1 /* expr.c -operands, expressions-
2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This is really a branch office of as-read.c. I split it out to clearly
24 distinguish the world of expressions from the world of statements.
25 (It also gives smaller files to re-compile.)
26 Here, "operand"s are of expressions, not instructions. */
27
28 #include <string.h>
29 #define min(a, b) ((a) < (b) ? (a) : (b))
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "obstack.h"
34
35 static void floating_constant (expressionS * expressionP);
36 static valueT generic_bignum_to_int32 (void);
37 #ifdef BFD64
38 static valueT generic_bignum_to_int64 (void);
39 #endif
40 static void integer_constant (int radix, expressionS * expressionP);
41 static void mri_char_constant (expressionS *);
42 static void current_location (expressionS *);
43 static void clean_up_expression (expressionS * expressionP);
44 static segT operand (expressionS *);
45 static operatorT operator (int *);
46
47 extern const char EXP_CHARS[], FLT_CHARS[];
48
49 /* We keep a mapping of expression symbols to file positions, so that
50 we can provide better error messages. */
51
52 struct expr_symbol_line {
53 struct expr_symbol_line *next;
54 symbolS *sym;
55 char *file;
56 unsigned int line;
57 };
58
59 static struct expr_symbol_line *expr_symbol_lines;
60
61 /* Build a dummy symbol to hold a complex expression. This is how we
62 build expressions up out of other expressions. The symbol is put
63 into the fake section expr_section. */
64
65 symbolS *
make_expr_symbol(expressionS * expressionP)66 make_expr_symbol (expressionS *expressionP)
67 {
68 expressionS zero;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid"));
83 else
84 as_bad (_("floating point number invalid"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 clean_up_expression (&zero);
89 expressionP = &zero;
90 }
91
92 /* Putting constant symbols in absolute_section rather than
93 expr_section is convenient for the old a.out code, for which
94 S_GET_SEGMENT does not always retrieve the value put in by
95 S_SET_SEGMENT. */
96 symbolP = symbol_create (FAKE_LABEL_NAME,
97 (expressionP->X_op == O_constant
98 ? absolute_section
99 : expr_section),
100 0, &zero_address_frag);
101 symbol_set_value_expression (symbolP, expressionP);
102
103 if (expressionP->X_op == O_constant)
104 resolve_symbol_value (symbolP);
105
106 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
107 n->sym = symbolP;
108 as_where (&n->file, &n->line);
109 n->next = expr_symbol_lines;
110 expr_symbol_lines = n;
111
112 return symbolP;
113 }
114
115 /* Return the file and line number for an expr symbol. Return
116 non-zero if something was found, 0 if no information is known for
117 the symbol. */
118
119 int
expr_symbol_where(symbolS * sym,char ** pfile,unsigned int * pline)120 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline)
121 {
122 register struct expr_symbol_line *l;
123
124 for (l = expr_symbol_lines; l != NULL; l = l->next)
125 {
126 if (l->sym == sym)
127 {
128 *pfile = l->file;
129 *pline = l->line;
130 return 1;
131 }
132 }
133
134 return 0;
135 }
136
137 /* Utilities for building expressions.
138 Since complex expressions are recorded as symbols for use in other
139 expressions these return a symbolS * and not an expressionS *.
140 These explicitly do not take an "add_number" argument. */
141 /* ??? For completeness' sake one might want expr_build_symbol.
142 It would just return its argument. */
143
144 /* Build an expression for an unsigned constant.
145 The corresponding one for signed constants is missing because
146 there's currently no need for it. One could add an unsigned_p flag
147 but that seems more clumsy. */
148
149 symbolS *
expr_build_uconstant(offsetT value)150 expr_build_uconstant (offsetT value)
151 {
152 expressionS e;
153
154 e.X_op = O_constant;
155 e.X_add_number = value;
156 e.X_unsigned = 1;
157 return make_expr_symbol (&e);
158 }
159
160 /* Build an expression for OP s1. */
161
162 symbolS *
expr_build_unary(operatorT op,symbolS * s1)163 expr_build_unary (operatorT op, symbolS *s1)
164 {
165 expressionS e;
166
167 e.X_op = op;
168 e.X_add_symbol = s1;
169 e.X_add_number = 0;
170 return make_expr_symbol (&e);
171 }
172
173 /* Build an expression for s1 OP s2. */
174
175 symbolS *
expr_build_binary(operatorT op,symbolS * s1,symbolS * s2)176 expr_build_binary (operatorT op, symbolS *s1, symbolS *s2)
177 {
178 expressionS e;
179
180 e.X_op = op;
181 e.X_add_symbol = s1;
182 e.X_op_symbol = s2;
183 e.X_add_number = 0;
184 return make_expr_symbol (&e);
185 }
186
187 /* Build an expression for the current location ('.'). */
188
189 symbolS *
expr_build_dot(void)190 expr_build_dot (void)
191 {
192 expressionS e;
193
194 current_location (&e);
195 return make_expr_symbol (&e);
196 }
197
198 /* Build any floating-point literal here.
199 Also build any bignum literal here. */
200
201 /* Seems atof_machine can backscan through generic_bignum and hit whatever
202 happens to be loaded before it in memory. And its way too complicated
203 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
204 and never write into the early words, thus they'll always be zero.
205 I hate Dean's floating-point code. Bleh. */
206 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
207
208 FLONUM_TYPE generic_floating_point_number = {
209 &generic_bignum[6], /* low. (JF: Was 0) */
210 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
211 0, /* leader. */
212 0, /* exponent. */
213 0 /* sign. */
214 };
215
216 /* If nonzero, we've been asked to assemble nan, +inf or -inf. */
217 int generic_floating_point_magic;
218
219 static void
floating_constant(expressionS * expressionP)220 floating_constant (expressionS *expressionP)
221 {
222 /* input_line_pointer -> floating-point constant. */
223 int error_code;
224
225 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
226 &generic_floating_point_number);
227
228 if (error_code)
229 {
230 if (error_code == ERROR_EXPONENT_OVERFLOW)
231 {
232 as_bad (_("bad floating-point constant: exponent overflow"));
233 }
234 else
235 {
236 as_bad (_("bad floating-point constant: unknown error code=%d"),
237 error_code);
238 }
239 }
240 expressionP->X_op = O_big;
241 /* input_line_pointer -> just after constant, which may point to
242 whitespace. */
243 expressionP->X_add_number = -1;
244 }
245
246 static valueT
generic_bignum_to_int32(void)247 generic_bignum_to_int32 (void)
248 {
249 valueT number =
250 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
251 | (generic_bignum[0] & LITTLENUM_MASK);
252 number &= 0xffffffff;
253 return number;
254 }
255
256 #ifdef BFD64
257 static valueT
generic_bignum_to_int64(void)258 generic_bignum_to_int64 (void)
259 {
260 valueT number =
261 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
262 << LITTLENUM_NUMBER_OF_BITS)
263 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
264 << LITTLENUM_NUMBER_OF_BITS)
265 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
266 << LITTLENUM_NUMBER_OF_BITS)
267 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
268 return number;
269 }
270 #endif
271
272 static void
integer_constant(int radix,expressionS * expressionP)273 integer_constant (int radix, expressionS *expressionP)
274 {
275 char *start; /* Start of number. */
276 char *suffix = NULL;
277 char c;
278 valueT number; /* Offset or (absolute) value. */
279 short int digit; /* Value of next digit in current radix. */
280 short int maxdig = 0; /* Highest permitted digit value. */
281 int too_many_digits = 0; /* If we see >= this number of. */
282 char *name; /* Points to name of symbol. */
283 symbolS *symbolP; /* Points to symbol. */
284
285 int small; /* True if fits in 32 bits. */
286
287 /* May be bignum, or may fit in 32 bits. */
288 /* Most numbers fit into 32 bits, and we want this case to be fast.
