though we cast to avoid
3170      any compiler warnings.  */
3171   long val = (long) *valP;
3172   char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
3173 
3174   if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
3175     fixP->fx_done = 1;
3176 
3177   if (fixP->fx_bit_fixP || fixP->fx_im_disp != 0)
3178     {
3179       as_bad_where (fixP->fx_file, fixP->fx_line, _("Invalid relocation"));
3180       fixP->fx_done = 1;
3181     }
3182   else
3183     {
3184       /* We can't actually support subtracting a symbol.  */
3185       if (fixP->fx_subsy != (symbolS *) NULL)
3186 	as_bad_where (fixP->fx_file, fixP->fx_line,
3187 		      _("expression too complex"));
3188 
3189       cris_number_to_imm (buf, val, fixP->fx_size, fixP, seg);
3190     }
3191 }
3192 
3193 /* All relocations are relative to the location just after the fixup;
3194    the address of the fixup plus its size.  */
3195 
3196 long
md_pcrel_from(fixP)3197 md_pcrel_from (fixP)
3198      fixS *fixP;
3199 {
3200   valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
3201 
3202   /* FIXME:  We get here only at the end of assembly, when X in ".-X" is
3203      still unknown.  Since we don't have pc-relative relocations in a.out,
3204      this is invalid.  What to do if anything for a.out, is to add
3205      pc-relative relocations everywhere including the elinux program
3206      loader.  For ELF, allow straight-forward PC-relative relocations,
3207      which are always relative to the location after the relocation.  */
3208   if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3209       || (fixP->fx_r_type != BFD_RELOC_8_PCREL
3210 	  && fixP->fx_r_type != BFD_RELOC_16_PCREL
3211 	  && fixP->fx_r_type != BFD_RELOC_32_PCREL))
3212     as_bad_where (fixP->fx_file, fixP->fx_line,
3213 		  _("Invalid pc-relative relocation"));
3214   return fixP->fx_size + addr;
3215 }
3216 
3217 /* We have no need to give defaults for symbol-values.  */
3218 symbolS *
md_undefined_symbol(name)3219 md_undefined_symbol (name)
3220      char *name ATTRIBUTE_UNUSED;
3221 {
3222   return 0;
3223 }
3224 
3225 /* If this function returns non-zero, it prevents the relocation
3226    against symbol(s) in the FIXP from being replaced with relocations
3227    against section symbols, and guarantees that a relocation will be
3228    emitted even when the value can be resolved locally.  */
3229 int
md_cris_force_relocation(fixp)3230 md_cris_force_relocation (fixp)
3231      struct fix *fixp;
3232 {
3233   switch (fixp->fx_r_type)
3234     {
3235     case BFD_RELOC_CRIS_16_GOT:
3236     case BFD_RELOC_CRIS_32_GOT:
3237     case BFD_RELOC_CRIS_16_GOTPLT:
3238     case BFD_RELOC_CRIS_32_GOTPLT:
3239     case BFD_RELOC_CRIS_32_GOTREL:
3240     case BFD_RELOC_CRIS_32_PLT_GOTREL:
3241     case BFD_RELOC_CRIS_32_PLT_PCREL:
3242       return 1;
3243     default:
3244       ;
3245     }
3246 
3247   return generic_force_reloc (fixp);
3248 }
3249 
3250 /* Check and emit error if broken-word handling has failed to fix up a
3251    case-table.	This is called from write.c, after doing everything it
3252    knows about how to handle broken words.  */
3253 
3254 void
tc_cris_check_adjusted_broken_word(new_offset,brokwP)3255 tc_cris_check_adjusted_broken_word (new_offset, brokwP)
3256      offsetT new_offset;
3257      struct broken_word *brokwP;
3258 {
3259   if (new_offset > 32767 || new_offset < -32768)
3260     /* We really want a genuine error, not a warning, so make it one.  */
3261     as_bad_where (brokwP->frag->fr_file, brokwP->frag->fr_line,
