1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published
10    by the Free Software Foundation; either version 2, or (at your
11    option) any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING.  If not, write to the
20    Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21    MA 02111-1307, USA.  */
22 
23 /* Note that some other tm.h files include this one and then override
24    many of the definitions.  */
25 
26 /* Definitions for the object file format.  These are set at
27    compile-time.  */
28 
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
33 
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38 
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
42 
43 /* Default string to use for cpu if not specified.  */
44 #ifndef TARGET_CPU_DEFAULT
45 #define TARGET_CPU_DEFAULT ((char *)0)
46 #endif
47 
48 /* Common ASM definitions used by ASM_SPEC among the various targets
49    for handling -mcpu=xxx switches.  */
50 #define ASM_CPU_SPEC \
51 "%{!mcpu*: \
52   %{mpower: %{!mpower2: -mpwr}} \
53   %{mpower2: -mpwrx} \
54   %{mpowerpc64*: -mppc64} \
55   %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
56   %{mno-power: %{!mpowerpc*: -mcom}} \
57   %{!mno-power: %{!mpower*: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -mppc64} \
62 %{mcpu=power4: -mpower4} \
63 %{mcpu=power5: -mpower4} \
64 %{mcpu=powerpc: -mppc} \
65 %{mcpu=rios: -mpwr} \
66 %{mcpu=rios1: -mpwr} \
67 %{mcpu=rios2: -mpwrx} \
68 %{mcpu=rsc: -mpwr} \
69 %{mcpu=rsc1: -mpwr} \
70 %{mcpu=rs64a: -mppc64} \
71 %{mcpu=401: -mppc} \
72 %{mcpu=403: -m403} \
73 %{mcpu=405: -m405} \
74 %{mcpu=405fp: -m405} \
75 %{mcpu=440: -m440} \
76 %{mcpu=440fp: -m440} \
77 %{mcpu=505: -mppc} \
78 %{mcpu=601: -m601} \
79 %{mcpu=602: -mppc} \
80 %{mcpu=603: -mppc} \
81 %{mcpu=603e: -mppc} \
82 %{mcpu=ec603e: -mppc} \
83 %{mcpu=604: -mppc} \
84 %{mcpu=604e: -mppc} \
85 %{mcpu=620: -mppc64} \
86 %{mcpu=630: -mppc64} \
87 %{mcpu=740: -mppc} \
88 %{mcpu=750: -mppc} \
89 %{mcpu=G3: -mppc} \
90 %{mcpu=7400: -mppc -maltivec} \
91 %{mcpu=7450: -mppc -maltivec} \
92 %{mcpu=G4: -mppc -maltivec} \
93 %{mcpu=801: -mppc} \
94 %{mcpu=821: -mppc} \
95 %{mcpu=823: -mppc} \
96 %{mcpu=860: -mppc} \
97 %{mcpu=970: -mpower4 -maltivec} \
98 %{mcpu=G5: -mpower4 -maltivec} \
99 %{mcpu=8540: -me500} \
100 %{maltivec: -maltivec} \
101 -many"
102 
103 #define CPP_DEFAULT_SPEC ""
104 
105 #define ASM_DEFAULT_SPEC ""
106 
107 /* This macro defines names of additional specifications to put in the specs
108    that can be used in various specifications like CC1_SPEC.  Its definition
109    is an initializer with a subgrouping for each command option.
110 
111    Each subgrouping contains a string constant, that defines the
112    specification name, and a string constant that used by the GCC driver
113    program.
114 
115    Do not define this macro if it does not need to do anything.  */
116 
117 #define SUBTARGET_EXTRA_SPECS
118 
119 #define EXTRA_SPECS							\
120   { "cpp_default",		CPP_DEFAULT_SPEC },			\
121   { "asm_cpu",			ASM_CPU_SPEC },				\
122   { "asm_default",		ASM_DEFAULT_SPEC },			\
123   SUBTARGET_EXTRA_SPECS
124 
125 /* Architecture type.  */
126 
127 extern int target_flags;
128 
129 /* Use POWER architecture instructions and MQ register.  */
130 #define MASK_POWER		0x00000001
131 
132 /* Use POWER2 extensions to POWER architecture.  */
133 #define MASK_POWER2		0x00000002
134 
135 /* Use PowerPC architecture instructions.  */
136 #define MASK_POWERPC		0x00000004
137 
138 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt.  */
139 #define MASK_PPC_GPOPT		0x00000008
140 
141 /* Use PowerPC Graphics group optional instructions, e.g. fsel.  */
142 #define MASK_PPC_GFXOPT		0x00000010
143 
144 /* Use PowerPC-64 architecture instructions.  */
145 #define MASK_POWERPC64		0x00000020
146 
147 /* Use revised mnemonic names defined for PowerPC architecture.  */
148 #define MASK_NEW_MNEMONICS	0x00000040
149 
150 /* Disable placing fp constants in the TOC; can be turned on when the
151    TOC overflows.  */
152 #define MASK_NO_FP_IN_TOC	0x00000080
153 
154 /* Disable placing symbol+offset constants in the TOC; can be turned on when
155    the TOC overflows.  */
156 #define MASK_NO_SUM_IN_TOC	0x00000100
157 
158 /* Output only one TOC entry per module.  Normally linking fails if
159    there are more than 16K unique variables/constants in an executable.  With
160    this option, linking fails only if there are more than 16K modules, or
161    if there are more than 16K unique variables/constant in a single module.
162 
163    This is at the cost of having 2 extra loads and one extra store per
164    function, and one less allocable register.  */
165 #define MASK_MINIMAL_TOC	0x00000200
166 
167 /* Nonzero for the 64 bit ABIs: longs and pointers are 64 bits.  The
168    chip is running in "64-bit mode", in which CR0 is set in dot
169    operations based on all 64 bits of the register, bdnz works on 64-bit
170    ctr, lr is 64 bits, and so on.  Requires MASK_POWERPC64.  */
171 #define MASK_64BIT		0x00000400
172 
173 /* Disable use of FPRs.  */
174 #define MASK_SOFT_FLOAT		0x00000800
175 
176 /* Enable load/store multiple, even on PowerPC */
177 #define MASK_MULTIPLE		0x00001000
178 
179 /* Use string instructions for block moves */
180 #define MASK_STRING		0x00002000
181 
182 /* Disable update form of load/store */
183 #define MASK_NO_UPDATE		0x00004000
184 
185 /* Disable fused multiply/add operations */
186 #define MASK_NO_FUSED_MADD	0x00008000
187 
188 /* Nonzero if we need to schedule the prolog and epilog.  */
189 #define MASK_SCHED_PROLOG	0x00010000
190 
191 /* Use AltiVec instructions.  */
192 #define MASK_ALTIVEC		0x00020000
193 
194 /* Return small structures in memory (as the AIX ABI requires).  */
195 #define MASK_AIX_STRUCT_RET	0x00040000
196 
197 /* Use single field mfcr instruction.  */
198 #define MASK_MFCRF		0x00080000
199 
200 /* The only remaining free bits are 0x00600000.  linux64.h uses
201    0x00100000, and sysv4.h uses 0x00800000 -> 0x40000000.
202    0x80000000 is not available because target_flags is signed.  */
203 
204 #define TARGET_POWER		(target_flags & MASK_POWER)
205 #define TARGET_POWER2		(target_flags & MASK_POWER2)
206 #define TARGET_POWERPC		(target_flags & MASK_POWERPC)
207 #define TARGET_PPC_GPOPT	(target_flags & MASK_PPC_GPOPT)
208 #define TARGET_PPC_GFXOPT	(target_flags & MASK_PPC_GFXOPT)
209 #define TARGET_NEW_MNEMONICS	(target_flags & MASK_NEW_MNEMONICS)
210 #define TARGET_NO_FP_IN_TOC	(target_flags & MASK_NO_FP_IN_TOC)
211 #define TARGET_NO_SUM_IN_TOC	(target_flags & MASK_NO_SUM_IN_TOC)
212 #define TARGET_MINIMAL_TOC	(target_flags & MASK_MINIMAL_TOC)
213 #define TARGET_64BIT		(target_flags & MASK_64BIT)
214 #define TARGET_SOFT_FLOAT	(target_flags & MASK_SOFT_FLOAT)
215 #define TARGET_MULTIPLE		(target_flags & MASK_MULTIPLE)
216 #define TARGET_STRING		(target_flags & MASK_STRING)
217 #define TARGET_NO_UPDATE	(target_flags & MASK_NO_UPDATE)
218 #define TARGET_NO_FUSED_MADD	(target_flags & MASK_NO_FUSED_MADD)
219 #define TARGET_SCHED_PROLOG	(target_flags & MASK_SCHED_PROLOG)
220 #define TARGET_ALTIVEC		(target_flags & MASK_ALTIVEC)
221 #define TARGET_AIX_STRUCT_RET	(target_flags & MASK_AIX_STRUCT_RET)
222 
223 /* Define TARGET_MFCRF if the target assembler supports the optional
224    field operand for mfcr and the target processor supports the
225    instruction.  */
226 
227 #ifdef HAVE_AS_MFCRF
228 #define TARGET_MFCRF		(target_flags & MASK_MFCRF)
229 #else
230 #define TARGET_MFCRF 0
231 #endif
232 
233 
234 #define TARGET_32BIT		(! TARGET_64BIT)
235 #define TARGET_HARD_FLOAT	(! TARGET_SOFT_FLOAT)
236 #define TARGET_UPDATE		(! TARGET_NO_UPDATE)
237 #define TARGET_FUSED_MADD	(! TARGET_NO_FUSED_MADD)
238 
239 /* Emit a dtp-relative reference to a TLS variable.  */
240 
241 #ifdef HAVE_AS_TLS
242 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
243   rs6000_output_dwarf_dtprel (FILE, SIZE, X)
244 #endif
245 
246 #ifndef HAVE_AS_TLS
247 #define HAVE_AS_TLS 0
248 #endif
249 
250 #ifdef IN_LIBGCC2
251 /* For libgcc2 we make sure this is a compile time constant */
252 #if defined (__64BIT__) || defined (__powerpc64__)
253 #define TARGET_POWERPC64	1
254 #else
255 #define TARGET_POWERPC64	0
256 #endif
257 #else
258 #define TARGET_POWERPC64	(target_flags & MASK_POWERPC64)
259 #endif
260 
261 #define TARGET_XL_CALL 0
262 
263 /* Run-time compilation parameters selecting different hardware subsets.
264 
265    Macro to define tables used to set the flags.
266    This is a list in braces of pairs in braces,
267    each pair being { "NAME", VALUE }
268    where VALUE is the bits to set or minus the bits to clear.
269    An empty string NAME is used to identify the default VALUE.  */
270 
271 #define TARGET_SWITCHES							\
272  {{"power",		MASK_POWER  | MASK_MULTIPLE | MASK_STRING,	\
273 			N_("Use POWER instruction set")},		\
274   {"power2",		(MASK_POWER | MASK_MULTIPLE | MASK_STRING	\
275 			 | MASK_POWER2),				\
276 			N_("Use POWER2 instruction set")},		\
277   {"no-power2",		- MASK_POWER2,					\
278 			N_("Do not use POWER2 instruction set")},	\
279   {"no-power",		- (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE	\
280 			   | MASK_STRING),				\
281 			N_("Do not use POWER instruction set")},	\
282   {"powerpc",		MASK_POWERPC,					\
283 			N_("Use PowerPC instruction set")},		\
284   {"no-powerpc",	- (MASK_POWERPC | MASK_PPC_GPOPT		\
285 			   | MASK_PPC_GFXOPT | MASK_POWERPC64),		\
286 			N_("Do not use PowerPC instruction set")},	\
287   {"powerpc-gpopt",	MASK_POWERPC | MASK_PPC_GPOPT,			\
288 			N_("Use PowerPC General Purpose group optional instructions")},\
289   {"no-powerpc-gpopt",	- MASK_PPC_GPOPT,				\
290 			N_("Do not use PowerPC General Purpose group optional instructions")},\
291   {"powerpc-gfxopt",	MASK_POWERPC | MASK_PPC_GFXOPT,			\
292 			N_("Use PowerPC Graphics group optional instructions")},\
293   {"no-powerpc-gfxopt",	- MASK_PPC_GFXOPT,				\
294 			N_("Do not use PowerPC Graphics group optional instructions")},\
295   {"powerpc64",		MASK_POWERPC64,					\
296 			N_("Use PowerPC-64 instruction set")},		\
297   {"no-powerpc64",	- MASK_POWERPC64,				\
298 			N_("Do not use PowerPC-64 instruction set")},	\
299   {"altivec",		MASK_ALTIVEC ,					\
300 			N_("Use AltiVec instructions")},		\
301   {"no-altivec",	- MASK_ALTIVEC ,					\
302 			N_("Do not use AltiVec instructions")},	\
303   {"new-mnemonics",	MASK_NEW_MNEMONICS,				\
304 			N_("Use new mnemonics for PowerPC architecture")},\
305   {"old-mnemonics",	-MASK_NEW_MNEMONICS,				\
306 			N_("Use old mnemonics for PowerPC architecture")},\
307   {"full-toc",		- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC	\
308 			   | MASK_MINIMAL_TOC),				\
309 			N_("Put everything in the regular TOC")},	\
310   {"fp-in-toc",		- MASK_NO_FP_IN_TOC,				\
311 			N_("Place floating point constants in TOC")},	\
312   {"no-fp-in-toc",	MASK_NO_FP_IN_TOC,				\
313 			N_("Do not place floating point constants in TOC")},\
314   {"sum-in-toc",	- MASK_NO_SUM_IN_TOC,				\
315 			N_("Place symbol+offset constants in TOC")},	\
316   {"no-sum-in-toc",	MASK_NO_SUM_IN_TOC,				\
317 			N_("Do not place symbol+offset constants in TOC")},\
318   {"minimal-toc",	MASK_MINIMAL_TOC,				\
319 			"Use only one TOC entry per procedure"},	\
320   {"minimal-toc",	- (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC),	\
321 			""},						\
322   {"no-minimal-toc",	- MASK_MINIMAL_TOC,				\
323 			N_("Place variable addresses in the regular TOC")},\
324   {"hard-float",	- MASK_SOFT_FLOAT,				\
325 			N_("Use hardware floating point")},		\
326   {"soft-float",	MASK_SOFT_FLOAT,				\
327 			N_("Do not use hardware floating point")},	\
328   {"multiple",		MASK_MULTIPLE,					\
329 			N_("Generate load/store multiple instructions")},	\
330   {"no-multiple",	- MASK_MULTIPLE,				\
331 			N_("Do not generate load/store multiple instructions")},\
332   {"string",		MASK_STRING,					\
333 			N_("Generate string instructions for block moves")},\
334   {"no-string",		- MASK_STRING,					\
335 			N_("Do not generate string instructions for block moves")},\
336   {"update",		- MASK_NO_UPDATE,				\
337 			N_("Generate load/store with update instructions")},\
338   {"no-update",		MASK_NO_UPDATE,					\
339 			N_("Do not generate load/store with update instructions")},\
340   {"fused-madd",	- MASK_NO_FUSED_MADD,				\
341 			N_("Generate fused multiply/add instructions")},\
342   {"no-fused-madd",	MASK_NO_FUSED_MADD,				\
343 			N_("Do not generate fused multiply/add instructions")},\
344   {"sched-prolog",      MASK_SCHED_PROLOG,                              \
345 			""},						\
346   {"no-sched-prolog",   -MASK_SCHED_PROLOG,                             \
347 			N_("Do not schedule the start and end of the procedure")},\
348   {"sched-epilog",      MASK_SCHED_PROLOG,                              \
349 			""},						\
350   {"no-sched-epilog",   -MASK_SCHED_PROLOG,                             \
351 			""},						\
352   {"aix-struct-return",	MASK_AIX_STRUCT_RET,				\
353 			N_("Return all structures in memory (AIX default)")},\
354   {"svr4-struct-return", - MASK_AIX_STRUCT_RET,				\
355 			N_("Return small structures in registers (SVR4 default)")},\
356   {"no-aix-struct-return", - MASK_AIX_STRUCT_RET,			\
357 			""},						\
358   {"no-svr4-struct-return", MASK_AIX_STRUCT_RET,			\
359 			""},						\
360   {"mfcrf",		MASK_MFCRF,					\
361 			N_("Generate single field mfcr instruction")},	\
362   {"no-mfcrf",		- MASK_MFCRF,					\
363 			N_("Do not generate single field mfcr instruction")},\
364   SUBTARGET_SWITCHES							\
365   {"",			TARGET_DEFAULT | MASK_SCHED_PROLOG,		\
366 			""}}
367 
368 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
369 
370 /* This is meant to be redefined in the host dependent files */
371 #define SUBTARGET_SWITCHES
372 
373 /* Processor type.  Order must match cpu attribute in MD file.  */
374 enum processor_type
375  {
376    PROCESSOR_RIOS1,
377    PROCESSOR_RIOS2,
378    PROCESSOR_RS64A,
379    PROCESSOR_MPCCORE,
380    PROCESSOR_PPC403,
381    PROCESSOR_PPC405,
382    PROCESSOR_PPC440,
383    PROCESSOR_PPC601,
384    PROCESSOR_PPC603,
385    PROCESSOR_PPC604,
386    PROCESSOR_PPC604e,
387    PROCESSOR_PPC620,
388    PROCESSOR_PPC630,
389    PROCESSOR_PPC750,
390    PROCESSOR_PPC7400,
391    PROCESSOR_PPC7450,
392    PROCESSOR_PPC8540,
393    PROCESSOR_POWER4,
394    PROCESSOR_POWER5
395 };
396 
397 extern enum processor_type rs6000_cpu;
398 
399 /* Recast the processor type to the cpu attribute.  */
400 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
401 
402 /* Define generic processor types based upon current deployment.  */
403 #define PROCESSOR_COMMON    PROCESSOR_PPC601
404 #define PROCESSOR_POWER     PROCESSOR_RIOS1
405 #define PROCESSOR_POWERPC   PROCESSOR_PPC604
406 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
407 
408 /* Define the default processor.  This is overridden by other tm.h files.  */
409 #define PROCESSOR_DEFAULT   PROCESSOR_RIOS1
410 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
411 
412 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
413    and the old mnemonics are dialect zero.  */
414 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
415 
416 /* Types of costly dependences.  */
417 enum rs6000_dependence_cost
418  {
419    max_dep_latency = 1000,
420    no_dep_costly,
421    all_deps_costly,
422    true_store_to_load_dep_costly,
423    store_to_load_dep_costly
424  };
425 
426 /* Types of nop insertion schemes in sched target hook sched_finish.  */
427 enum rs6000_nop_insertion
428   {
429     sched_finish_regroup_exact = 1000,
430     sched_finish_pad_groups,
431     sched_finish_none
432   };
433 
434 /* Dispatch group termination caused by an insn.  */
435 enum group_termination
436   {
437     current_group,
438     previous_group
439   };
440 
441 /* This is meant to be overridden in target specific files.  */
442 #define	SUBTARGET_OPTIONS
443 
444 #define TARGET_OPTIONS							\
445 {									\
446    {"cpu=",  &rs6000_select[1].string,					\
447     N_("Use features of and schedule code for given CPU"), 0},		\
448    {"tune=", &rs6000_select[2].string,					\
449     N_("Schedule code for given CPU"), 0},				\
450    {"debug=", &rs6000_debug_name, N_("Enable debug output"), 0},	\
451    {"traceback=", &rs6000_traceback_name,				\
452     N_("Select full, part, or no traceback table"), 0},			\
453    {"abi=", &rs6000_abi_string, N_("Specify ABI to use"), 0},		\
454    {"long-double-", &rs6000_long_double_size_string,			\
455     N_("Specify size of long double (64 or 128 bits)"), 0},		\
456    {"isel=", &rs6000_isel_string,                                       \
457     N_("Specify yes/no if isel instructions should be generated"), 0},  \
458    {"spe=", &rs6000_spe_string,                                         \
459     N_("Specify yes/no if SPE SIMD instructions should be generated"), 0},\
460    {"float-gprs=", &rs6000_float_gprs_string,                           \
461     N_("Specify yes/no if using floating point in the GPRs"), 0},       \
462    {"vrsave=", &rs6000_altivec_vrsave_string,                           \
463     N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec"), 0}, \
464    {"longcall", &rs6000_longcall_switch,				\
465     N_("Avoid all range limits on call instructions"), 0},		\
466    {"no-longcall", &rs6000_longcall_switch, "", 0},			\
467    {"warn-altivec-long", &rs6000_warn_altivec_long_switch, \
468     N_("Warn about deprecated 'vector long ...' AltiVec type usage"), 0}, \
469    {"no-warn-altivec-long", &rs6000_warn_altivec_long_switch, "", 0}, \
470    {"sched-costly-dep=", &rs6000_sched_costly_dep_str,                  \
471     N_("Determine which dependences between insns are considered costly"), 0}, \
472    {"insert-sched-nops=", &rs6000_sched_insert_nops_str,                \
473     N_("Specify which post scheduling nop insertion scheme to apply"), 0}, \
474    {"align-", &rs6000_alignment_string,					\
475     N_("Specify alignment of structure fields default/natural"), 0},	\
476    {"prioritize-restricted-insns=", &rs6000_sched_restricted_insns_priority_str, \
477     N_("Specify scheduling priority for dispatch slot restricted insns"), 0}, \
478    SUBTARGET_OPTIONS							\
479 }
480 
481 /* Support for a compile-time default CPU, et cetera.  The rules are:
482    --with-cpu is ignored if -mcpu is specified.