289 so we pretend it will fit into 32 bits. If, after making up a 32
290 bit number, we realise that we have scanned more digits than
291 comfortably fit into 32 bits, we re-scan the digits coding them
292 into a bignum. For decimal and octal numbers we are
293 conservative: Some numbers may be assumed bignums when in fact
294 they do fit into 32 bits. Numbers of any radix can have excess
295 leading zeros: We strive to recognise this and cast them back
296 into 32 bits. We must check that the bignum really is more than
297 32 bits, and change it back to a 32-bit number if it fits. The
298 number we are looking for is expected to be positive, but if it
299 fits into 32 bits as an unsigned number, we let it be a 32-bit
300 number. The cavalier approach is for speed in ordinary cases. */
301 /* This has been extended for 64 bits. We blindly assume that if
302 you're compiling in 64-bit mode, the target is a 64-bit machine.
303 This should be cleaned up. */
304
305 #ifdef BFD64
306 #define valuesize 64
307 #else /* includes non-bfd case, mostly */
308 #define valuesize 32
309 #endif
310
311 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
312 {
313 int flt = 0;
314
315 /* In MRI mode, the number may have a suffix indicating the
316 radix. For that matter, it might actually be a floating
317 point constant. */
318 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
319 {
320 if (*suffix == 'e' || *suffix == 'E')
321 flt = 1;
322 }
323
324 if (suffix == input_line_pointer)
325 {
326 radix = 10;
327 suffix = NULL;
328 }
329 else
330 {
331 c = *--suffix;
332 c = TOUPPER (c);
333 if (c == 'B')
334 radix = 2;
335 else if (c == 'D')
336 radix = 10;
337 else if (c == 'O' || c == 'Q')
338 radix = 8;
339 else if (c == 'H')
340 radix = 16;
341 else if (suffix[1] == '.' || c == 'E' || flt)
342 {
343 floating_constant (expressionP);
344 return;
345 }
346 else
347 {
348 radix = 10;
349 suffix = NULL;
350 }
351 }
352 }
353
354 switch (radix)
355 {
356 case 2:
357 maxdig = 2;
358 too_many_digits = valuesize + 1;
359 break;
360 case 8:
361 maxdig = radix = 8;
362 too_many_digits = (valuesize + 2) / 3 + 1;
363 break;
364 case 16:
365 maxdig = radix = 16;
366 too_many_digits = (valuesize + 3) / 4 + 1;
367 break;
368 case 10:
369 maxdig = radix = 10;
370 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
371 }
372 #undef valuesize
373 start = input_line_pointer;
374 c = *input_line_pointer++;
375 for (number = 0;
376 (digit = hex_value (c)) < maxdig;
377 c = *input_line_pointer++)
378 {
379 number = number * radix + digit;
380 }
381 /* c contains character after number. */
382 /* input_line_pointer->char after c. */
383 small = (input_line_pointer - start - 1) < too_many_digits;
384
385 if (radix == 16 && c == '_')
386 {
387 /* This is literal of the form 0x333_0_12345678_1.
388 This example is equivalent to 0x00000333000000001234567800000001. */
389
390 int num_little_digits = 0;
391 int i;
392 input_line_pointer = start; /* -> 1st digit. */
393
394 know (LITTLENUM_NUMBER_OF_BITS == 16);
395
396 for (c = '_'; c == '_'; num_little_digits += 2)
397 {
398
399 /* Convert one 64-bit word. */
400 int ndigit = 0;
401 number = 0;
402 for (c = *input_line_pointer++;
403 (digit = hex_value (c)) < maxdig;
404 c = *(input_line_pointer++))
405 {
406 number = number * radix + digit;
407 ndigit++;
408 }
409
410 /* Check for 8 digit per word max. */
411 if (ndigit > 8)
412 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
413
414 /* Add this chunk to the bignum.
415 Shift things down 2 little digits. */
416 know (LITTLENUM_NUMBER_OF_BITS == 16);
417 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
418 i >= 2;
419 i--)
420 generic_bignum[i] = generic_bignum[i - 2];
421
422 /* Add the new digits as the least significant new ones. */
423 generic_bignum[0] = number & 0xffffffff;
424 generic_bignum[1] = number >> 16;
425 }
426
427 /* Again, c is char after number, input_line_pointer->after c. */
428
429 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
430 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
431
432 assert (num_little_digits >= 4);
433
434 if (num_little_digits != 8)
435 as_bad (_("a bignum with underscores must have exactly 4 words"));
436
437 /* We might have some leading zeros. These can be trimmed to give
438 us a change to fit this constant into a small number. */
439 while (generic_bignum[num_little_digits - 1] == 0
440 && num_little_digits > 1)
441 num_little_digits--;
442
443 if (num_little_digits <= 2)
444 {
445 /* will fit into 32 bits. */
446 number = generic_bignum_to_int32 ();
447 small = 1;
448 }
449 #ifdef BFD64
450 else if (num_little_digits <= 4)
451 {
452 /* Will fit into 64 bits. */
453 number = generic_bignum_to_int64 ();
454 small = 1;
455 }
456 #endif
457 else
458 {
459 small = 0;
460
461 /* Number of littlenums in the bignum. */
462 number = num_little_digits;
463 }
464 }
465 else if (!small)
466 {
467 /* We saw a lot of digits. manufacture a bignum the hard way. */
468 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
469 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
470 long carry;
471
472 leader = generic_bignum;
473 generic_bignum[0] = 0;
474 generic_bignum[1] = 0;
475 generic_bignum[2] = 0;
476 generic_bignum[3] = 0;
477 input_line_pointer = start; /* -> 1st digit. */
478 c = *input_line_pointer++;
479 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
480 {
481 for (pointer = generic_bignum; pointer <= leader; pointer++)
482 {
483 long work;
484
485 work = carry + radix * *pointer;
486 *pointer = work & LITTLENUM_MASK;
487 carry = work >> LITTLENUM_NUMBER_OF_BITS;
488 }
489 if (carry)
490 {
491 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
492 {
493 /* Room to grow a longer bignum. */
494 *++leader = carry;
495 }
496 }
497 }
498 /* Again, c is char after number. */
499 /* input_line_pointer -> after c. */
500 know (LITTLENUM_NUMBER_OF_BITS == 16);
501 if (leader < generic_bignum + 2)
502 {
503 /* Will fit into 32 bits. */
504 number = generic_bignum_to_int32 ();
505 small = 1;
506 }
507 #ifdef BFD64
508 else if (leader < generic_bignum + 4)
509 {
510 /* Will fit into 64 bits. */
511 number = generic_bignum_to_int64 ();
512 small = 1;
513 }
514 #endif
515 else
516 {
517 /* Number of littlenums in the bignum. */
518 number = leader - generic_bignum + 1;
519 }
520 }
521
522 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
523 && suffix != NULL
524 && input_line_pointer - 1 == suffix)
525 c = *input_line_pointer++;
526
527 if (small)
528 {
529 /* Here with number, in correct radix. c is the next char.
