1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 5                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2003, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
19-- to  the Free Software Foundation,  59 Temple Place - Suite 330,  Boston, --
20-- MA 02111-1307, USA.                                                      --
21--                                                                          --
22-- GNAT was originally developed  by the GNAT team at  New York University. --
23-- Extensive contributions were provided by Ada Core Technologies Inc.      --
24--                                                                          --
25------------------------------------------------------------------------------
26
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Einfo;    use Einfo;
30with Exp_Aggr; use Exp_Aggr;
31with Exp_Ch7;  use Exp_Ch7;
32with Exp_Ch11; use Exp_Ch11;
33with Exp_Dbug; use Exp_Dbug;
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
36with Hostparm; use Hostparm;
37with Nlists;   use Nlists;
38with Nmake;    use Nmake;
39with Opt;      use Opt;
40with Restrict; use Restrict;
41with Rtsfind;  use Rtsfind;
42with Sinfo;    use Sinfo;
43with Sem;      use Sem;
44with Sem_Ch8;  use Sem_Ch8;
45with Sem_Ch13; use Sem_Ch13;
46with Sem_Eval; use Sem_Eval;
47with Sem_Res;  use Sem_Res;
48with Sem_Util; use Sem_Util;
49with Snames;   use Snames;
50with Stand;    use Stand;
51with Stringt;  use Stringt;
52with Tbuild;   use Tbuild;
53with Ttypes;   use Ttypes;
54with Uintp;    use Uintp;
55with Validsw;  use Validsw;
56
57package body Exp_Ch5 is
58
59   function Change_Of_Representation (N : Node_Id) return Boolean;
60   --  Determine if the right hand side of the assignment N is a type
61   --  conversion which requires a change of representation. Called
62   --  only for the array and record cases.
63
64   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
65   --  N is an assignment which assigns an array value. This routine process
66   --  the various special cases and checks required for such assignments,
67   --  including change of representation. Rhs is normally simply the right
68   --  hand side of the assignment, except that if the right hand side is
69   --  a type conversion or a qualified expression, then the Rhs is the
70   --  actual expression inside any such type conversions or qualifications.
71
72   function Expand_Assign_Array_Loop
73     (N      : Node_Id;
74      Larray : Entity_Id;
75      Rarray : Entity_Id;
76      L_Type : Entity_Id;
77      R_Type : Entity_Id;
78      Ndim   : Pos;
79      Rev    : Boolean) return Node_Id;
80   --  N is an assignment statement which assigns an array value. This routine
81   --  expands the assignment into a loop (or nested loops for the case of a
82   --  multi-dimensional array) to do the assignment component by component.
83   --  Larray and Rarray are the entities of the actual arrays on the left
84   --  hand and right hand sides. L_Type and R_Type are the types of these
85   --  arrays (which may not be the same, due to either sliding, or to a
86   --  change of representation case). Ndim is the number of dimensions and
87   --  the parameter Rev indicates if the loops run normally (Rev = False),
88   --  or reversed (Rev = True). The value returned is the constructed
89   --  loop statement. Auxiliary declarations are inserted before node N
90   --  using the standard Insert_Actions mechanism.
91
92   procedure Expand_Assign_Record (N : Node_Id);
93   --  N is an assignment of a non-tagged record value. This routine handles
94   --  the case where the assignment must be made component by component,
95   --  either because the target is not byte aligned, or there is a change
96   --  of representation.
97
98   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
99   --  Generate the necessary code for controlled and Tagged assignment,
100   --  that is to say, finalization of the target before, adjustement of
101   --  the target after and save and restore of the tag and finalization
102   --  pointers which are not 'part of the value' and must not be changed
103   --  upon assignment. N is the original Assignment node.
104
105   function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean;
106   --  This function is used in processing the assignment of a record or
107   --  indexed component. The argument N is either the left hand or right
108   --  hand side of an assignment, and this function determines if there
109   --  is a record component reference where the record may be bit aligned
110   --  in a manner that causes trouble for the back end (see description
111   --  of Sem_Util.Component_May_Be_Bit_Aligned for further details).
112
113   ------------------------------
114   -- Change_Of_Representation --
115   ------------------------------
116
117   function Change_Of_Representation (N : Node_Id) return Boolean is
118      Rhs : constant Node_Id := Expression (N);
119   begin
120      return
121        Nkind (Rhs) = N_Type_Conversion
122          and then
123            not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
124   end Change_Of_Representation;
125
126   -------------------------
127   -- Expand_Assign_Array --
128   -------------------------
129
130   --  There are two issues here. First, do we let Gigi do a block move, or
131   --  do we expand out into a loop? Second, we need to set the two flags
132   --  Forwards_OK and Backwards_OK which show whether the block move (or
133   --  corresponding loops) can be legitimately done in a forwards (low to
134   --  high) or backwards (high to low) manner.
135
136   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
137      Loc : constant Source_Ptr := Sloc (N);
138
139      Lhs : constant Node_Id := Name (N);
140
141      Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
142      Act_Rhs : Node_Id          := Get_Referenced_Object (Rhs);
143
144      L_Type : constant Entity_Id :=
145                 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
146      R_Type : Entity_Id :=
147                 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
148
149      L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
150      R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
151
152      Crep : constant Boolean := Change_Of_Representation (N);
153
154      Larray  : Node_Id;
155      Rarray  : Node_Id;
156
157      Ndim : constant Pos := Number_Dimensions (L_Type);
158
159      Loop_Required : Boolean := False;
160      --  This switch is set to True if the array move must be done using
161      --  an explicit front end generated loop.
162
163      function Has_Address_Clause (Exp : Node_Id) return Boolean;
164      --  Test if Exp is a reference to an array whose declaration has
165      --  an address clause, or it is a slice of such an array.
166
167      function Is_Formal_Array (Exp : Node_Id) return Boolean;
168      --  Test if Exp is a reference to an array which is either a formal
169      --  parameter or a slice of a formal parameter. These are the cases
170      --  where hidden aliasing can occur.
171
172      function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
173      --  Determine if Exp is a reference to an array variable which is other
174      --  than an object defined in the current scope, or a slice of such
175      --  an object. Such objects can be aliased to parameters (unlike local
176      --  array references).
177
178      function Possible_Unaligned_Slice (Arg : Node_Id) return Boolean;
179      --  Returns True if Arg (either the left or right hand side of the
180      --  assignment) is a slice that could be unaligned wrt the array type.
181      --  This is true if Arg is a component of a packed record, or is
182      --  a record component to which a component clause applies. This
183      --  is a little pessimistic, but the result of an unnecessary
184      --  decision that something is possibly unaligned is only to
185      --  generate a front end loop, which is not so terrible.
186      --  It would really be better if backend handled this ???
187
188      ------------------------
189      -- Has_Address_Clause --
190      ------------------------
191
192      function Has_Address_Clause (Exp : Node_Id) return Boolean is
193      begin
194         return
195           (Is_Entity_Name (Exp) and then
196                              Present (Address_Clause (Entity (Exp))))
197             or else
198           (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
199      end Has_Address_Clause;
200
201      ---------------------
202      -- Is_Formal_Array --
203      ---------------------
204
205      function Is_Formal_Array (Exp : Node_Id) return Boolean is
206      begin
207         return
208           (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
209             or else
210           (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
211      end Is_Formal_Array;
212
213      ------------------------
214      -- Is_Non_Local_Array --
215      ------------------------
216
217      function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
218      begin
219         return (Is_Entity_Name (Exp)
220                   and then Scope (Entity (Exp)) /= Current_Scope)
221            or else (Nkind (Exp) = N_Slice
222                       and then Is_Non_Local_Array (Prefix (Exp)));
223      end Is_Non_Local_Array;
224
225      ------------------------------
226      -- Possible_Unaligned_Slice --
227      ------------------------------
228
229      function Possible_Unaligned_Slice (Arg : Node_Id) return Boolean is
230      begin
231         --  No issue if this is not a slice, or else strict alignment
232         --  is not required in any case.
233
234         if Nkind (Arg) /= N_Slice
235           or else not Target_Strict_Alignment
236         then
237            return False;
238         end if;
239
240         --  No issue if the component type is a byte or byte aligned
241
242         declare
243            Array_Typ : constant Entity_Id := Etype (Arg);
244            Comp_Typ  : constant Entity_Id := Component_Type (Array_Typ);
245            Pref      : constant Node_Id   := Prefix (Arg);
246
247         begin
248            if Known_Alignment (Array_Typ) then
249               if Alignment (Array_Typ) = 1 then
250                  return False;
251               end if;
252
253            elsif Known_Component_Size (Array_Typ) then
254               if Component_Size (Array_Typ) = 1 then
255                  return False;
256               end if;
257
258            elsif Known_Esize (Comp_Typ) then
259               if Esize (Comp_Typ) <= System_Storage_Unit then
260                  return False;
261               end if;
262            end if;
263
264            --  No issue if this is not a selected component
265
266            if Nkind (Pref) /= N_Selected_Component then
267               return False;
268            end if;
269
270            --  Else we test for a possibly unaligned component
271
272            return
273              Is_Packed (Etype (Pref))
274                or else
275              Present (Component_Clause (Entity (Selector_Name (Pref))));
276         end;
277      end Possible_Unaligned_Slice;
278
279      --  Determine if Lhs, Rhs are formal arrays or nonlocal arrays
280
281      Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
282      Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
283
284      Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
285      Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
286
287   --  Start of processing for Expand_Assign_Array
288
289   begin
290      --  Deal with length check, note that the length check is done with
291      --  respect to the right hand side as given, not a possible underlying
292      --  renamed object, since this would generate incorrect extra checks.
293
294      Apply_Length_Check (Rhs, L_Type);
295
296      --  We start by assuming that the move can be done in either
297      --  direction, i.e. that the two sides are completely disjoint.
298
299      Set_Forwards_OK  (N, True);
300      Set_Backwards_OK (N, True);
301
302      --  Normally it is only the slice case that can lead to overlap,
303      --  and explicit checks for slices are made below. But there is
304      --  one case where the slice can be implicit and invisible to us
305      --  and that is the case where we have a one dimensional array,
306      --  and either both operands are parameters, or one is a parameter
307      --  and the other is a global variable. In this case the parameter
308      --  could be a slice that overlaps with the other parameter.
309
310      --  Check for the case of slices requiring an explicit loop. Normally
311      --  it is only the explicit slice cases that bother us, but in the
312      --  case of one dimensional arrays, parameters can be slices that
313      --  are passed by reference, so we can have aliasing for assignments
314      --  from one parameter to another, or assignments between parameters
315      --  and nonlocal variables. However, if the array subtype is a
316      --  constrained first subtype in the parameter case, then we don't
317      --  have to worry about overlap, since slice assignments aren't
318      --  possible (other than for a slice denoting the whole array).
319
320      --  Note: overlap is never possible if there is a change of
321      --  representation, so we can exclude this case.
322
323      if Ndim = 1
324        and then not Crep
325        and then
326           ((Lhs_Formal and Rhs_Formal)
327              or else
328            (Lhs_Formal and Rhs_Non_Local_Var)
329              or else
330            (Rhs_Formal and Lhs_Non_Local_Var))
331        and then
332           (not Is_Constrained (Etype (Lhs))
333             or else not Is_First_Subtype (Etype (Lhs)))
334
335         --  In the case of compiling for the Java Virtual Machine,
336         --  slices are always passed by making a copy, so we don't
337         --  have to worry about overlap. We also want to prevent
338         --  generation of "<" comparisons for array addresses,
339         --  since that's a meaningless operation on the JVM.
340
341        and then not Java_VM
342      then
343         Set_Forwards_OK  (N, False);
344         Set_Backwards_OK (N, False);
345
346         --  Note: the bit-packed case is not worrisome here, since if
347         --  we have a slice passed as a parameter, it is always aligned
348         --  on a byte boundary, and if there are no explicit slices, the
349         --  assignment can be performed directly.
350      end if;
351
352      --  We certainly must use a loop for change of representation
353      --  and also we use the operand of the conversion on the right
354      --  hand side as the effective right hand side (the component
355      --  types must match in this situation).
356
357      if Crep then
358         Act_Rhs := Get_Referenced_Object (Rhs);
359         R_Type  := Get_Actual_Subtype (Act_Rhs);
360         Loop_Required := True;
361
362      --  We require a loop if the left side is possibly bit unaligned
363
364      elsif Possible_Bit_Aligned_Component (Lhs)
365              or else
366            Possible_Bit_Aligned_Component (Rhs)
367      then
368         Loop_Required := True;
369
370      --  Arrays with controlled components are expanded into a loop
371      --  to force calls to adjust at the component level.
372
373      elsif Has_Controlled_Component (L_Type) then
374         Loop_Required := True;
375
376      --  Case where no slice is involved
377
378      elsif not L_Slice and not R_Slice then
379
380         --  The following code deals with the case of unconstrained bit
381         --  packed arrays. The problem is that the template for such
382         --  arrays contains the bounds of the actual source level array,
383
384         --  But the copy of an entire array requires the bounds of the
385         --  underlying array. It would be nice if the back end could take
386         --  care of this, but right now it does not know how, so if we
387         --  have such a type, then we expand out into a loop, which is
388         --  inefficient but works correctly. If we don't do this, we
389         --  get the wrong length computed for the array to be moved.
390         --  The two cases we need to worry about are:
391
392         --  Explicit deference of an unconstrained packed array type as
393         --  in the following example:
394
395         --    procedure C52 is
396         --       type BITS is array(INTEGER range <>) of BOOLEAN;
397         --       pragma PACK(BITS);
398         --       type A is access BITS;
399         --       P1,P2 : A;
400         --    begin
401         --       P1 := new BITS (1 .. 65_535);
402         --       P2 := new BITS (1 .. 65_535);
403         --       P2.ALL := P1.ALL;
404         --    end C52;
405
406         --  A formal parameter reference with an unconstrained bit
407         --  array type is the other case we need to worry about (here
408         --  we assume the same BITS type declared above:
409
410         --    procedure Write_All (File : out BITS; Contents : in  BITS);
411         --    begin
412         --       File.Storage := Contents;
413         --    end Write_All;
414
415         --  We expand to a loop in either of these two cases.
416
417         --  Question for future thought. Another potentially more efficient
418         --  approach would be to create the actual subtype, and then do an
419         --  unchecked conversion to this actual subtype ???