483    --with-tune is ignored if -mtune is specified.
484    --with-float is ignored if -mhard-float or -msoft-float are
485     specified.  */
486 #define OPTION_DEFAULT_SPECS \
487   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
488   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
489   {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
490 
491 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
492 struct rs6000_cpu_select
493 {
494   const char *string;
495   const char *name;
496   int set_tune_p;
497   int set_arch_p;
498 };
499 
500 extern struct rs6000_cpu_select rs6000_select[];
501 
502 /* Debug support */
503 extern const char *rs6000_debug_name;	/* Name for -mdebug-xxxx option */
504 extern const char *rs6000_abi_string;	/* for -mabi={sysv,darwin,eabi,aix,altivec} */
505 extern int rs6000_debug_stack;		/* debug stack applications */
506 extern int rs6000_debug_arg;		/* debug argument handling */
507 
508 #define	TARGET_DEBUG_STACK	rs6000_debug_stack
509 #define	TARGET_DEBUG_ARG	rs6000_debug_arg
510 
511 extern const char *rs6000_traceback_name; /* Type of traceback table.  */
512 
513 /* These are separate from target_flags because we've run out of bits
514    there.  */
515 extern const char *rs6000_long_double_size_string;
516 extern int rs6000_long_double_type_size;
517 extern int rs6000_altivec_abi;
518 extern int rs6000_spe_abi;
519 extern int rs6000_isel;
520 extern int rs6000_spe;
521 extern int rs6000_float_gprs;
522 extern const char *rs6000_float_gprs_string;
523 extern const char *rs6000_isel_string;
524 extern const char *rs6000_spe_string;
525 extern const char *rs6000_altivec_vrsave_string;
526 extern int rs6000_altivec_vrsave;
527 extern const char *rs6000_longcall_switch;
528 extern int rs6000_default_long_calls;
529 extern const char* rs6000_alignment_string;
530 extern int rs6000_alignment_flags;
531 extern const char *rs6000_sched_restricted_insns_priority_str;
532 extern int rs6000_sched_restricted_insns_priority;
533 extern const char *rs6000_sched_costly_dep_str;
534 extern enum rs6000_dependence_cost rs6000_sched_costly_dep;
535 extern const char *rs6000_sched_insert_nops_str;
536 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
537 
538 extern int rs6000_warn_altivec_long;
539 extern const char *rs6000_warn_altivec_long_switch;
540 
541 /* Alignment options for fields in structures for sub-targets following
542    AIX-like ABI.
543    ALIGN_POWER word-aligns FP doubles (default AIX ABI).
544    ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
545 
546    Override the macro definitions when compiling libobjc to avoid undefined
547    reference to rs6000_alignment_flags due to library's use of GCC alignment
548    macros which use the macros below.  */
549 
550 #ifndef IN_TARGET_LIBS
551 #define MASK_ALIGN_POWER   0x00000000
552 #define MASK_ALIGN_NATURAL 0x00000001
553 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
554 #else
555 #define TARGET_ALIGN_NATURAL 0
556 #endif
557 
558 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
559 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
560 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
561 
562 #define TARGET_SPE_ABI 0
563 #define TARGET_SPE 0
564 #define TARGET_E500 0
565 #define TARGET_ISEL 0
566 #define TARGET_FPRS 1
567 
568 /* Sometimes certain combinations of command options do not make sense
569    on a particular target machine.  You can define a macro
570    `OVERRIDE_OPTIONS' to take account of this.  This macro, if
571    defined, is executed once just after all the command options have
572    been parsed.
573 
574    Do not use this macro to turn on various extra optimizations for
575    `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.
576 
577    On the RS/6000 this is used to define the target cpu type.  */
578 
579 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
580 
581 /* Define this to change the optimizations performed by default.  */
582 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
583 
584 /* Show we can debug even without a frame pointer.  */
585 #define CAN_DEBUG_WITHOUT_FP
586 
587 /* Target pragma.  */
588 #define REGISTER_TARGET_PRAGMAS() do {				\
589   c_register_pragma (0, "longcall", rs6000_pragma_longcall);	\
590 } while (0)
591 
592 /* Target #defines.  */
593 #define TARGET_CPU_CPP_BUILTINS() \
594   rs6000_cpu_cpp_builtins (pfile)
595 
596 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
597    we're compiling for.  Some configurations may need to override it.  */
598 #define RS6000_CPU_CPP_ENDIAN_BUILTINS()	\
599   do						\
600     {						\
601       if (BYTES_BIG_ENDIAN)			\
602 	{					\
603 	  builtin_define ("__BIG_ENDIAN__");	\
604 	  builtin_define ("_BIG_ENDIAN");	\
605 	  builtin_assert ("machine=bigendian");	\
606 	}					\
607       else					\
608 	{					\
609 	  builtin_define ("__LITTLE_ENDIAN__");	\
610 	  builtin_define ("_LITTLE_ENDIAN");	\
611 	  builtin_assert ("machine=littleendian"); \
612 	}					\
613     }						\
614   while (0)
615 
616 /* Target machine storage layout.  */
617 
618 /* Define this macro if it is advisable to hold scalars in registers
619    in a wider mode than that declared by the program.  In such cases,
620    the value is constrained to be within the bounds of the declared
621    type, but kept valid in the wider mode.  The signedness of the
622    extension may differ from that of the type.  */
623 
624 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)	\
625   if (GET_MODE_CLASS (MODE) == MODE_INT		\
626       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
627     (MODE) = TARGET_32BIT ? SImode : DImode;
628 
629 /* Define this if most significant bit is lowest numbered
630    in instructions that operate on numbered bit-fields.  */
631 /* That is true on RS/6000.  */
632 #define BITS_BIG_ENDIAN 1
633 
634 /* Define this if most significant byte of a word is the lowest numbered.  */
635 /* That is true on RS/6000.  */
636 #define BYTES_BIG_ENDIAN 1
637 
638 /* Define this if most significant word of a multiword number is lowest
639    numbered.
640 
641    For RS/6000 we can decide arbitrarily since there are no machine
642    instructions for them.  Might as well be consistent with bits and bytes.  */
643 #define WORDS_BIG_ENDIAN 1
644 
645 #define MAX_BITS_PER_WORD 64
646 
647 /* Width of a word, in units (bytes).  */
648 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
649 #ifdef IN_LIBGCC2
650 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
651 #else
652 #define MIN_UNITS_PER_WORD 4
653 #endif
654 #define UNITS_PER_FP_WORD 8
655 #define UNITS_PER_ALTIVEC_WORD 16
656 #define UNITS_PER_SPE_WORD 8
657 
658 /* Type used for ptrdiff_t, as a string used in a declaration.  */
659 #define PTRDIFF_TYPE "int"
660 
661 /* Type used for size_t, as a string used in a declaration.  */
662 #define SIZE_TYPE "long unsigned int"
663 
664 /* Type used for wchar_t, as a string used in a declaration.  */
665 #define WCHAR_TYPE "short unsigned int"
666 
667 /* Width of wchar_t in bits.  */
668 #define WCHAR_TYPE_SIZE 16
669 
670 /* A C expression for the size in bits of the type `short' on the
671    target machine.  If you don't define this, the default is half a
672    word.  (If this would be less than one storage unit, it is
673    rounded up to one unit.)  */
674 #define SHORT_TYPE_SIZE 16
675 
676 /* A C expression for the size in bits of the type `int' on the
677    target machine.  If you don't define this, the default is one
678    word.  */
679 #define INT_TYPE_SIZE 32
680 
681 /* A C expression for the size in bits of the type `long' on the
682    target machine.  If you don't define this, the default is one
683    word.  */
684 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
685 #define MAX_LONG_TYPE_SIZE 64
686 
687 /* A C expression for the size in bits of the type `long long' on the
688    target machine.  If you don't define this, the default is two
689    words.  */
690 #define LONG_LONG_TYPE_SIZE 64
691 
692 /* A C expression for the size in bits of the type `float' on the
693    target machine.  If you don't define this, the default is one
694    word.  */
695 #define FLOAT_TYPE_SIZE 32
696 
697 /* A C expression for the size in bits of the type `double' on the
698    target machine.  If you don't define this, the default is two
699    words.  */
700 #define DOUBLE_TYPE_SIZE 64
701 
702 /* A C expression for the size in bits of the type `long double' on
703    the target machine.  If you don't define this, the default is two
704    words.  */
705 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
706 
707 /* Constant which presents upper bound of the above value.  */
708 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
709 
710 /* Define this to set long double type size to use in libgcc2.c, which can
711    not depend on target_flags.  */
712 #ifdef __LONG_DOUBLE_128__
713 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
714 #else
715 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
716 #endif
717 
718 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c.  */
719 #define WIDEST_HARDWARE_FP_SIZE 64
720 
721 /* Width in bits of a pointer.
722    See also the macro `Pmode' defined below.  */
723 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
724 
725 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
726 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
727 
728 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
729 #define STACK_BOUNDARY \
730   ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
731 
732 /* Allocation boundary (in *bits*) for the code of a function.  */
733 #define FUNCTION_BOUNDARY 32
734 
735 /* No data type wants to be aligned rounder than this.  */
736 #define BIGGEST_ALIGNMENT 128
737 
738 /* A C expression to compute the alignment for a variables in the
739    local store.  TYPE is the data type, and ALIGN is the alignment
740    that the object would ordinarily have.  */
741 #define LOCAL_ALIGNMENT(TYPE, ALIGN)				\
742   ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 :	\
743     (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
744 
745 /* Alignment of field after `int : 0' in a structure.  */
746 #define EMPTY_FIELD_BOUNDARY 32
747 
748 /* Every structure's size must be a multiple of this.  */
749 #define STRUCTURE_SIZE_BOUNDARY 8
750 
751 /* Return 1 if a structure or array containing FIELD should be
752    accessed using `BLKMODE'.
753 
754    For the SPE, simd types are V2SI, and gcc can be tempted to put the
755    entire thing in a DI and use subregs to access the internals.
756    store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
757    back-end.  Because a single GPR can hold a V2SI, but not a DI, the
758    best thing to do is set structs to BLKmode and avoid Severe Tire
759    Damage.  */
760 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
761   (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
762 
763 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
764 #define PCC_BITFIELD_TYPE_MATTERS 1
765 
766 /* Make strings word-aligned so strcpy from constants will be faster.
767    Make vector constants quadword aligned.  */
768 #define CONSTANT_ALIGNMENT(EXP, ALIGN)                           \
769   (TREE_CODE (EXP) == STRING_CST	                         \
770    && (ALIGN) < BITS_PER_WORD                                    \
771    ? BITS_PER_WORD                                               \
772    : (ALIGN))
773 
774 /* Make arrays of chars word-aligned for the same reasons.
775    Align vectors to 128 bits.  */
776 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
777   (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128)	\
778    : TREE_CODE (TYPE) == ARRAY_TYPE		\
779    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
780    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
781 
782 /* Nonzero if move instructions will actually fail to work
783    when given unaligned data.  */
784 #define STRICT_ALIGNMENT 0
785 
786 /* Define this macro to be the value 1 if unaligned accesses have a cost
787    many times greater than aligned accesses, for example if they are
788    emulated in a trap handler.  */
789 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN)				\
790   (STRICT_ALIGNMENT							\
791    || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode	\
792 	|| (MODE) == DImode)						\
793        && (ALIGN) < 32))
794 
795 /* Standard register usage.  */
796 
797 /* Number of actual hardware registers.
798    The hardware registers are assigned numbers for the compiler
799    from 0 to just below FIRST_PSEUDO_REGISTER.
800    All registers that the compiler knows about must be given numbers,
801    even those that are not normally considered general registers.
802 
803    RS/6000 has 32 fixed-point registers, 32 floating-point registers,
804    an MQ register, a count register, a link register, and 8 condition
805    register fields, which we view here as separate registers.  AltiVec
806    adds 32 vector registers and a VRsave register.
807 
808    In addition, the difference between the frame and argument pointers is
809    a function of the number of registers saved, so we need to have a
810    register for AP that will later be eliminated in favor of SP or FP.
811    This is a normal register, but it is fixed.
812 
813    We also create a pseudo register for float/int conversions, that will
814    really represent the memory location used.  It is represented here as
815    a register, in order to work around problems in allocating stack storage
816    in inline functions.  */
817 
818 #define FIRST_PSEUDO_REGISTER 113
819 
820 /* This must be included for pre gcc 3.0 glibc compatibility.  */
821 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
822 
823 /* Add 32 dwarf columns for synthetic SPE registers.  */
824 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
825 
826 /* The SPE has an additional 32 synthetic registers, with DWARF debug
827    info numbering for these registers starting at 1200.  While eh_frame
828    register numbering need not be the same as the debug info numbering,
829    we choose to number these regs for eh_frame at 1200 too.  This allows
830    future versions of the rs6000 backend to add hard registers and
831    continue to use the gcc hard register numbering for eh_frame.  If the
832    extra SPE registers in eh_frame were numbered starting from the
833    current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
834    changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
835    avoid invalidating older SPE eh_frame info.
836 
837    We must map them here to avoid huge unwinder tables mostly consisting
838    of unused space.  */
839 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
840   ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
841 
842 /* Use gcc hard register numbering for eh_frame.  */
843 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
844 
845 /* 1 for registers that have pervasive standard uses
846    and are not available for the register allocator.
847 
848    On RS/6000, r1 is used for the stack.  On Darwin, r2 is available
849    as a local register; for all other OS's r2 is the TOC pointer.
850 
851    cr5 is not supposed to be used.