530 Note that unlike un*x, we allow "011f" "0x9f" to both mean
531 the same as the (conventional) "9f".
532 This is simply easier than checking for strict canonical
533 form. Syntax sux! */
534
535 if (LOCAL_LABELS_FB && c == 'b')
536 {
537 /* Backward ref to local label.
538 Because it is backward, expect it to be defined. */
539 /* Construct a local label. */
540 name = fb_label_name ((int) number, 0);
541
542 /* Seen before, or symbol is defined: OK. */
543 symbolP = symbol_find (name);
544 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
545 {
546 /* Local labels are never absolute. Don't waste time
547 checking absoluteness. */
548 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
549
550 expressionP->X_op = O_symbol;
551 expressionP->X_add_symbol = symbolP;
552 }
553 else
554 {
555 /* Either not seen or not defined. */
556 /* @@ Should print out the original string instead of
557 the parsed number. */
558 as_bad (_("backward ref to unknown label \"%d:\""),
559 (int) number);
560 expressionP->X_op = O_constant;
561 }
562
563 expressionP->X_add_number = 0;
564 } /* case 'b' */
565 else if (LOCAL_LABELS_FB && c == 'f')
566 {
567 /* Forward reference. Expect symbol to be undefined or
568 unknown. undefined: seen it before. unknown: never seen
569 it before.
570
571 Construct a local label name, then an undefined symbol.
572 Don't create a xseg frag for it: caller may do that.
573 Just return it as never seen before. */
574 name = fb_label_name ((int) number, 1);
575 symbolP = symbol_find_or_make (name);
576 /* We have no need to check symbol properties. */
577 #ifndef many_segments
578 /* Since "know" puts its arg into a "string", we
579 can't have newlines in the argument. */
580 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
581 #endif
582 expressionP->X_op = O_symbol;
583 expressionP->X_add_symbol = symbolP;
584 expressionP->X_add_number = 0;
585 } /* case 'f' */
586 else if (LOCAL_LABELS_DOLLAR && c == '$')
587 {
588 /* If the dollar label is *currently* defined, then this is just
589 another reference to it. If it is not *currently* defined,
590 then this is a fresh instantiation of that number, so create
591 it. */
592
593 if (dollar_label_defined ((long) number))
594 {
595 name = dollar_label_name ((long) number, 0);
596 symbolP = symbol_find (name);
597 know (symbolP != NULL);
598 }
599 else
600 {
601 name = dollar_label_name ((long) number, 1);
602 symbolP = symbol_find_or_make (name);
603 }
604
605 expressionP->X_op = O_symbol;
606 expressionP->X_add_symbol = symbolP;
607 expressionP->X_add_number = 0;
608 } /* case '$' */
609 else
610 {
611 expressionP->X_op = O_constant;
612 #ifdef TARGET_WORD_SIZE
613 /* Sign extend NUMBER. */
614 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
615 #endif
616 expressionP->X_add_number = number;
617 input_line_pointer--; /* Restore following character. */
618 } /* Really just a number. */
619 }
620 else
621 {
622 /* Not a small number. */
623 expressionP->X_op = O_big;
624 expressionP->X_add_number = number; /* Number of littlenums. */
625 input_line_pointer--; /* -> char following number. */
626 }
627 }
628
629 /* Parse an MRI multi character constant. */
630
631 static void
mri_char_constant(expressionS * expressionP)632 mri_char_constant (expressionS *expressionP)
633 {
634 int i;
635
636 if (*input_line_pointer == '\''
637 && input_line_pointer[1] != '\'')
638 {
639 expressionP->X_op = O_constant;
640 expressionP->X_add_number = 0;
641 return;
642 }
643
644 /* In order to get the correct byte ordering, we must build the
645 number in reverse. */
646 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
647 {
648 int j;
649
650 generic_bignum[i] = 0;
651 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
652 {
653 if (*input_line_pointer == '\'')
654 {
655 if (input_line_pointer[1] != '\'')
656 break;
657 ++input_line_pointer;
658 }
659 generic_bignum[i] <<= 8;
660 generic_bignum[i] += *input_line_pointer;
661 ++input_line_pointer;
662 }
663
664 if (i < SIZE_OF_LARGE_NUMBER - 1)
665 {
666 /* If there is more than one littlenum, left justify the
667 last one to make it match the earlier ones. If there is
668 only one, we can just use the value directly. */
669 for (; j < CHARS_PER_LITTLENUM; j++)
670 generic_bignum[i] <<= 8;
671 }
672
673 if (*input_line_pointer == '\''
674 && input_line_pointer[1] != '\'')
675 break;
676 }
677
678 if (i < 0)
679 {
680 as_bad (_("character constant too large"));
681 i = 0;
682 }
683
684 if (i > 0)
685 {
686 int c;
687 int j;
688
689 c = SIZE_OF_LARGE_NUMBER - i;
690 for (j = 0; j < c; j++)
691 generic_bignum[j] = generic_bignum[i + j];
692 i = c;
693 }
694
695 know (LITTLENUM_NUMBER_OF_BITS == 16);
696 if (i > 2)
697 {
698 expressionP->X_op = O_big;
699 expressionP->X_add_number = i;
700 }
701 else
702 {
703 expressionP->X_op = O_constant;
704 if (i < 2)
705 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
706 else
707 expressionP->X_add_number =
708 (((generic_bignum[1] & LITTLENUM_MASK)
709 << LITTLENUM_NUMBER_OF_BITS)
710 | (generic_bignum[0] & LITTLENUM_MASK));
711 }
712
713 /* Skip the final closing quote. */
714 ++input_line_pointer;
715 }
716
717 /* Return an expression representing the current location. This
718 handles the magic symbol `.'. */
719
720 static void
current_location(expressionS * expressionp)721 current_location (expressionS *expressionp)
722 {
723 if (now_seg == absolute_section)
724 {
725 expressionp->X_op = O_constant;
726 expressionp->X_add_number = abs_section_offset;
727 }
728 else
729 {
730 expressionp->X_op = O_symbol;
731 expressionp->X_add_symbol = symbol_temp_new_now ();
732 expressionp->X_add_number = 0;
733 }
734 }
735
736 /* In: Input_line_pointer points to 1st char of operand, which may
737 be a space.