420
421         Check_Unconstrained_Bit_Packed_Array : declare
422
423            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
424            --  Function to perform required test for the first case,
425            --  above (dereference of an unconstrained bit packed array)
426
427            -----------------------
428            -- Is_UBPA_Reference --
429            -----------------------
430
431            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
432               Typ      : constant Entity_Id := Underlying_Type (Etype (Opnd));
433               P_Type   : Entity_Id;
434               Des_Type : Entity_Id;
435
436            begin
437               if Present (Packed_Array_Type (Typ))
438                 and then Is_Array_Type (Packed_Array_Type (Typ))
439                 and then not Is_Constrained (Packed_Array_Type (Typ))
440               then
441                  return True;
442
443               elsif Nkind (Opnd) = N_Explicit_Dereference then
444                  P_Type := Underlying_Type (Etype (Prefix (Opnd)));
445
446                  if not Is_Access_Type (P_Type) then
447                     return False;
448
449                  else
450                     Des_Type := Designated_Type (P_Type);
451                     return
452                       Is_Bit_Packed_Array (Des_Type)
453                         and then not Is_Constrained (Des_Type);
454                  end if;
455
456               else
457                  return False;
458               end if;
459            end Is_UBPA_Reference;
460
461         --  Start of processing for Check_Unconstrained_Bit_Packed_Array
462
463         begin
464            if Is_UBPA_Reference (Lhs)
465                 or else
466               Is_UBPA_Reference (Rhs)
467            then
468               Loop_Required := True;
469
470            --  Here if we do not have the case of a reference to a bit
471            --  packed unconstrained array case. In this case gigi can
472            --  most certainly handle the assignment if a forwards move
473            --  is allowed.
474
475            --  (could it handle the backwards case also???)
476
477            elsif Forwards_OK (N) then
478               return;
479            end if;
480         end Check_Unconstrained_Bit_Packed_Array;
481
482      --  Gigi can always handle the assignment if the right side is a string
483      --  literal (note that overlap is definitely impossible in this case).
484      --  If the type is packed, a string literal is always converted into a
485      --  aggregate, except in the case of a null slice, for which no aggregate
486      --  can be written. In that case, rewrite the assignment as a null
487      --  statement, a length check has already been emitted to verify that
488      --  the range of the left-hand side is empty.
489
490      --  Note that this code is not executed if we had an assignment of
491      --  a string literal to a non-bit aligned component of a record, a
492      --  case which cannot be handled by the backend
493
494      elsif Nkind (Rhs) = N_String_Literal then
495         if String_Length (Strval (Rhs)) = 0
496           and then Is_Bit_Packed_Array (L_Type)
497         then
498            Rewrite (N, Make_Null_Statement (Loc));
499            Analyze (N);
500         end if;
501
502         return;
503
504      --  If either operand is bit packed, then we need a loop, since we
505      --  can't be sure that the slice is byte aligned. Similarly, if either
506      --  operand is a possibly unaligned slice, then we need a loop (since
507      --  gigi cannot handle unaligned slices).
508
509      elsif Is_Bit_Packed_Array (L_Type)
510        or else Is_Bit_Packed_Array (R_Type)
511        or else Possible_Unaligned_Slice (Lhs)
512        or else Possible_Unaligned_Slice (Rhs)
513      then
514         Loop_Required := True;
515
516      --  If we are not bit-packed, and we have only one slice, then no
517      --  overlap is possible except in the parameter case, so we can let
518      --  gigi handle things.
519
520      elsif not (L_Slice and R_Slice) then
521         if Forwards_OK (N) then
522            return;
523         end if;
524      end if;
525
526      --  Come here to compelete the analysis
527
528      --    Loop_Required: Set to True if we know that a loop is required
529      --                   regardless of overlap considerations.
530
531      --    Forwards_OK:   Set to False if we already know that a forwards
532      --                   move is not safe, else set to True.
533
534      --    Backwards_OK:  Set to False if we already know that a backwards
535      --                   move is not safe, else set to True
536
537      --  Our task at this stage is to complete the overlap analysis, which
538      --  can result in possibly setting Forwards_OK or Backwards_OK to
539      --  False, and then generating the final code, either by deciding
540      --  that it is OK after all to let Gigi handle it, or by generating
541      --  appropriate code in the front end.
542
543      declare
544         L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
545         R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
546
547         Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
548         Left_Hi  : constant Node_Id := Type_High_Bound (L_Index_Typ);
549         Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
550         Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
551
552         Act_L_Array : Node_Id;
553         Act_R_Array : Node_Id;
554
555         Cleft_Lo  : Node_Id;
556         Cright_Lo : Node_Id;
557         Condition : Node_Id;
558
559         Cresult : Compare_Result;
560
561      begin
562         --  Get the expressions for the arrays. If we are dealing with a
563         --  private type, then convert to the underlying type. We can do
564         --  direct assignments to an array that is a private type, but
565         --  we cannot assign to elements of the array without this extra
566         --  unchecked conversion.
567
568         if Nkind (Act_Lhs) = N_Slice then
569            Larray := Prefix (Act_Lhs);
570         else
571            Larray := Act_Lhs;
572
573            if Is_Private_Type (Etype (Larray)) then
574               Larray :=
575                 Unchecked_Convert_To
576                   (Underlying_Type (Etype (Larray)), Larray);
577            end if;
578         end if;
579
580         if Nkind (Act_Rhs) = N_Slice then
581            Rarray := Prefix (Act_Rhs);
582         else
583            Rarray := Act_Rhs;
584
585            if Is_Private_Type (Etype (Rarray)) then
586               Rarray :=
587                 Unchecked_Convert_To
588                   (Underlying_Type (Etype (Rarray)), Rarray);
589            end if;
590         end if;
591
592         --  If both sides are slices, we must figure out whether
593         --  it is safe to do the move in one direction or the other
594         --  It is always safe if there is a change of representation
595         --  since obviously two arrays with different representations
596         --  cannot possibly overlap.
597
598         if (not Crep) and L_Slice and R_Slice then
599            Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
600            Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
601
602            --  If both left and right hand arrays are entity names, and
603            --  refer to different entities, then we know that the move
604            --  is safe (the two storage areas are completely disjoint).
605
606            if Is_Entity_Name (Act_L_Array)
607              and then Is_Entity_Name (Act_R_Array)
608              and then Entity (Act_L_Array) /= Entity (Act_R_Array)
609            then
610               null;
611
612            --  Otherwise, we assume the worst, which is that the two
613            --  arrays are the same array. There is no need to check if
614            --  we know that is the case, because if we don't know it,
615            --  we still have to assume it!
616
617            --  Generally if the same array is involved, then we have
618            --  an overlapping case. We will have to really assume the
619            --  worst (i.e. set neither of the OK flags) unless we can
620            --  determine the lower or upper bounds at compile time and
621            --  compare them.
622
623            else
624               Cresult := Compile_Time_Compare (Left_Lo, Right_Lo);
625
626               if Cresult = Unknown then
627                  Cresult := Compile_Time_Compare (Left_Hi, Right_Hi);
628               end if;
629
630               case Cresult is
631                  when LT | LE | EQ => Set_Backwards_OK (N, False);
632                  when GT | GE      => Set_Forwards_OK  (N, False);
633                  when NE | Unknown => Set_Backwards_OK (N, False);
634                                       Set_Forwards_OK  (N, False);
635               end case;
636            end if;
637         end if;
638
639         --  If after that analysis, Forwards_OK is still True, and
640         --  Loop_Required is False, meaning that we have not discovered
641         --  some non-overlap reason for requiring a loop, then we can
642         --  still let gigi handle it.
643
644         if not Loop_Required then
645            if Forwards_OK (N) then
646               return;
647
648            else
649               null;
650               --  Here is where a memmove would be appropriate ???
651            end if;
652         end if;
653
654         --  At this stage we have to generate an explicit loop, and
655         --  we have the following cases:
656
657         --  Forwards_OK = True
658
659         --    Rnn : right_index := right_index'First;
660         --    for Lnn in left-index loop
661         --       left (Lnn) := right (Rnn);
662         --       Rnn := right_index'Succ (Rnn);
663         --    end loop;
664
665         --    Note: the above code MUST be analyzed with checks off,
666         --    because otherwise the Succ could overflow. But in any
667         --    case this is more efficient!
668
669         --  Forwards_OK = False, Backwards_OK = True
670
671         --    Rnn : right_index := right_index'Last;
672         --    for Lnn in reverse left-index loop
673         --       left (Lnn) := right (Rnn);
674         --       Rnn := right_index'Pred (Rnn);
675         --    end loop;
676
677         --    Note: the above code MUST be analyzed with checks off,
678         --    because otherwise the Pred could overflow. But in any
679         --    case this is more efficient!
680
681         --  Forwards_OK = Backwards_OK = False
682
683         --    This only happens if we have the same array on each side. It is
684         --    possible to create situations using overlays that violate this,
685         --    but we simply do not promise to get this "right" in this case.
686
687         --    There are two possible subcases. If the No_Implicit_Conditionals
688         --    restriction is set, then we generate the following code:
689
690         --      declare
691         --        T : constant <operand-type> := rhs;
692         --      begin
693         --        lhs := T;
694         --      end;
695
696         --    If implicit conditionals are permitted, then we generate:
697
698         --      if Left_Lo <= Right_Lo then
699         --         <code for Forwards_OK = True above>
700         --      else
701         --         <code for Backwards_OK = True above>
702         --      end if;
703
704         --  Cases where either Forwards_OK or Backwards_OK is true
705
706         if Forwards_OK (N) or else Backwards_OK (N) then
707            Rewrite (N,
708              Expand_Assign_Array_Loop
709                (N, Larray, Rarray, L_Type, R_Type, Ndim,
710                 Rev => not Forwards_OK (N)));
711
712         --  Case of both are false with No_Implicit_Conditionals
713
714         elsif Restrictions (No_Implicit_Conditionals) then
715            declare
716                  T : constant Entity_Id :=
717                        Make_Defining_Identifier (Loc, Chars => Name_T);
718
719            begin
720               Rewrite (N,
721                 Make_Block_Statement (Loc,
722                  Declarations => New_List (
723                    Make_Object_Declaration (Loc,
724                      Defining_Identifier => T,
725                      Constant_Present  => True,
726                      Object_Definition =>
727                        New_Occurrence_Of (Etype (Rhs), Loc),
728                      Expression        => Relocate_Node (Rhs))),
729
730                    Handled_Statement_Sequence =>
731                      Make_Handled_Sequence_Of_Statements (Loc,
732                        Statements => New_List (
733                          Make_Assignment_Statement (Loc,
734                            Name       => Relocate_Node (Lhs),
735                            Expression => New_Occurrence_Of (T, Loc))))));
736            end;
737
738         --  Case of both are false with implicit conditionals allowed
739
740         else
741            --  Before we generate this code, we must ensure that the
742            --  left and right side array types are defined. They may
743            --  be itypes, and we cannot let them be defined inside the
744            --  if, since the first use in the then may not be executed.
745
746            Ensure_Defined (L_Type, N);
747            Ensure_Defined (R_Type, N);
748
749            --  We normally compare addresses to find out which way round
750            --  to do the loop, since this is realiable, and handles the
751            --  cases of parameters, conversions etc. But we can't do that
752            --  in the bit packed case or the Java VM case, because addresses
753            --  don't work there.
754
755            if not Is_Bit_Packed_Array (L_Type) and then not Java_VM then
756               Condition :=
757                 Make_Op_Le (Loc,
758                   Left_Opnd =>
759                     Unchecked_Convert_To (RTE (RE_Integer_Address),
760                       Make_Attribute_Reference (Loc,
761                         Prefix =>
762                           Make_Indexed_Component (Loc,
763                             Prefix =>
764                               Duplicate_Subexpr_Move_Checks (Larray, True),
765                             Expressions => New_List (
766                               Make_Attribute_Reference (Loc,
767                                 Prefix =>
768                                   New_Reference_To
769                                     (L_Index_Typ, Loc),
770                                 Attribute_Name => Name_First))),
771                         Attribute_Name => Name_Address)),
772
773                   Right_Opnd =>
774                     Unchecked_Convert_To (RTE (RE_Integer_Address),
775                       Make_Attribute_Reference (Loc,
776                         Prefix =>
777                           Make_Indexed_Component (Loc,
778                             Prefix =>
779                               Duplicate_Subexpr_Move_Checks (Rarray, True),
780                             Expressions => New_List (
781                               Make_Attribute_Reference (Loc,
782                                 Prefix =>
783                                   New_Reference_To
784                                     (R_Index_Typ, Loc),
785                                 Attribute_Name => Name_First))),
786                         Attribute_Name => Name_Address)));
787
788            --  For the bit packed and Java VM cases we use the bounds.
789            --  That's OK, because we don't have to worry about parameters,
790            --  since they cannot cause overlap. Perhaps we should worry
791            --  about weird slice conversions ???
792
793            else
794               --  Copy the bounds and reset the Analyzed flag, because the
795               --  bounds of the index type itself may be universal, and must
796               --  must be reaanalyzed to acquire the proper type for Gigi.
797
798               Cleft_Lo  := New_Copy_Tree (Left_Lo);
799               Cright_Lo := New_Copy_Tree (Right_Lo);
800               Set_Analyzed (Cleft_Lo, False);
801               Set_Analyzed (Cright_Lo, False);
802
803               Condition :=
804                 Make_Op_Le (Loc,
805                   Left_Opnd  => Cleft_Lo,
806                   Right_Opnd => Cright_Lo);
807            end if;
808
809            Rewrite (N,
810              Make_Implicit_If_Statement (N,
811                Condition => Condition,
812
813                Then_Statements => New_List (
814                  Expand_Assign_Array_Loop
815                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
816                    Rev => False)),
817
818                Else_Statements => New_List (
819                  Expand_Assign_Array_Loop
820                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
821                    Rev => True))));
822         end if;
823
824         Analyze (N, Suppress => All_Checks);
825      end;
826
827   exception
828      when RE_Not_Available =>
829         return;
830   end Expand_Assign_Array;
831
832   ------------------------------
833   -- Expand_Assign_Array_Loop --
834   ------------------------------
835
836   --  The following is an example of the loop generated for the case of
837   --  a two-dimensional array:
838
839   --    declare
840   --       R2b : Tm1X1 := 1;
841   --    begin
842   --       for L1b in 1 .. 100 loop
843   --          declare
844   --             R4b : Tm1X2 := 1;
845   --          begin
846   --             for L3b in 1 .. 100 loop
847   --                vm1 (L1b, L3b) := vm2 (R2b, R4b);
848   --                R4b := Tm1X2'succ(R4b);
849   --             end loop;
850   --          end;
851   --          R2b := Tm1X1'succ(R2b);
852   --       end loop;
853   --    end;
854
855   --  Here Rev is False, and Tm1Xn are the subscript types for the right
856   --  hand side. The declarations of R2b and R4b are inserted before the
857   --  original assignment statement.
