1 /* Register renaming for the GNU compiler.
2    Copyright (C) 2000, 2001, 2002, 2003, 2004  Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING.  If not, write to the Free
18    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19    02111-1307, USA.  */
20 
21 #define REG_OK_STRICT
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "reload.h"
34 #include "output.h"
35 #include "function.h"
36 #include "recog.h"
37 #include "flags.h"
38 #include "toplev.h"
39 #include "obstack.h"
40 
41 #ifndef REG_MODE_OK_FOR_BASE_P
42 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
43 #endif
44 
45 static const char *const reg_class_names[] = REG_CLASS_NAMES;
46 
47 struct du_chain
48 {
49   struct du_chain *next_chain;
50   struct du_chain *next_use;
51 
52   rtx insn;
53   rtx *loc;
54   ENUM_BITFIELD(reg_class) class : 16;
55   unsigned int need_caller_save_reg:1;
56   unsigned int earlyclobber:1;
57 };
58 
59 enum scan_actions
60 {
61   terminate_all_read,
62   terminate_overlapping_read,
63   terminate_write,
64   terminate_dead,
65   mark_read,
66   mark_write
67 };
68 
69 static const char * const scan_actions_name[] =
70 {
71   "terminate_all_read",
72   "terminate_overlapping_read",
73   "terminate_write",
74   "terminate_dead",
75   "mark_read",
76   "mark_write"
77 };
78 
79 static struct obstack rename_obstack;
80 
81 static void do_replace (struct du_chain *, int);
82 static void scan_rtx_reg (rtx, rtx *, enum reg_class,
83 			  enum scan_actions, enum op_type, int);
84 static void scan_rtx_address (rtx, rtx *, enum reg_class,
85 			      enum scan_actions, enum machine_mode);
86 static void scan_rtx (rtx, rtx *, enum reg_class, enum scan_actions,
87 		      enum op_type, int);
88 static struct du_chain *build_def_use (basic_block);
89 static void dump_def_use_chain (struct du_chain *);
90 static void note_sets (rtx, rtx, void *);
91 static void clear_dead_regs (HARD_REG_SET *, enum machine_mode, rtx);
92 static void merge_overlapping_regs (basic_block, HARD_REG_SET *,
93 				    struct du_chain *);
94 
95 /* Called through note_stores from update_life.  Find sets of registers, and
96    record them in *DATA (which is actually a HARD_REG_SET *).  */
97 
98 static void
note_sets(rtx x,rtx set ATTRIBUTE_UNUSED,void * data)99 note_sets (rtx x, rtx set ATTRIBUTE_UNUSED, void *data)
100 {
101   HARD_REG_SET *pset = (HARD_REG_SET *) data;
102   unsigned int regno;
103   int nregs;
104   if (GET_CODE (x) != REG)
105     return;
106   regno = REGNO (x);
107   nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
108 
109   /* There must not be pseudos at this point.  */
110   if (regno + nregs > FIRST_PSEUDO_REGISTER)
111     abort ();
112 
113   while (nregs-- > 0)
114     SET_HARD_REG_BIT (*pset, regno + nregs);
115 }
116 
117 /* Clear all registers from *PSET for which a note of kind KIND can be found
118    in the list NOTES.  */
119 
120 static void
clear_dead_regs(HARD_REG_SET * pset,enum machine_mode kind,rtx notes)121 clear_dead_regs (HARD_REG_SET *pset, enum machine_mode kind, rtx notes)
122 {
123   rtx note;
124   for (note = notes; note; note = XEXP (note, 1))
125     if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
126       {
127 	rtx reg = XEXP (note, 0);
128 	unsigned int regno = REGNO (reg);
129 	int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
130 
131 	/* There must not be pseudos at this point.  */
132 	if (regno + nregs > FIRST_PSEUDO_REGISTER)
133 	  abort ();
134 
135 	while (nregs-- > 0)
136 	  CLEAR_HARD_REG_BIT (*pset, regno + nregs);
137       }
138 }
139 
140 /* For a def-use chain CHAIN in basic block B, find which registers overlap
141    its lifetime and set the corresponding bits in *PSET.  */
142 
143 static void
merge_overlapping_regs(basic_block b,HARD_REG_SET * pset,struct du_chain * chain)144 merge_overlapping_regs (basic_block b, HARD_REG_SET *pset,
145 			struct du_chain *chain)
146 {
147   struct du_chain *t = chain;
148   rtx insn;
149   HARD_REG_SET live;
150 
151   REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
152   insn = BB_HEAD (b);
153   while (t)
154     {
155       /* Search forward until the next reference to the register to be
156 	 renamed.  */
157       while (insn != t->insn)
158 	{
159 	  if (INSN_P (insn))
160 	    {
161 	      clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
162 	      note_stores (PATTERN (insn), note_sets, (void *) &live);
163 	      /* Only record currently live regs if we are inside the
164 		 reg's live range.  */
165 	      if (t != chain)
166 		IOR_HARD_REG_SET (*pset, live);
167 	      clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
168 	    }
169 	  insn = NEXT_INSN (insn);
170 	}
171 
172       IOR_HARD_REG_SET (*pset, live);
173 
174       /* For the last reference, also merge in all registers set in the
175 	 same insn.