738
739 Out: An expressionS.
740 The operand may have been empty: in this case X_op == O_absent.
741 Input_line_pointer->(next non-blank) char after operand. */
742
743 static segT
operand(expressionS * expressionP)744 operand (expressionS *expressionP)
745 {
746 char c;
747 symbolS *symbolP; /* Points to symbol. */
748 char *name; /* Points to name of symbol. */
749 segT segment;
750
751 /* All integers are regarded as unsigned unless they are negated.
752 This is because the only thing which cares whether a number is
753 unsigned is the code in emit_expr which extends constants into
754 bignums. It should only sign extend negative numbers, so that
755 something like ``.quad 0x80000000'' is not sign extended even
756 though it appears negative if valueT is 32 bits. */
757 expressionP->X_unsigned = 1;
758
759 /* Digits, assume it is a bignum. */
760
761 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
762 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
763
764 if (is_end_of_line[(unsigned char) c])
765 goto eol;
766
767 switch (c)
768 {
769 case '1':
770 case '2':
771 case '3':
772 case '4':
773 case '5':
774 case '6':
775 case '7':
776 case '8':
777 case '9':
778 input_line_pointer--;
779
780 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
781 ? 0 : 10,
782 expressionP);
783 break;
784
785 #ifdef LITERAL_PREFIXDOLLAR_HEX
786 case '$':
787 /* $L is the start of a local label, not a hex constant. */
788 if (* input_line_pointer == 'L')
789 goto isname;
790 integer_constant (16, expressionP);
791 break;
792 #endif
793
794 #ifdef LITERAL_PREFIXPERCENT_BIN
795 case '%':
796 integer_constant (2, expressionP);
797 break;
798 #endif
799
800 case '0':
801 /* Non-decimal radix. */
802
803 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
804 {
805 char *s;
806
807 /* Check for a hex or float constant. */
808 for (s = input_line_pointer; hex_p (*s); s++)
809 ;
810 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
811 {
812 --input_line_pointer;
813 integer_constant (0, expressionP);
814 break;
815 }
816 }
817 c = *input_line_pointer;
818 switch (c)
819 {
820 case 'o':
821 case 'O':
822 case 'q':
823 case 'Q':
824 case '8':
825 case '9':
826 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
827 {
828 integer_constant (0, expressionP);
829 break;
830 }
831 /* Fall through. */
832 default:
833 default_case:
834 if (c && strchr (FLT_CHARS, c))
835 {
836 input_line_pointer++;
837 floating_constant (expressionP);
838 expressionP->X_add_number = - TOLOWER (c);
839 }
840 else
841 {
842 /* The string was only zero. */
843 expressionP->X_op = O_constant;
844 expressionP->X_add_number = 0;
845 }
846
847 break;
848
849 case 'x':
850 case 'X':
851 if (flag_m68k_mri)
852 goto default_case;
853 input_line_pointer++;
854 integer_constant (16, expressionP);
855 break;
856
857 case 'b':
858 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX))
859 {
860 /* This code used to check for '+' and '-' here, and, in
861 some conditions, fall through to call
862 integer_constant. However, that didn't make sense,
863 as integer_constant only accepts digits. */
864 /* Some of our code elsewhere does permit digits greater
865 than the expected base; for consistency, do the same
866 here. */
867 if (input_line_pointer[1] < '0'
868 || input_line_pointer[1] > '9')
869 {
870 /* Parse this as a back reference to label 0. */
871 input_line_pointer--;
872 integer_constant (10, expressionP);
873 break;
874 }
875 /* Otherwise, parse this as a binary number. */
876 }
877 /* Fall through. */
878 case 'B':
879 input_line_pointer++;
880 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
881 goto default_case;
882 integer_constant (2, expressionP);
883 break;
884
885 case '0':
886 case '1':
887 case '2':
888 case '3':
889 case '4':
890 case '5':
891 case '6':
892 case '7':
893 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
894 ? 0 : 8,
895 expressionP);
896 break;
897
898 case 'f':
899 if (LOCAL_LABELS_FB)
900 {
901 /* If it says "0f" and it could possibly be a floating point
902 number, make it one. Otherwise, make it a local label,
903 and try to deal with parsing the rest later. */
904 if (!input_line_pointer[1]
905 || (is_end_of_line[0xff & input_line_pointer[1]])
906 || strchr (FLT_CHARS, 'f') == NULL)
907 goto is_0f_label;
908 {
909 char *cp = input_line_pointer + 1;
910 int r = atof_generic (&cp, ".", EXP_CHARS,
911 &generic_floating_point_number);
912 switch (r)
913 {
914 case 0:
915 case ERROR_EXPONENT_OVERFLOW:
916 if (*cp == 'f' || *cp == 'b')
917 /* Looks like a difference expression. */
918 goto is_0f_label;
919 else if (cp == input_line_pointer + 1)
920 /* No characters has been accepted -- looks like
921 end of operand. */
922 goto is_0f_label;
923 else
924 goto is_0f_float;
925 default:
926 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
927 r);
928 }
929 }
930
931 /* Okay, now we've sorted it out. We resume at one of these
932 two labels, depending on what we've decided we're probably
933 looking at. */
934 is_0f_label:
935 input_line_pointer--;
936 integer_constant (10, expressionP);
937 break;
938
939 is_0f_float:
940 /* Fall through. */
941 ;
942 }
943
944 case 'd':
945 case 'D':
946 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
947 {
948 integer_constant (0, expressionP);
949 break;
950 }
951 /* Fall through. */
952 case 'F':
953 case 'r':
954 case 'e':
955 case 'E':
956 case 'g':
957 case 'G':
958 input_line_pointer++;
959 floating_constant (expressionP);
960 expressionP->X_add_number = - TOLOWER (c);
961 break;
962
963 case '$':
964 if (LOCAL_LABELS_DOLLAR)
965 {
966 integer_constant (10, expressionP);
967 break;
968 }
969 else
970 goto default_case;
971 }
972
973 break;
974
975 case '(':
976 #ifndef NEED_INDEX_OPERATOR
977 case '[':
978 #endif
979 /* Didn't begin with digit & not a name. */
980 segment = expression (expressionP);
981 /* expression () will pass trailing whitespace. */
982 if ((c == '(' && *input_line_pointer != ')')
983 || (c == '[' && *input_line_pointer != ']'))
984 {
985 #ifdef RELAX_PAREN_GROUPING
986 if (c != '(')
987 #endif
988 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
989 }
990 else
991 input_line_pointer++;
992 SKIP_WHITESPACE ();
993 /* Here with input_line_pointer -> char after "(...)". */
994 return segment;
995
996 #ifdef TC_M68K
997 case 'E':
998 if (! flag_m68k_mri || *input_line_pointer != '\'')
999 goto de_fault;
1000 as_bad (_("EBCDIC constants are not supported"));
1001 /* Fall through. */
1002 case 'A':
1003 if (! flag_m68k_mri || *input_line_pointer != '\'')
1004 goto de_fault;
1005 ++input_line_pointer;
1006 /* Fall through. */
1007 #endif
1008 case '\'':
1009 if (! flag_m68k_mri)
1010 {
1011 /* Warning: to conform to other people's assemblers NO
1012 ESCAPEMENT is permitted for a single quote. The next
1013 character, parity errors and all, is taken as the value
1014 of the operand. VERY KINKY. */
1015 expressionP->X_op = O_constant;
1016 expressionP->X_add_number = *input_line_pointer++;
1017 break;
1018 }
1019
1020 mri_char_constant (expressionP);
1021 break;
1022
1023 case '+':
1024 /* Do not accept ++e as +(+e) */
1025 if (*input_line_pointer == '+')
1026 goto target_op;
1027 (void) operand (expressionP);
1028 break;
1029
1030 #ifdef TC_M68K
1031 case '"':
1032 /* Double quote is the bitwise not operator in MRI mode. */
1033 if (! flag_m68k_mri)
1034 goto de_fault;
1035 /* Fall through. */
1036 #endif
1037 case '~':
1038 /* '~' is permitted to start a label on the Delta. */
1039 if (is_name_beginner (c))
1040 goto isname;
1041 case '!':
1042 case '-':
1043 {
1044 /* Do not accept --e as -(-e) */
1045 if (c == '-' && *input_line_pointer == '-')
1046 goto target_op;
1047
1048 operand (expressionP);
1049 if (expressionP->X_op == O_constant)
1050 {
1051 /* input_line_pointer -> char after operand. */
1052 if (c == '-')
1053 {
1054 expressionP->X_add_number = - expressionP->X_add_number;
1055 /* Notice: '-' may overflow: no warning is given.