858
859   function Expand_Assign_Array_Loop
860     (N      : Node_Id;
861      Larray : Entity_Id;
862      Rarray : Entity_Id;
863      L_Type : Entity_Id;
864      R_Type : Entity_Id;
865      Ndim   : Pos;
866      Rev    : Boolean) return Node_Id
867   is
868      Loc  : constant Source_Ptr := Sloc (N);
869
870      Lnn : array (1 .. Ndim) of Entity_Id;
871      Rnn : array (1 .. Ndim) of Entity_Id;
872      --  Entities used as subscripts on left and right sides
873
874      L_Index_Type : array (1 .. Ndim) of Entity_Id;
875      R_Index_Type : array (1 .. Ndim) of Entity_Id;
876      --  Left and right index types
877
878      Assign : Node_Id;
879
880      F_Or_L : Name_Id;
881      S_Or_P : Name_Id;
882
883   begin
884      if Rev then
885         F_Or_L := Name_Last;
886         S_Or_P := Name_Pred;
887      else
888         F_Or_L := Name_First;
889         S_Or_P := Name_Succ;
890      end if;
891
892      --  Setup index types and subscript entities
893
894      declare
895         L_Index : Node_Id;
896         R_Index : Node_Id;
897
898      begin
899         L_Index := First_Index (L_Type);
900         R_Index := First_Index (R_Type);
901
902         for J in 1 .. Ndim loop
903            Lnn (J) :=
904              Make_Defining_Identifier (Loc,
905                Chars => New_Internal_Name ('L'));
906
907            Rnn (J) :=
908              Make_Defining_Identifier (Loc,
909                Chars => New_Internal_Name ('R'));
910
911            L_Index_Type (J) := Etype (L_Index);
912            R_Index_Type (J) := Etype (R_Index);
913
914            Next_Index (L_Index);
915            Next_Index (R_Index);
916         end loop;
917      end;
918
919      --  Now construct the assignment statement
920
921      declare
922         ExprL : constant List_Id := New_List;
923         ExprR : constant List_Id := New_List;
924
925      begin
926         for J in 1 .. Ndim loop
927            Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
928            Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
929         end loop;
930
931         Assign :=
932           Make_Assignment_Statement (Loc,
933             Name =>
934               Make_Indexed_Component (Loc,
935                 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
936                 Expressions => ExprL),
937             Expression =>
938               Make_Indexed_Component (Loc,
939                 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
940                 Expressions => ExprR));
941
942         --  Propagate the No_Ctrl_Actions flag to individual assignments
943
944         Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
945      end;
946
947      --  Now construct the loop from the inside out, with the last subscript
948      --  varying most rapidly. Note that Assign is first the raw assignment
949      --  statement, and then subsequently the loop that wraps it up.
950
951      for J in reverse 1 .. Ndim loop
952         Assign :=
953           Make_Block_Statement (Loc,
954             Declarations => New_List (
955              Make_Object_Declaration (Loc,
956                Defining_Identifier => Rnn (J),
957                Object_Definition =>
958                  New_Occurrence_Of (R_Index_Type (J), Loc),
959                Expression =>
960                  Make_Attribute_Reference (Loc,
961                    Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
962                    Attribute_Name => F_Or_L))),
963
964           Handled_Statement_Sequence =>
965             Make_Handled_Sequence_Of_Statements (Loc,
966               Statements => New_List (
967                 Make_Implicit_Loop_Statement (N,
968                   Iteration_Scheme =>
969                     Make_Iteration_Scheme (Loc,
970                       Loop_Parameter_Specification =>
971                         Make_Loop_Parameter_Specification (Loc,
972                           Defining_Identifier => Lnn (J),
973                           Reverse_Present => Rev,
974                           Discrete_Subtype_Definition =>
975                             New_Reference_To (L_Index_Type (J), Loc))),
976
977                   Statements => New_List (
978                     Assign,
979
980                     Make_Assignment_Statement (Loc,
981                       Name => New_Occurrence_Of (Rnn (J), Loc),
982                       Expression =>
983                         Make_Attribute_Reference (Loc,
984                           Prefix =>
985                             New_Occurrence_Of (R_Index_Type (J), Loc),
986                           Attribute_Name => S_Or_P,
987                           Expressions => New_List (
988                             New_Occurrence_Of (Rnn (J), Loc)))))))));
989      end loop;
990
991      return Assign;
992   end Expand_Assign_Array_Loop;
993
994   --------------------------
995   -- Expand_Assign_Record --
996   --------------------------
997
998   --  The only processing required is in the change of representation
999   --  case, where we must expand the assignment to a series of field
1000   --  by field assignments.
1001
1002   procedure Expand_Assign_Record (N : Node_Id) is
1003      Lhs : constant Node_Id := Name (N);
1004      Rhs : Node_Id          := Expression (N);
1005
1006   begin
1007      --  If change of representation, then extract the real right hand
1008      --  side from the type conversion, and proceed with component-wise
1009      --  assignment, since the two types are not the same as far as the
1010      --  back end is concerned.
1011
1012      if Change_Of_Representation (N) then
1013         Rhs := Expression (Rhs);
1014
1015      --  If this may be a case of a large bit aligned component, then
1016      --  proceed with component-wise assignment, to avoid possible
1017      --  clobbering of other components sharing bits in the first or
1018      --  last byte of the component to be assigned.
1019
1020      elsif Possible_Bit_Aligned_Component (Lhs)
1021              or
1022            Possible_Bit_Aligned_Component (Rhs)
1023      then
1024         null;
1025
1026      --  If neither condition met, then nothing special to do, the back end
1027      --  can handle assignment of the entire component as a single entity.
1028
1029      else
1030         return;
1031      end if;
1032
1033      --  At this stage we know that we must do a component wise assignment
1034
1035      declare
1036         Loc   : constant Source_Ptr := Sloc (N);
1037         R_Typ : constant Entity_Id  := Base_Type (Etype (Rhs));
1038         L_Typ : constant Entity_Id  := Base_Type (Etype (Lhs));
1039         Decl  : constant Node_Id    := Declaration_Node (R_Typ);
1040         RDef  : Node_Id;
1041         F     : Entity_Id;
1042
1043         function Find_Component
1044           (Typ  : Entity_Id;
1045            Comp : Entity_Id) return Entity_Id;
1046         --  Find the component with the given name in the underlying record
1047         --  declaration for Typ. We need to use the actual entity because
1048         --  the type may be private and resolution by identifier alone would
1049         --  fail.
1050
1051         function Make_Component_List_Assign (CL : Node_Id) return List_Id;
1052         --  Returns a sequence of statements to assign the components that
1053         --  are referenced in the given component list.
1054
1055         function Make_Field_Assign (C : Entity_Id) return Node_Id;
1056         --  Given C, the entity for a discriminant or component, build
1057         --  an assignment for the corresponding field values.
1058
1059         function Make_Field_Assigns (CI : List_Id) return List_Id;
1060         --  Given CI, a component items list, construct series of statements
1061         --  for fieldwise assignment of the corresponding components.
1062
1063         --------------------
1064         -- Find_Component --
1065         --------------------
1066
1067         function Find_Component
1068           (Typ  : Entity_Id;
1069            Comp : Entity_Id) return Entity_Id
1070         is
1071            Utyp : constant Entity_Id := Underlying_Type (Typ);
1072            C    : Entity_Id;
1073
1074         begin
1075            C := First_Entity (Utyp);
1076
1077            while Present (C) loop
1078               if Chars (C) = Chars (Comp) then
1079                  return C;
1080               end if;
1081               Next_Entity (C);
1082            end loop;
1083
1084            raise Program_Error;
1085         end Find_Component;
1086
1087         --------------------------------
1088         -- Make_Component_List_Assign --
1089         --------------------------------
1090
1091         function Make_Component_List_Assign (CL : Node_Id) return List_Id is
1092            CI : constant List_Id := Component_Items (CL);
1093            VP : constant Node_Id := Variant_Part (CL);
1094
1095            Result : List_Id;
1096            Alts   : List_Id;
1097            V      : Node_Id;
1098            DC     : Node_Id;
1099            DCH    : List_Id;
1100
1101         begin
1102            Result := Make_Field_Assigns (CI);
1103
1104            if Present (VP) then
1105
1106               V := First_Non_Pragma (Variants (VP));
1107               Alts := New_List;
1108               while Present (V) loop
1109
1110                  DCH := New_List;
1111                  DC := First (Discrete_Choices (V));
1112                  while Present (DC) loop
1113                     Append_To (DCH, New_Copy_Tree (DC));
1114                     Next (DC);
1115                  end loop;
1116
1117                  Append_To (Alts,
1118                    Make_Case_Statement_Alternative (Loc,
1119                      Discrete_Choices => DCH,
1120                      Statements =>
1121                        Make_Component_List_Assign (Component_List (V))));
1122                  Next_Non_Pragma (V);
1123               end loop;
1124
1125               Append_To (Result,
1126                 Make_Case_Statement (Loc,
1127                   Expression =>
1128                     Make_Selected_Component (Loc,
1129                       Prefix => Duplicate_Subexpr (Rhs),
1130                       Selector_Name =>
1131                         Make_Identifier (Loc, Chars (Name (VP)))),
1132                   Alternatives => Alts));
1133
1134            end if;
1135
1136            return Result;
1137         end Make_Component_List_Assign;
1138
1139         -----------------------
1140         -- Make_Field_Assign --
1141         -----------------------
1142
1143         function Make_Field_Assign (C : Entity_Id) return Node_Id is
1144            A : Node_Id;
1145
1146         begin
1147            A :=
1148              Make_Assignment_Statement (Loc,
1149                Name =>
1150                  Make_Selected_Component (Loc,
1151                    Prefix => Duplicate_Subexpr (Lhs),
1152                    Selector_Name =>
1153                      New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1154                Expression =>
1155                  Make_Selected_Component (Loc,
1156                    Prefix => Duplicate_Subexpr (Rhs),
1157                    Selector_Name => New_Occurrence_Of (C, Loc)));
1158
1159            --  Set Assignment_OK, so discriminants can be assigned
1160
1161            Set_Assignment_OK (Name (A), True);
1162            return A;
1163         end Make_Field_Assign;
1164
1165         ------------------------
1166         -- Make_Field_Assigns --
1167         ------------------------
1168
1169         function Make_Field_Assigns (CI : List_Id) return List_Id is
1170            Item   : Node_Id;
1171            Result : List_Id;
1172
1173         begin
1174            Item := First (CI);
1175            Result := New_List;
1176
1177            while Present (Item) loop
1178               if Nkind (Item) = N_Component_Declaration then
1179                  Append_To
1180                    (Result, Make_Field_Assign (Defining_Identifier (Item)));
1181               end if;
1182
1183               Next (Item);
1184            end loop;
1185
1186            return Result;
1187         end Make_Field_Assigns;
1188
1189      --  Start of processing for Expand_Assign_Record
1190
1191      begin
1192         --  Note that we use the base types for this processing. This results
1193         --  in some extra work in the constrained case, but the change of
1194         --  representation case is so unusual that it is not worth the effort.
1195
1196         --  First copy the discriminants. This is done unconditionally. It
1197         --  is required in the unconstrained left side case, and also in the
1198         --  case where this assignment was constructed during the expansion
1199         --  of a type conversion (since initialization of discriminants is
1200         --  suppressed in this case). It is unnecessary but harmless in
1201         --  other cases.
1202
1203         if Has_Discriminants (L_Typ) then
1204            F := First_Discriminant (R_Typ);
1205            while Present (F) loop
1206               Insert_Action (N, Make_Field_Assign (F));
1207               Next_Discriminant (F);
1208            end loop;
1209         end if;
1210
1211         --  We know the underlying type is a record, but its current view
1212         --  may be private. We must retrieve the usable record declaration.
1213
1214         if Nkind (Decl) = N_Private_Type_Declaration
1215           and then Present (Full_View (R_Typ))
1216         then
1217            RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1218         else
1219            RDef := Type_Definition (Decl);
1220         end if;
1221
1222         if Nkind (RDef) = N_Record_Definition
1223           and then Present (Component_List (RDef))
1224         then
1225            Insert_Actions
1226              (N, Make_Component_List_Assign (Component_List (RDef)));
1227
1228            Rewrite (N, Make_Null_Statement (Loc));
1229         end if;
1230
1231      end;
1232   end Expand_Assign_Record;
1233
1234   -----------------------------------
1235   -- Expand_N_Assignment_Statement --
1236   -----------------------------------
1237
1238   --  For array types, deal with slice assignments and setting the flags
1239   --  to indicate if it can be statically determined which direction the
1240   --  move should go in. Also deal with generating range/length checks.
1241
1242   procedure Expand_N_Assignment_Statement (N : Node_Id) is
1243      Loc  : constant Source_Ptr := Sloc (N);
1244      Lhs  : constant Node_Id    := Name (N);
1245      Rhs  : constant Node_Id    := Expression (N);
1246      Typ  : constant Entity_Id  := Underlying_Type (Etype (Lhs));
1247      Exp  : Node_Id;
1248
1249   begin
1250      --  First deal with generation of range check if required. For now
1251      --  we do this only for discrete types.
1252
1253      if Do_Range_Check (Rhs)
1254        and then Is_Discrete_Type (Typ)
1255      then
1256         Set_Do_Range_Check (Rhs, False);
1257         Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1258      end if;
1259
1260      --  Check for a special case where a high level transformation is
1261      --  required. If we have either of:
1262
1263      --    P.field := rhs;
1264      --    P (sub) := rhs;
1265
1266      --  where P is a reference to a bit packed array, then we have to unwind
1267      --  the assignment. The exact meaning of being a reference to a bit
1268      --  packed array is as follows:
1269
1270      --    An indexed component whose prefix is a bit packed array is a
1271      --     reference to a bit packed array.