852 
853    On System V implementations, r13 is fixed and not available for use.  */
854 
855 #define FIXED_REGISTERS  \
856   {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
857    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
858    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
859    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
860    0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,	   \
861    /* AltiVec registers.  */			   \
862    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
863    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864    1, 1						   \
865    , 1, 1                                          \
866 }
867 
868 /* 1 for registers not available across function calls.
869    These must include the FIXED_REGISTERS and also any
870    registers that can be used without being saved.
871    The latter must include the registers where values are returned
872    and the register where structure-value addresses are passed.
873    Aside from that, you can include as many other registers as you like.  */
874 
875 #define CALL_USED_REGISTERS  \
876   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
877    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
878    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
879    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
880    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
881    /* AltiVec registers.  */			   \
882    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
883    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
884    1, 1						   \
885    , 1, 1                                          \
886 }
887 
888 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
889    the entire set of `FIXED_REGISTERS' be included.
890    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
891    This macro is optional.  If not specified, it defaults to the value
892    of `CALL_USED_REGISTERS'.  */
893 
894 #define CALL_REALLY_USED_REGISTERS  \
895   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
896    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
897    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
898    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
899    1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,	   \
900    /* AltiVec registers.  */			   \
901    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
902    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
903    0, 0						   \
904    , 0, 0                                          \
905 }
906 
907 #define MQ_REGNO     64
908 #define CR0_REGNO    68
909 #define CR1_REGNO    69
910 #define CR2_REGNO    70
911 #define CR3_REGNO    71
912 #define CR4_REGNO    72
913 #define MAX_CR_REGNO 75
914 #define XER_REGNO    76
915 #define FIRST_ALTIVEC_REGNO	77
916 #define LAST_ALTIVEC_REGNO	108
917 #define TOTAL_ALTIVEC_REGS	(LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
918 #define VRSAVE_REGNO		109
919 #define VSCR_REGNO		110
920 #define SPE_ACC_REGNO		111
921 #define SPEFSCR_REGNO		112
922 
923 /* List the order in which to allocate registers.  Each register must be
924    listed once, even those in FIXED_REGISTERS.
925 
926    We allocate in the following order:
927 	fp0		(not saved or used for anything)
928 	fp13 - fp2	(not saved; incoming fp arg registers)
929 	fp1		(not saved; return value)
930  	fp31 - fp14	(saved; order given to save least number)
931 	cr7, cr6	(not saved or special)
932 	cr1		(not saved, but used for FP operations)
933 	cr0		(not saved, but used for arithmetic operations)
934 	cr4, cr3, cr2	(saved)
935         r0		(not saved; cannot be base reg)
936 	r9		(not saved; best for TImode)
937 	r11, r10, r8-r4	(not saved; highest used first to make less conflict)
938 	r3     		(not saved; return value register)
939 	r31 - r13	(saved; order given to save least number)
940 	r12		(not saved; if used for DImode or DFmode would use r13)
941 	mq		(not saved; best to use it if we can)
942 	ctr		(not saved; when we have the choice ctr is better)
943 	lr		(saved)
944         cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
945 	spe_acc, spefscr (fixed)
946 
947 	AltiVec registers:
948 	v0 - v1         (not saved or used for anything)
949 	v13 - v3        (not saved; incoming vector arg registers)
950 	v2              (not saved; incoming vector arg reg; return value)
951 	v19 - v14       (not saved or used for anything)
952 	v31 - v20       (saved; order given to save least number)
953 */
954 
955 #if FIXED_R2 == 1
956 #define MAYBE_R2_AVAILABLE
957 #define MAYBE_R2_FIXED 2,
958 #else
959 #define MAYBE_R2_AVAILABLE 2,
960 #define MAYBE_R2_FIXED
961 #endif
962 
963 #define REG_ALLOC_ORDER					\
964   {32, 							\
965    45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34,	\
966    33,							\
967    63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51,	\
968    50, 49, 48, 47, 46, 					\
969    75, 74, 69, 68, 72, 71, 70,				\
970    0, MAYBE_R2_AVAILABLE				\
971    9, 11, 10, 8, 7, 6, 5, 4,				\
972    3,							\
973    31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19,	\
974    18, 17, 16, 15, 14, 13, 12,				\
975    64, 66, 65, 						\
976    73, 1, MAYBE_R2_FIXED 67, 76,			\
977    /* AltiVec registers.  */				\
978    77, 78,						\
979    90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80,		\
980    79,							\
981    96, 95, 94, 93, 92, 91,				\
982    108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98,	\
983    97, 109, 110						\
984    , 111, 112                                              \
985 }
986 
987 /* True if register is floating-point.  */
988 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
989 
990 /* True if register is a condition register.  */
991 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
992 
993 /* True if register is a condition register, but not cr0.  */
994 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
995 
996 /* True if register is an integer register.  */
997 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
998 
999 /* SPE SIMD registers are just the GPRs.  */
1000 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1001 
1002 /* True if register is the XER register.  */
1003 #define XER_REGNO_P(N) ((N) == XER_REGNO)
1004 
1005 /* True if register is an AltiVec register.  */
1006 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1007 
1008 /* Return number of consecutive hard regs needed starting at reg REGNO
1009    to hold something of mode MODE.
1010    This is ordinarily the length in words of a value of mode MODE
1011    but can be less for certain modes in special long registers.
1012 
1013    For the SPE, GPRs are 64 bits but only 32 bits are visible in
1014    scalar instructions.  The upper 32 bits are only available to the
1015    SIMD instructions.
1016 
1017    POWER and PowerPC GPRs hold 32 bits worth;
1018    PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */
1019 
1020 #define HARD_REGNO_NREGS(REGNO, MODE)					\
1021   (FP_REGNO_P (REGNO)							\
1022    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1023    : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE))   \
1024    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
1025    : ALTIVEC_REGNO_P (REGNO)						\
1026    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
1027    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1028 
1029 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE)	\
1030   ((TARGET_32BIT && TARGET_POWERPC64			\
1031     && (MODE == DImode || MODE == DFmode)		\
1032     && INT_REGNO_P (REGNO)) ? 1 : 0)
1033 
1034 #define ALTIVEC_VECTOR_MODE(MODE)	\
1035 	 ((MODE) == V16QImode		\
1036 	  || (MODE) == V8HImode		\
1037 	  || (MODE) == V4SFmode		\
1038 	  || (MODE) == V4SImode)
1039 
1040 #define SPE_VECTOR_MODE(MODE)		\
1041 	((MODE) == V4HImode          	\
1042          || (MODE) == V2SFmode          \
1043          || (MODE) == V1DImode          \
1044          || (MODE) == V2SImode)
1045 
1046 /* Define this macro to be nonzero if the port is prepared to handle
1047    insns involving vector mode MODE.  At the very least, it must have
1048    move patterns for this mode.  */
1049 
1050 #define VECTOR_MODE_SUPPORTED_P(MODE)			\
1051         ((TARGET_SPE && SPE_VECTOR_MODE (MODE))		\
1052 	 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
1053 
1054 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1055    For POWER and PowerPC, the GPRs can hold any mode, but values bigger
1056    than one register cannot go past R31.  The float
1057    registers only can hold floating modes and DImode, and CR register only
1058    can hold CC modes.  We cannot put TImode anywhere except general
1059    register and it must be able to fit within the register set.  */
1060 
1061 #define HARD_REGNO_MODE_OK(REGNO, MODE)					\
1062   (INT_REGNO_P (REGNO) ?						\
1063      INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1)	        \
1064    : FP_REGNO_P (REGNO) ?						\
1065      ((GET_MODE_CLASS (MODE) == MODE_FLOAT				\
1066        && FP_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1))	\
1067       || (GET_MODE_CLASS (MODE) == MODE_INT				\
1068 	  && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD))		\
1069    : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE)		\
1070    : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
1071    : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC		\
1072    : XER_REGNO_P (REGNO) ? (MODE) == PSImode				\
1073    : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
1074 
1075 /* Value is 1 if it is a good idea to tie two pseudo registers
1076    when one has mode MODE1 and one has mode MODE2.
1077    If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1078    for any hard reg, then this must be 0 for correct output.  */
1079 #define MODES_TIEABLE_P(MODE1, MODE2) \
1080   (GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
1081    ? GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
1082    : GET_MODE_CLASS (MODE2) == MODE_FLOAT	\
1083    ? GET_MODE_CLASS (MODE1) == MODE_FLOAT	\
1084    : GET_MODE_CLASS (MODE1) == MODE_CC		\
1085    ? GET_MODE_CLASS (MODE2) == MODE_CC		\
1086    : GET_MODE_CLASS (MODE2) == MODE_CC		\
1087    ? GET_MODE_CLASS (MODE1) == MODE_CC		\
1088    : SPE_VECTOR_MODE (MODE1)			\
1089    ? SPE_VECTOR_MODE (MODE2)			\
1090    : SPE_VECTOR_MODE (MODE2)			\
1091    ? SPE_VECTOR_MODE (MODE1)			\
1092    : ALTIVEC_VECTOR_MODE (MODE1)		\
1093    ? ALTIVEC_VECTOR_MODE (MODE2)		\
1094    : ALTIVEC_VECTOR_MODE (MODE2)		\
1095    ? ALTIVEC_VECTOR_MODE (MODE1)		\
1096    : 1)
1097 
1098 /* Post-reload, we can't use any new AltiVec registers, as we already
1099    emitted the vrsave mask.  */
1100 
1101 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1102   (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
1103 
1104 /* A C expression returning the cost of moving data from a register of class
1105    CLASS1 to one of CLASS2.  */
1106 
1107 #define REGISTER_MOVE_COST rs6000_register_move_cost
1108 
1109 /* A C expressions returning the cost of moving data of MODE from a register to
1110    or from memory.  */
1111 
1112 #define MEMORY_MOVE_COST rs6000_memory_move_cost
1113 
1114 /* Specify the cost of a branch insn; roughly the number of extra insns that
1115    should be added to avoid a branch.
1116 
1117    Set this to 3 on the RS/6000 since that is roughly the average cost of an
1118    unscheduled conditional branch.  */
1119 
1120 #define BRANCH_COST 3
1121 
1122 /* Override BRANCH_COST heuristic which empirically produces worse
1123    performance for fold_range_test().  */
1124 
1125 #define RANGE_TEST_NON_SHORT_CIRCUIT 0
1126 
1127 /* A fixed register used at prologue and epilogue generation to fix
1128    addressing modes.  The SPE needs heavy addressing fixes at the last
1129    minute, and it's best to save a register for it.
1130 
1131    AltiVec also needs fixes, but we've gotten around using r11, which
1132    is actually wrong because when use_backchain_to_restore_sp is true,
1133    we end up clobbering r11.
1134 
1135    The AltiVec case needs to be fixed.  Dunno if we should break ABI
1136    compatibility and reserve a register for it as well..  */
1137 
1138 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1139 
1140 /* Define this macro to change register usage conditional on target flags.
1141    Set MQ register fixed (already call_used) if not POWER architecture
1142    (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1143    64-bit AIX reserves GPR13 for thread-private data.
1144    Conditionally disable FPRs.  */
1145 
1146 #define CONDITIONAL_REGISTER_USAGE					\
1147 {									\
1148   int i;								\
1149   if (! TARGET_POWER)							\
1150     fixed_regs[64] = 1;							\
1151   if (TARGET_64BIT)							\
1152     fixed_regs[13] = call_used_regs[13]					\
1153       = call_really_used_regs[13] = 1; 					\
1154   if (TARGET_SOFT_FLOAT || !TARGET_FPRS)				\
1155     for (i = 32; i < 64; i++)						\
1156       fixed_regs[i] = call_used_regs[i]					\
1157         = call_really_used_regs[i] = 1;					\
1158   if (DEFAULT_ABI == ABI_V4						\
1159       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1160       && flag_pic == 2)							\
1161     fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;			\
1162   if (DEFAULT_ABI == ABI_V4						\
1163       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM			\
1164       && flag_pic == 1)							\
1165     fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1166       = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1167       = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1168   if (DEFAULT_ABI == ABI_DARWIN						\
1169       && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1170     global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1171       = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1172       = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]			\
1173       = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;	\
1174   if (TARGET_TOC && TARGET_MINIMAL_TOC)					\
1175     fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]				\
1176       = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;		\
1177   if (TARGET_ALTIVEC)                                                   \
1178     global_regs[VSCR_REGNO] = 1;                                        \
1179   if (TARGET_SPE)							\
1180     {                                                                   \
1181       global_regs[SPEFSCR_REGNO] = 1;					\
1182       fixed_regs[FIXED_SCRATCH]						\
1183         = call_used_regs[FIXED_SCRATCH]					\
1184 	= call_really_used_regs[FIXED_SCRATCH] = 1; 			\
1185     }                                                                   \
1186   if (! TARGET_ALTIVEC)							\
1187     {									\
1188       for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)	\
1189 	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1190       call_really_used_regs[VRSAVE_REGNO] = 1;				\
1191     }									\
1192   if (TARGET_ALTIVEC_ABI)						\
1193     for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\
1194       call_used_regs[i] = call_really_used_regs[i] = 1;			\
1195 }
1196 
1197 /* Specify the registers used for certain standard purposes.
1198    The values of these macros are register numbers.  */
1199 
1200 /* RS/6000 pc isn't overloaded on a register that the compiler knows about.  */
1201 /* #define PC_REGNUM  */
1202 
1203 /* Register to use for pushing function arguments.  */
1204 #define STACK_POINTER_REGNUM 1
1205 
1206 /* Base register for access to local variables of the function.  */
1207 #define FRAME_POINTER_REGNUM 31
1208 
1209 /* Value should be nonzero if functions must have frame pointers.
1210    Zero means the frame pointer need not be set up (and parms
1211    may be accessed via the stack pointer) in functions that seem suitable.
1212    This is computed in `reload', in reload1.c.  */
1213 #define FRAME_POINTER_REQUIRED 0
1214 
1215 /* Base register for access to arguments of the function.  */
1216 #define ARG_POINTER_REGNUM 67
1217 
1218 /* Place to put static chain when calling a function that requires it.  */
1219 #define STATIC_CHAIN_REGNUM 11
1220 
1221 /* Link register number.  */
1222 #define LINK_REGISTER_REGNUM 65
1223 
1224 /* Count register number.  */
1225 #define COUNT_REGISTER_REGNUM 66
1226 
1227 /* Define the classes of registers for register constraints in the
1228    machine description.  Also define ranges of constants.
1229 
1230    One of the classes must always be named ALL_REGS and include all hard regs.
1231    If there is more than one class, another class must be named NO_REGS
1232    and contain no registers.
1233 
1234    The name GENERAL_REGS must be the name of a class (or an alias for
1235    another name such as ALL_REGS).  This is the class of registers
1236    that is allowed by "g" or "r" in a register constraint.
1237    Also, registers outside this class are allocated only when
1238    instructions express preferences for them.
1239 
1240    The classes must be numbered in nondecreasing order; that is,
1241    a larger-numbered class must never be contained completely
1242    in a smaller-numbered class.
1243 
1244    For any two classes, it is very desirable that there be another
1245    class that represents their union.  */
1246 
1247 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1248    and condition registers, plus three special registers, MQ, CTR, and the
1249    link register.  AltiVec adds a vector register class.
1250 
1251    However, r0 is special in that it cannot be used as a base register.
1252    So make a class for registers valid as base registers.
1253 
1254    Also, cr0 is the only condition code register that can be used in
1255    arithmetic insns, so make a separate class for it.  */
1256 
1257 enum reg_class
1258 {
1259   NO_REGS,
1260   BASE_REGS,
1261   GENERAL_REGS,
1262   FLOAT_REGS,
1263   ALTIVEC_REGS,
1264   VRSAVE_REGS,
1265   VSCR_REGS,
1266   SPE_ACC_REGS,
1267   SPEFSCR_REGS,
1268   NON_SPECIAL_REGS,
1269   MQ_REGS,
1270   LINK_REGS,
1271   CTR_REGS,
1272   LINK_OR_CTR_REGS,
1273   SPECIAL_REGS,
1274   SPEC_OR_GEN_REGS,
1275   CR0_REGS,
1276   CR_REGS,
1277   NON_FLOAT_REGS,
1278   XER_REGS,
1279   ALL_REGS,
1280   LIM_REG_CLASSES
1281 };
1282 
1283 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1284 
1285 /* Give names of register classes as strings for dump file.  */
1286 
1287 #define REG_CLASS_NAMES							\
1288 {									\
1289   "NO_REGS",								\
1290   "BASE_REGS",								\
1291   "GENERAL_REGS",							\
1292   "FLOAT_REGS",								\
1293   "ALTIVEC_REGS",							\
1294   "VRSAVE_REGS",							\
1295   "VSCR_REGS",								\
1296   "SPE_ACC_REGS",                                                       \
1297   "SPEFSCR_REGS",                                                       \
1298   "NON_SPECIAL_REGS",							\
1299   "MQ_REGS",								\
1300   "LINK_REGS",								\
1301   "CTR_REGS",								\
1302   "LINK_OR_CTR_REGS",							\
1303   "SPECIAL_REGS",							\
1304   "SPEC_OR_GEN_REGS",							\
1305   "CR0_REGS",								\
1306   "CR_REGS",								\
1307   "NON_FLOAT_REGS",							\
1308   "XER_REGS",								\
1309   "ALL_REGS"								\
1310 }
1311 
1312 /* Define which registers fit in which classes.