1056 This is compatible with other people's
1057 assemblers. Sigh. */
1058 expressionP->X_unsigned = 0;
1059 }
1060 else if (c == '~' || c == '"')
1061 expressionP->X_add_number = ~ expressionP->X_add_number;
1062 else
1063 expressionP->X_add_number = ! expressionP->X_add_number;
1064 }
1065 else if (expressionP->X_op == O_big
1066 && expressionP->X_add_number <= 0
1067 && c == '-'
1068 && (generic_floating_point_number.sign == '+'
1069 || generic_floating_point_number.sign == 'P'))
1070 {
1071 /* Negative flonum (eg, -1.000e0). */
1072 if (generic_floating_point_number.sign == '+')
1073 generic_floating_point_number.sign = '-';
1074 else
1075 generic_floating_point_number.sign = 'N';
1076 }
1077 else if (expressionP->X_op != O_illegal
1078 && expressionP->X_op != O_absent)
1079 {
1080 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1081 if (c == '-')
1082 expressionP->X_op = O_uminus;
1083 else if (c == '~' || c == '"')
1084 expressionP->X_op = O_bit_not;
1085 else
1086 expressionP->X_op = O_logical_not;
1087 expressionP->X_add_number = 0;
1088 }
1089 else
1090 as_warn (_("Unary operator %c ignored because bad operand follows"),
1091 c);
1092 }
1093 break;
1094
1095 #if defined (DOLLAR_DOT) || defined (TC_M68K)
1096 case '$':
1097 /* '$' is the program counter when in MRI mode, or when
1098 DOLLAR_DOT is defined. */
1099 #ifndef DOLLAR_DOT
1100 if (! flag_m68k_mri)
1101 goto de_fault;
1102 #endif
1103 if (flag_m68k_mri && hex_p (*input_line_pointer))
1104 {
1105 /* In MRI mode, '$' is also used as the prefix for a
1106 hexadecimal constant. */
1107 integer_constant (16, expressionP);
1108 break;
1109 }
1110
1111 if (is_part_of_name (*input_line_pointer))
1112 goto isname;
1113
1114 current_location (expressionP);
1115 break;
1116 #endif
1117
1118 case '.':
1119 if (!is_part_of_name (*input_line_pointer))
1120 {
1121 current_location (expressionP);
1122 break;
1123 }
1124 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1125 && ! is_part_of_name (input_line_pointer[8]))
1126 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1127 && ! is_part_of_name (input_line_pointer[7])))
1128 {
1129 int start;
1130
1131 start = (input_line_pointer[1] == 't'
1132 || input_line_pointer[1] == 'T');
1133 input_line_pointer += start ? 8 : 7;
1134 SKIP_WHITESPACE ();
1135 if (*input_line_pointer != '(')
1136 as_bad (_("syntax error in .startof. or .sizeof."));
1137 else
1138 {
1139 char *buf;
1140
1141 ++input_line_pointer;
1142 SKIP_WHITESPACE ();
1143 name = input_line_pointer;
1144 c = get_symbol_end ();
1145
1146 buf = (char *) xmalloc (strlen (name) + 10);
1147 if (start)
1148 sprintf (buf, ".startof.%s", name);
1149 else
1150 sprintf (buf, ".sizeof.%s", name);
1151 symbolP = symbol_make (buf);
1152 free (buf);
1153
1154 expressionP->X_op = O_symbol;
1155 expressionP->X_add_symbol = symbolP;
1156 expressionP->X_add_number = 0;
1157
1158 *input_line_pointer = c;
1159 SKIP_WHITESPACE ();
1160 if (*input_line_pointer != ')')
1161 as_bad (_("syntax error in .startof. or .sizeof."));
1162 else
1163 ++input_line_pointer;
1164 }
1165 break;
1166 }
1167 else
1168 {
1169 goto isname;
1170 }
1171
1172 case ',':
1173 eol:
1174 /* Can't imagine any other kind of operand. */
1175 expressionP->X_op = O_absent;
1176 input_line_pointer--;
1177 break;
1178
1179 #ifdef TC_M68K
1180 case '%':
1181 if (! flag_m68k_mri)
1182 goto de_fault;
1183 integer_constant (2, expressionP);
1184 break;
1185
1186 case '@':
1187 if (! flag_m68k_mri)
1188 goto de_fault;
1189 integer_constant (8, expressionP);
1190 break;
1191
1192 case ':':
1193 if (! flag_m68k_mri)
1194 goto de_fault;
1195
1196 /* In MRI mode, this is a floating point constant represented
1197 using hexadecimal digits. */
1198
1199 ++input_line_pointer;
1200 integer_constant (16, expressionP);
1201 break;
1202
1203 case '*':
1204 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1205 goto de_fault;
1206
1207 current_location (expressionP);
1208 break;
1209 #endif
1210
1211 default:
1212 #ifdef TC_M68K
1213 de_fault:
1214 #endif
1215 if (is_name_beginner (c)) /* Here if did not begin with a digit. */
1216 {
1217 /* Identifier begins here.