1272
1273      --    An indexed component or selected component whose prefix is a
1274      --     reference to a bit packed array is itself a reference ot a
1275      --     bit packed array.
1276
1277      --  The required transformation is
1278
1279      --     Tnn : prefix_type := P;
1280      --     Tnn.field := rhs;
1281      --     P := Tnn;
1282
1283      --  or
1284
1285      --     Tnn : prefix_type := P;
1286      --     Tnn (subscr) := rhs;
1287      --     P := Tnn;
1288
1289      --  Since P is going to be evaluated more than once, any subscripts
1290      --  in P must have their evaluation forced.
1291
1292      if (Nkind (Lhs) = N_Indexed_Component
1293           or else
1294          Nkind (Lhs) = N_Selected_Component)
1295        and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1296      then
1297         declare
1298            BPAR_Expr : constant Node_Id   := Relocate_Node (Prefix (Lhs));
1299            BPAR_Typ  : constant Entity_Id := Etype (BPAR_Expr);
1300            Tnn       : constant Entity_Id :=
1301                          Make_Defining_Identifier (Loc,
1302                            Chars => New_Internal_Name ('T'));
1303
1304         begin
1305            --  Insert the post assignment first, because we want to copy
1306            --  the BPAR_Expr tree before it gets analyzed in the context
1307            --  of the pre assignment. Note that we do not analyze the
1308            --  post assignment yet (we cannot till we have completed the
1309            --  analysis of the pre assignment). As usual, the analysis
1310            --  of this post assignment will happen on its own when we
1311            --  "run into" it after finishing the current assignment.
1312
1313            Insert_After (N,
1314              Make_Assignment_Statement (Loc,
1315                Name       => New_Copy_Tree (BPAR_Expr),
1316                Expression => New_Occurrence_Of (Tnn, Loc)));
1317
1318            --  At this stage BPAR_Expr is a reference to a bit packed
1319            --  array where the reference was not expanded in the original
1320            --  tree, since it was on the left side of an assignment. But
1321            --  in the pre-assignment statement (the object definition),
1322            --  BPAR_Expr will end up on the right hand side, and must be
1323            --  reexpanded. To achieve this, we reset the analyzed flag
1324            --  of all selected and indexed components down to the actual
1325            --  indexed component for the packed array.
1326
1327            Exp := BPAR_Expr;
1328            loop
1329               Set_Analyzed (Exp, False);
1330
1331               if Nkind (Exp) = N_Selected_Component
1332                    or else
1333                  Nkind (Exp) = N_Indexed_Component
1334               then
1335                  Exp := Prefix (Exp);
1336               else
1337                  exit;
1338               end if;
1339            end loop;
1340
1341            --  Now we can insert and analyze the pre-assignment.
1342
1343            --  If the right-hand side requires a transient scope, it has
1344            --  already been placed on the stack. However, the declaration is
1345            --  inserted in the tree outside of this scope, and must reflect
1346            --  the proper scope for its variable. This awkward bit is forced
1347            --  by the stricter scope discipline imposed by GCC 2.97.
1348
1349            declare
1350               Uses_Transient_Scope : constant Boolean :=
1351                  Scope_Is_Transient and then N = Node_To_Be_Wrapped;
1352
1353            begin
1354               if Uses_Transient_Scope then
1355                  New_Scope (Scope (Current_Scope));
1356               end if;
1357
1358               Insert_Before_And_Analyze (N,
1359                 Make_Object_Declaration (Loc,
1360                   Defining_Identifier => Tnn,
1361                   Object_Definition   => New_Occurrence_Of (BPAR_Typ, Loc),
1362                   Expression          => BPAR_Expr));
1363
1364               if Uses_Transient_Scope then
1365                  Pop_Scope;
1366               end if;
1367            end;
1368
1369            --  Now fix up the original assignment and continue processing
1370
1371            Rewrite (Prefix (Lhs),
1372              New_Occurrence_Of (Tnn, Loc));
1373
1374            --  We do not need to reanalyze that assignment, and we do not need
1375            --  to worry about references to the temporary, but we do need to
1376            --  make sure that the temporary is not marked as a true constant
1377            --  since we now have a generate assignment to it!
1378
1379            Set_Is_True_Constant (Tnn, False);
1380         end;
1381      end if;
1382
1383      --  When we have the appropriate type of aggregate in the
1384      --  expression (it has been determined during analysis of the
1385      --  aggregate by setting the delay flag), let's perform in place
1386      --  assignment and thus avoid creating a temporay.
1387
1388      if Is_Delayed_Aggregate (Rhs) then
1389         Convert_Aggr_In_Assignment (N);
1390         Rewrite (N, Make_Null_Statement (Loc));
1391         Analyze (N);
1392         return;
1393      end if;
1394
1395      --  Apply discriminant check if required. If Lhs is an access type
1396      --  to a designated type with discriminants, we must always check.
1397
1398      if Has_Discriminants (Etype (Lhs)) then
1399
1400         --  Skip discriminant check if change of representation. Will be
1401         --  done when the change of representation is expanded out.
1402
1403         if not Change_Of_Representation (N) then
1404            Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1405         end if;
1406
1407      --  If the type is private without discriminants, and the full type
1408      --  has discriminants (necessarily with defaults) a check may still be
1409      --  necessary if the Lhs is aliased. The private determinants must be
1410      --  visible to build the discriminant constraints.
1411
1412      --  Only an explicit dereference that comes from source indicates
1413      --  aliasing. Access to formals of protected operations and entries
1414      --  create dereferences but are not semantic aliasings.
1415
1416      elsif Is_Private_Type (Etype (Lhs))
1417        and then  Has_Discriminants (Typ)
1418        and then Nkind (Lhs) = N_Explicit_Dereference
1419        and then Comes_From_Source (Lhs)
1420      then
1421         declare
1422            Lt : constant Entity_Id := Etype (Lhs);
1423         begin
1424            Set_Etype (Lhs, Typ);
1425            Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1426            Apply_Discriminant_Check (Rhs, Typ, Lhs);
1427            Set_Etype (Lhs, Lt);
1428         end;
1429
1430         --  If the Lhs has a private type with unknown discriminants, it
1431         --  may have a full view with discriminants, but those are nameable
1432         --  only in the underlying type, so convert the Rhs to it before
1433         --  potential checking.
1434
1435      elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1436        and then Has_Discriminants (Typ)
1437      then
1438         Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1439         Apply_Discriminant_Check (Rhs, Typ, Lhs);
1440
1441      --  In the access type case, we need the same discriminant check,
1442      --  and also range checks if we have an access to constrained array.
1443
1444      elsif Is_Access_Type (Etype (Lhs))
1445        and then Is_Constrained (Designated_Type (Etype (Lhs)))
1446      then
1447         if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1448
1449            --  Skip discriminant check if change of representation. Will be
1450            --  done when the change of representation is expanded out.
1451
1452            if not Change_Of_Representation (N) then
1453               Apply_Discriminant_Check (Rhs, Etype (Lhs));
1454            end if;
1455
1456         elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1457            Apply_Range_Check (Rhs, Etype (Lhs));
1458
1459            if Is_Constrained (Etype (Lhs)) then
1460               Apply_Length_Check (Rhs, Etype (Lhs));
1461            end if;
1462
1463            if Nkind (Rhs) = N_Allocator then
1464               declare
1465                  Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1466                  C_Es       : Check_Result;
1467
1468               begin
1469                  C_Es :=
1470                    Range_Check
1471                      (Lhs,
1472                       Target_Typ,
1473                       Etype (Designated_Type (Etype (Lhs))));
1474
1475                  Insert_Range_Checks
1476                    (C_Es,
1477                     N,
1478                     Target_Typ,
1479                     Sloc (Lhs),
1480                     Lhs);
1481               end;
1482            end if;
1483         end if;
1484
1485      --  Apply range check for access type case
1486
1487      elsif Is_Access_Type (Etype (Lhs))
1488        and then Nkind (Rhs) = N_Allocator
1489        and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1490      then
1491         Analyze_And_Resolve (Expression (Rhs));
1492         Apply_Range_Check
1493           (Expression (Rhs), Designated_Type (Etype (Lhs)));
1494      end if;
1495
1496      --  If we are assigning an access type and the left side is an
1497      --  entity, then make sure that Is_Known_Non_Null properly
1498      --  reflects the state of the entity after the assignment
1499
1500      if Is_Access_Type (Typ)
1501        and then Is_Entity_Name (Lhs)
1502        and then Known_Non_Null (Rhs)
1503        and then Safe_To_Capture_Value (N, Entity (Lhs))
1504      then
1505         Set_Is_Known_Non_Null (Entity (Lhs), Known_Non_Null (Rhs));
1506      end if;
1507
1508      --  Case of assignment to a bit packed array element
1509
1510      if Nkind (Lhs) = N_Indexed_Component
1511        and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
1512      then
1513         Expand_Bit_Packed_Element_Set (N);
1514         return;
1515
1516      --  Case of tagged type assignment
1517
1518      elsif Is_Tagged_Type (Typ)
1519        or else (Controlled_Type (Typ) and then not Is_Array_Type (Typ))
1520      then
1521         Tagged_Case : declare
1522            L                   : List_Id := No_List;
1523            Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
1524
1525         begin
1526            --  In the controlled case, we need to make sure that function
1527            --  calls are evaluated before finalizing the target. In all
1528            --  cases, it makes the expansion easier if the side-effects
1529            --  are removed first.
1530
1531            Remove_Side_Effects (Lhs);
1532            Remove_Side_Effects (Rhs);
1533
1534            --  Avoid recursion in the mechanism
1535
1536            Set_Analyzed (N);
1537
1538            --  If dispatching assignment, we need to dispatch to _assign
1539
1540            if Is_Class_Wide_Type (Typ)
1541
1542            --  If the type is tagged, we may as well use the predefined
1543            --  primitive assignment. This avoids inlining a lot of code
1544            --  and in the class-wide case, the assignment is replaced by
1545            --  a dispatch call to _assign. Note that this cannot be done
1546            --  when discriminant checks are locally suppressed (as in
1547            --  extension aggregate expansions) because otherwise the
1548            --  discriminant check will be performed within the _assign
1549            --  call.
1550
1551            or else (Is_Tagged_Type (Typ)
1552              and then Chars (Current_Scope) /= Name_uAssign
1553              and then Expand_Ctrl_Actions
1554              and then not Discriminant_Checks_Suppressed (Empty))
1555            then
1556               --  Fetch the primitive op _assign and proper type to call
1557               --  it. Because of possible conflits between private and
1558               --  full view the proper type is fetched directly from the
1559               --  operation profile.
1560
1561               declare
1562                  Op    : constant Entity_Id :=
1563                            Find_Prim_Op (Typ, Name_uAssign);
1564                  F_Typ : Entity_Id := Etype (First_Formal (Op));
1565
1566               begin
1567                  --  If the assignment is dispatching, make sure to use the
1568                  --  ??? where is rest of this comment ???
1569
1570                  if Is_Class_Wide_Type (Typ) then
1571                     F_Typ := Class_Wide_Type (F_Typ);
1572                  end if;
1573
1574                  L := New_List (
1575                    Make_Procedure_Call_Statement (Loc,
1576                      Name => New_Reference_To (Op, Loc),
1577                      Parameter_Associations => New_List (
1578                        Unchecked_Convert_To (F_Typ, Duplicate_Subexpr (Lhs)),
1579                        Unchecked_Convert_To (F_Typ,
1580                          Duplicate_Subexpr (Rhs)))));
1581               end;
1582
1583            else
1584               L := Make_Tag_Ctrl_Assignment (N);
1585
1586               --  We can't afford to have destructive Finalization Actions
1587               --  in the Self assignment case, so if the target and the
1588               --  source are not obviously different, code is generated to
1589               --  avoid the self assignment case
1590               --
1591               --    if lhs'address /= rhs'address then
1592               --       <code for controlled and/or tagged assignment>
1593               --    end if;
1594
1595               if not Statically_Different (Lhs, Rhs)
1596                 and then Expand_Ctrl_Actions
1597               then
1598                  L := New_List (
1599                    Make_Implicit_If_Statement (N,
1600                      Condition =>
1601                        Make_Op_Ne (Loc,
1602                          Left_Opnd =>
1603                            Make_Attribute_Reference (Loc,
1604                              Prefix         => Duplicate_Subexpr (Lhs),
1605                              Attribute_Name => Name_Address),
1606
1607                           Right_Opnd =>
1608                            Make_Attribute_Reference (Loc,
1609                              Prefix         => Duplicate_Subexpr (Rhs),
1610                              Attribute_Name => Name_Address)),
1611
1612                      Then_Statements => L));
1613               end if;
1614
1615               --  We need to set up an exception handler for implementing
1616               --  7.6.1 (18). The remaining adjustments are tackled by the
1617               --  implementation of adjust for record_controllers (see
1618               --  s-finimp.adb)
1619
1620               --  This is skipped if we have no finalization
1621
1622               if Expand_Ctrl_Actions
1623                 and then not Restrictions (No_Finalization)
1624               then
1625                  L := New_List (
1626                    Make_Block_Statement (Loc,
1627                      Handled_Statement_Sequence =>
1628                        Make_Handled_Sequence_Of_Statements (Loc,
1629                          Statements => L,
1630                          Exception_Handlers => New_List (
1631                            Make_Exception_Handler (Loc,
1632                              Exception_Choices =>
1633                                New_List (Make_Others_Choice (Loc)),
1634                              Statements        => New_List (
1635                                Make_Raise_Program_Error (Loc,
1636                                  Reason =>
1637                                    PE_Finalize_Raised_Exception)
1638                              ))))));
1639               end if;
1640            end if;
1641
1642            Rewrite (N,
1643              Make_Block_Statement (Loc,
1644                Handled_Statement_Sequence =>
1645                  Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
1646
1647            --  If no restrictions on aborts, protect the whole assignement
1648            --  for controlled objects as per 9.8(11)
1649
1650            if Controlled_Type (Typ)
1651              and then Expand_Ctrl_Actions
1652              and then Abort_Allowed
1653            then
1654               declare
1655                  Blk : constant Entity_Id :=
1656                    New_Internal_Entity (
1657                      E_Block, Current_Scope, Sloc (N), 'B');
1658
1659               begin
1660                  Set_Scope (Blk, Current_Scope);
1661                  Set_Etype (Blk, Standard_Void_Type);
1662                  Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
1663
1664                  Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
1665                  Set_At_End_Proc (Handled_Statement_Sequence (N),
1666                    New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
1667                  Expand_At_End_Handler
1668                    (Handled_Statement_Sequence (N), Blk);
1669               end;
1670            end if;
1671
1672            Analyze (N);
1673            return;
1674         end Tagged_Case;
1675
1676      --  Array types
1677
1678      elsif Is_Array_Type (Typ) then
1679         declare
1680            Actual_Rhs : Node_Id := Rhs;
1681
1682         begin
1683            while Nkind (Actual_Rhs) = N_Type_Conversion
1684              or else
1685                  Nkind (Actual_Rhs) = N_Qualified_Expression
1686            loop
1687               Actual_Rhs := Expression (Actual_Rhs);
1688            end loop;
1689
1690            Expand_Assign_Array (N, Actual_Rhs);
1691            return;
1692         end;
1693
1694      --  Record types
1695
1696      elsif Is_Record_Type (Typ) then
1697         Expand_Assign_Record (N);
1698         return;
1699
1700      --  Scalar types. This is where we perform the processing related
1701      --  to the requirements of (RM 13.9.1(9-11)) concerning the handling
1702      --  of invalid scalar values.