176 	 @@@ We only have take earlyclobbered sets into account.  */
177       if (! t->next_use)
178 	note_stores (PATTERN (insn), note_sets, (void *) pset);
179 
180       t = t->next_use;
181     }
182 }
183 
184 /* Perform register renaming on the current function.  */
185 
186 void
regrename_optimize(void)187 regrename_optimize (void)
188 {
189   int tick[FIRST_PSEUDO_REGISTER];
190   int this_tick = 0;
191   basic_block bb;
192   char *first_obj;
193 
194   memset (tick, 0, sizeof tick);
195 
196   gcc_obstack_init (&rename_obstack);
197   first_obj = obstack_alloc (&rename_obstack, 0);
198 
199   FOR_EACH_BB (bb)
200     {
201       struct du_chain *all_chains = 0;
202       HARD_REG_SET unavailable;
203       HARD_REG_SET regs_seen;
204 
205       CLEAR_HARD_REG_SET (unavailable);
206 
207       if (rtl_dump_file)
208 	fprintf (rtl_dump_file, "\nBasic block %d:\n", bb->index);
209 
210       all_chains = build_def_use (bb);
211 
212       if (rtl_dump_file)
213 	dump_def_use_chain (all_chains);
214 
215       CLEAR_HARD_REG_SET (unavailable);
216       /* Don't clobber traceback for noreturn functions.  */
217       if (frame_pointer_needed)
218 	{
219 	  int i;
220 
221 	  for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
222 	    SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM + i);
223 
224 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
225 	  for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
226 	    SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM + i);
227 #endif
228 	}
229 
230       CLEAR_HARD_REG_SET (regs_seen);
231       while (all_chains)
232 	{
233 	  int new_reg, best_new_reg;
234 	  int n_uses;
235 	  struct du_chain *this = all_chains;
236 	  struct du_chain *tmp, *last;
237 	  HARD_REG_SET this_unavailable;
238 	  int reg = REGNO (*this->loc);
239 	  int i;
240 
241 	  all_chains = this->next_chain;
242 
243 	  best_new_reg = reg;
244 
245 #if 0 /* This just disables optimization opportunities.  */
246 	  /* Only rename once we've seen the reg more than once.  */
247 	  if (! TEST_HARD_REG_BIT (regs_seen, reg))
248 	    {
249 	      SET_HARD_REG_BIT (regs_seen, reg);
250 	      continue;
251 	    }
252 #endif
253 
254 	  if (fixed_regs[reg] || global_regs[reg]
255 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
256 	      || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
257 #else
258 	      || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
259 #endif
260 	      )
261 	    continue;
262 
263 	  COPY_HARD_REG_SET (this_unavailable, unavailable);
264 
265 	  /* Find last entry on chain (which has the need_caller_save bit),
266 	     count number of uses, and narrow the set of registers we can
267 	     use for renaming.  */
268 	  n_uses = 0;
269 	  for (last = this; last->next_use; last = last->next_use)
270 	    {
271 	      n_uses++;
272 	      IOR_COMPL_HARD_REG_SET (this_unavailable,
273 				      reg_class_contents[last->class]);
274 	    }
275 	  if (n_uses < 1)
276 	    continue;
277 
278 	  IOR_COMPL_HARD_REG_SET (this_unavailable,
279 				  reg_class_contents[last->class]);
280 
281 	  if (this->need_caller_save_reg)
282 	    IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
283 
284 	  merge_overlapping_regs (bb, &this_unavailable, this);
285 
286 	  /* Now potential_regs is a reasonable approximation, let's
287 	     have a closer look at each register still in there.  */
288 	  for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
289 	    {
290 	      int nregs = HARD_REGNO_NREGS (new_reg, GET_MODE (*this->loc));
291 
292 	      for (i = nregs - 1; i >= 0; --i)
293 	        if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
294 		    || fixed_regs[new_reg + i]
295 		    || global_regs[new_reg + i]
296 		    /* Can't use regs which aren't saved by the prologue.  */
297 		    || (! regs_ever_live[new_reg + i]