1218 This is kludged for speed, so code is repeated. */
1219 isname:
1220 name = --input_line_pointer;
1221 c = get_symbol_end ();
1222
1223 #ifdef md_parse_name
1224 /* This is a hook for the backend to parse certain names
1225 specially in certain contexts. If a name always has a
1226 specific value, it can often be handled by simply
1227 entering it in the symbol table. */
1228 if (md_parse_name (name, expressionP, &c))
1229 {
1230 *input_line_pointer = c;
1231 break;
1232 }
1233 #endif
1234
1235 #ifdef TC_I960
1236 /* The MRI i960 assembler permits
1237 lda sizeof code,g13
1238 FIXME: This should use md_parse_name. */
1239 if (flag_mri
1240 && (strcasecmp (name, "sizeof") == 0
1241 || strcasecmp (name, "startof") == 0))
1242 {
1243 int start;
1244 char *buf;
1245
1246 start = (name[1] == 't'
1247 || name[1] == 'T');
1248
1249 *input_line_pointer = c;
1250 SKIP_WHITESPACE ();
1251
1252 name = input_line_pointer;
1253 c = get_symbol_end ();
1254
1255 buf = (char *) xmalloc (strlen (name) + 10);
1256 if (start)
1257 sprintf (buf, ".startof.%s", name);
1258 else
1259 sprintf (buf, ".sizeof.%s", name);
1260 symbolP = symbol_make (buf);
1261 free (buf);
1262
1263 expressionP->X_op = O_symbol;
1264 expressionP->X_add_symbol = symbolP;
1265 expressionP->X_add_number = 0;
1266
1267 *input_line_pointer = c;
1268 SKIP_WHITESPACE ();
1269
1270 break;
1271 }
1272 #endif
1273
1274 symbolP = symbol_find_or_make (name);
1275
1276 /* If we have an absolute symbol or a reg, then we know its
1277 value now. */
1278 segment = S_GET_SEGMENT (symbolP);
1279 if (segment == absolute_section)
1280 {
1281 expressionP->X_op = O_constant;
1282 expressionP->X_add_number = S_GET_VALUE (symbolP);
1283 }
1284 else if (segment == reg_section)
1285 {
1286 expressionP->X_op = O_register;
1287 expressionP->X_add_number = S_GET_VALUE (symbolP);
1288 }
1289 else
1290 {
1291 expressionP->X_op = O_symbol;
1292 expressionP->X_add_symbol = symbolP;
1293 expressionP->X_add_number = 0;
1294 }
1295 *input_line_pointer = c;
1296 }
1297 else
1298 {
1299 target_op:
1300 /* Let the target try to parse it. Success is indicated by changing
1301 the X_op field to something other than O_absent and pointing
1302 input_line_pointer past the expression. If it can't parse the
1303 expression, X_op and input_line_pointer should be unchanged. */
1304 expressionP->X_op = O_absent;
1305 --input_line_pointer;
1306 md_operand (expressionP);
1307 if (expressionP->X_op == O_absent)
1308 {
1309 ++input_line_pointer;
1310 as_bad (_("bad expression"));
1311 expressionP->X_op = O_constant;
1312 expressionP->X_add_number = 0;
1313 }
1314 }
1315 break;
1316 }
1317
1318 /* It is more 'efficient' to clean up the expressionS when they are
1319 created. Doing it here saves lines of code. */
1320 clean_up_expression (expressionP);
1321 SKIP_WHITESPACE (); /* -> 1st char after operand. */
1322 know (*input_line_pointer != ' ');
1323
1324 /* The PA port needs this information. */
1325 if (expressionP->X_add_symbol)
1326 symbol_mark_used (expressionP->X_add_symbol);
1327
1328 switch (expressionP->X_op)
1329 {
1330 default:
1331 return absolute_section;
1332 case O_symbol:
1333 return S_GET_SEGMENT (expressionP->X_add_symbol);
1334 case O_register:
1335 return reg_section;
1336 }
1337 }
1338
1339 /* Internal. Simplify a struct expression for use by expr (). */
1340
1341 /* In: address of an expressionS.
1342 The X_op field of the expressionS may only take certain values.
1343 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1344
1345 Out: expressionS may have been modified:
1346 Unused fields zeroed to help expr (). */
1347
1348 static void
clean_up_expression(expressionS * expressionP)1349 clean_up_expression (expressionS *expressionP)
1350 {
1351 switch (expressionP->X_op)
1352 {
1353 case O_illegal:
1354 case O_absent:
1355 expressionP->X_add_number = 0;
1356 /* Fall through. */
1357 case O_big:
1358 case O_constant:
1359 case O_register:
1360 expressionP->X_add_symbol = NULL;
1361 /* Fall through. */
1362 case O_symbol:
1363 case O_uminus:
1364 case O_bit_not:
1365 expressionP->X_op_symbol = NULL;
1366 break;
1367 default:
1368 break;
1369 }
1370 }
1371
1372 /* Expression parser. */
1373
1374 /* We allow an empty expression, and just assume (absolute,0) silently.
1375 Unary operators and parenthetical expressions are treated as operands.
1376 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1377
1378 We used to do an aho/ullman shift-reduce parser, but the logic got so
1379 warped that I flushed it and wrote a recursive-descent parser instead.
1380 Now things are stable, would anybody like to write a fast parser?
1381 Most expressions are either register (which does not even reach here)
1382 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1383 So I guess it doesn't really matter how inefficient more complex expressions
1384 are parsed.
1385
1386 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1387 Also, we have consumed any leading or trailing spaces (operand does that)
1388 and done all intervening operators.