1703
1704      elsif Is_Scalar_Type (Typ) then
1705
1706         --  Case where right side is known valid
1707
1708         if Expr_Known_Valid (Rhs) then
1709
1710            --  Here the right side is valid, so it is fine. The case to
1711            --  deal with is when the left side is a local variable reference
1712            --  whose value is not currently known to be valid. If this is
1713            --  the case, and the assignment appears in an unconditional
1714            --  context, then we can mark the left side as now being valid.
1715
1716            if Is_Local_Variable_Reference (Lhs)
1717              and then not Is_Known_Valid (Entity (Lhs))
1718              and then In_Unconditional_Context (N)
1719            then
1720               Set_Is_Known_Valid (Entity (Lhs), True);
1721            end if;
1722
1723         --  Case where right side may be invalid in the sense of the RM
1724         --  reference above. The RM does not require that we check for
1725         --  the validity on an assignment, but it does require that the
1726         --  assignment of an invalid value not cause erroneous behavior.
1727
1728         --  The general approach in GNAT is to use the Is_Known_Valid flag
1729         --  to avoid the need for validity checking on assignments. However
1730         --  in some cases, we have to do validity checking in order to make
1731         --  sure that the setting of this flag is correct.
1732
1733         else
1734            --  Validate right side if we are validating copies
1735
1736            if Validity_Checks_On
1737               and then Validity_Check_Copies
1738            then
1739               Ensure_Valid (Rhs);
1740
1741               --  We can propagate this to the left side where appropriate
1742
1743               if Is_Local_Variable_Reference (Lhs)
1744                 and then not Is_Known_Valid (Entity (Lhs))
1745                 and then In_Unconditional_Context (N)
1746               then
1747                  Set_Is_Known_Valid (Entity (Lhs), True);
1748               end if;
1749
1750            --  Otherwise check to see what should be done
1751
1752            --  If left side is a local variable, then we just set its
1753            --  flag to indicate that its value may no longer be valid,
1754            --  since we are copying a potentially invalid value.
1755
1756            elsif Is_Local_Variable_Reference (Lhs) then
1757               Set_Is_Known_Valid (Entity (Lhs), False);
1758
1759            --  Check for case of a nonlocal variable on the left side
1760            --  which is currently known to be valid. In this case, we
1761            --  simply ensure that the right side is valid. We only play
1762            --  the game of copying validity status for local variables,
1763            --  since we are doing this statically, not by tracing the
1764            --  full flow graph.
1765
1766            elsif Is_Entity_Name (Lhs)
1767              and then Is_Known_Valid (Entity (Lhs))
1768            then
1769               --  Note that the Ensure_Valid call is ignored if the
1770               --  Validity_Checking mode is set to none so we do not
1771               --  need to worry about that case here.
1772
1773               Ensure_Valid (Rhs);
1774
1775            --  In all other cases, we can safely copy an invalid value
1776            --  without worrying about the status of the left side. Since
1777            --  it is not a variable reference it will not be considered
1778            --  as being known to be valid in any case.
1779
1780            else
1781               null;
1782            end if;
1783         end if;
1784      end if;
1785
1786      --  Defend against invalid subscripts on left side if we are in
1787      --  standard validity checking mode. No need to do this if we
1788      --  are checking all subscripts.
1789
1790      if Validity_Checks_On
1791        and then Validity_Check_Default
1792        and then not Validity_Check_Subscripts
1793      then
1794         Check_Valid_Lvalue_Subscripts (Lhs);
1795      end if;
1796
1797   exception
1798      when RE_Not_Available =>
1799         return;
1800   end Expand_N_Assignment_Statement;
1801
1802   ------------------------------
1803   -- Expand_N_Block_Statement --
1804   ------------------------------
1805
1806   --  Encode entity names defined in block statement
1807
1808   procedure Expand_N_Block_Statement (N : Node_Id) is
1809   begin
1810      Qualify_Entity_Names (N);
1811   end Expand_N_Block_Statement;
1812
1813   -----------------------------
1814   -- Expand_N_Case_Statement --
1815   -----------------------------
1816
1817   procedure Expand_N_Case_Statement (N : Node_Id) is
1818      Loc    : constant Source_Ptr := Sloc (N);
1819      Expr   : constant Node_Id    := Expression (N);
1820      Alt    : Node_Id;
1821      Len    : Nat;
1822      Cond   : Node_Id;
1823      Choice : Node_Id;
1824      Chlist : List_Id;
1825
1826   begin
1827      --  Check for the situation where we know at compile time which
1828      --  branch will be taken
1829
1830      if Compile_Time_Known_Value (Expr) then
1831         Alt := Find_Static_Alternative (N);
1832
1833         --  Move the statements from this alternative after the case
1834         --  statement. They are already analyzed, so will be skipped
1835         --  by the analyzer.
1836
1837         Insert_List_After (N, Statements (Alt));
1838
1839         --  That leaves the case statement as a shell. The alternative
1840         --  that will be executed is reset to a null list. So now we can
1841         --  kill the entire case statement.
1842
1843         Kill_Dead_Code (Expression (N));
1844         Kill_Dead_Code (Alternatives (N));
1845         Rewrite (N, Make_Null_Statement (Loc));
1846         return;
1847      end if;
1848
1849      --  Here if the choice is not determined at compile time
1850
1851      declare
1852         Last_Alt : constant Node_Id := Last (Alternatives (N));
1853
1854         Others_Present : Boolean;
1855         Others_Node    : Node_Id;
1856
1857         Then_Stms : List_Id;
1858         Else_Stms : List_Id;
1859
1860      begin
1861         if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
1862            Others_Present := True;
1863            Others_Node    := Last_Alt;
1864         else
1865            Others_Present := False;
1866         end if;
1867
1868         --  First step is to worry about possible invalid argument. The RM
1869         --  requires (RM 5.4(13)) that if the result is invalid (e.g. it is
1870         --  outside the base range), then Constraint_Error must be raised.
1871
1872         --  Case of validity check required (validity checks are on, the
1873         --  expression is not known to be valid, and the case statement
1874         --  comes from source -- no need to validity check internally
1875         --  generated case statements).
1876
1877         if Validity_Check_Default then
1878            Ensure_Valid (Expr);
1879         end if;
1880
1881         --  If there is only a single alternative, just replace it with
1882         --  the sequence of statements since obviously that is what is
1883         --  going to be executed in all cases.
1884
1885         Len := List_Length (Alternatives (N));
1886
1887         if Len = 1 then
1888            --  We still need to evaluate the expression if it has any
1889            --  side effects.
1890
1891            Remove_Side_Effects (Expression (N));
1892
1893            Insert_List_After (N, Statements (First (Alternatives (N))));
1894
1895            --  That leaves the case statement as a shell. The alternative
1896            --  that will be executed is reset to a null list. So now we can
1897            --  kill the entire case statement.
1898
1899            Kill_Dead_Code (Expression (N));
1900            Rewrite (N, Make_Null_Statement (Loc));
1901            return;
1902         end if;
1903
1904         --  An optimization. If there are only two alternatives, and only
1905         --  a single choice, then rewrite the whole case statement as an
1906         --  if statement, since this can result in susbequent optimizations.
1907         --  This helps not only with case statements in the source of a
1908         --  simple form, but also with generated code (discriminant check
1909         --  functions in particular)
1910
1911         if Len = 2 then
1912            Chlist := Discrete_Choices (First (Alternatives (N)));
1913
1914            if List_Length (Chlist) = 1 then
1915               Choice := First (Chlist);
1916
1917               Then_Stms := Statements (First (Alternatives (N)));
1918               Else_Stms := Statements (Last  (Alternatives (N)));
1919
1920               --  For TRUE, generate "expression", not expression = true
1921
1922               if Nkind (Choice) = N_Identifier
1923                 and then Entity (Choice) = Standard_True
1924               then
1925                  Cond := Expression (N);
1926
1927               --  For FALSE, generate "expression" and switch then/else
1928
1929               elsif Nkind (Choice) = N_Identifier
1930                 and then Entity (Choice) = Standard_False
1931               then
1932                  Cond := Expression (N);
1933                  Else_Stms := Statements (First (Alternatives (N)));
1934                  Then_Stms := Statements (Last  (Alternatives (N)));
1935
1936               --  For a range, generate "expression in range"
1937
1938               elsif Nkind (Choice) = N_Range
1939                 or else (Nkind (Choice) = N_Attribute_Reference
1940                           and then Attribute_Name (Choice) = Name_Range)
1941                 or else (Is_Entity_Name (Choice)
1942                           and then Is_Type (Entity (Choice)))
1943                 or else Nkind (Choice) = N_Subtype_Indication
1944               then
1945                  Cond :=
1946                    Make_In (Loc,
1947                      Left_Opnd  => Expression (N),
1948                      Right_Opnd => Relocate_Node (Choice));
1949
1950               --  For any other subexpression "expression = value"
1951
1952               else
1953                  Cond :=
1954                    Make_Op_Eq (Loc,
1955                      Left_Opnd  => Expression (N),
1956                      Right_Opnd => Relocate_Node (Choice));
1957               end if;
1958
1959               --  Now rewrite the case as an IF
1960
1961               Rewrite (N,
1962                 Make_If_Statement (Loc,
1963                   Condition => Cond,
1964                   Then_Statements => Then_Stms,
1965                   Else_Statements => Else_Stms));
1966               Analyze (N);
1967               return;
1968            end if;
1969         end if;
1970
1971         --  If the last alternative is not an Others choice, replace it
1972         --  with an N_Others_Choice. Note that we do not bother to call
1973         --  Analyze on the modified case statement, since it's only effect
1974         --  would be to compute the contents of the Others_Discrete_Choices
1975         --  which is not needed by the back end anyway.
1976
1977         --  The reason we do this is that the back end always needs some
1978         --  default for a switch, so if we have not supplied one in the
1979         --  processing above for validity checking, then we need to
1980         --  supply one here.
1981
1982         if not Others_Present then
1983            Others_Node := Make_Others_Choice (Sloc (Last_Alt));
1984            Set_Others_Discrete_Choices
1985              (Others_Node, Discrete_Choices (Last_Alt));
1986            Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
1987         end if;
1988      end;
1989   end Expand_N_Case_Statement;
1990
1991   -----------------------------
1992   -- Expand_N_Exit_Statement --
1993   -----------------------------
1994
1995   --  The only processing required is to deal with a possible C/Fortran
1996   --  boolean value used as the condition for the exit statement.
1997
1998   procedure Expand_N_Exit_Statement (N : Node_Id) is
1999   begin
2000      Adjust_Condition (Condition (N));
2001   end Expand_N_Exit_Statement;
2002
2003   -----------------------------
2004   -- Expand_N_Goto_Statement --
2005   -----------------------------
2006
2007   --  Add poll before goto if polling active
2008
2009   procedure Expand_N_Goto_Statement (N : Node_Id) is
2010   begin
2011      Generate_Poll_Call (N);
2012   end Expand_N_Goto_Statement;
2013
2014   ---------------------------
2015   -- Expand_N_If_Statement --
2016   ---------------------------
2017
2018   --  First we deal with the case of C and Fortran convention boolean
2019   --  values, with zero/non-zero semantics.
2020
2021   --  Second, we deal with the obvious rewriting for the cases where the
2022   --  condition of the IF is known at compile time to be True or False.
2023
2024   --  Third, we remove elsif parts which have non-empty Condition_Actions
2025   --  and rewrite as independent if statements. For example:
2026
2027   --     if x then xs
2028   --     elsif y then ys
2029   --     ...
2030   --     end if;
2031
2032   --  becomes
2033   --
2034   --     if x then xs
2035   --     else
2036   --        <<condition actions of y>>
2037   --        if y then ys
2038   --        ...
2039   --        end if;
2040   --     end if;
2041
2042   --  This rewriting is needed if at least one elsif part has a non-empty
2043   --  Condition_Actions list. We also do the same processing if there is
2044   --  a constant condition in an elsif part (in conjunction with the first
2045   --  processing step mentioned above, for the recursive call made to deal
2046   --  with the created inner if, this deals with properly optimizing the
2047   --  cases of constant elsif conditions).
2048
2049   procedure Expand_N_If_Statement (N : Node_Id) is
2050      Loc    : constant Source_Ptr := Sloc (N);
2051      Hed    : Node_Id;
2052      E      : Node_Id;
2053      New_If : Node_Id;
2054
2055   begin
2056      Adjust_Condition (Condition (N));
2057
2058      --  The following loop deals with constant conditions for the IF. We
2059      --  need a loop because as we eliminate False conditions, we grab the
2060      --  first elsif condition and use it as the primary condition.
2061
2062      while Compile_Time_Known_Value (Condition (N)) loop
2063
2064         --  If condition is True, we can simply rewrite the if statement
2065         --  now by replacing it by the series of then statements.