3262 		  _("Adjusted signed .word (%ld) overflows: `switch'-statement too large."),
3263 		  (long) new_offset);
3264 }
3265 
3266 /* Make a leading REGISTER_PREFIX_CHAR mandatory for all registers.  */
3267 
cris_force_reg_prefix()3268 static void cris_force_reg_prefix ()
3269 {
3270   demand_register_prefix = TRUE;
3271 }
3272 
3273 /* Do not demand a leading REGISTER_PREFIX_CHAR for all registers.  */
3274 
cris_relax_reg_prefix()3275 static void cris_relax_reg_prefix ()
3276 {
3277   demand_register_prefix = FALSE;
3278 }
3279 
3280 /* Adjust for having a leading '_' on all user symbols.  */
3281 
cris_sym_leading_underscore()3282 static void cris_sym_leading_underscore ()
3283 {
3284   /* We can't really do anything more than assert that what the program
3285      thinks symbol starts with agrees with the command-line options, since
3286      the bfd is already created.  */
3287 
3288   if (!symbols_have_leading_underscore)
3289     as_bad (_(".syntax %s requires command-line option `--underscore'"),
3290 	    SYNTAX_USER_SYM_LEADING_UNDERSCORE);
3291 }
3292 
3293 /* Adjust for not having any particular prefix on user symbols.  */
3294 
cris_sym_no_leading_underscore()3295 static void cris_sym_no_leading_underscore ()
3296 {
3297   if (symbols_have_leading_underscore)
3298     as_bad (_(".syntax %s requires command-line option `--no-underscore'"),
3299 	    SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE);
3300 }
3301 
3302 /* Handle the .syntax pseudo, which takes an argument that decides what
3303    syntax the assembly code has.  */
3304 
3305 static void
s_syntax(ignore)3306 s_syntax (ignore)
3307      int ignore ATTRIBUTE_UNUSED;
3308 {
3309   static const struct syntaxes
3310   {
3311     const char *operand;
3312     void (*fn) PARAMS ((void));
3313   } syntax_table[] =
3314     {{SYNTAX_ENFORCE_REG_PREFIX, cris_force_reg_prefix},
3315      {SYNTAX_RELAX_REG_PREFIX, cris_relax_reg_prefix},
3316      {SYNTAX_USER_SYM_LEADING_UNDERSCORE, cris_sym_leading_underscore},
3317      {SYNTAX_USER_SYM_NO_LEADING_UNDERSCORE, cris_sym_no_leading_underscore}};
3318 
3319   const struct syntaxes *sp;
3320 
3321   for (sp = syntax_table;
3322        sp < syntax_table + sizeof (syntax_table) / sizeof (syntax_table[0]);
3323        sp++)
3324     {
3325       if (strncmp (input_line_pointer, sp->operand,
3326 		   strlen (sp->operand)) == 0)
3327 	{
3328 	  (sp->fn) ();
3329 
3330 	  input_line_pointer += strlen (sp->operand);
3331 	  demand_empty_rest_of_line ();
3332 	  return;
3333 	}
3334     }
3335 
3336   as_bad (_("Unknown .syntax operand"));
3337 }
3338 
3339 /* Wrapper for dwarf2_directive_file to emit error if this is seen when
3340    not emitting ELF.  */
3341 
3342 static void
s_cris_file(dummy)3343 s_cris_file (dummy)
3344      int dummy;
3345 {
3346   if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3347     as_bad (_("Pseudodirective .file is only valid when generating ELF"));
3348   else
3349     dwarf2_directive_file (dummy);
3350 }
3351 
3352 /* Wrapper for dwarf2_directive_loc to emit error if this is seen when not
3353    emitting ELF.  */
3354 
3355 static void
s_cris_loc(dummy)3356 s_cris_loc (dummy)
3357      int dummy;
3358 {
3359   if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3360     as_bad (_("Pseudodirective .loc is only valid when generating ELF"));
3361   else
3362     dwarf2_directive_loc (dummy);
3363 }
3364 
3365 /*
3366  * Local variables:
3367  * eval: (c-set-style "gnu")
3368  * indent-tabs-mode: t
3369  * End:
3370  */
3371