1389
1390 This returns the segment of the result, which will be
1391 absolute_section or the segment of a symbol. */
1392
1393 #undef __
1394 #define __ O_illegal
1395
1396 /* Maps ASCII -> operators. */
1397 static const operatorT op_encoding[256] = {
1398 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1399 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1400
1401 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1402 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1403 __, __, __, __, __, __, __, __,
1404 __, __, __, __, O_lt, __, O_gt, __,
1405 __, __, __, __, __, __, __, __,
1406 __, __, __, __, __, __, __, __,
1407 __, __, __, __, __, __, __, __,
1408 __, __, __,
1409 #ifdef NEED_INDEX_OPERATOR
1410 O_index,
1411 #else
1412 __,
1413 #endif
1414 __, __, O_bit_exclusive_or, __,
1415 __, __, __, __, __, __, __, __,
1416 __, __, __, __, __, __, __, __,
1417 __, __, __, __, __, __, __, __,
1418 __, __, __, __, O_bit_inclusive_or, __, __, __,
1419
1420 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1421 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1423 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1424 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1425 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1426 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1427 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1428 };
1429
1430 /* Rank Examples
1431 0 operand, (expression)
1432 1 ||
1433 2 &&
1434 3 == <> < <= >= >
1435 4 + -
1436 5 used for * / % in MRI mode
1437 6 & ^ ! |
1438 7 * / % << >>
1439 8 unary - unary ~
1440 */
1441 static operator_rankT op_rank[] = {
1442 0, /* O_illegal */
1443 0, /* O_absent */
1444 0, /* O_constant */
1445 0, /* O_symbol */
1446 0, /* O_symbol_rva */
1447 0, /* O_register */
1448 0, /* O_big */
1449 9, /* O_uminus */
1450 9, /* O_bit_not */
1451 9, /* O_logical_not */
1452 8, /* O_multiply */
1453 8, /* O_divide */
1454 8, /* O_modulus */
1455 8, /* O_left_shift */
1456 8, /* O_right_shift */
1457 7, /* O_bit_inclusive_or */
1458 7, /* O_bit_or_not */
1459 7, /* O_bit_exclusive_or */
1460 7, /* O_bit_and */
1461 5, /* O_add */
1462 5, /* O_subtract */
1463 4, /* O_eq */
1464 4, /* O_ne */
1465 4, /* O_lt */
1466 4, /* O_le */
1467 4, /* O_ge */
1468 4, /* O_gt */
1469 3, /* O_logical_and */
1470 2, /* O_logical_or */
1471 1, /* O_index */
1472 0, /* O_md1 */
1473 0, /* O_md2 */
1474 0, /* O_md3 */
1475 0, /* O_md4 */
1476 0, /* O_md5 */
1477 0, /* O_md6 */
1478 0, /* O_md7 */
1479 0, /* O_md8 */
1480 0, /* O_md9 */
1481 0, /* O_md10 */
1482 0, /* O_md11 */
1483 0, /* O_md12 */
1484 0, /* O_md13 */
1485 0, /* O_md14 */
1486 0, /* O_md15 */
1487 0, /* O_md16 */
1488 };
1489
1490 /* Unfortunately, in MRI mode for the m68k, multiplication and
1491 division have lower precedence than the bit wise operators. This
1492 function sets the operator precedences correctly for the current
1493 mode. Also, MRI uses a different bit_not operator, and this fixes
1494 that as well. */
1495
1496 #define STANDARD_MUL_PRECEDENCE 8
1497 #define MRI_MUL_PRECEDENCE 6
1498
1499 void
expr_set_precedence(void)1500 expr_set_precedence (void)
1501 {
1502 if (flag_m68k_mri)
1503 {
1504 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1505 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1506 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1507 }
1508 else
1509 {
1510 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1511 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1512 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1513 }
1514 }
1515
1516 /* Initialize the expression parser. */
1517
1518 void
expr_begin(void)1519 expr_begin (void)
1520 {
1521 expr_set_precedence ();
1522
1523 /* Verify that X_op field is wide enough. */
1524 {
1525 expressionS e;
1526 e.X_op = O_max;
1527 assert (e.X_op == O_max);
1528 }
1529 }
1530
1531 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1532 sets NUM_CHARS to the number of characters in the operator.
1533 Does not advance INPUT_LINE_POINTER. */
1534
1535 static inline operatorT
operator(int * num_chars)1536 operator (int *num_chars)
1537 {
1538 int c;
1539 operatorT ret;
1540
1541 c = *input_line_pointer & 0xff;
1542 *num_chars = 1;
1543
1544 if (is_end_of_line[c])
1545 return O_illegal;
1546
1547 switch (c)
1548 {
1549 default:
1550 return op_encoding[c];
1551
1552 case '+':
1553 case '-':
1554 /* Do not allow a++b and a--b to be a + (+b) and a - (-b) */
1555 if (input_line_pointer[1] != c)
1556 return op_encoding[c];
1557 return O_illegal;
1558
1559 case '<':
1560 switch (input_line_pointer[1])
1561 {
1562 default:
1563 return op_encoding[c];
1564 case '<':
1565 ret = O_left_shift;
1566 break;
1567 case '>':
1568 ret = O_ne;
1569 break;
1570 case '=':
1571 ret = O_le;
1572 break;
1573 }
1574 *num_chars = 2;
1575 return ret;
1576
1577 case '=':
1578 if (input_line_pointer[1] != '=')
1579 return op_encoding[c];
1580
1581 *num_chars = 2;
1582 return O_eq;
1583
1584 case '>':
1585 switch (input_line_pointer[1])
1586 {
1587 default:
1588 return op_encoding[c];
1589 case '>':
1590 ret = O_right_shift;
1591 break;
1592 case '=':
1593 ret = O_ge;
1594 break;
1595 }
1596 *num_chars = 2;
1597 return ret;
1598
1599 case '!':
1600 /* We accept !! as equivalent to ^ for MRI compatibility. */
1601 if (input_line_pointer[1] != '!')
1602 {
1603 if (flag_m68k_mri)
1604 return O_bit_inclusive_or;
1605 return op_encoding[c];
1606 }
1607 *num_chars = 2;
1608 return O_bit_exclusive_or;
1609
1610 case '|':
1611 if (input_line_pointer[1] != '|')
1612 return op_encoding[c];
1613
1614 *num_chars = 2;
1615 return O_logical_or;
1616
1617 case '&':
1618 if (input_line_pointer[1] != '&')
1619 return op_encoding[c];
1620
1621 *num_chars = 2;
1622 return O_logical_and;
1623 }
1624
1625 /* NOTREACHED */
1626 }
1627
1628 /* Parse an expression. */
1629
1630 segT
expr(int rankarg,expressionS * resultP)1631 expr (int rankarg, /* Larger # is higher rank. */
1632 expressionS *resultP /* Deliver result here. */)
1633 {
1634 operator_rankT rank = (operator_rankT) rankarg;
1635 segT retval;
1636 expressionS right;
1637 operatorT op_left;
1638 operatorT op_right;
1639 int op_chars;
1640
1641 know (rank >= 0);
1642
1643 /* Save the value of dot for the fixup code. */
1644 if (rank == 0)
1645 dot_value = frag_now_fix ();
1646
1647 retval = operand (resultP);
1648
1649 /* operand () gobbles spaces. */
1650 know (*input_line_pointer != ' ');
1651
1652 op_left = operator (&op_chars);
1653 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1654 {
1655 segT rightseg;
1656
1657 input_line_pointer += op_chars; /* -> after operator. */
1658
1659 rightseg = expr (op_rank[(int) op_left], &right);
1660 if (right.X_op == O_absent)
1661 {
1662 as_warn (_("missing operand; zero assumed"));
1663 right.X_op = O_constant;
1664 right.X_add_number = 0;
1665 right.X_add_symbol = NULL;
1666 right.X_op_symbol = NULL;
1667 }
1668
1669 know (*input_line_pointer != ' ');
1670
1671 if (op_left == O_index)
1672 {
1673 if (*input_line_pointer != ']')
1674 as_bad ("missing right bracket");
1675 else
1676 {
1677 ++input_line_pointer;
1678 SKIP_WHITESPACE ();
1679 }
1680 }
1681