1313    This is an initializer for a vector of HARD_REG_SET
1314    of length N_REG_CLASSES.  */
1315 
1316 #define REG_CLASS_CONTENTS						     \
1317 {									     \
1318   { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \
1319   { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \
1320   { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \
1321   { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \
1322   { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \
1323   { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \
1324   { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \
1325   { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \
1326   { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \
1327   { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1328   { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \
1329   { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \
1330   { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \
1331   { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1332   { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \
1333   { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1334   { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \
1335   { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \
1336   { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \
1337   { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \
1338   { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \
1339 }
1340 
1341 /* The same information, inverted:
1342    Return the class number of the smallest class containing
1343    reg number REGNO.  This could be a conditional expression
1344    or could index an array.  */
1345 
1346 #define REGNO_REG_CLASS(REGNO)			\
1347  ((REGNO) == 0 ? GENERAL_REGS			\
1348   : (REGNO) < 32 ? BASE_REGS			\
1349   : FP_REGNO_P (REGNO) ? FLOAT_REGS		\
1350   : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\
1351   : (REGNO) == CR0_REGNO ? CR0_REGS		\
1352   : CR_REGNO_P (REGNO) ? CR_REGS		\
1353   : (REGNO) == MQ_REGNO ? MQ_REGS		\
1354   : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\
1355   : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\
1356   : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\
1357   : (REGNO) == XER_REGNO ? XER_REGS		\
1358   : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\
1359   : (REGNO) == VSCR_REGNO ? VRSAVE_REGS	\
1360   : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\
1361   : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\
1362   : NO_REGS)
1363 
1364 /* The class value for index registers, and the one for base regs.  */
1365 #define INDEX_REG_CLASS GENERAL_REGS
1366 #define BASE_REG_CLASS BASE_REGS
1367 
1368 /* Get reg_class from a letter such as appears in the machine description.  */
1369 
1370 #define REG_CLASS_FROM_LETTER(C) \
1371   ((C) == 'f' ? FLOAT_REGS	\
1372    : (C) == 'b' ? BASE_REGS	\
1373    : (C) == 'h' ? SPECIAL_REGS	\
1374    : (C) == 'q' ? MQ_REGS	\
1375    : (C) == 'c' ? CTR_REGS	\
1376    : (C) == 'l' ? LINK_REGS	\
1377    : (C) == 'v' ? ALTIVEC_REGS	\
1378    : (C) == 'x' ? CR0_REGS	\
1379    : (C) == 'y' ? CR_REGS	\
1380    : (C) == 'z' ? XER_REGS	\
1381    : NO_REGS)
1382 
1383 /* The letters I, J, K, L, M, N, and P in a register constraint string
1384    can be used to stand for particular ranges of immediate operands.
1385    This macro defines what the ranges are.
1386    C is the letter, and VALUE is a constant value.
1387    Return 1 if VALUE is in the range specified by C.
1388 
1389    `I' is a signed 16-bit constant
1390    `J' is a constant with only the high-order 16 bits nonzero
1391    `K' is a constant with only the low-order 16 bits nonzero
1392    `L' is a signed 16-bit constant shifted left 16 bits
1393    `M' is a constant that is greater than 31
1394    `N' is a positive constant that is an exact power of two
1395    `O' is the constant zero
1396    `P' is a constant whose negation is a signed 16-bit constant */
1397 
1398 #define CONST_OK_FOR_LETTER_P(VALUE, C)					\
1399    ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\
1400    : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1401    : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\
1402    : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\
1403 		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\
1404    : (C) == 'M' ? (VALUE) > 31						\
1405    : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\
1406    : (C) == 'O' ? (VALUE) == 0						\
1407    : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1408    : 0)
1409 
1410 /* Similar, but for floating constants, and defining letters G and H.
1411    Here VALUE is the CONST_DOUBLE rtx itself.
1412 
1413    We flag for special constants when we can copy the constant into
1414    a general register in two insns for DF/DI and one insn for SF.
1415 
1416    'H' is used for DI/DF constants that take 3 insns.  */
1417 
1418 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1419   (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\
1420 		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\
1421    : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\
1422    : 0)
1423 
1424 /* Optional extra constraints for this machine.
1425 
1426    'Q' means that is a memory operand that is just an offset from a reg.
1427    'R' is for AIX TOC entries.
1428    'S' is a constant that can be placed into a 64-bit mask operand
1429    'T' is a constant that can be placed into a 32-bit mask operand
1430    'U' is for V.4 small data references.
1431    'W' is a vector constant that can be easily generated (no mem refs).
1432    'Y' is a indexed or word-aligned displacement memory operand.
1433    't' is for AND masks that can be performed by two rldic{l,r} insns.  */
1434 
1435 #define EXTRA_CONSTRAINT(OP, C)						\
1436   ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\
1437    : (C) == 'R' ? legitimate_constant_pool_address_p (OP)		\
1438    : (C) == 'S' ? mask64_operand (OP, DImode)				\
1439    : (C) == 'T' ? mask_operand (OP, SImode)				\
1440    : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\
1441 		   && small_data_operand (OP, GET_MODE (OP)))		\
1442    : (C) == 't' ? (mask64_2_operand (OP, DImode)			\
1443 		   && (fixed_regs[CR0_REGNO]				\
1444 		       || !logical_operand (OP, DImode))		\
1445 		   && !mask64_operand (OP, DImode))			\
1446    : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP)))		\
1447    : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP)))      \
1448    : 0)
1449 
1450 /* Defining, which contraints are memory contraints. Tells reload,
1451    that any memory address can be reloaded by copying the
1452    memory address into a base register if required.  */
1453 
1454 #define EXTRA_MEMORY_CONSTRAINT(C, STR)				\
1455   ((C) == 'Q' || (C) == 'Y')
1456 
1457 /* Given an rtx X being reloaded into a reg required to be
1458    in class CLASS, return the class of reg to actually use.
1459    In general this is just CLASS; but on some machines
1460    in some cases it is preferable to use a more restrictive class.
1461 
1462    On the RS/6000, we have to return NO_REGS when we want to reload a
1463    floating-point CONST_DOUBLE to force it to be copied to memory.
1464 
1465    We also don't want to reload integer values into floating-point
1466    registers if we can at all help it.  In fact, this can
1467    cause reload to abort, if it tries to generate a reload of CTR
1468    into a FP register and discovers it doesn't have the memory location
1469    required.
1470 
1471    ??? Would it be a good idea to have reload do the converse, that is
1472    try to reload floating modes into FP registers if possible?
1473  */
1474 
1475 #define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1476   (((GET_CODE (X) == CONST_DOUBLE			\
1477      && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\
1478     ? NO_REGS 						\
1479     : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\
1480        && (CLASS) == NON_SPECIAL_REGS)			\
1481     ? GENERAL_REGS					\
1482     : (CLASS)))
1483 
1484 #define DISPARAGE_RELOAD_CLASS(X, CLASS)			\
1485   (GET_CODE (X) == REG						\
1486    && REGNO (X) < FIRST_PSEUDO_REGISTER				\
1487    && SECONDARY_MEMORY_NEEDED (GET_MODE_CLASS (GET_MODE (X)),	\
1488 			       CLASS, GET_MODE (X))		\
1489    ? 6 : 0)
1490 
1491 /* Return the register class of a scratch register needed to copy IN into
1492    or out of a register in CLASS in MODE.  If it can be done directly,
1493    NO_REGS is returned.  */
1494 
1495 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1496   secondary_reload_class (CLASS, MODE, IN, 1)
1497 
1498 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1499   secondary_reload_class (CLASS, MODE, IN, 0)
1500 
1501 /* If we are copying between FP or AltiVec registers and anything
1502    else, we need a memory location.  */
1503 
1504 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\
1505  ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\
1506 			   || (CLASS2) == FLOAT_REGS		\
1507 			   || (CLASS1) == ALTIVEC_REGS		\
1508 			   || (CLASS2) == ALTIVEC_REGS))
1509 
1510 /* Return the maximum number of consecutive registers
1511    needed to represent mode MODE in a register of class CLASS.
1512 
1513    On RS/6000, this is the size of MODE in words,
1514    except in the FP regs, where a single reg is enough for two words.  */
1515 #define CLASS_MAX_NREGS(CLASS, MODE)					\
1516  (((CLASS) == FLOAT_REGS) 						\
1517   ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1518   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1519 
1520 
1521 /* Return a class of registers that cannot change FROM mode to TO mode.  */
1522 
1523 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			  \
1524   (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN)		  \
1525     && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8)		  \
1526    ? 0									  \
1527    : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				  \
1528    ? reg_classes_intersect_p (FLOAT_REGS, CLASS)			  \
1529    : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
1530    ? reg_classes_intersect_p (GENERAL_REGS, CLASS)			  \
1531    : 0)
1532 
1533 /* Stack layout; function entry, exit and calling.  */
1534 
1535 /* Enumeration to give which calling sequence to use.  */
1536 enum rs6000_abi {
1537   ABI_NONE,
1538   ABI_AIX,			/* IBM's AIX */
1539   ABI_V4,			/* System V.4/eabi */
1540   ABI_DARWIN			/* Apple's Darwin (OS X kernel) */
1541 };
1542 
1543 extern enum rs6000_abi rs6000_current_abi;	/* available for use by subtarget */
1544 
1545 /* Define this if pushing a word on the stack
1546    makes the stack pointer a smaller address.  */
1547 #define STACK_GROWS_DOWNWARD
1548 
1549 /* Offsets recorded in opcodes are a multiple of this alignment factor.  */
1550 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1551 
1552 /* Define this if the nominal address of the stack frame
1553    is at the high-address end of the local variables;
1554    that is, each additional local variable allocated
1555    goes at a more negative offset in the frame.
1556 
1557    On the RS/6000, we grow upwards, from the area after the outgoing
1558    arguments.  */
1559 /* #define FRAME_GROWS_DOWNWARD */
1560 
1561 /* Size of the outgoing register save area */
1562 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX			\
1563 			  || DEFAULT_ABI == ABI_DARWIN)			\
1564 			 ? (TARGET_64BIT ? 64 : 32)			\
1565 			 : 0)
1566 
1567 /* Size of the fixed area on the stack */
1568 #define RS6000_SAVE_AREA \
1569   (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8)	\
1570    << (TARGET_64BIT ? 1 : 0))
1571 
1572 /* MEM representing address to save the TOC register */
1573 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1574 				     plus_constant (stack_pointer_rtx, \
1575 						    (TARGET_32BIT ? 20 : 40)))
1576 
1577 /* Size of the V.4 varargs area if needed */
1578 #define RS6000_VARARGS_AREA 0
1579 
1580 /* Align an address */
1581 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1582 
1583 /* Size of V.4 varargs area in bytes */
1584 #define RS6000_VARARGS_SIZE \
1585   ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1586 
1587 /* Offset within stack frame to start allocating local variables at.
1588    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1589    first local allocated.  Otherwise, it is the offset to the BEGINNING
1590    of the first local allocated.
1591 
1592    On the RS/6000, the frame pointer is the same as the stack pointer,
1593    except for dynamic allocations.  So we start after the fixed area and
1594    outgoing parameter area.  */
1595 
1596 #define STARTING_FRAME_OFFSET						\
1597   (RS6000_ALIGN (current_function_outgoing_args_size,			\
1598 		 TARGET_ALTIVEC ? 16 : 8)				\
1599    + RS6000_VARARGS_AREA						\
1600    + RS6000_SAVE_AREA)
1601 
1602 /* Offset from the stack pointer register to an item dynamically
1603    allocated on the stack, e.g., by `alloca'.
1604 
1605    The default value for this macro is `STACK_POINTER_OFFSET' plus the
1606    length of the outgoing arguments.  The default is correct for most
1607    machines.  See `function.c' for details.  */
1608 #define STACK_DYNAMIC_OFFSET(FUNDECL)					\
1609   (RS6000_ALIGN (current_function_outgoing_args_size,			\
1610 		 TARGET_ALTIVEC ? 16 : 8)				\
1611    + (STACK_POINTER_OFFSET))
1612 
1613 /* If we generate an insn to push BYTES bytes,
1614    this says how many the stack pointer really advances by.
1615    On RS/6000, don't define this because there are no push insns.  */
1616 /*  #define PUSH_ROUNDING(BYTES) */
1617 
1618 /* Offset of first parameter from the argument pointer register value.
1619    On the RS/6000, we define the argument pointer to the start of the fixed
1620    area.  */
1621 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1622 
1623 /* Offset from the argument pointer register value to the top of
1624    stack.  This is different from FIRST_PARM_OFFSET because of the
1625    register save area.  */
1626 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1627 
1628 /* Define this if stack space is still allocated for a parameter passed
1629    in a register.  The value is the number of bytes allocated to this
1630    area.  */
1631 #define REG_PARM_STACK_SPACE(FNDECL)	RS6000_REG_SAVE
1632 
1633 /* Define this if the above stack space is to be considered part of the
1634    space allocated by the caller.  */
1635 #define OUTGOING_REG_PARM_STACK_SPACE
1636 
1637 /* This is the difference between the logical top of stack and the actual sp.
1638 
1639    For the RS/6000, sp points past the fixed area.  */
1640 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1641 
1642 /* Define this if the maximum size of all the outgoing args is to be
1643    accumulated and pushed during the prologue.  The amount can be
1644    found in the variable current_function_outgoing_args_size.  */
1645 #define ACCUMULATE_OUTGOING_ARGS 1
1646 
1647 /* Value is the number of bytes of arguments automatically
1648    popped when returning from a subroutine call.
1649    FUNDECL is the declaration node of the function (as a tree),
1650    FUNTYPE is the data type of the function (as a tree),
1651    or for a library call it is an identifier node for the subroutine name.
1652    SIZE is the number of bytes of arguments passed on the stack.  */
1653 
1654 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1655 
1656 /* Define how to find the value returned by a function.
1657    VALTYPE is the data type of the value (as a tree).
1658    If the precise function being called is known, FUNC is its FUNCTION_DECL;
1659    otherwise, FUNC is 0.  */
1660 
1661 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1662 
1663 /* Define how to find the value returned by a library function
1664    assuming the value has mode MODE.  */
1665 
1666 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1667 
1668 /* DRAFT_V4_STRUCT_RET defaults off.  */
1669 #define DRAFT_V4_STRUCT_RET 0
1670 
1671 /* Let RETURN_IN_MEMORY control what happens.  */
1672 #define DEFAULT_PCC_STRUCT_RETURN 0
1673 
1674 /* Mode of stack savearea.
1675    FUNCTION is VOIDmode because calling convention maintains SP.
1676    BLOCK needs Pmode for SP.
1677    NONLOCAL needs twice Pmode to maintain both backchain and SP.  */
1678 #define STACK_SAVEAREA_MODE(LEVEL)	\
1679   (LEVEL == SAVE_FUNCTION ? VOIDmode	\
1680   : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1681 
1682 /* Minimum and maximum general purpose registers used to hold arguments.  */
1683 #define GP_ARG_MIN_REG 3
1684 #define GP_ARG_MAX_REG 10
1685 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1686 
1687 /* Minimum and maximum floating point registers used to hold arguments.  */
1688 #define FP_ARG_MIN_REG 33
1689 #define	FP_ARG_AIX_MAX_REG 45
1690 #define	FP_ARG_V4_MAX_REG  40
1691 #define	FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX				\
1692 			 || DEFAULT_ABI == ABI_DARWIN)			\
1693 			? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1694 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1695 
1696 /* Minimum and maximum AltiVec registers used to hold arguments.  */
1697 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1698 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1699 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1700 
1701 /* Return registers */
1702 #define GP_ARG_RETURN GP_ARG_MIN_REG
1703 #define FP_ARG_RETURN FP_ARG_MIN_REG
1704 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1705 
1706 /* Flags for the call/call_value rtl operations set up by function_arg */
1707 #define CALL_NORMAL		0x00000000	/* no special processing */
1708 /* Bits in 0x00000001 are unused.  */
1709 #define CALL_V4_CLEAR_FP_ARGS	0x00000002	/* V.4, no FP args passed */
1710 #define CALL_V4_SET_FP_ARGS	0x00000004	/* V.4, FP args were passed */
1711 #define CALL_LONG		0x00000008	/* always call indirect */
1712 #define CALL_LIBCALL		0x00000010	/* libcall */
1713 
1714 /* 1 if N is a possible register number for a function value
1715    as seen by the caller.
1716 
1717    On RS/6000, this is r3, fp1, and v2 (for AltiVec).  */
1718 #define FUNCTION_VALUE_REGNO_P(N)					\
1719   ((N) == GP_ARG_RETURN							\
1720    || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT)			\
1721    || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1722 
1723 /* 1 if N is a possible register number for function argument passing.
1724    On RS/6000, these are r3-r10 and fp1-fp13.
1725    On AltiVec, v2 - v13 are used for passing vectors.  */
1726 #define FUNCTION_ARG_REGNO_P(N)						\
1727   ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG			\
1728    || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG	\
1729        && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)				\
1730    || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG			\
1731        && TARGET_HARD_FLOAT))
1732 
1733 /* A C structure for machine-specific, per-function data.
1734    This is added to the cfun structure.  */
1735 typedef struct machine_function GTY(())
1736 {
1737   /* Whether a System V.4 varargs area was created.  */
1738   int sysv_varargs_p;
1739   /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
1740   int ra_needs_full_frame;
1741   /* Some local-dynamic symbol.  */
1742   const char *some_ld_name;
1743   /* Whether the instruction chain has been scanned already.  */
1744   int insn_chain_scanned_p;
1745   /* Flags if __builtin_return_address (0) was used.  */
1746   int ra_need_lr;
1747 } machine_function;
1748 
1749 /* Define a data type for recording info about an argument list
1750    during the scan of that argument list.  This data type should
1751    hold all necessary information about the function itself
1752    and about the args processed so far, enough to enable macros
1753    such as FUNCTION_ARG to determine where the next arg should go.