2066
2067         if Is_True (Expr_Value (Condition (N))) then
2068
2069            --  All the else parts can be killed
2070
2071            Kill_Dead_Code (Elsif_Parts (N));
2072            Kill_Dead_Code (Else_Statements (N));
2073
2074            Hed := Remove_Head (Then_Statements (N));
2075            Insert_List_After (N, Then_Statements (N));
2076            Rewrite (N, Hed);
2077            return;
2078
2079         --  If condition is False, then we can delete the condition and
2080         --  the Then statements
2081
2082         else
2083            --  We do not delete the condition if constant condition
2084            --  warnings are enabled, since otherwise we end up deleting
2085            --  the desired warning. Of course the backend will get rid
2086            --  of this True/False test anyway, so nothing is lost here.
2087
2088            if not Constant_Condition_Warnings then
2089               Kill_Dead_Code (Condition (N));
2090            end if;
2091
2092            Kill_Dead_Code (Then_Statements (N));
2093
2094            --  If there are no elsif statements, then we simply replace
2095            --  the entire if statement by the sequence of else statements.
2096
2097            if No (Elsif_Parts (N)) then
2098
2099               if No (Else_Statements (N))
2100                 or else Is_Empty_List (Else_Statements (N))
2101               then
2102                  Rewrite (N,
2103                    Make_Null_Statement (Sloc (N)));
2104
2105               else
2106                  Hed := Remove_Head (Else_Statements (N));
2107                  Insert_List_After (N, Else_Statements (N));
2108                  Rewrite (N, Hed);
2109               end if;
2110
2111               return;
2112
2113            --  If there are elsif statements, the first of them becomes
2114            --  the if/then section of the rebuilt if statement This is
2115            --  the case where we loop to reprocess this copied condition.
2116
2117            else
2118               Hed := Remove_Head (Elsif_Parts (N));
2119               Insert_Actions      (N, Condition_Actions (Hed));
2120               Set_Condition       (N, Condition (Hed));
2121               Set_Then_Statements (N, Then_Statements (Hed));
2122
2123               if Is_Empty_List (Elsif_Parts (N)) then
2124                  Set_Elsif_Parts (N, No_List);
2125               end if;
2126            end if;
2127         end if;
2128      end loop;
2129
2130      --  Loop through elsif parts, dealing with constant conditions and
2131      --  possible expression actions that are present.
2132
2133      if Present (Elsif_Parts (N)) then
2134         E := First (Elsif_Parts (N));
2135         while Present (E) loop
2136            Adjust_Condition (Condition (E));
2137
2138            --  If there are condition actions, then we rewrite the if
2139            --  statement as indicated above. We also do the same rewrite
2140            --  if the condition is True or False. The further processing
2141            --  of this constant condition is then done by the recursive
2142            --  call to expand the newly created if statement
2143
2144            if Present (Condition_Actions (E))
2145              or else Compile_Time_Known_Value (Condition (E))
2146            then
2147               --  Note this is not an implicit if statement, since it is
2148               --  part of an explicit if statement in the source (or of an
2149               --  implicit if statement that has already been tested).
2150
2151               New_If :=
2152                 Make_If_Statement (Sloc (E),
2153                   Condition       => Condition (E),
2154                   Then_Statements => Then_Statements (E),
2155                   Elsif_Parts     => No_List,
2156                   Else_Statements => Else_Statements (N));
2157
2158               --  Elsif parts for new if come from remaining elsif's of parent
2159
2160               while Present (Next (E)) loop
2161                  if No (Elsif_Parts (New_If)) then
2162                     Set_Elsif_Parts (New_If, New_List);
2163                  end if;
2164
2165                  Append (Remove_Next (E), Elsif_Parts (New_If));
2166               end loop;
2167
2168               Set_Else_Statements (N, New_List (New_If));
2169
2170               if Present (Condition_Actions (E)) then
2171                  Insert_List_Before (New_If, Condition_Actions (E));
2172               end if;
2173
2174               Remove (E);
2175
2176               if Is_Empty_List (Elsif_Parts (N)) then
2177                  Set_Elsif_Parts (N, No_List);
2178               end if;
2179
2180               Analyze (New_If);
2181               return;
2182
2183            --  No special processing for that elsif part, move to next
2184
2185            else
2186               Next (E);
2187            end if;
2188         end loop;
2189      end if;
2190
2191      --  Some more optimizations applicable if we still have an IF statement
2192
2193      if Nkind (N) /= N_If_Statement then
2194         return;
2195      end if;
2196
2197      --  Another optimization, special cases that can be simplified
2198
2199      --     if expression then
2200      --        return true;
2201      --     else
2202      --        return false;
2203      --     end if;
2204
2205      --  can be changed to:
2206
2207      --     return expression;
2208
2209      --  and
2210
2211      --     if expression then
2212      --        return false;
2213      --     else
2214      --        return true;
2215      --     end if;
2216
2217      --  can be changed to:
2218
2219      --     return not (expression);
2220
2221      if Nkind (N) = N_If_Statement
2222         and then No (Elsif_Parts (N))
2223         and then Present (Else_Statements (N))
2224         and then List_Length (Then_Statements (N)) = 1
2225         and then List_Length (Else_Statements (N)) = 1
2226      then
2227         declare
2228            Then_Stm : constant Node_Id := First (Then_Statements (N));
2229            Else_Stm : constant Node_Id := First (Else_Statements (N));
2230
2231         begin
2232            if Nkind (Then_Stm) = N_Return_Statement
2233                 and then
2234               Nkind (Else_Stm) = N_Return_Statement
2235            then
2236               declare
2237                  Then_Expr : constant Node_Id := Expression (Then_Stm);
2238                  Else_Expr : constant Node_Id := Expression (Else_Stm);
2239
2240               begin
2241                  if Nkind (Then_Expr) = N_Identifier
2242                       and then
2243                     Nkind (Else_Expr) = N_Identifier
2244                  then
2245                     if Entity (Then_Expr) = Standard_True
2246                       and then Entity (Else_Expr) = Standard_False
2247                     then
2248                        Rewrite (N,
2249                          Make_Return_Statement (Loc,
2250                            Expression => Relocate_Node (Condition (N))));
2251                        Analyze (N);
2252                        return;
2253
2254                     elsif Entity (Then_Expr) = Standard_False
2255                       and then Entity (Else_Expr) = Standard_True
2256                     then
2257                        Rewrite (N,
2258                          Make_Return_Statement (Loc,
2259                            Expression =>
2260                              Make_Op_Not (Loc,
2261                                Right_Opnd => Relocate_Node (Condition (N)))));
2262                        Analyze (N);
2263                        return;
2264                     end if;
2265                  end if;
2266               end;
2267            end if;
2268         end;
2269      end if;
2270   end Expand_N_If_Statement;
2271
2272   -----------------------------
2273   -- Expand_N_Loop_Statement --
2274   -----------------------------
2275
2276   --  1. Deal with while condition for C/Fortran boolean
2277   --  2. Deal with loops with a non-standard enumeration type range
2278   --  3. Deal with while loops where Condition_Actions is set
2279   --  4. Insert polling call if required
2280
2281   procedure Expand_N_Loop_Statement (N : Node_Id) is
2282      Loc  : constant Source_Ptr := Sloc (N);
2283      Isc  : constant Node_Id    := Iteration_Scheme (N);
2284
2285   begin
2286      if Present (Isc) then
2287         Adjust_Condition (Condition (Isc));
2288      end if;
2289
2290      if Is_Non_Empty_List (Statements (N)) then
2291         Generate_Poll_Call (First (Statements (N)));
2292      end if;
2293
2294      if No (Isc) then
2295         return;
2296      end if;
2297
2298      --  Handle the case where we have a for loop with the range type being
2299      --  an enumeration type with non-standard representation. In this case
2300      --  we expand:
2301
2302      --    for x in [reverse] a .. b loop
2303      --       ...
2304      --    end loop;
2305
2306      --  to
2307
2308      --    for xP in [reverse] integer
2309      --                          range etype'Pos (a) .. etype'Pos (b) loop
2310      --       declare
2311      --          x : constant etype := Pos_To_Rep (xP);
2312      --       begin
2313      --          ...
2314      --       end;
2315      --    end loop;
2316
2317      if Present (Loop_Parameter_Specification (Isc)) then
2318         declare
2319            LPS     : constant Node_Id   := Loop_Parameter_Specification (Isc);
2320            Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
2321            Ltype   : constant Entity_Id := Etype (Loop_Id);
2322            Btype   : constant Entity_Id := Base_Type (Ltype);
2323            Expr    : Node_Id;
2324            New_Id  : Entity_Id;
2325
2326         begin
2327            if not Is_Enumeration_Type (Btype)
2328              or else No (Enum_Pos_To_Rep (Btype))
2329            then
2330               return;
2331            end if;
2332
2333            New_Id :=
2334              Make_Defining_Identifier (Loc,
2335                Chars => New_External_Name (Chars (Loop_Id), 'P'));
2336
2337            --  If the type has a contiguous representation, successive
2338            --  values can be generated as offsets from the first literal.
2339
2340            if Has_Contiguous_Rep (Btype) then
2341               Expr :=
2342                  Unchecked_Convert_To (Btype,
2343                    Make_Op_Add (Loc,
2344                      Left_Opnd =>
2345                         Make_Integer_Literal (Loc,
2346                           Enumeration_Rep (First_Literal (Btype))),
2347                      Right_Opnd => New_Reference_To (New_Id, Loc)));
2348            else
2349               --  Use the constructed array Enum_Pos_To_Rep.
2350
2351               Expr :=
2352                 Make_Indexed_Component (Loc,
2353                   Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
2354                   Expressions => New_List (New_Reference_To (New_Id, Loc)));
2355            end if;
2356
2357            Rewrite (N,
2358              Make_Loop_Statement (Loc,
2359                Identifier => Identifier (N),
2360
2361                Iteration_Scheme =>
2362                  Make_Iteration_Scheme (Loc,
2363                    Loop_Parameter_Specification =>
2364                      Make_Loop_Parameter_Specification (Loc,
2365                        Defining_Identifier => New_Id,
2366                        Reverse_Present => Reverse_Present (LPS),
2367
2368                        Discrete_Subtype_Definition =>
2369                          Make_Subtype_Indication (Loc,
2370
2371                            Subtype_Mark =>
2372                              New_Reference_To (Standard_Natural, Loc),
2373
2374                            Constraint =>
2375                              Make_Range_Constraint (Loc,
2376                                Range_Expression =>
2377                                  Make_Range (Loc,
2378
2379                                    Low_Bound =>
2380                                      Make_Attribute_Reference (Loc,
2381                                        Prefix =>
2382                                          New_Reference_To (Btype, Loc),
2383
2384                                        Attribute_Name => Name_Pos,
2385
2386                                        Expressions => New_List (
2387                                          Relocate_Node
2388                                            (Type_Low_Bound (Ltype)))),
2389
2390                                    High_Bound =>
2391                                      Make_Attribute_Reference (Loc,
2392                                        Prefix =>
2393                                          New_Reference_To (Btype, Loc),
2394
2395                                        Attribute_Name => Name_Pos,
2396
2397                                        Expressions => New_List (
2398                                          Relocate_Node
2399                                            (Type_High_Bound (Ltype))))))))),
2400
2401                Statements => New_List (
2402                  Make_Block_Statement (Loc,
2403                    Declarations => New_List (
2404                      Make_Object_Declaration (Loc,
2405                        Defining_Identifier => Loop_Id,
2406                        Constant_Present    => True,
2407                        Object_Definition   => New_Reference_To (Ltype, Loc),
2408                        Expression          => Expr)),
2409
2410                    Handled_Statement_Sequence =>
2411                      Make_Handled_Sequence_Of_Statements (Loc,
2412                        Statements => Statements (N)))),
2413
2414                End_Label => End_Label (N)));
2415            Analyze (N);
2416         end;
2417
2418      --  Second case, if we have a while loop with Condition_Actions set,
2419      --  then we change it into a plain loop:
2420
2421      --    while C loop
2422      --       ...
2423      --    end loop;
2424
2425      --  changed to:
2426
2427      --    loop
2428      --       <<condition actions>>
2429      --       exit when not C;
2430      --       ...
2431      --    end loop
2432
2433      elsif Present (Isc)
2434        and then Present (Condition_Actions (Isc))
2435      then
2436         declare
2437            ES : Node_Id;
2438
2439         begin
2440            ES :=
2441              Make_Exit_Statement (Sloc (Condition (Isc)),
2442                Condition =>
2443                  Make_Op_Not (Sloc (Condition (Isc)),
2444                    Right_Opnd => Condition (Isc)));
2445
2446            Prepend (ES, Statements (N));
2447            Insert_List_Before (ES, Condition_Actions (Isc));
2448
2449            --  This is not an implicit loop, since it is generated in
2450            --  response to the loop statement being processed. If this
2451            --  is itself implicit, the restriction has already been
2452            --  checked. If not, it is an explicit loop.
2453
2454            Rewrite (N,
2455              Make_Loop_Statement (Sloc (N),
2456                Identifier => Identifier (N),
2457                Statements => Statements (N),
2458                End_Label  => End_Label  (N)));
2459
2460            Analyze (N);
2461         end;
2462      end if;
2463   end Expand_N_Loop_Statement;
2464
2465   -------------------------------
2466   -- Expand_N_Return_Statement --
2467   -------------------------------
2468
2469   procedure Expand_N_Return_Statement (N : Node_Id) is
2470      Loc         : constant Source_Ptr := Sloc (N);
2471      Exp         : constant Node_Id    := Expression (N);
2472      Exptyp      : Entity_Id;
2473      T           : Entity_Id;
2474      Utyp        : Entity_Id;
2475      Scope_Id    : Entity_Id;
2476      Kind        : Entity_Kind;
2477      Call        : Node_Id;
2478      Acc_Stat    : Node_Id;
2479      Goto_Stat   : Node_Id;
2480      Lab_Node    : Node_Id;
2481      Cur_Idx     : Nat;
2482      Return_Type : Entity_Id;
2483      Result_Exp  : Node_Id;
2484      Result_Id   : Entity_Id;
2485      Result_Obj  : Node_Id;
2486
2487   begin
2488      --  Case where returned expression is present
2489
2490      if Present (Exp) then
2491
2492         --  Always normalize C/Fortran boolean result. This is not always
2493         --  necessary, but it seems a good idea to minimize the passing
2494         --  around of non-normalized values, and in any case this handles
2495         --  the processing of barrier functions for protected types, which
2496         --  turn the condition into a return statement.