1682 op_right = operator (&op_chars);
1683
1684 know (op_right == O_illegal
1685 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1686 know ((int) op_left >= (int) O_multiply
1687 && (int) op_left <= (int) O_logical_or);
1688
1689 /* input_line_pointer->after right-hand quantity. */
1690 /* left-hand quantity in resultP. */
1691 /* right-hand quantity in right. */
1692 /* operator in op_left. */
1693
1694 if (resultP->X_op == O_big)
1695 {
1696 if (resultP->X_add_number > 0)
1697 as_warn (_("left operand is a bignum; integer 0 assumed"));
1698 else
1699 as_warn (_("left operand is a float; integer 0 assumed"));
1700 resultP->X_op = O_constant;
1701 resultP->X_add_number = 0;
1702 resultP->X_add_symbol = NULL;
1703 resultP->X_op_symbol = NULL;
1704 }
1705 if (right.X_op == O_big)
1706 {
1707 if (right.X_add_number > 0)
1708 as_warn (_("right operand is a bignum; integer 0 assumed"));
1709 else
1710 as_warn (_("right operand is a float; integer 0 assumed"));
1711 right.X_op = O_constant;
1712 right.X_add_number = 0;
1713 right.X_add_symbol = NULL;
1714 right.X_op_symbol = NULL;
1715 }
1716
1717 /* Optimize common cases. */
1718 #ifdef md_optimize_expr
1719 if (md_optimize_expr (resultP, op_left, &right))
1720 {
1721 /* Skip. */
1722 ;
1723 }
1724 else
1725 #endif
1726 if (op_left == O_add && right.X_op == O_constant)
1727 {
1728 /* X + constant. */
1729 resultP->X_add_number += right.X_add_number;
1730 }
1731 /* This case comes up in PIC code. */
1732 else if (op_left == O_subtract
1733 && right.X_op == O_symbol
1734 && resultP->X_op == O_symbol
1735 && (symbol_get_frag (right.X_add_symbol)
1736 == symbol_get_frag (resultP->X_add_symbol))
1737 && (SEG_NORMAL (rightseg)
1738 || right.X_add_symbol == resultP->X_add_symbol))
1739 {
1740 resultP->X_add_number -= right.X_add_number;
1741 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1742 - S_GET_VALUE (right.X_add_symbol));
1743 resultP->X_op = O_constant;
1744 resultP->X_add_symbol = 0;
1745 }
1746 else if (op_left == O_subtract && right.X_op == O_constant)
1747 {
1748 /* X - constant. */
1749 resultP->X_add_number -= right.X_add_number;
1750 }
1751 else if (op_left == O_add && resultP->X_op == O_constant)
1752 {
1753 /* Constant + X. */
1754 resultP->X_op = right.X_op;
1755 resultP->X_add_symbol = right.X_add_symbol;
1756 resultP->X_op_symbol = right.X_op_symbol;
1757 resultP->X_add_number += right.X_add_number;
1758 retval = rightseg;
1759 }
1760 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1761 {
1762 /* Constant OP constant. */
1763 offsetT v = right.X_add_number;
1764 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1765 {
1766 as_warn (_("division by zero"));
1767 v = 1;
1768 }
1769 switch (op_left)
1770 {
1771 default: abort ();
1772 case O_multiply: resultP->X_add_number *= v; break;
1773 case O_divide: resultP->X_add_number /= v; break;
1774 case O_modulus: resultP->X_add_number %= v; break;
1775 case O_left_shift: resultP->X_add_number <<= v; break;
1776 case O_right_shift:
1777 /* We always use unsigned shifts, to avoid relying on
1778 characteristics of the compiler used to compile gas. */
1779 resultP->X_add_number =
1780 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1781 break;
1782 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1783 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1784 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1785 case O_bit_and: resultP->X_add_number &= v; break;
1786 case O_add: resultP->X_add_number += v; break;
1787 case O_subtract: resultP->X_add_number -= v; break;
1788 case O_eq:
1789 resultP->X_add_number =
1790 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1791 break;
1792 case O_ne:
1793 resultP->X_add_number =
1794 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1795 break;
1796 case O_lt:
1797 resultP->X_add_number =
1798 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1799 break;
1800 case O_le:
1801 resultP->X_add_number =
1802 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1803 break;
1804 case O_ge:
1805 resultP->X_add_number =
1806 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1807 break;
1808 case O_gt:
1809 resultP->X_add_number =
1810 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1811 break;
1812 case O_logical_and:
1813 resultP->X_add_number = resultP->X_add_number && v;
1814 break;
1815 case O_logical_or:
1816 resultP->X_add_number = resultP->X_add_number || v;
1817 break;
1818 }
1819 }
1820 else if (resultP->X_op == O_symbol
1821 && right.X_op == O_symbol
1822 && (op_left == O_add
1823 || op_left == O_subtract
1824 || (resultP->X_add_number == 0
1825 && right.X_add_number == 0)))
1826 {
1827 /* Symbol OP symbol. */
1828 resultP->X_op = op_left;
1829 resultP->X_op_symbol = right.X_add_symbol;
1830 if (op_left == O_add)
1831 resultP->X_add_number += right.X_add_number;
1832 else if (op_left == O_subtract)
1833 {
1834 resultP->X_add_number -= right.X_add_number;
1835 if (retval == rightseg && SEG_NORMAL (retval))
1836 {
1837 retval = absolute_section;
1838 rightseg = absolute_section;
1839 }
1840 }
1841 }
1842 else
1843 {
1844 /* The general case. */
1845 resultP->X_add_symbol = make_expr_symbol (resultP);
1846 resultP->X_op_symbol = make_expr_symbol (&right);
1847 resultP->X_op = op_left;
1848 resultP->X_add_number = 0;
1849 resultP->X_unsigned = 1;
1850 }
1851
1852 if (retval != rightseg)
1853 {
1854 if (! SEG_NORMAL (retval))
1855 {
1856 if (retval != undefined_section || SEG_NORMAL (rightseg))
1857 retval = rightseg;
1858 }
1859 else if (SEG_NORMAL (rightseg)
1860 #ifdef DIFF_EXPR_OK
1861 && op_left != O_subtract
1862 #endif
1863 )
1864 as_bad (_("operation combines symbols in different segments"));
1865 }
1866
1867 op_left = op_right;
1868 } /* While next operator is >= this rank. */
1869
1870 /* The PA port needs this information. */
1871 if (resultP->X_add_symbol)
1872 symbol_mark_used (resultP->X_add_symbol);
1873
1874 return resultP->X_op == O_constant ? absolute_section : retval;
1875 }
1876
1877 /* This lives here because it belongs equally in expr.c & read.c.
1878 expr.c is just a branch office read.c anyway, and putting it
1879 here lessens the crowd at read.c.
1880
1881 Assume input_line_pointer is at start of symbol name.
1882 Advance input_line_pointer past symbol name.
1883 Turn that character into a '\0', returning its former value.
1884 This allows a string compare (RMS wants symbol names to be strings)
1885 of the symbol name.
1886 There will always be a char following symbol name, because all good
1887 lines end in end-of-line. */
1888
1889 char
get_symbol_end(void)1890 get_symbol_end (void)
1891 {
1892 char c;
1893
1894 /* We accept \001 in a name in case this is being called with a
1895 constructed string. */
1896 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1897 {
1898 while (is_part_of_name (c = *input_line_pointer++)
1899 || c == '\001')
1900 ;
1901 if (is_name_ender (c))
1902 c = *input_line_pointer++;
1903 }
1904 *--input_line_pointer = 0;
1905 return (c);
1906 }
1907
1908 unsigned int
get_single_number(void)1909 get_single_number (void)
1910 {
1911 expressionS exp;
1912 operand (&exp);
1913 return exp.X_add_number;
1914 }
1915