1754 
1755    On the RS/6000, this is a structure.  The first element is the number of
1756    total argument words, the second is used to store the next
1757    floating-point register number, and the third says how many more args we
1758    have prototype types for.
1759 
1760    For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1761    the next available GP register, `fregno' is the next available FP
1762    register, and `words' is the number of words used on the stack.
1763 
1764    The varargs/stdarg support requires that this structure's size
1765    be a multiple of sizeof(int).  */
1766 
1767 typedef struct rs6000_args
1768 {
1769   int words;			/* # words used for passing GP registers */
1770   int fregno;			/* next available FP register */
1771   int vregno;			/* next available AltiVec register */
1772   int nargs_prototype;		/* # args left in the current prototype */
1773   int prototype;		/* Whether a prototype was defined */
1774   int stdarg;			/* Whether function is a stdarg function.  */
1775   int call_cookie;		/* Do special things for this call */
1776   int sysv_gregno;		/* next available GP register */
1777 } CUMULATIVE_ARGS;
1778 
1779 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1780    for a call to a function whose data type is FNTYPE.
1781    For a library call, FNTYPE is 0.  */
1782 
1783 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1784   init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1785 
1786 /* Similar, but when scanning the definition of a procedure.  We always
1787    set NARGS_PROTOTYPE large so we never return an EXPR_LIST.  */
1788 
1789 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1790   init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1791 
1792 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls.  */
1793 
1794 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1795   init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1796 
1797 /* Update the data in CUM to advance over an argument
1798    of mode MODE and data type TYPE.
1799    (TYPE is null for libcalls where that information may not be available.)  */
1800 
1801 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
1802   function_arg_advance (&CUM, MODE, TYPE, NAMED)
1803 
1804 /* Determine where to put an argument to a function.
1805    Value is zero to push the argument on the stack,
1806    or a hard register in which to store the argument.
1807 
1808    MODE is the argument's machine mode.
1809    TYPE is the data type of the argument (as a tree).
1810     This is null for libcalls where that information may
1811     not be available.
1812    CUM is a variable of type CUMULATIVE_ARGS which gives info about
1813     the preceding args and about the function being called.
1814    NAMED is nonzero if this argument is a named parameter
1815     (otherwise it is an extra parameter matching an ellipsis).
1816 
1817    On RS/6000 the first eight words of non-FP are normally in registers
1818    and the rest are pushed.  The first 13 FP args are in registers.
1819 
1820    If this is floating-point and no prototype is specified, we use
1821    both an FP and integer register (or possibly FP reg and stack).  Library
1822    functions (when TYPE is zero) always have the proper types for args,
1823    so we can pass the FP value just in one register.  emit_library_function
1824    doesn't support EXPR_LIST anyway.  */
1825 
1826 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1827   function_arg (&CUM, MODE, TYPE, NAMED)
1828 
1829 /* For an arg passed partly in registers and partly in memory,
1830    this is the number of registers used.
1831    For args passed entirely in registers or entirely in memory, zero.  */
1832 
1833 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1834   function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1835 
1836 /* A C expression that indicates when an argument must be passed by
1837    reference.  If nonzero for an argument, a copy of that argument is
1838    made in memory and a pointer to the argument is passed instead of
1839    the argument itself.  The pointer is passed in whatever way is
1840    appropriate for passing a pointer to that type.  */
1841 
1842 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1843   function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1844 
1845 /* If defined, a C expression which determines whether, and in which
1846    direction, to pad out an argument with extra space.  The value
1847    should be of type `enum direction': either `upward' to pad above
1848    the argument, `downward' to pad below, or `none' to inhibit
1849    padding.  */
1850 
1851 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1852 
1853 /* If defined, a C expression that gives the alignment boundary, in bits,
1854    of an argument with the specified mode and type.  If it is not defined,
1855    PARM_BOUNDARY is used for all arguments.  */
1856 
1857 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1858   function_arg_boundary (MODE, TYPE)
1859 
1860 /* Implement `va_start' for varargs and stdarg.  */
1861 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1862   rs6000_va_start (valist, nextarg)
1863 
1864 /* Implement `va_arg'.  */
1865 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1866   rs6000_va_arg (valist, type)
1867 
1868 #define PAD_VARARGS_DOWN \
1869    (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1870 
1871 /* Define this macro to be a nonzero value if the location where a function
1872    argument is passed depends on whether or not it is a named argument.  */
1873 #define STRICT_ARGUMENT_NAMING 1
1874 
1875 /* Output assembler code to FILE to increment profiler label # LABELNO
1876    for profiling a function entry.  */
1877 
1878 #define FUNCTION_PROFILER(FILE, LABELNO)	\
1879   output_function_profiler ((FILE), (LABELNO));
1880 
1881 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1882    the stack pointer does not matter. No definition is equivalent to
1883    always zero.
1884 
1885    On the RS/6000, this is nonzero because we can restore the stack from
1886    its backpointer, which we maintain.  */
1887 #define EXIT_IGNORE_STACK	1
1888 
1889 /* Define this macro as a C expression that is nonzero for registers
1890    that are used by the epilogue or the return' pattern.  The stack
1891    and frame pointer registers are already be assumed to be used as
1892    needed.  */
1893 
1894 #define	EPILOGUE_USES(REGNO)					\
1895   ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM)	\
1896    || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO)		\
1897    || (current_function_calls_eh_return				\
1898        && TARGET_AIX						\
1899        && (REGNO) == 2))
1900 
1901 
1902 /* TRAMPOLINE_TEMPLATE deleted */
1903 
1904 /* Length in units of the trampoline for entering a nested function.  */
1905 
1906 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1907 
1908 /* Emit RTL insns to initialize the variable parts of a trampoline.
1909    FNADDR is an RTX for the address of the function's pure code.
1910    CXT is an RTX for the static chain value for the function.  */
1911 
1912 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT)		\
1913   rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1914 
1915 /* Definitions for __builtin_return_address and __builtin_frame_address.
1916    __builtin_return_address (0) should give link register (65), enable
1917    this.  */
1918 /* This should be uncommented, so that the link register is used, but
1919    currently this would result in unmatched insns and spilling fixed
1920    registers so we'll leave it for another day.  When these problems are
1921    taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1922    (mrs) */
1923 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1924 
1925 /* Number of bytes into the frame return addresses can be found.  See
1926    rs6000_stack_info in rs6000.c for more information on how the different
1927    abi's store the return address.  */
1928 #define RETURN_ADDRESS_OFFSET						\
1929  ((DEFAULT_ABI == ABI_AIX						\
1930    || DEFAULT_ABI == ABI_DARWIN)	? (TARGET_32BIT ? 8 : 16) :	\
1931   (DEFAULT_ABI == ABI_V4)		? 4 :				\
1932   (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1933 
1934 /* The current return address is in link register (65).  The return address
1935    of anything farther back is accessed normally at an offset of 8 from the
1936    frame pointer.  */
1937 #define RETURN_ADDR_RTX(COUNT, FRAME)                 \
1938   (rs6000_return_addr (COUNT, FRAME))
1939 
1940 
1941 /* Definitions for register eliminations.
1942 
1943    We have two registers that can be eliminated on the RS/6000.  First, the
1944    frame pointer register can often be eliminated in favor of the stack
1945    pointer register.  Secondly, the argument pointer register can always be
1946    eliminated; it is replaced with either the stack or frame pointer.
1947 
1948    In addition, we use the elimination mechanism to see if r30 is needed
1949    Initially we assume that it isn't.  If it is, we spill it.  This is done
1950    by making it an eliminable register.  We replace it with itself so that
1951    if it isn't needed, then existing uses won't be modified.  */
1952 
1953 /* This is an array of structures.  Each structure initializes one pair
1954    of eliminable registers.  The "from" register number is given first,
1955    followed by "to".  Eliminations of the same "from" register are listed
1956    in order of preference.  */
1957 #define ELIMINABLE_REGS				\
1958 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1959  { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
1960  { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},	\
1961  { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1962 
1963 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1964    Frame pointer elimination is automatically handled.
1965 
1966    For the RS/6000, if frame pointer elimination is being done, we would like
1967    to convert ap into fp, not sp.
1968 
1969    We need r30 if -mminimal-toc was specified, and there are constant pool
1970    references.  */
1971 
1972 #define CAN_ELIMINATE(FROM, TO)						\
1973  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1974   ? ! frame_pointer_needed						\
1975   : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM 				\
1976   ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0	\
1977   : 1)
1978 
1979 /* Define the offset between two registers, one to be eliminated, and the other
1980    its replacement, at the start of a routine.  */
1981 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1982   ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1983 
1984 /* Addressing modes, and classification of registers for them.  */
1985 
1986 #define HAVE_PRE_DECREMENT 1
1987 #define HAVE_PRE_INCREMENT 1
1988 
1989 /* Macros to check register numbers against specific register classes.  */
1990 
1991 /* These assume that REGNO is a hard or pseudo reg number.
1992    They give nonzero only if REGNO is a hard reg of the suitable class
1993    or a pseudo reg currently allocated to a suitable hard reg.
1994    Since they use reg_renumber, they are safe only once reg_renumber
1995    has been allocated, which happens in local-alloc.c.  */
1996 
1997 #define REGNO_OK_FOR_INDEX_P(REGNO)				\
1998 ((REGNO) < FIRST_PSEUDO_REGISTER				\
1999  ? (REGNO) <= 31 || (REGNO) == 67				\
2000  : (reg_renumber[REGNO] >= 0					\
2001     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2002 
2003 #define REGNO_OK_FOR_BASE_P(REGNO)				\
2004 ((REGNO) < FIRST_PSEUDO_REGISTER				\
2005  ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67		\
2006  : (reg_renumber[REGNO] > 0					\
2007     && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
2008 
2009 /* Maximum number of registers that can appear in a valid memory address.  */
2010 
2011 #define MAX_REGS_PER_ADDRESS 2
2012 
2013 /* Recognize any constant value that is a valid address.  */
2014 
2015 #define CONSTANT_ADDRESS_P(X)   \
2016   (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
2017    || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
2018    || GET_CODE (X) == HIGH)
2019 
2020 /* Nonzero if the constant value X is a legitimate general operand.
2021    It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2022 
2023    On the RS/6000, all integer constants are acceptable, most won't be valid
2024    for particular insns, though.  Only easy FP constants are
2025    acceptable.  */
2026 
2027 #define LEGITIMATE_CONSTANT_P(X)				\
2028   (((GET_CODE (X) != CONST_DOUBLE				\
2029      && GET_CODE (X) != CONST_VECTOR)				\
2030     || GET_MODE (X) == VOIDmode					\
2031     || (TARGET_POWERPC64 && GET_MODE (X) == DImode)		\
2032     || easy_fp_constant (X, GET_MODE (X))			\
2033     || easy_vector_constant (X, GET_MODE (X)))			\
2034    && !rs6000_tls_referenced_p (X))
2035 
2036 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2037    and check its validity for a certain class.
2038    We have two alternate definitions for each of them.
2039    The usual definition accepts all pseudo regs; the other rejects
2040    them unless they have been allocated suitable hard regs.
2041    The symbol REG_OK_STRICT causes the latter definition to be used.
2042 
2043    Most source files want to accept pseudo regs in the hope that
2044    they will get allocated to the class that the insn wants them to be in.
2045    Source files for reload pass need to be strict.
2046    After reload, it makes no difference, since pseudo regs have
2047    been eliminated by then.  */
2048 
2049 #ifdef REG_OK_STRICT
2050 # define REG_OK_STRICT_FLAG 1
2051 #else
2052 # define REG_OK_STRICT_FLAG 0
2053 #endif
2054 
2055 /* Nonzero if X is a hard reg that can be used as an index
2056    or if it is a pseudo reg in the non-strict case.  */
2057 #define INT_REG_OK_FOR_INDEX_P(X, STRICT)			\
2058   ((! (STRICT)							\
2059     && (REGNO (X) <= 31						\
2060 	|| REGNO (X) == ARG_POINTER_REGNUM			\
2061 	|| REGNO (X) >= FIRST_PSEUDO_REGISTER))			\
2062    || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2063 
2064 /* Nonzero if X is a hard reg that can be used as a base reg
2065    or if it is a pseudo reg in the non-strict case.  */
2066 #define INT_REG_OK_FOR_BASE_P(X, STRICT)			\
2067   (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2068 
2069 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2070 #define REG_OK_FOR_BASE_P(X)  INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2071 
2072 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2073    that is a valid memory address for an instruction.
2074    The MODE argument is the machine mode for the MEM expression
2075    that wants to use this address.
2076 
2077    On the RS/6000, there are four valid address: a SYMBOL_REF that
2078    refers to a constant pool entry of an address (or the sum of it
2079    plus a constant), a short (16-bit signed) constant plus a register,
2080    the sum of two registers, or a register indirect, possibly with an
2081    auto-increment.  For DFmode and DImode with a constant plus register,
2082    we must ensure that both words are addressable or PowerPC64 with offset
2083    word aligned.
2084 
2085    For modes spanning multiple registers (DFmode in 32-bit GPRs,
2086    32-bit DImode, TImode), indexed addressing cannot be used because
2087    adjacent memory cells are accessed by adding word-sized offsets
2088    during assembly output.  */
2089 
2090 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)			\
2091 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG))	\
2092     goto ADDR;							\
2093 }
2094 
2095 /* Try machine-dependent ways of modifying an illegitimate address
2096    to be legitimate.  If we find one, return the new, valid address.
2097    This macro is used in only one place: `memory_address' in explow.c.
2098 
2099    OLDX is the address as it was before break_out_memory_refs was called.
2100    In some cases it is useful to look at this to decide what needs to be done.
2101 
2102    MODE and WIN are passed so that this macro can use
2103    GO_IF_LEGITIMATE_ADDRESS.
2104 
2105    It is always safe for this macro to do nothing.  It exists to recognize
2106    opportunities to optimize the output.
2107 
2108    On RS/6000, first check for the sum of a register with a constant
2109    integer that is out of range.  If so, generate code to add the
2110    constant with the low-order 16 bits masked to the register and force
2111    this result into another register (this can be done with `cau').
2112    Then generate an address of REG+(CONST&0xffff), allowing for the
2113    possibility of bit 16 being a one.
2114 
2115    Then check for the sum of a register and something not constant, try to
2116    load the other things into a register and return the sum.  */
2117 
2118 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)			\
2119 {  rtx result = rs6000_legitimize_address (X, OLDX, MODE);	\
2120    if (result != NULL_RTX)					\
2121      {								\
2122        (X) = result;						\
2123        goto WIN;						\
2124      }								\
2125 }
2126 
2127 /* Try a machine-dependent way of reloading an illegitimate address
2128    operand.  If we find one, push the reload and jump to WIN.  This
2129    macro is used in only one place: `find_reloads_address' in reload.c.
2130 
2131    Implemented on rs6000 by rs6000_legitimize_reload_address.
2132    Note that (X) is evaluated twice; this is safe in current usage.  */
2133 
2134 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	     \
2135 do {									     \
2136   int win;								     \
2137   (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM),		     \
2138 			(int)(TYPE), (IND_LEVELS), &win);		     \
2139   if ( win )								     \
2140     goto WIN;								     \
2141 } while (0)
2142 
2143 /* Go to LABEL if ADDR (a legitimate address expression)
2144    has an effect that depends on the machine mode it is used for.  */
2145 
2146 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)		\
2147 do {								\
2148   if (rs6000_mode_dependent_address (ADDR))			\
2149     goto LABEL;							\
2150 } while (0)
2151 
2152 /* The register number of the register used to address a table of
2153    static data addresses in memory.  In some cases this register is
2154    defined by a processor's "application binary interface" (ABI).
2155    When this macro is defined, RTL is generated for this register
2156    once, as with the stack pointer and frame pointer registers.  If
2157    this macro is not defined, it is up to the machine-dependent files
2158    to allocate such a register (if necessary).  */
2159 
2160 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2161 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2162 
2163 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2164 
2165 /* Define this macro if the register defined by
2166    `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls.  Do not define
2167    this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined.  */
2168 
2169 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2170 
2171 /* By generating position-independent code, when two different
2172    programs (A and B) share a common library (libC.a), the text of
2173    the library can be shared whether or not the library is linked at
2174    the same address for both programs.  In some of these
2175    environments, position-independent code requires not only the use
2176    of different addressing modes, but also special code to enable the
2177    use of these addressing modes.
2178 
2179    The `FINALIZE_PIC' macro serves as a hook to emit these special
2180    codes once the function is being compiled into assembly code, but
2181    not before.  (It is not done before, because in the case of
2182    compiling an inline function, it would lead to multiple PIC
2183    prologues being included in functions which used inline functions
2184    and were compiled to assembly language.)  */
2185 
2186 /* #define FINALIZE_PIC */
2187 
2188 /* A C expression that is nonzero if X is a legitimate immediate
2189    operand on the target machine when generating position independent
2190    code.  You can assume that X satisfies `CONSTANT_P', so you need
2191    not check this.  You can also assume FLAG_PIC is true, so you need
2192    not check it either.  You need not define this macro if all
2193    constants (including `SYMBOL_REF') can be immediate operands when
2194    generating position independent code.  */
2195 
2196 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2197 
2198 /* Define this if some processing needs to be done immediately before
2199    emitting code for an insn.  */
2200 
2201 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2202 
2203 /* Specify the machine mode that this machine uses
2204    for the index in the tablejump instruction.  */
2205 #define CASE_VECTOR_MODE SImode
2206 
2207 /* Define as C expression which evaluates to nonzero if the tablejump
2208    instruction expects the table to contain offsets from the address of the
2209    table.