2497
2498         Exptyp := Etype (Exp);
2499
2500         if Is_Boolean_Type (Exptyp)
2501           and then Nonzero_Is_True (Exptyp)
2502         then
2503            Adjust_Condition (Exp);
2504            Adjust_Result_Type (Exp, Exptyp);
2505         end if;
2506
2507         --  Do validity check if enabled for returns
2508
2509         if Validity_Checks_On
2510           and then Validity_Check_Returns
2511         then
2512            Ensure_Valid (Exp);
2513         end if;
2514      end if;
2515
2516      --  Find relevant enclosing scope from which return is returning
2517
2518      Cur_Idx := Scope_Stack.Last;
2519      loop
2520         Scope_Id := Scope_Stack.Table (Cur_Idx).Entity;
2521
2522         if Ekind (Scope_Id) /= E_Block
2523           and then Ekind (Scope_Id) /= E_Loop
2524         then
2525            exit;
2526
2527         else
2528            Cur_Idx := Cur_Idx - 1;
2529            pragma Assert (Cur_Idx >= 0);
2530         end if;
2531      end loop;
2532
2533      if No (Exp) then
2534         Kind := Ekind (Scope_Id);
2535
2536         --  If it is a return from procedures do no extra steps.
2537
2538         if Kind = E_Procedure or else Kind = E_Generic_Procedure then
2539            return;
2540         end if;
2541
2542         pragma Assert (Is_Entry (Scope_Id));
2543
2544         --  Look at the enclosing block to see whether the return is from
2545         --  an accept statement or an entry body.
2546
2547         for J in reverse 0 .. Cur_Idx loop
2548            Scope_Id := Scope_Stack.Table (J).Entity;
2549            exit when Is_Concurrent_Type (Scope_Id);
2550         end loop;
2551
2552         --  If it is a return from accept statement it should be expanded
2553         --  as a call to RTS Complete_Rendezvous and a goto to the end of
2554         --  the accept body.
2555
2556         --  (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
2557         --   Expand_N_Accept_Alternative in exp_ch9.adb)
2558
2559         if Is_Task_Type (Scope_Id) then
2560
2561            Call := (Make_Procedure_Call_Statement (Loc,
2562                      Name => New_Reference_To
2563                        (RTE (RE_Complete_Rendezvous), Loc)));
2564            Insert_Before (N, Call);
2565            --  why not insert actions here???
2566            Analyze (Call);
2567
2568            Acc_Stat := Parent (N);
2569            while Nkind (Acc_Stat) /= N_Accept_Statement loop
2570               Acc_Stat := Parent (Acc_Stat);
2571            end loop;
2572
2573            Lab_Node := Last (Statements
2574              (Handled_Statement_Sequence (Acc_Stat)));
2575
2576            Goto_Stat := Make_Goto_Statement (Loc,
2577              Name => New_Occurrence_Of
2578                (Entity (Identifier (Lab_Node)), Loc));
2579
2580            Set_Analyzed (Goto_Stat);
2581
2582            Rewrite (N, Goto_Stat);
2583            Analyze (N);
2584
2585         --  If it is a return from an entry body, put a Complete_Entry_Body
2586         --  call in front of the return.
2587
2588         elsif Is_Protected_Type (Scope_Id) then
2589
2590            Call :=
2591              Make_Procedure_Call_Statement (Loc,
2592                Name => New_Reference_To
2593                  (RTE (RE_Complete_Entry_Body), Loc),
2594                Parameter_Associations => New_List
2595                  (Make_Attribute_Reference (Loc,
2596                    Prefix =>
2597                      New_Reference_To
2598                        (Object_Ref
2599                           (Corresponding_Body (Parent (Scope_Id))),
2600                        Loc),
2601                    Attribute_Name => Name_Unchecked_Access)));
2602
2603            Insert_Before (N, Call);
2604            Analyze (Call);
2605
2606         end if;
2607
2608         return;
2609      end if;
2610
2611      T := Etype (Exp);
2612      Return_Type := Etype (Scope_Id);
2613      Utyp := Underlying_Type (Return_Type);
2614
2615      --  Check the result expression of a scalar function against
2616      --  the subtype of the function by inserting a conversion.
2617      --  This conversion must eventually be performed for other
2618      --  classes of types, but for now it's only done for scalars.
2619      --  ???
2620
2621      if Is_Scalar_Type (T) then
2622         Rewrite (Exp, Convert_To (Return_Type, Exp));
2623         Analyze (Exp);
2624      end if;
2625
2626      --  Implement the rules of 6.5(8-10), which require a tag check in
2627      --  the case of a limited tagged return type, and tag reassignment
2628      --  for nonlimited tagged results. These actions are needed when
2629      --  the return type is a specific tagged type and the result
2630      --  expression is a conversion or a formal parameter, because in
2631      --  that case the tag of the expression might differ from the tag
2632      --  of the specific result type.
2633
2634      if Is_Tagged_Type (Utyp)
2635        and then not Is_Class_Wide_Type (Utyp)
2636        and then (Nkind (Exp) = N_Type_Conversion
2637                    or else Nkind (Exp) = N_Unchecked_Type_Conversion
2638                    or else (Is_Entity_Name (Exp)
2639                               and then Ekind (Entity (Exp)) in Formal_Kind))
2640      then
2641         --  When the return type is limited, perform a check that the
2642         --  tag of the result is the same as the tag of the return type.
2643
2644         if Is_Limited_Type (Return_Type) then
2645            Insert_Action (Exp,
2646              Make_Raise_Constraint_Error (Loc,
2647                Condition =>
2648                  Make_Op_Ne (Loc,
2649                    Left_Opnd =>
2650                      Make_Selected_Component (Loc,
2651                        Prefix => Duplicate_Subexpr (Exp),
2652                        Selector_Name =>
2653                          New_Reference_To (Tag_Component (Utyp), Loc)),
2654                    Right_Opnd =>
2655                      Unchecked_Convert_To (RTE (RE_Tag),
2656                        New_Reference_To
2657                          (Access_Disp_Table (Base_Type (Utyp)), Loc))),
2658                Reason => CE_Tag_Check_Failed));
2659
2660         --  If the result type is a specific nonlimited tagged type,
2661         --  then we have to ensure that the tag of the result is that
2662         --  of the result type. This is handled by making a copy of the
2663         --  expression in the case where it might have a different tag,
2664         --  namely when the expression is a conversion or a formal
2665         --  parameter. We create a new object of the result type and
2666         --  initialize it from the expression, which will implicitly
2667         --  force the tag to be set appropriately.
2668
2669         else
2670            Result_Id :=
2671              Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2672            Result_Exp := New_Reference_To (Result_Id, Loc);
2673
2674            Result_Obj :=
2675              Make_Object_Declaration (Loc,
2676                Defining_Identifier => Result_Id,
2677                Object_Definition   => New_Reference_To (Return_Type, Loc),
2678                Constant_Present    => True,
2679                Expression          => Relocate_Node (Exp));
2680
2681            Set_Assignment_OK (Result_Obj);
2682            Insert_Action (Exp, Result_Obj);
2683
2684            Rewrite (Exp, Result_Exp);
2685            Analyze_And_Resolve (Exp, Return_Type);
2686         end if;
2687      end if;
2688
2689      --  Deal with returning variable length objects and controlled types
2690
2691      --  Nothing to do if we are returning by reference, or this is not
2692      --  a type that requires special processing (indicated by the fact
2693      --  that it requires a cleanup scope for the secondary stack case)
2694
2695      if Is_Return_By_Reference_Type (T)
2696        or else not Requires_Transient_Scope (Return_Type)
2697      then
2698         null;
2699
2700      --  Case of secondary stack not used
2701
2702      elsif Function_Returns_With_DSP (Scope_Id) then
2703
2704         --  Here what we need to do is to always return by reference, since
2705         --  we will return with the stack pointer depressed. We may need to
2706         --  do a copy to a local temporary before doing this return.
2707
2708         No_Secondary_Stack_Case : declare
2709            Local_Copy_Required : Boolean := False;
2710            --  Set to True if a local copy is required
2711
2712            Copy_Ent : Entity_Id;
2713            --  Used for the target entity if a copy is required
2714
2715            Decl : Node_Id;
2716            --  Declaration used to create copy if needed
2717
2718            procedure Test_Copy_Required (Expr : Node_Id);
2719            --  Determines if Expr represents a return value for which a
2720            --  copy is required. More specifically, a copy is not required
2721            --  if Expr represents an object or component of an object that
2722            --  is either in the local subprogram frame, or is constant.
2723            --  If a copy is required, then Local_Copy_Required is set True.
2724
2725            ------------------------
2726            -- Test_Copy_Required --
2727            ------------------------
2728
2729            procedure Test_Copy_Required (Expr : Node_Id) is
2730               Ent : Entity_Id;
2731
2732            begin
2733               --  If component, test prefix (object containing component)
2734
2735               if Nkind (Expr) = N_Indexed_Component
2736                    or else
2737                  Nkind (Expr) = N_Selected_Component
2738               then
2739                  Test_Copy_Required (Prefix (Expr));
2740                  return;
2741
2742               --  See if we have an entity name
2743
2744               elsif Is_Entity_Name (Expr) then
2745                  Ent := Entity (Expr);
2746
2747                  --  Constant entity is always OK, no copy required
2748
2749                  if Ekind (Ent) = E_Constant then
2750                     return;
2751
2752                  --  No copy required for local variable
2753
2754                  elsif Ekind (Ent) = E_Variable
2755                    and then Scope (Ent) = Current_Subprogram
2756                  then
2757                     return;
2758                  end if;
2759               end if;
2760
2761               --  All other cases require a copy
2762
2763               Local_Copy_Required := True;
2764            end Test_Copy_Required;
2765
2766         --  Start of processing for No_Secondary_Stack_Case
2767
2768         begin
2769            --  No copy needed if result is from a function call.
2770            --  In this case the result is already being returned by
2771            --  reference with the stack pointer depressed.
2772
2773            --  To make up for a gcc 2.8.1 deficiency (???), we perform
2774            --  the copy for array types if the constrained status of the
2775            --  target type is different from that of the expression.
2776
2777            if Requires_Transient_Scope (T)
2778              and then
2779                (not Is_Array_Type (T)
2780                   or else Is_Constrained (T) = Is_Constrained (Return_Type)
2781                   or else Controlled_Type (T))
2782              and then Nkind (Exp) = N_Function_Call
2783            then
2784               Set_By_Ref (N);
2785
2786            --  We always need a local copy for a controlled type, since
2787            --  we are required to finalize the local value before return.
2788            --  The copy will automatically include the required finalize.
2789            --  Moreover, gigi cannot make this copy, since we need special
2790            --  processing to ensure proper behavior for finalization.
2791
2792            --  Note: the reason we are returning with a depressed stack
2793            --  pointer in the controlled case (even if the type involved
2794            --  is constrained) is that we must make a local copy to deal
2795            --  properly with the requirement that the local result be
2796            --  finalized.
2797
2798            elsif Controlled_Type (Utyp) then
2799               Copy_Ent :=
2800                 Make_Defining_Identifier (Loc,
2801                   Chars => New_Internal_Name ('R'));
2802
2803               --  Build declaration to do the copy, and insert it, setting
2804               --  Assignment_OK, because we may be copying a limited type.
2805               --  In addition we set the special flag to inhibit finalize
2806               --  attachment if this is a controlled type (since this attach
2807               --  must be done by the caller, otherwise if we attach it here
2808               --  we will finalize the returned result prematurely).
2809
2810               Decl :=
2811                 Make_Object_Declaration (Loc,
2812                   Defining_Identifier => Copy_Ent,
2813                   Object_Definition   => New_Occurrence_Of (Return_Type, Loc),
2814                   Expression          => Relocate_Node (Exp));
2815
2816               Set_Assignment_OK (Decl);
2817               Set_Delay_Finalize_Attach (Decl);
2818               Insert_Action (N, Decl);
2819
2820               --  Now the actual return uses the copied value
2821
2822               Rewrite (Exp, New_Occurrence_Of (Copy_Ent, Loc));
2823               Analyze_And_Resolve (Exp, Return_Type);
2824
2825               --  Since we have made the copy, gigi does not have to, so
2826               --  we set the By_Ref flag to prevent another copy being made.
2827
2828               Set_By_Ref (N);
2829
2830            --  Non-controlled cases
2831
2832            else
2833               Test_Copy_Required (Exp);
2834
2835               --  If a local copy is required, then gigi will make the
2836               --  copy, otherwise, we can return the result directly,
2837               --  so set By_Ref to suppress the gigi copy.
2838
2839               if not Local_Copy_Required then
2840                  Set_By_Ref (N);
2841               end if;
2842            end if;
2843         end No_Secondary_Stack_Case;
2844
2845      --  Here if secondary stack is used
2846
2847      else
2848         --  Make sure that no surrounding block will reclaim the
2849         --  secondary-stack on which we are going to put the result.
2850         --  Not only may this introduce secondary stack leaks but worse,
2851         --  if the reclamation is done too early, then the result we are
2852         --  returning may get clobbered. See example in 7417-003.
2853
2854         declare
2855            S : Entity_Id := Current_Scope;
2856
2857         begin
2858            while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
2859               Set_Sec_Stack_Needed_For_Return (S, True);
2860               S := Enclosing_Dynamic_Scope (S);
2861            end loop;
2862         end;
2863
2864         --  Optimize the case where the result is a function call. In this
2865         --  case either the result is already on the secondary stack, or is
2866         --  already being returned with the stack pointer depressed and no
2867         --  further processing is required except to set the By_Ref flag to
2868         --  ensure that gigi does not attempt an extra unnecessary copy.
2869         --  (actually not just unnecessary but harmfully wrong in the case
2870         --  of a controlled type, where gigi does not know how to do a copy).
2871         --  To make up for a gcc 2.8.1 deficiency (???), we perform
2872         --  the copy for array types if the constrained status of the
2873         --  target type is different from that of the expression.