298 			&& ! call_used_regs[new_reg + i])
299 #ifdef LEAF_REGISTERS
300 		    /* We can't use a non-leaf register if we're in a
301 		       leaf function.  */
302 		    || (current_function_is_leaf
303 			&& !LEAF_REGISTERS[new_reg + i])
304 #endif
305 #ifdef HARD_REGNO_RENAME_OK
306 		    || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
307 #endif
308 		    )
309 		  break;
310 	      if (i >= 0)
311 		continue;
312 
313 	      /* See whether it accepts all modes that occur in
314 		 definition and uses.  */
315 	      for (tmp = this; tmp; tmp = tmp->next_use)
316 		if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
317 		    || (tmp->need_caller_save_reg
318 			&& ! (HARD_REGNO_CALL_PART_CLOBBERED
319 			      (reg, GET_MODE (*tmp->loc)))
320 			&& (HARD_REGNO_CALL_PART_CLOBBERED
321 			    (new_reg, GET_MODE (*tmp->loc)))))
322 		  break;
323 	      if (! tmp)
324 		{
325 		  if (tick[best_new_reg] > tick[new_reg])
326 		    best_new_reg = new_reg;
327 		}
328 	    }
329 
330 	  if (rtl_dump_file)
331 	    {
332 	      fprintf (rtl_dump_file, "Register %s in insn %d",
333 		       reg_names[reg], INSN_UID (last->insn));
334 	      if (last->need_caller_save_reg)
335 		fprintf (rtl_dump_file, " crosses a call");
336 	    }
337 
338 	  if (best_new_reg == reg)
339 	    {
340 	      tick[reg] = ++this_tick;
341 	      if (rtl_dump_file)
342 		fprintf (rtl_dump_file, "; no available better choice\n");
343 	      continue;
344 	    }
345 
346 	  do_replace (this, best_new_reg);
347 	  tick[best_new_reg] = ++this_tick;
348 
349 	  if (rtl_dump_file)
350 	    fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
351 	}
352 
353       obstack_free (&rename_obstack, first_obj);
354     }
355 
356   obstack_free (&rename_obstack, NULL);
357 
358   if (rtl_dump_file)
359     fputc ('\n', rtl_dump_file);
360 
361   count_or_remove_death_notes (NULL, 1);
362   update_life_info (NULL, UPDATE_LIFE_LOCAL,
363 		    PROP_REG_INFO | PROP_DEATH_NOTES);
364 }
365 
366 static void
do_replace(struct du_chain * chain,int reg)367 do_replace (struct du_chain *chain, int reg)
368 {
369   while (chain)
370     {
371       unsigned int regno = ORIGINAL_REGNO (*chain->loc);
372       struct reg_attrs * attr = REG_ATTRS (*chain->loc);
373 
374       *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
375       if (regno >= FIRST_PSEUDO_REGISTER)
376 	ORIGINAL_REGNO (*chain->loc) = regno;
377       REG_ATTRS (*chain->loc) = attr;
378       chain = chain->next_use;
379     }
380 }
381 
382 
383 static struct du_chain *open_chains;
384 static struct du_chain *closed_chains;
385 
386 static void
scan_rtx_reg(rtx insn,rtx * loc,enum reg_class class,enum scan_actions action,enum op_type type,int earlyclobber)387 scan_rtx_reg (rtx insn, rtx *loc, enum reg_class class,
388 	      enum scan_actions action, enum op_type type, int earlyclobber)
389 {
390   struct du_chain **p;
391   rtx x = *loc;
392   enum machine_mode mode = GET_MODE (x);
393   int this_regno = REGNO (x);
394   int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
395 
396   if (action == mark_write)
397     {
398       if (type == OP_OUT)
399 	{
400 	  struct du_chain *this
401 	    = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
402 	  this->next_use = 0;
403 	  this->next_chain = open_chains;
404 	  this->loc = loc;
405 	  this->insn = insn;
406 	  this->class = class;
407 	  this->need_caller_save_reg = 0;
408 	  this->earlyclobber = earlyclobber;
409 	  open_chains = this;
410 	}
411       return;
412     }
413 
414   if ((type == OP_OUT && action != terminate_write)
415       || (type != OP_OUT && action == terminate_write))
416     return;
417 
418   for (p = &open_chains; *p;)
419     {
420       struct du_chain *this = *p;
421 
422       /* Check if the chain has been terminated if it has then skip to
423 	 the next chain.