2210    Do not define this if the table should contain absolute addresses.  */
2211 #define CASE_VECTOR_PC_RELATIVE 1
2212 
2213 /* Define this as 1 if `char' should by default be signed; else as 0.  */
2214 #define DEFAULT_SIGNED_CHAR 0
2215 
2216 /* This flag, if defined, says the same insns that convert to a signed fixnum
2217    also convert validly to an unsigned one.  */
2218 
2219 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2220 
2221 /* Max number of bytes we can move from memory to memory
2222    in one reasonably fast instruction.  */
2223 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2224 #define MAX_MOVE_MAX 8
2225 
2226 /* Nonzero if access to memory by bytes is no faster than for words.
2227    Also nonzero if doing byte operations (specifically shifts) in registers
2228    is undesirable.  */
2229 #define SLOW_BYTE_ACCESS 1
2230 
2231 /* Define if operations between registers always perform the operation
2232    on the full register even if a narrower mode is specified.  */
2233 #define WORD_REGISTER_OPERATIONS
2234 
2235 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2236    will either zero-extend or sign-extend.  The value of this macro should
2237    be the code that says which one of the two operations is implicitly
2238    done, NIL if none.  */
2239 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2240 
2241 /* Define if loading short immediate values into registers sign extends.  */
2242 #define SHORT_IMMEDIATES_SIGN_EXTEND
2243 
2244 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2245    is done just by pretending it is already truncated.  */
2246 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2247 
2248 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero.  */
2249 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2250   ((VALUE) = ((MODE) == SImode ? 32 : 64))
2251 
2252 /* The CTZ patterns return -1 for input of zero.  */
2253 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2254 
2255 /* Specify the machine mode that pointers have.
2256    After generation of rtl, the compiler makes no further distinction
2257    between pointers and any other objects of this machine mode.  */
2258 #define Pmode (TARGET_32BIT ? SImode : DImode)
2259 
2260 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space.  */
2261 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2262 
2263 /* Mode of a function address in a call instruction (for indexing purposes).
2264    Doesn't matter on RS/6000.  */
2265 #define FUNCTION_MODE SImode
2266 
2267 /* Define this if addresses of constant functions
2268    shouldn't be put through pseudo regs where they can be cse'd.
2269    Desirable on machines where ordinary constants are expensive
2270    but a CALL with constant address is cheap.  */
2271 #define NO_FUNCTION_CSE
2272 
2273 /* Define this to be nonzero if shift instructions ignore all but the low-order
2274    few bits.
2275 
2276    The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2277    have been dropped from the PowerPC architecture.  */
2278 
2279 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2280 
2281 /* Adjust the length of an INSN.  LENGTH is the currently-computed length and
2282    should be adjusted to reflect any required changes.  This macro is used when
2283    there is some systematic length adjustment required that would be difficult
2284    to express in the length attribute.  */
2285 
2286 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2287 
2288 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2289    COMPARE, return the mode to be used for the comparison.  For
2290    floating-point, CCFPmode should be used.  CCUNSmode should be used
2291    for unsigned comparisons.  CCEQmode should be used when we are
2292    doing an inequality comparison on the result of a
2293    comparison.  CCmode should be used in all other cases.  */
2294 
2295 #define SELECT_CC_MODE(OP,X,Y) \
2296   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode	\
2297    : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2298    : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<'   \
2299       ? CCEQmode : CCmode))
2300 
2301 /* Can the condition code MODE be safely reversed?  This is safe in
2302    all cases on this port, because at present it doesn't use the
2303    trapping FP comparisons (fcmpo).  */
2304 #define REVERSIBLE_CC_MODE(MODE) 1
2305 
2306 /* Given a condition code and a mode, return the inverse condition.  */
2307 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2308 
2309 /* Define the information needed to generate branch and scc insns.  This is
2310    stored from the compare operation.  */
2311 
2312 extern GTY(()) rtx rs6000_compare_op0;
2313 extern GTY(()) rtx rs6000_compare_op1;
2314 extern int rs6000_compare_fp_p;
2315 
2316 /* Control the assembler format that we output.  */
2317 
2318 /* A C string constant describing how to begin a comment in the target
2319    assembler language.  The compiler assumes that the comment will end at
2320    the end of the line.  */
2321 #define ASM_COMMENT_START " #"
2322 
2323 /* Implicit library calls should use memcpy, not bcopy, etc.  */
2324 
2325 #define TARGET_MEM_FUNCTIONS
2326 
2327 /* Flag to say the TOC is initialized */
2328 extern int toc_initialized;
2329 
2330 /* Macro to output a special constant pool entry.  Go to WIN if we output
2331    it.  Otherwise, it is written the usual way.
2332 
2333    On the RS/6000, toc entries are handled this way.  */
2334 
2335 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2336 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE))			  \
2337     {									  \
2338       output_toc (FILE, X, LABELNO, MODE);				  \
2339       goto WIN;								  \
2340     }									  \
2341 }
2342 
2343 #ifdef HAVE_GAS_WEAK
2344 #define RS6000_WEAK 1
2345 #else
2346 #define RS6000_WEAK 0
2347 #endif
2348 
2349 #if RS6000_WEAK
2350 /* Used in lieu of ASM_WEAKEN_LABEL.  */
2351 #define	ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL)			 	\
2352   do									\
2353     {									\
2354       fputs ("\t.weak\t", (FILE));					\
2355       RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2356       if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL			\
2357 	  && DEFAULT_ABI == ABI_AIX)					\
2358 	{								\
2359 	  if (TARGET_XCOFF)						\
2360 	    fputs ("[DS]", (FILE));					\
2361 	  fputs ("\n\t.weak\t.", (FILE));				\
2362 	  RS6000_OUTPUT_BASENAME ((FILE), (NAME)); 			\
2363 	}								\
2364       fputc ('\n', (FILE));						\
2365       if (VAL)								\
2366 	{								\
2367 	  ASM_OUTPUT_DEF ((FILE), (NAME), (VAL));			\
2368 	  if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL		\
2369 	      && DEFAULT_ABI == ABI_AIX)				\
2370 	    {								\
2371 	      fputs ("\t.set\t.", (FILE));				\
2372 	      RS6000_OUTPUT_BASENAME ((FILE), (NAME));			\
2373 	      fputs (",.", (FILE));					\
2374 	      RS6000_OUTPUT_BASENAME ((FILE), (VAL));			\
2375 	      fputc ('\n', (FILE));					\
2376 	    }								\
2377 	}								\
2378     }									\
2379   while (0)
2380 #endif
2381 
2382 /* This implements the `alias' attribute.  */
2383 #undef	ASM_OUTPUT_DEF_FROM_DECLS
2384 #define	ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET)			\
2385   do									\
2386     {									\
2387       const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0);		\
2388       const char *name = IDENTIFIER_POINTER (TARGET);			\
2389       if (TREE_CODE (DECL) == FUNCTION_DECL				\
2390 	  && DEFAULT_ABI == ABI_AIX)					\
2391 	{								\
2392 	  if (TREE_PUBLIC (DECL))					\
2393 	    {								\
2394 	      if (!RS6000_WEAK || !DECL_WEAK (DECL))			\
2395 		{							\
2396 		  fputs ("\t.globl\t.", FILE);				\
2397 		  RS6000_OUTPUT_BASENAME (FILE, alias);			\
2398 		  putc ('\n', FILE);					\
2399 		}							\
2400 	    }								\
2401 	  else if (TARGET_XCOFF)					\
2402 	    {								\
2403 	      fputs ("\t.lglobl\t.", FILE);				\
2404 	      RS6000_OUTPUT_BASENAME (FILE, alias);			\
2405 	      putc ('\n', FILE);					\
2406 	    }								\
2407 	  fputs ("\t.set\t.", FILE);					\
2408 	  RS6000_OUTPUT_BASENAME (FILE, alias);				\
2409 	  fputs (",.", FILE);						\
2410 	  RS6000_OUTPUT_BASENAME (FILE, name);				\
2411 	  fputc ('\n', FILE);						\
2412 	}								\
2413       ASM_OUTPUT_DEF (FILE, alias, name);				\
2414     }									\
2415    while (0)
2416 
2417 #define TARGET_ASM_FILE_START rs6000_file_start
2418 
2419 /* Output to assembler file text saying following lines
2420    may contain character constants, extra white space, comments, etc.  */
2421 
2422 #define ASM_APP_ON ""
2423 
2424 /* Output to assembler file text saying following lines
2425    no longer contain unusual constructs.  */
2426 
2427 #define ASM_APP_OFF ""
2428 
2429 /* How to refer to registers in assembler output.
2430    This sequence is indexed by compiler's hard-register-number (see above).  */
2431 
2432 extern char rs6000_reg_names[][8];	/* register names (0 vs. %r0).  */
2433 
2434 #define REGISTER_NAMES							\
2435 {									\
2436   &rs6000_reg_names[ 0][0],	/* r0   */				\
2437   &rs6000_reg_names[ 1][0],	/* r1	*/				\
2438   &rs6000_reg_names[ 2][0],     /* r2	*/				\
2439   &rs6000_reg_names[ 3][0],	/* r3	*/				\
2440   &rs6000_reg_names[ 4][0],	/* r4	*/				\
2441   &rs6000_reg_names[ 5][0],	/* r5	*/				\
2442   &rs6000_reg_names[ 6][0],	/* r6	*/				\
2443   &rs6000_reg_names[ 7][0],	/* r7	*/				\
2444   &rs6000_reg_names[ 8][0],	/* r8	*/				\
2445   &rs6000_reg_names[ 9][0],	/* r9	*/				\
2446   &rs6000_reg_names[10][0],	/* r10  */				\
2447   &rs6000_reg_names[11][0],	/* r11  */				\
2448   &rs6000_reg_names[12][0],	/* r12  */				\
2449   &rs6000_reg_names[13][0],	/* r13  */				\
2450   &rs6000_reg_names[14][0],	/* r14  */				\
2451   &rs6000_reg_names[15][0],	/* r15  */				\
2452   &rs6000_reg_names[16][0],	/* r16  */				\
2453   &rs6000_reg_names[17][0],	/* r17  */				\
2454   &rs6000_reg_names[18][0],	/* r18  */				\
2455   &rs6000_reg_names[19][0],	/* r19  */				\
2456   &rs6000_reg_names[20][0],	/* r20  */				\
2457   &rs6000_reg_names[21][0],	/* r21  */				\
2458   &rs6000_reg_names[22][0],	/* r22  */				\
2459   &rs6000_reg_names[23][0],	/* r23  */				\
2460   &rs6000_reg_names[24][0],	/* r24  */				\
2461   &rs6000_reg_names[25][0],	/* r25  */				\
2462   &rs6000_reg_names[26][0],	/* r26  */				\
2463   &rs6000_reg_names[27][0],	/* r27  */				\
2464   &rs6000_reg_names[28][0],	/* r28  */				\
2465   &rs6000_reg_names[29][0],	/* r29  */				\
2466   &rs6000_reg_names[30][0],	/* r30  */				\
2467   &rs6000_reg_names[31][0],	/* r31  */				\
2468 									\
2469   &rs6000_reg_names[32][0],     /* fr0  */				\
2470   &rs6000_reg_names[33][0],	/* fr1  */				\
2471   &rs6000_reg_names[34][0],	/* fr2  */				\
2472   &rs6000_reg_names[35][0],	/* fr3  */				\
2473   &rs6000_reg_names[36][0],	/* fr4  */				\
2474   &rs6000_reg_names[37][0],	/* fr5  */				\
2475   &rs6000_reg_names[38][0],	/* fr6  */				\
2476   &rs6000_reg_names[39][0],	/* fr7  */				\
2477   &rs6000_reg_names[40][0],	/* fr8  */				\
2478   &rs6000_reg_names[41][0],	/* fr9  */				\
2479   &rs6000_reg_names[42][0],	/* fr10 */				\
2480   &rs6000_reg_names[43][0],	/* fr11 */				\
2481   &rs6000_reg_names[44][0],	/* fr12 */				\
2482   &rs6000_reg_names[45][0],	/* fr13 */				\
2483   &rs6000_reg_names[46][0],	/* fr14 */				\
2484   &rs6000_reg_names[47][0],	/* fr15 */				\
2485   &rs6000_reg_names[48][0],	/* fr16 */				\
2486   &rs6000_reg_names[49][0],	/* fr17 */				\
2487   &rs6000_reg_names[50][0],	/* fr18 */				\
2488   &rs6000_reg_names[51][0],	/* fr19 */				\
2489   &rs6000_reg_names[52][0],	/* fr20 */				\
2490   &rs6000_reg_names[53][0],	/* fr21 */				\
2491   &rs6000_reg_names[54][0],	/* fr22 */				\
2492   &rs6000_reg_names[55][0],	/* fr23 */				\
2493   &rs6000_reg_names[56][0],	/* fr24 */				\
2494   &rs6000_reg_names[57][0],	/* fr25 */				\
2495   &rs6000_reg_names[58][0],	/* fr26 */				\
2496   &rs6000_reg_names[59][0],	/* fr27 */				\
2497   &rs6000_reg_names[60][0],	/* fr28 */				\
2498   &rs6000_reg_names[61][0],	/* fr29 */				\
2499   &rs6000_reg_names[62][0],	/* fr30 */				\
2500   &rs6000_reg_names[63][0],	/* fr31 */				\
2501 									\
2502   &rs6000_reg_names[64][0],     /* mq   */				\
2503   &rs6000_reg_names[65][0],	/* lr   */				\
2504   &rs6000_reg_names[66][0],	/* ctr  */				\
2505   &rs6000_reg_names[67][0],	/* ap   */				\
2506 									\
2507   &rs6000_reg_names[68][0],	/* cr0  */				\
2508   &rs6000_reg_names[69][0],	/* cr1  */				\
2509   &rs6000_reg_names[70][0],	/* cr2  */				\
2510   &rs6000_reg_names[71][0],	/* cr3  */				\
2511   &rs6000_reg_names[72][0],	/* cr4  */				\
2512   &rs6000_reg_names[73][0],	/* cr5  */				\
2513   &rs6000_reg_names[74][0],	/* cr6  */				\
2514   &rs6000_reg_names[75][0],	/* cr7  */				\
2515 									\
2516   &rs6000_reg_names[76][0],	/* xer  */				\
2517 									\
2518   &rs6000_reg_names[77][0],	/* v0  */				\
2519   &rs6000_reg_names[78][0],	/* v1  */				\
2520   &rs6000_reg_names[79][0],	/* v2  */				\
2521   &rs6000_reg_names[80][0],	/* v3  */				\
2522   &rs6000_reg_names[81][0],	/* v4  */				\
2523   &rs6000_reg_names[82][0],	/* v5  */				\
2524   &rs6000_reg_names[83][0],	/* v6  */				\
2525   &rs6000_reg_names[84][0],	/* v7  */				\
2526   &rs6000_reg_names[85][0],	/* v8  */				\
2527   &rs6000_reg_names[86][0],	/* v9  */				\
2528   &rs6000_reg_names[87][0],	/* v10  */				\
2529   &rs6000_reg_names[88][0],	/* v11  */				\
2530   &rs6000_reg_names[89][0],	/* v12  */				\
2531   &rs6000_reg_names[90][0],	/* v13  */				\
2532   &rs6000_reg_names[91][0],	/* v14  */				\
2533   &rs6000_reg_names[92][0],	/* v15  */				\
2534   &rs6000_reg_names[93][0],	/* v16  */				\
2535   &rs6000_reg_names[94][0],	/* v17  */				\
2536   &rs6000_reg_names[95][0],	/* v18  */				\
2537   &rs6000_reg_names[96][0],	/* v19  */				\
2538   &rs6000_reg_names[97][0],	/* v20  */				\
2539   &rs6000_reg_names[98][0],	/* v21  */				\
2540   &rs6000_reg_names[99][0],	/* v22  */				\
2541   &rs6000_reg_names[100][0],	/* v23  */				\
2542   &rs6000_reg_names[101][0],	/* v24  */				\
2543   &rs6000_reg_names[102][0],	/* v25  */				\
2544   &rs6000_reg_names[103][0],	/* v26  */				\
2545   &rs6000_reg_names[104][0],	/* v27  */				\
2546   &rs6000_reg_names[105][0],	/* v28  */				\
2547   &rs6000_reg_names[106][0],	/* v29  */				\
2548   &rs6000_reg_names[107][0],	/* v30  */				\
2549   &rs6000_reg_names[108][0],	/* v31  */				\
2550   &rs6000_reg_names[109][0],	/* vrsave  */				\
2551   &rs6000_reg_names[110][0],	/* vscr  */				\
2552   &rs6000_reg_names[111][0],	/* spe_acc */				\
2553   &rs6000_reg_names[112][0],	/* spefscr */				\
2554 }
2555 
2556 /* Table of additional register names to use in user input.  */
2557 
2558 #define ADDITIONAL_REGISTER_NAMES \
2559  {{"r0",    0}, {"r1",    1}, {"r2",    2}, {"r3",    3},	\
2560   {"r4",    4}, {"r5",    5}, {"r6",    6}, {"r7",    7},	\
2561   {"r8",    8}, {"r9",    9}, {"r10",  10}, {"r11",  11},	\
2562   {"r12",  12}, {"r13",  13}, {"r14",  14}, {"r15",  15},	\
2563   {"r16",  16}, {"r17",  17}, {"r18",  18}, {"r19",  19},	\
2564   {"r20",  20}, {"r21",  21}, {"r22",  22}, {"r23",  23},	\
2565   {"r24",  24}, {"r25",  25}, {"r26",  26}, {"r27",  27},	\
2566   {"r28",  28}, {"r29",  29}, {"r30",  30}, {"r31",  31},	\
2567   {"fr0",  32}, {"fr1",  33}, {"fr2",  34}, {"fr3",  35},	\
2568   {"fr4",  36}, {"fr5",  37}, {"fr6",  38}, {"fr7",  39},	\
2569   {"fr8",  40}, {"fr9",  41}, {"fr10", 42}, {"fr11", 43},	\
2570   {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47},	\
2571   {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51},	\
2572   {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55},	\
2573   {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59},	\
2574   {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63},	\
2575   {"v0",   77}, {"v1",   78}, {"v2",   79}, {"v3",   80},       \
2576   {"v4",   81}, {"v5",   82}, {"v6",   83}, {"v7",   84},       \
2577   {"v8",   85}, {"v9",   86}, {"v10",  87}, {"v11",  88},       \
2578   {"v12",  89}, {"v13",  90}, {"v14",  91}, {"v15",  92},       \
2579   {"v16",  93}, {"v17",  94}, {"v18",  95}, {"v19",  96},       \
2580   {"v20",  97}, {"v21",  98}, {"v22",  99}, {"v23",  100},	\
2581   {"v24",  101},{"v25",  102},{"v26",  103},{"v27",  104},      \
2582   {"v28",  105},{"v29",  106},{"v30",  107},{"v31",  108},      \
2583   {"vrsave", 109}, {"vscr", 110},				\
2584   {"spe_acc", 111}, {"spefscr", 112},				\
2585   /* no additional names for: mq, lr, ctr, ap */		\
2586   {"cr0",  68}, {"cr1",  69}, {"cr2",  70}, {"cr3",  71},	\
2587   {"cr4",  72}, {"cr5",  73}, {"cr6",  74}, {"cr7",  75},	\
2588   {"cc",   68}, {"sp",    1}, {"toc",   2} }
2589 
2590 /* Text to write out after a CALL that may be replaced by glue code by
2591    the loader.  This depends on the AIX version.  */
2592 #define RS6000_CALL_GLUE "cror 31,31,31"
2593 
2594 /* This is how to output an element of a case-vector that is relative.  */
2595 
2596 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2597   do { char buf[100];					\
2598        fputs ("\t.long ", FILE);			\
2599        ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE);	\
2600        assemble_name (FILE, buf);			\
2601        putc ('-', FILE);				\
2602        ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL);	\
2603        assemble_name (FILE, buf);			\
2604        putc ('\n', FILE);				\
2605      } while (0)
2606 
2607 /* This is how to output an assembler line
2608    that says to advance the location counter
2609    to a multiple of 2**LOG bytes.  */
2610 
2611 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2612   if ((LOG) != 0)			\
2613     fprintf (FILE, "\t.align %d\n", (LOG))
2614 
2615 /* Pick up the return address upon entry to a procedure. Used for
2616    dwarf2 unwind information.  This also enables the table driven
2617    mechanism.  */
2618 
2619 #define INCOMING_RETURN_ADDR_RTX   gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2620 #define DWARF_FRAME_RETURN_COLUMN  DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2621 
2622 /* Describe how we implement __builtin_eh_return.  */
2623 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2624 #define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, 10)
2625 
2626 /* Print operand X (an rtx) in assembler syntax to file FILE.