2874
2875         if Requires_Transient_Scope (T)
2876           and then
2877              (not Is_Array_Type (T)
2878                or else Is_Constrained (T) = Is_Constrained (Return_Type)
2879                or else Controlled_Type (T))
2880           and then Nkind (Exp) = N_Function_Call
2881         then
2882            Set_By_Ref (N);
2883
2884         --  For controlled types, do the allocation on the sec-stack
2885         --  manually in order to call adjust at the right time
2886         --    type Anon1 is access Return_Type;
2887         --    for Anon1'Storage_pool use ss_pool;
2888         --    Anon2 : anon1 := new Return_Type'(expr);
2889         --    return Anon2.all;
2890
2891         elsif Controlled_Type (Utyp) then
2892            declare
2893               Loc        : constant Source_Ptr := Sloc (N);
2894               Temp       : constant Entity_Id :=
2895                              Make_Defining_Identifier (Loc,
2896                                Chars => New_Internal_Name ('R'));
2897               Acc_Typ    : constant Entity_Id :=
2898                              Make_Defining_Identifier (Loc,
2899                                Chars => New_Internal_Name ('A'));
2900               Alloc_Node : Node_Id;
2901
2902            begin
2903               Set_Ekind (Acc_Typ, E_Access_Type);
2904
2905               Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
2906
2907               Alloc_Node :=
2908                 Make_Allocator (Loc,
2909                   Expression =>
2910                     Make_Qualified_Expression (Loc,
2911                       Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
2912                       Expression => Relocate_Node (Exp)));
2913
2914               Insert_List_Before_And_Analyze (N, New_List (
2915                 Make_Full_Type_Declaration (Loc,
2916                   Defining_Identifier => Acc_Typ,
2917                   Type_Definition     =>
2918                     Make_Access_To_Object_Definition (Loc,
2919                       Subtype_Indication =>
2920                          New_Reference_To (Return_Type, Loc))),
2921
2922                 Make_Object_Declaration (Loc,
2923                   Defining_Identifier => Temp,
2924                   Object_Definition   => New_Reference_To (Acc_Typ, Loc),
2925                   Expression          => Alloc_Node)));
2926
2927               Rewrite (Exp,
2928                 Make_Explicit_Dereference (Loc,
2929                 Prefix => New_Reference_To (Temp, Loc)));
2930
2931               Analyze_And_Resolve (Exp, Return_Type);
2932            end;
2933
2934         --  Otherwise use the gigi mechanism to allocate result on the
2935         --  secondary stack.
2936
2937         else
2938            Set_Storage_Pool      (N, RTE (RE_SS_Pool));
2939
2940            --  If we are generating code for the Java VM do not use
2941            --  SS_Allocate since everything is heap-allocated anyway.
2942
2943            if not Java_VM then
2944               Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
2945            end if;
2946         end if;
2947      end if;
2948
2949   exception
2950      when RE_Not_Available =>
2951         return;
2952   end Expand_N_Return_Statement;
2953
2954   ------------------------------
2955   -- Make_Tag_Ctrl_Assignment --
2956   ------------------------------
2957
2958   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
2959      Loc : constant Source_Ptr := Sloc (N);
2960      L   : constant Node_Id    := Name (N);
2961      T   : constant Entity_Id  := Underlying_Type (Etype (L));
2962
2963      Ctrl_Act : constant Boolean := Controlled_Type (T)
2964                                       and then not No_Ctrl_Actions (N);
2965
2966      Save_Tag : constant Boolean := Is_Tagged_Type (T)
2967                                       and then not No_Ctrl_Actions (N)
2968                                       and then not Java_VM;
2969      --  Tags are not saved and restored when Java_VM because JVM tags
2970      --  are represented implicitly in objects.
2971
2972      Res       : List_Id;
2973      Tag_Tmp   : Entity_Id;
2974      Prev_Tmp  : Entity_Id;
2975      Next_Tmp  : Entity_Id;
2976      Ctrl_Ref  : Node_Id;
2977      Ctrl_Ref2 : Node_Id   := Empty;
2978      Prev_Tmp2 : Entity_Id := Empty;  -- prevent warning
2979      Next_Tmp2 : Entity_Id := Empty;  -- prevent warning
2980
2981   begin
2982      Res := New_List;
2983
2984      --  Finalize the target of the assignment when controlled.
2985      --  We have two exceptions here:
2986
2987      --   1. If we are in an init proc since it is an initialization
2988      --      more than an assignment
2989
2990      --   2. If the left-hand side is a temporary that was not initialized
2991      --      (or the parent part of a temporary since it is the case in
2992      --      extension aggregates). Such a temporary does not come from
2993      --      source. We must examine the original node for the prefix, because
2994      --      it may be a component of an entry formal, in which case it has
2995      --      been rewritten and does not appear to come from source either.
2996
2997      --  Case of init proc
2998
2999      if not Ctrl_Act then
3000         null;
3001
3002      --  The left hand side is an uninitialized  temporary
3003
3004      elsif Nkind (L) = N_Type_Conversion
3005        and then Is_Entity_Name (Expression (L))
3006        and then No_Initialization (Parent (Entity (Expression (L))))
3007      then
3008         null;
3009      else
3010         Append_List_To (Res,
3011           Make_Final_Call (
3012             Ref         => Duplicate_Subexpr_No_Checks (L),
3013             Typ         => Etype (L),
3014             With_Detach => New_Reference_To (Standard_False, Loc)));
3015      end if;
3016
3017      Next_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3018
3019      --  Save the Tag in a local variable Tag_Tmp
3020
3021      if Save_Tag then
3022         Tag_Tmp :=
3023           Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
3024
3025         Append_To (Res,
3026           Make_Object_Declaration (Loc,
3027             Defining_Identifier => Tag_Tmp,
3028             Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
3029             Expression =>
3030               Make_Selected_Component (Loc,
3031                 Prefix        => Duplicate_Subexpr_No_Checks (L),
3032                 Selector_Name => New_Reference_To (Tag_Component (T), Loc))));
3033
3034      --  Otherwise Tag_Tmp not used
3035
3036      else
3037         Tag_Tmp := Empty;
3038      end if;
3039
3040      --  Save the Finalization Pointers in local variables Prev_Tmp and
3041      --  Next_Tmp. For objects with Has_Controlled_Component set, these
3042      --  pointers are in the Record_Controller and if it is also
3043      --  Is_Controlled, we need to save the object pointers as well.
3044
3045      if Ctrl_Act then
3046         Ctrl_Ref := Duplicate_Subexpr_No_Checks (L);
3047
3048         if Has_Controlled_Component (T) then
3049            Ctrl_Ref :=
3050              Make_Selected_Component (Loc,
3051                Prefix => Ctrl_Ref,
3052                Selector_Name =>
3053                  New_Reference_To (Controller_Component (T), Loc));
3054
3055            if Is_Controlled (T) then
3056               Ctrl_Ref2 := Duplicate_Subexpr_No_Checks (L);
3057            end if;
3058         end if;
3059
3060         Prev_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
3061
3062         Append_To (Res,
3063           Make_Object_Declaration (Loc,
3064             Defining_Identifier => Prev_Tmp,
3065
3066             Object_Definition =>
3067               New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3068
3069             Expression =>
3070               Make_Selected_Component (Loc,
3071                 Prefix =>
3072                   Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref),
3073                 Selector_Name => Make_Identifier (Loc, Name_Prev))));
3074
3075         Next_Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3076
3077         Append_To (Res,
3078           Make_Object_Declaration (Loc,
3079             Defining_Identifier => Next_Tmp,
3080
3081             Object_Definition =>
3082               New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3083
3084             Expression =>
3085               Make_Selected_Component (Loc,
3086                 Prefix =>
3087                   Unchecked_Convert_To (RTE (RE_Finalizable),
3088                     New_Copy_Tree (Ctrl_Ref)),
3089                 Selector_Name => Make_Identifier (Loc, Name_Next))));
3090
3091         if Present (Ctrl_Ref2) then
3092            Prev_Tmp2 :=
3093              Make_Defining_Identifier (Loc, New_Internal_Name ('B'));
3094
3095            Append_To (Res,
3096              Make_Object_Declaration (Loc,
3097                Defining_Identifier => Prev_Tmp2,
3098
3099                Object_Definition =>
3100                  New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3101
3102                Expression =>
3103                  Make_Selected_Component (Loc,
3104                    Prefix =>
3105                      Unchecked_Convert_To (RTE (RE_Finalizable), Ctrl_Ref2),
3106                    Selector_Name => Make_Identifier (Loc, Name_Prev))));
3107
3108            Next_Tmp2 :=
3109              Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
3110
3111            Append_To (Res,
3112              Make_Object_Declaration (Loc,
3113                Defining_Identifier => Next_Tmp2,
3114
3115                Object_Definition =>
3116                  New_Reference_To (RTE (RE_Finalizable_Ptr), Loc),
3117
3118                Expression =>
3119                  Make_Selected_Component (Loc,
3120                    Prefix =>
3121                      Unchecked_Convert_To (RTE (RE_Finalizable),
3122                        New_Copy_Tree (Ctrl_Ref2)),
3123                    Selector_Name => Make_Identifier (Loc, Name_Next))));
3124         end if;
3125
3126      --  If not controlled type, then Prev_Tmp and Ctrl_Ref unused
3127
3128      else
3129         Prev_Tmp := Empty;
3130         Ctrl_Ref := Empty;
3131      end if;
3132
3133      --  Do the Assignment
3134
3135      Append_To (Res, Relocate_Node (N));
3136
3137      --  Restore the Tag
3138
3139      if Save_Tag then
3140         Append_To (Res,
3141           Make_Assignment_Statement (Loc,
3142             Name =>
3143               Make_Selected_Component (Loc,
3144                 Prefix        => Duplicate_Subexpr_No_Checks (L),
3145                 Selector_Name => New_Reference_To (Tag_Component (T), Loc)),
3146             Expression => New_Reference_To (Tag_Tmp, Loc)));
3147      end if;
3148
3149      --  Restore the finalization pointers
3150
3151      if Ctrl_Act then
3152         Append_To (Res,
3153           Make_Assignment_Statement (Loc,
3154             Name =>
3155               Make_Selected_Component (Loc,
3156                 Prefix =>
3157                   Unchecked_Convert_To (RTE (RE_Finalizable),
3158                     New_Copy_Tree (Ctrl_Ref)),
3159                 Selector_Name => Make_Identifier (Loc, Name_Prev)),
3160             Expression => New_Reference_To (Prev_Tmp, Loc)));
3161
3162         Append_To (Res,
3163           Make_Assignment_Statement (Loc,
3164             Name =>
3165               Make_Selected_Component (Loc,
3166                 Prefix =>
3167                   Unchecked_Convert_To (RTE (RE_Finalizable),
3168                     New_Copy_Tree (Ctrl_Ref)),
3169                 Selector_Name => Make_Identifier (Loc, Name_Next)),
3170             Expression => New_Reference_To (Next_Tmp, Loc)));
3171
3172         if Present (Ctrl_Ref2) then
3173            Append_To (Res,
3174              Make_Assignment_Statement (Loc,
3175                Name =>
3176                  Make_Selected_Component (Loc,
3177                    Prefix =>
3178                      Unchecked_Convert_To (RTE (RE_Finalizable),
3179                        New_Copy_Tree (Ctrl_Ref2)),
3180                    Selector_Name => Make_Identifier (Loc, Name_Prev)),
3181                Expression => New_Reference_To (Prev_Tmp2, Loc)));
3182
3183            Append_To (Res,
3184              Make_Assignment_Statement (Loc,
3185                Name =>
3186                  Make_Selected_Component (Loc,
3187                    Prefix =>
3188                      Unchecked_Convert_To (RTE (RE_Finalizable),
3189                        New_Copy_Tree (Ctrl_Ref2)),
3190                    Selector_Name => Make_Identifier (Loc, Name_Next)),
3191                Expression => New_Reference_To (Next_Tmp2, Loc)));
3192         end if;
3193      end if;
3194
3195      --  Adjust the target after the assignment when controlled. (not in
3196      --  the init proc since it is an initialization more than an
3197      --  assignment)
3198
3199      if Ctrl_Act then
3200         Append_List_To (Res,
3201           Make_Adjust_Call (
3202             Ref         => Duplicate_Subexpr_Move_Checks (L),
3203             Typ         => Etype (L),
3204             Flist_Ref   => New_Reference_To (RTE (RE_Global_Final_List), Loc),
3205             With_Attach => Make_Integer_Literal (Loc, 0)));
3206      end if;
3207
3208      return Res;
3209
3210   exception
3211      when RE_Not_Available =>
3212         return Empty_List;
3213   end Make_Tag_Ctrl_Assignment;
3214
3215   ------------------------------------
3216   -- Possible_Bit_Aligned_Component --
3217   ------------------------------------
3218
3219   function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
3220   begin
3221      case Nkind (N) is
3222
3223         --  Case of indexed component
3224
3225         when N_Indexed_Component =>
3226            declare
3227               P    : constant Node_Id   := Prefix (N);
3228               Ptyp : constant Entity_Id := Etype (P);
3229
3230            begin
3231               --  If we know the component size and it is less than 64, then
3232               --  we are definitely OK. The back end always does assignment
3233               --  of misaligned small objects correctly.
3234
3235               if Known_Static_Component_Size (Ptyp)
3236                 and then Component_Size (Ptyp) <= 64
3237               then
3238                  return False;
3239
3240               --  Otherwise, we need to test the prefix, to see if we are
3241               --  indexing from a possibly unaligned component.
3242
3243               else
3244                  return Possible_Bit_Aligned_Component (P);
3245               end if;
3246            end;
3247
3248         --  Case of selected component
3249
3250         when N_Selected_Component =>
3251            declare
3252               P    : constant Node_Id   := Prefix (N);
3253               Comp : constant Entity_Id := Entity (Selector_Name (N));
3254
3255            begin
3256               --  If there is no component clause, then we are in the clear
3257               --  since the back end will never misalign a large component
3258               --  unless it is forced to do so. In the clear means we need
3259               --  only the recursive test on the prefix.
3260
3261               if Component_May_Be_Bit_Aligned (Comp) then
3262                  return True;
3263               else
3264                  return Possible_Bit_Aligned_Component (P);
3265               end if;
3266            end;
3267
3268         --  If we have neither a record nor array component, it means that
3269         --  we have fallen off the top testing prefixes recursively, and
3270         --  we now have a stand alone object, where we don't have a problem
3271
3272         when others =>
3273            return False;
3274
3275      end case;
3276   end Possible_Bit_Aligned_Component;
3277
3278end Exp_Ch5;
3279