2627    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2628    For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2629 
2630 #define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)
2631 
2632 /* Define which CODE values are valid.  */
2633 
2634 #define PRINT_OPERAND_PUNCT_VALID_P(CODE)  \
2635   ((CODE) == '.' || (CODE) == '&')
2636 
2637 /* Print a memory address as an operand to reference that memory location.  */
2638 
2639 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2640 
2641 /* Define the codes that are matched by predicates in rs6000.c.  */
2642 
2643 #define PREDICATE_CODES							   \
2644   {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,		   \
2645 		   LABEL_REF, SUBREG, REG, MEM, PARALLEL}},		   \
2646   {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	   \
2647 		    LABEL_REF, SUBREG, REG, MEM}},			   \
2648   {"short_cint_operand", {CONST_INT}},					   \
2649   {"u_short_cint_operand", {CONST_INT}},				   \
2650   {"non_short_cint_operand", {CONST_INT}},				   \
2651   {"exact_log2_cint_operand", {CONST_INT}},				   \
2652   {"gpc_reg_operand", {SUBREG, REG}},					   \
2653   {"cc_reg_operand", {SUBREG, REG}},					   \
2654   {"cc_reg_not_cr0_operand", {SUBREG, REG}},				   \
2655   {"reg_or_short_operand", {SUBREG, REG, CONST_INT}},			   \
2656   {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}},		   \
2657   {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}},		   \
2658   {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}},			   \
2659   {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}},			   \
2660   {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}},		   \
2661   {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2662   {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}},		   \
2663   {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2664   {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}},			   \
2665   {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}},			   \
2666   {"easy_fp_constant", {CONST_DOUBLE}},					   \
2667   {"easy_vector_constant", {CONST_VECTOR}},				   \
2668   {"easy_vector_constant_add_self", {CONST_VECTOR}},			   \
2669   {"zero_fp_constant", {CONST_DOUBLE}},					   \
2670   {"reg_or_mem_operand", {SUBREG, MEM, REG}},				   \
2671   {"lwa_operand", {SUBREG, MEM, REG}},					   \
2672   {"volatile_mem_operand", {MEM}},					   \
2673   {"offsettable_mem_operand", {MEM}},					   \
2674   {"invalid_gpr_mem", {MEM}},						   \
2675   {"base_reg_operand", {REG}},						   \
2676   {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}},		   \
2677   {"add_operand", {SUBREG, REG, CONST_INT}},				   \
2678   {"non_add_cint_operand", {CONST_INT}},				   \
2679   {"and_operand", {SUBREG, REG, CONST_INT}},				   \
2680   {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2681   {"and64_2_operand", {SUBREG, REG, CONST_INT}},			   \
2682   {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		   \
2683   {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}},		   \
2684   {"mask_operand", {CONST_INT}},					   \
2685   {"mask_operand_wrap", {CONST_INT}},					   \
2686   {"mask64_operand", {CONST_INT}},					   \
2687   {"mask64_2_operand", {CONST_INT}},					   \
2688   {"count_register_operand", {REG}},					   \
2689   {"xer_operand", {REG}},						   \
2690   {"symbol_ref_operand", {SYMBOL_REF}},					   \
2691   {"rs6000_tls_symbol_ref", {SYMBOL_REF}},				   \
2692   {"call_operand", {SYMBOL_REF, REG}},					   \
2693   {"current_file_function_operand", {SYMBOL_REF}},			   \
2694   {"input_operand", {SUBREG, MEM, REG, CONST_INT,			   \
2695 		     CONST_DOUBLE, SYMBOL_REF}},			   \
2696   {"load_multiple_operation", {PARALLEL}},				   \
2697   {"store_multiple_operation", {PARALLEL}},				   \
2698   {"vrsave_operation", {PARALLEL}},					   \
2699   {"branch_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2700 				  GT, LEU, LTU, GEU, GTU,		   \
2701 				  UNORDERED, ORDERED,			   \
2702 				  UNGE, UNLE }},			   \
2703   {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU,	   \
2704 					   UNORDERED }},		   \
2705   {"scc_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2706 			       GT, LEU, LTU, GEU, GTU,			   \
2707 			       UNORDERED, ORDERED,			   \
2708 			       UNGE, UNLE }},				   \
2709   {"trap_comparison_operator", {EQ, NE, LE, LT, GE,			   \
2710 				GT, LEU, LTU, GEU, GTU}},		   \
2711   {"boolean_operator", {AND, IOR, XOR}},				   \
2712   {"boolean_or_operator", {IOR, XOR}},					   \
2713   {"altivec_register_operand", {REG}},	                                   \
2714   {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2715 
2716 /* uncomment for disabling the corresponding default options */
2717 /* #define  MACHINE_no_sched_interblock */
2718 /* #define  MACHINE_no_sched_speculative */
2719 /* #define  MACHINE_no_sched_speculative_load */
2720 
2721 /* General flags.  */
2722 extern int flag_pic;
2723 extern int optimize;
2724 extern int flag_expensive_optimizations;
2725 extern int frame_pointer_needed;
2726 
2727 enum rs6000_builtins
2728 {
2729   /* AltiVec builtins.  */
2730   ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2731   ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2732   ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2733   ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2734   ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2735   ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2736   ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2737   ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2738   ALTIVEC_BUILTIN_VADDUBM,
2739   ALTIVEC_BUILTIN_VADDUHM,
2740   ALTIVEC_BUILTIN_VADDUWM,
2741   ALTIVEC_BUILTIN_VADDFP,
2742   ALTIVEC_BUILTIN_VADDCUW,
2743   ALTIVEC_BUILTIN_VADDUBS,
2744   ALTIVEC_BUILTIN_VADDSBS,
2745   ALTIVEC_BUILTIN_VADDUHS,
2746   ALTIVEC_BUILTIN_VADDSHS,
2747   ALTIVEC_BUILTIN_VADDUWS,
2748   ALTIVEC_BUILTIN_VADDSWS,
2749   ALTIVEC_BUILTIN_VAND,
2750   ALTIVEC_BUILTIN_VANDC,
2751   ALTIVEC_BUILTIN_VAVGUB,
2752   ALTIVEC_BUILTIN_VAVGSB,
2753   ALTIVEC_BUILTIN_VAVGUH,
2754   ALTIVEC_BUILTIN_VAVGSH,
2755   ALTIVEC_BUILTIN_VAVGUW,
2756   ALTIVEC_BUILTIN_VAVGSW,
2757   ALTIVEC_BUILTIN_VCFUX,
2758   ALTIVEC_BUILTIN_VCFSX,
2759   ALTIVEC_BUILTIN_VCTSXS,
2760   ALTIVEC_BUILTIN_VCTUXS,
2761   ALTIVEC_BUILTIN_VCMPBFP,
2762   ALTIVEC_BUILTIN_VCMPEQUB,
2763   ALTIVEC_BUILTIN_VCMPEQUH,
2764   ALTIVEC_BUILTIN_VCMPEQUW,
2765   ALTIVEC_BUILTIN_VCMPEQFP,
2766   ALTIVEC_BUILTIN_VCMPGEFP,
2767   ALTIVEC_BUILTIN_VCMPGTUB,
2768   ALTIVEC_BUILTIN_VCMPGTSB,
2769   ALTIVEC_BUILTIN_VCMPGTUH,
2770   ALTIVEC_BUILTIN_VCMPGTSH,
2771   ALTIVEC_BUILTIN_VCMPGTUW,
2772   ALTIVEC_BUILTIN_VCMPGTSW,
2773   ALTIVEC_BUILTIN_VCMPGTFP,
2774   ALTIVEC_BUILTIN_VEXPTEFP,
2775   ALTIVEC_BUILTIN_VLOGEFP,
2776   ALTIVEC_BUILTIN_VMADDFP,
2777   ALTIVEC_BUILTIN_VMAXUB,
2778   ALTIVEC_BUILTIN_VMAXSB,
2779   ALTIVEC_BUILTIN_VMAXUH,
2780   ALTIVEC_BUILTIN_VMAXSH,
2781   ALTIVEC_BUILTIN_VMAXUW,
2782   ALTIVEC_BUILTIN_VMAXSW,
2783   ALTIVEC_BUILTIN_VMAXFP,
2784   ALTIVEC_BUILTIN_VMHADDSHS,
2785   ALTIVEC_BUILTIN_VMHRADDSHS,
2786   ALTIVEC_BUILTIN_VMLADDUHM,
2787   ALTIVEC_BUILTIN_VMRGHB,
2788   ALTIVEC_BUILTIN_VMRGHH,
2789   ALTIVEC_BUILTIN_VMRGHW,
2790   ALTIVEC_BUILTIN_VMRGLB,
2791   ALTIVEC_BUILTIN_VMRGLH,
2792   ALTIVEC_BUILTIN_VMRGLW,
2793   ALTIVEC_BUILTIN_VMSUMUBM,
2794   ALTIVEC_BUILTIN_VMSUMMBM,
2795   ALTIVEC_BUILTIN_VMSUMUHM,
2796   ALTIVEC_BUILTIN_VMSUMSHM,
2797   ALTIVEC_BUILTIN_VMSUMUHS,
2798   ALTIVEC_BUILTIN_VMSUMSHS,
2799   ALTIVEC_BUILTIN_VMINUB,
2800   ALTIVEC_BUILTIN_VMINSB,
2801   ALTIVEC_BUILTIN_VMINUH,
2802   ALTIVEC_BUILTIN_VMINSH,
2803   ALTIVEC_BUILTIN_VMINUW,
2804   ALTIVEC_BUILTIN_VMINSW,
2805   ALTIVEC_BUILTIN_VMINFP,
2806   ALTIVEC_BUILTIN_VMULEUB,
2807   ALTIVEC_BUILTIN_VMULESB,
2808   ALTIVEC_BUILTIN_VMULEUH,
2809   ALTIVEC_BUILTIN_VMULESH,
2810   ALTIVEC_BUILTIN_VMULOUB,
2811   ALTIVEC_BUILTIN_VMULOSB,
2812   ALTIVEC_BUILTIN_VMULOUH,
2813   ALTIVEC_BUILTIN_VMULOSH,
2814   ALTIVEC_BUILTIN_VNMSUBFP,
2815   ALTIVEC_BUILTIN_VNOR,
2816   ALTIVEC_BUILTIN_VOR,
2817   ALTIVEC_BUILTIN_VSEL_4SI,
2818   ALTIVEC_BUILTIN_VSEL_4SF,
2819   ALTIVEC_BUILTIN_VSEL_8HI,
2820   ALTIVEC_BUILTIN_VSEL_16QI,
2821   ALTIVEC_BUILTIN_VPERM_4SI,
2822   ALTIVEC_BUILTIN_VPERM_4SF,
2823   ALTIVEC_BUILTIN_VPERM_8HI,
2824   ALTIVEC_BUILTIN_VPERM_16QI,
2825   ALTIVEC_BUILTIN_VPKUHUM,
2826   ALTIVEC_BUILTIN_VPKUWUM,
2827   ALTIVEC_BUILTIN_VPKPX,
2828   ALTIVEC_BUILTIN_VPKUHSS,
2829   ALTIVEC_BUILTIN_VPKSHSS,
2830   ALTIVEC_BUILTIN_VPKUWSS,
2831   ALTIVEC_BUILTIN_VPKSWSS,
2832   ALTIVEC_BUILTIN_VPKUHUS,
2833   ALTIVEC_BUILTIN_VPKSHUS,
2834   ALTIVEC_BUILTIN_VPKUWUS,
2835   ALTIVEC_BUILTIN_VPKSWUS,
2836   ALTIVEC_BUILTIN_VREFP,
2837   ALTIVEC_BUILTIN_VRFIM,
2838   ALTIVEC_BUILTIN_VRFIN,
2839   ALTIVEC_BUILTIN_VRFIP,
2840   ALTIVEC_BUILTIN_VRFIZ,
2841   ALTIVEC_BUILTIN_VRLB,
2842   ALTIVEC_BUILTIN_VRLH,
2843   ALTIVEC_BUILTIN_VRLW,
2844   ALTIVEC_BUILTIN_VRSQRTEFP,
2845   ALTIVEC_BUILTIN_VSLB,
2846   ALTIVEC_BUILTIN_VSLH,
2847   ALTIVEC_BUILTIN_VSLW,
2848   ALTIVEC_BUILTIN_VSL,
2849   ALTIVEC_BUILTIN_VSLO,
2850   ALTIVEC_BUILTIN_VSPLTB,
2851   ALTIVEC_BUILTIN_VSPLTH,
2852   ALTIVEC_BUILTIN_VSPLTW,
2853   ALTIVEC_BUILTIN_VSPLTISB,
2854   ALTIVEC_BUILTIN_VSPLTISH,
2855   ALTIVEC_BUILTIN_VSPLTISW,
2856   ALTIVEC_BUILTIN_VSRB,
2857   ALTIVEC_BUILTIN_VSRH,
2858   ALTIVEC_BUILTIN_VSRW,
2859   ALTIVEC_BUILTIN_VSRAB,
2860   ALTIVEC_BUILTIN_VSRAH,
2861   ALTIVEC_BUILTIN_VSRAW,
2862   ALTIVEC_BUILTIN_VSR,
2863   ALTIVEC_BUILTIN_VSRO,
2864   ALTIVEC_BUILTIN_VSUBUBM,
2865   ALTIVEC_BUILTIN_VSUBUHM,
2866   ALTIVEC_BUILTIN_VSUBUWM,
2867   ALTIVEC_BUILTIN_VSUBFP,
2868   ALTIVEC_BUILTIN_VSUBCUW,
2869   ALTIVEC_BUILTIN_VSUBUBS,
2870   ALTIVEC_BUILTIN_VSUBSBS,
2871   ALTIVEC_BUILTIN_VSUBUHS,
2872   ALTIVEC_BUILTIN_VSUBSHS,
2873   ALTIVEC_BUILTIN_VSUBUWS,
2874   ALTIVEC_BUILTIN_VSUBSWS,
2875   ALTIVEC_BUILTIN_VSUM4UBS,
2876   ALTIVEC_BUILTIN_VSUM4SBS,
2877   ALTIVEC_BUILTIN_VSUM4SHS,
2878   ALTIVEC_BUILTIN_VSUM2SWS,
2879   ALTIVEC_BUILTIN_VSUMSWS,
2880   ALTIVEC_BUILTIN_VXOR,
2881   ALTIVEC_BUILTIN_VSLDOI_16QI,
2882   ALTIVEC_BUILTIN_VSLDOI_8HI,
2883   ALTIVEC_BUILTIN_VSLDOI_4SI,
2884   ALTIVEC_BUILTIN_VSLDOI_4SF,
2885   ALTIVEC_BUILTIN_VUPKHSB,
2886   ALTIVEC_BUILTIN_VUPKHPX,
2887   ALTIVEC_BUILTIN_VUPKHSH,
2888   ALTIVEC_BUILTIN_VUPKLSB,
2889   ALTIVEC_BUILTIN_VUPKLPX,
2890   ALTIVEC_BUILTIN_VUPKLSH,
2891   ALTIVEC_BUILTIN_MTVSCR,
2892   ALTIVEC_BUILTIN_MFVSCR,
2893   ALTIVEC_BUILTIN_DSSALL,
2894   ALTIVEC_BUILTIN_DSS,
2895   ALTIVEC_BUILTIN_LVSL,
2896   ALTIVEC_BUILTIN_LVSR,
2897   ALTIVEC_BUILTIN_DSTT,
2898   ALTIVEC_BUILTIN_DSTST,
2899   ALTIVEC_BUILTIN_DSTSTT,
2900   ALTIVEC_BUILTIN_DST,
2901   ALTIVEC_BUILTIN_LVEBX,
2902   ALTIVEC_BUILTIN_LVEHX,
2903   ALTIVEC_BUILTIN_LVEWX,
2904   ALTIVEC_BUILTIN_LVXL,
2905   ALTIVEC_BUILTIN_LVX,
2906   ALTIVEC_BUILTIN_STVX,
2907   ALTIVEC_BUILTIN_STVEBX,
2908   ALTIVEC_BUILTIN_STVEHX,
2909   ALTIVEC_BUILTIN_STVEWX,
2910   ALTIVEC_BUILTIN_STVXL,
2911   ALTIVEC_BUILTIN_VCMPBFP_P,
2912   ALTIVEC_BUILTIN_VCMPEQFP_P,
2913   ALTIVEC_BUILTIN_VCMPEQUB_P,
2914   ALTIVEC_BUILTIN_VCMPEQUH_P,
2915   ALTIVEC_BUILTIN_VCMPEQUW_P,
2916   ALTIVEC_BUILTIN_VCMPGEFP_P,
2917   ALTIVEC_BUILTIN_VCMPGTFP_P,
2918   ALTIVEC_BUILTIN_VCMPGTSB_P,
2919   ALTIVEC_BUILTIN_VCMPGTSH_P,
2920   ALTIVEC_BUILTIN_VCMPGTSW_P,
2921   ALTIVEC_BUILTIN_VCMPGTUB_P,
2922   ALTIVEC_BUILTIN_VCMPGTUH_P,
2923   ALTIVEC_BUILTIN_VCMPGTUW_P,
2924   ALTIVEC_BUILTIN_ABSS_V4SI,
2925   ALTIVEC_BUILTIN_ABSS_V8HI,
2926   ALTIVEC_BUILTIN_ABSS_V16QI,
2927   ALTIVEC_BUILTIN_ABS_V4SI,
2928   ALTIVEC_BUILTIN_ABS_V4SF,
2929   ALTIVEC_BUILTIN_ABS_V8HI,
2930   ALTIVEC_BUILTIN_ABS_V16QI,
2931   ALTIVEC_BUILTIN_COMPILETIME_ERROR,
2932   /* SPE builtins.  */
2933   SPE_BUILTIN_EVADDW,
2934   SPE_BUILTIN_EVAND,
2935   SPE_BUILTIN_EVANDC,
2936   SPE_BUILTIN_EVDIVWS,
2937   SPE_BUILTIN_EVDIVWU,
2938   SPE_BUILTIN_EVEQV,
2939   SPE_BUILTIN_EVFSADD,
2940   SPE_BUILTIN_EVFSDIV,
2941   SPE_BUILTIN_EVFSMUL,
2942   SPE_BUILTIN_EVFSSUB,
2943   SPE_BUILTIN_EVLDDX,
2944   SPE_BUILTIN_EVLDHX,
2945   SPE_BUILTIN_EVLDWX,
2946   SPE_BUILTIN_EVLHHESPLATX,
2947   SPE_BUILTIN_EVLHHOSSPLATX,
2948   SPE_BUILTIN_EVLHHOUSPLATX,
2949   SPE_BUILTIN_EVLWHEX,
2950   SPE_BUILTIN_EVLWHOSX,
2951   SPE_BUILTIN_EVLWHOUX,
2952   SPE_BUILTIN_EVLWHSPLATX,
2953   SPE_BUILTIN_EVLWWSPLATX,
2954   SPE_BUILTIN_EVMERGEHI,
2955   SPE_BUILTIN_EVMERGEHILO,
2956   SPE_BUILTIN_EVMERGELO,
2957   SPE_BUILTIN_EVMERGELOHI,
2958   SPE_BUILTIN_EVMHEGSMFAA,
2959   SPE_BUILTIN_EVMHEGSMFAN,
2960   SPE_BUILTIN_EVMHEGSMIAA,
2961   SPE_BUILTIN_EVMHEGSMIAN,
2962   SPE_BUILTIN_EVMHEGUMIAA,
2963   SPE_BUILTIN_EVMHEGUMIAN,
2964   SPE_BUILTIN_EVMHESMF,
2965   SPE_BUILTIN_EVMHESMFA,
2966   SPE_BUILTIN_EVMHESMFAAW,
2967   SPE_BUILTIN_EVMHESMFANW,
2968   SPE_BUILTIN_EVMHESMI,
2969   SPE_BUILTIN_EVMHESMIA,
2970   SPE_BUILTIN_EVMHESMIAAW,
2971   SPE_BUILTIN_EVMHESMIANW,
2972   SPE_BUILTIN_EVMHESSF,
2973   SPE_BUILTIN_EVMHESSFA,
2974   SPE_BUILTIN_EVMHESSFAAW,
2975   SPE_BUILTIN_EVMHESSFANW,
2976   SPE_BUILTIN_EVMHESSIAAW,
2977   SPE_BUILTIN_EVMHESSIANW,
2978   SPE_BUILTIN_EVMHEUMI,
2979   SPE_BUILTIN_EVMHEUMIA,
2980   SPE_BUILTIN_EVMHEUMIAAW,
2981   SPE_BUILTIN_EVMHEUMIANW,
2982   SPE_BUILTIN_EVMHEUSIAAW,
2983   SPE_BUILTIN_EVMHEUSIANW,
2984   SPE_BUILTIN_EVMHOGSMFAA,
2985   SPE_BUILTIN_EVMHOGSMFAN,
2986   SPE_BUILTIN_EVMHOGSMIAA,
2987   SPE_BUILTIN_EVMHOGSMIAN,
2988   SPE_BUILTIN_EVMHOGUMIAA,
2989   SPE_BUILTIN_EVMHOGUMIAN,
2990   SPE_BUILTIN_EVMHOSMF,
2991   SPE_BUILTIN_EVMHOSMFA,
2992   SPE_BUILTIN_EVMHOSMFAAW,
2993   SPE_BUILTIN_EVMHOSMFANW,
2994   SPE_BUILTIN_EVMHOSMI,
2995   SPE_BUILTIN_EVMHOSMIA,
2996   SPE_BUILTIN_EVMHOSMIAAW,
2997   SPE_BUILTIN_EVMHOSMIANW,
2998   SPE_BUILTIN_EVMHOSSF,
2999   SPE_BUILTIN_EVMHOSSFA,
3000   SPE_BUILTIN_EVMHOSSFAAW,
3001   SPE_BUILTIN_EVMHOSSFANW,
3002   SPE_BUILTIN_EVMHOSSIAAW,
3003   SPE_BUILTIN_EVMHOSSIANW,
3004   SPE_BUILTIN_EVMHOUMI,
3005   SPE_BUILTIN_EVMHOUMIA,
3006   SPE_BUILTIN_EVMHOUMIAAW,
3007   SPE_BUILTIN_EVMHOUMIANW,
3008   SPE_BUILTIN_EVMHOUSIAAW,
3009   SPE_BUILTIN_EVMHOUSIANW,
3010   SPE_BUILTIN_EVMWHSMF,
3011   SPE_BUILTIN_EVMWHSMFA,
3012   SPE_BUILTIN_EVMWHSMI,
3013   SPE_BUILTIN_EVMWHSMIA,
3014   SPE_BUILTIN_EVMWHSSF,
3015   SPE_BUILTIN_EVMWHSSFA,
3016   SPE_BUILTIN_EVMWHUMI,
3017   SPE_BUILTIN_EVMWHUMIA,
3018   SPE_BUILTIN_EVMWLSMIAAW,
3019   SPE_BUILTIN_EVMWLSMIANW,
3020   SPE_BUILTIN_EVMWLSSIAAW,
3021   SPE_BUILTIN_EVMWLSSIANW,
3022   SPE_BUILTIN_EVMWLUMI,
3023   SPE_BUILTIN_EVMWLUMIA,
3024   SPE_BUILTIN_EVMWLUMIAAW,
3025   SPE_BUILTIN_EVMWLUMIANW,
3026   SPE_BUILTIN_EVMWLUSIAAW,
3027   SPE_BUILTIN_EVMWLUSIANW,
3028   SPE_BUILTIN_EVMWSMF,
3029   SPE_BUILTIN_EVMWSMFA,
3030   SPE_BUILTIN_EVMWSMFAA,
3031   SPE_BUILTIN_EVMWSMFAN,
3032   SPE_BUILTIN_EVMWSMI,
3033   SPE_BUILTIN_EVMWSMIA,
3034   SPE_BUILTIN_EVMWSMIAA,
3035   SPE_BUILTIN_EVMWSMIAN,
3036   SPE_BUILTIN_EVMWHSSFAA,
3037   SPE_BUILTIN_EVMWSSF,
3038   SPE_BUILTIN_EVMWSSFA,
3039   SPE_BUILTIN_EVMWSSFAA,
3040   SPE_BUILTIN_EVMWSSFAN,
3041   SPE_BUILTIN_EVMWUMI,
3042   SPE_BUILTIN_EVMWUMIA,
3043   SPE_BUILTIN_EVMWUMIAA,
3044   SPE_BUILTIN_EVMWUMIAN,
3045   SPE_BUILTIN_EVNAND,
3046   SPE_BUILTIN_EVNOR,
3047   SPE_BUILTIN_EVOR,
3048   SPE_BUILTIN_EVORC,
3049   SPE_BUILTIN_EVRLW,
3050   SPE_BUILTIN_EVSLW,
3051   SPE_BUILTIN_EVSRWS,
3052   SPE_BUILTIN_EVSRWU,
3053   SPE_BUILTIN_EVSTDDX,
3054   SPE_BUILTIN_EVSTDHX,
3055   SPE_BUILTIN_EVSTDWX,
3056   SPE_BUILTIN_EVSTWHEX,
3057   SPE_BUILTIN_EVSTWHOX,
3058   SPE_BUILTIN_EVSTWWEX,
3059   SPE_BUILTIN_EVSTWWOX,
3060   SPE_BUILTIN_EVSUBFW,
3061   SPE_BUILTIN_EVXOR,
3062   SPE_BUILTIN_EVABS,
3063   SPE_BUILTIN_EVADDSMIAAW,
3064   SPE_BUILTIN_EVADDSSIAAW,
3065   SPE_BUILTIN_EVADDUMIAAW,
3066   SPE_BUILTIN_EVADDUSIAAW,
3067   SPE_BUILTIN_EVCNTLSW,
3068   SPE_BUILTIN_EVCNTLZW,
3069   SPE_BUILTIN_EVEXTSB,
3070   SPE_BUILTIN_EVEXTSH,
3071   SPE_BUILTIN_EVFSABS,
3072   SPE_BUILTIN_EVFSCFSF,
3073   SPE_BUILTIN_EVFSCFSI,
3074   SPE_BUILTIN_EVFSCFUF,
3075   SPE_BUILTIN_EVFSCFUI,
3076   SPE_BUILTIN_EVFSCTSF,
3077   SPE_BUILTIN_EVFSCTSI,
3078   SPE_BUILTIN_EVFSCTSIZ,
3079   SPE_BUILTIN_EVFSCTUF,
3080   SPE_BUILTIN_EVFSCTUI,
3081   SPE_BUILTIN_EVFSCTUIZ,
3082   SPE_BUILTIN_EVFSNABS,
3083   SPE_BUILTIN_EVFSNEG,
3084   SPE_BUILTIN_EVMRA,
3085   SPE_BUILTIN_EVNEG,
3086   SPE_BUILTIN_EVRNDW,
3087   SPE_BUILTIN_EVSUBFSMIAAW,
3088   SPE_BUILTIN_EVSUBFSSIAAW,
3089   SPE_BUILTIN_EVSUBFUMIAAW,
3090   SPE_BUILTIN_EVSUBFUSIAAW,
3091   SPE_BUILTIN_EVADDIW,
3092   SPE_BUILTIN_EVLDD,
3093   SPE_BUILTIN_EVLDH,
3094   SPE_BUILTIN_EVLDW,
3095   SPE_BUILTIN_EVLHHESPLAT,
3096   SPE_BUILTIN_EVLHHOSSPLAT,
3097   SPE_BUILTIN_EVLHHOUSPLAT,
3098   SPE_BUILTIN_EVLWHE,
3099   SPE_BUILTIN_EVLWHOS,
3100   SPE_BUILTIN_EVLWHOU,
3101   SPE_BUILTIN_EVLWHSPLAT,
3102   SPE_BUILTIN_EVLWWSPLAT,
3103   SPE_BUILTIN_EVRLWI,
3104   SPE_BUILTIN_EVSLWI,
3105   SPE_BUILTIN_EVSRWIS,
3106   SPE_BUILTIN_EVSRWIU,
3107   SPE_BUILTIN_EVSTDD,
3108   SPE_BUILTIN_EVSTDH,
3109   SPE_BUILTIN_EVSTDW,
3110   SPE_BUILTIN_EVSTWHE,
3111   SPE_BUILTIN_EVSTWHO,
3112   SPE_BUILTIN_EVSTWWE,
3113   SPE_BUILTIN_EVSTWWO,
3114   SPE_BUILTIN_EVSUBIFW,
3115 
3116   /* Compares.  */
3117   SPE_BUILTIN_EVCMPEQ,
3118   SPE_BUILTIN_EVCMPGTS,
3119   SPE_BUILTIN_EVCMPGTU,
3120   SPE_BUILTIN_EVCMPLTS,
3121   SPE_BUILTIN_EVCMPLTU,
3122   SPE_BUILTIN_EVFSCMPEQ,
3123   SPE_BUILTIN_EVFSCMPGT,
3124   SPE_BUILTIN_EVFSCMPLT,
3125   SPE_BUILTIN_EVFSTSTEQ,
3126   SPE_BUILTIN_EVFSTSTGT,
3127   SPE_BUILTIN_EVFSTSTLT,
3128 
3129   /* EVSEL compares.  */
3130   SPE_BUILTIN_EVSEL_CMPEQ,
3131   SPE_BUILTIN_EVSEL_CMPGTS,
3132   SPE_BUILTIN_EVSEL_CMPGTU,
3133   SPE_BUILTIN_EVSEL_CMPLTS,
3134   SPE_BUILTIN_EVSEL_CMPLTU,
3135   SPE_BUILTIN_EVSEL_FSCMPEQ,
3136   SPE_BUILTIN_EVSEL_FSCMPGT,
3137   SPE_BUILTIN_EVSEL_FSCMPLT,
3138   SPE_BUILTIN_EVSEL_FSTSTEQ,
3139   SPE_BUILTIN_EVSEL_FSTSTGT,
3140   SPE_BUILTIN_EVSEL_FSTSTLT,
3141 
3142   SPE_BUILTIN_EVSPLATFI,
3143   SPE_BUILTIN_EVSPLATI,
3144   SPE_BUILTIN_EVMWHSSMAA,
3145   SPE_BUILTIN_EVMWHSMFAA,
3146   SPE_BUILTIN_EVMWHSMIAA,
3147   SPE_BUILTIN_EVMWHUSIAA,
3148   SPE_BUILTIN_EVMWHUMIAA,
3149   SPE_BUILTIN_EVMWHSSFAN,
3150   SPE_BUILTIN_EVMWHSSIAN,
3151   SPE_BUILTIN_EVMWHSMFAN,
3152   SPE_BUILTIN_EVMWHSMIAN,
3153   SPE_BUILTIN_EVMWHUSIAN,
3154   SPE_BUILTIN_EVMWHUMIAN,
3155   SPE_BUILTIN_EVMWHGSSFAA,
3156   SPE_BUILTIN_EVMWHGSMFAA,
3157   SPE_BUILTIN_EVMWHGSMIAA,
3158   SPE_BUILTIN_EVMWHGUMIAA,
3159   SPE_BUILTIN_EVMWHGSSFAN,
3160   SPE_BUILTIN_EVMWHGSMFAN,
3161   SPE_BUILTIN_EVMWHGSMIAN,
3162   SPE_BUILTIN_EVMWHGUMIAN,
3163   SPE_BUILTIN_MTSPEFSCR,
3164   SPE_BUILTIN_MFSPEFSCR,
3165   SPE_BUILTIN_BRINC
3166 };
3167