424 
425 	 This can happen when we've already appended the location to
426 	 the chain in Step 3, but are trying to hide in-out operands
427 	 from terminate_write in Step 5.  */
428 
429       if (*this->loc == cc0_rtx)
430 	p = &this->next_chain;
431       else
432 	{
433 	  int regno = REGNO (*this->loc);
434 	  int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
435 	  int exact_match = (regno == this_regno && nregs == this_nregs);
436 
437 	  if (regno + nregs <= this_regno
438 	      || this_regno + this_nregs <= regno)
439 	    {
440 	      p = &this->next_chain;
441 	      continue;
442 	    }
443 
444 	  if (action == mark_read)
445 	    {
446 	      if (! exact_match)
447 		abort ();
448 
449 	      /* ??? Class NO_REGS can happen if the md file makes use of
450 		 EXTRA_CONSTRAINTS to match registers.  Which is arguably
451 		 wrong, but there we are.  Since we know not what this may
452 		 be replaced with, terminate the chain.  */
453 	      if (class != NO_REGS)
454 		{
455 		  this = obstack_alloc (&rename_obstack, sizeof (struct du_chain));
456 		  this->next_use = 0;
457 		  this->next_chain = (*p)->next_chain;
458 		  this->loc = loc;
459 		  this->insn = insn;
460 		  this->class = class;
461 		  this->need_caller_save_reg = 0;
462 		  while (*p)
463 		    p = &(*p)->next_use;
464 		  *p = this;
465 		  return;
466 		}
467 	    }
468 
469 	  if (action != terminate_overlapping_read || ! exact_match)
470 	    {
471 	      struct du_chain *next = this->next_chain;
472 
473 	      /* Whether the terminated chain can be used for renaming
474 	         depends on the action and this being an exact match.
475 	         In either case, we remove this element from open_chains.  */
476 
477 	      if ((action == terminate_dead || action == terminate_write)
478 		  && exact_match)
479 		{
480 		  this->next_chain = closed_chains;
481 		  closed_chains = this;
482 		  if (rtl_dump_file)
483 		    fprintf (rtl_dump_file,
484 			     "Closing chain %s at insn %d (%s)\n",
485 			     reg_names[REGNO (*this->loc)], INSN_UID (insn),
486 			     scan_actions_name[(int) action]);
487 		}
488 	      else
489 		{
490 		  if (rtl_dump_file)
491 		    fprintf (rtl_dump_file,
492 			     "Discarding chain %s at insn %d (%s)\n",
493 			     reg_names[REGNO (*this->loc)], INSN_UID (insn),
494 			     scan_actions_name[(int) action]);
495 		}
496 	      *p = next;
497 	    }
498 	  else
499 	    p = &this->next_chain;
500 	}
501     }
502 }
503 
504 /* Adapted from find_reloads_address_1.  CLASS is INDEX_REG_CLASS or
505    BASE_REG_CLASS depending on how the register is being considered.  */
506 
507 static void
scan_rtx_address(rtx insn,rtx * loc,enum reg_class class,enum scan_actions action,enum machine_mode mode)508 scan_rtx_address (rtx insn, rtx *loc, enum reg_class class,
509 		  enum scan_actions action, enum machine_mode mode)
510 {
511   rtx x = *loc;
512   RTX_CODE code = GET_CODE (x);
513   const char *fmt;
514   int i, j;
515 
516   if (action == mark_write)
517     return;
518 
519   switch (code)
520     {
521     case PLUS:
522       {
523 	rtx orig_op0 = XEXP (x, 0);
524 	rtx orig_op1 = XEXP (x, 1);
525 	RTX_CODE code0 = GET_CODE (orig_op0);
526 	RTX_CODE code1 = GET_CODE (orig_op1);
527 	rtx op0 = orig_op0;
528 	rtx op1 = orig_op1;
529 	rtx *locI = NULL;
530 	rtx *locB = NULL;
531 
532 	if (GET_CODE (op0) == SUBREG)
533 	  {
534 	    op0 = SUBREG_REG (op0);
535 	    code0 = GET_CODE (op0);
536 	  }
537 
538 	if (GET_CODE (op1) == SUBREG)
539 	  {
540 	    op1 = SUBREG_REG (op1);
541 	    code1 = GET_CODE (op1);
542 	  }
543 
544 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
545 	    || code0 == ZERO_EXTEND || code1 == MEM)
546 	  {
547 	    locI = &XEXP (x, 0);
548 	    locB = &XEXP (x, 1);
549 	  }
550 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
551 		 || code1 == ZERO_EXTEND || code0 == MEM)
552 	  {
553 	    locI = &XEXP (x, 1);
554 	    locB = &XEXP (x, 0);
555 	  }
556 	else if (code0 == CONST_INT || code0 == CONST
557 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
558 	  locB = &XEXP (x, 1);
559 	else if (code1 == CONST_INT || code1 == CONST
560 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
561 	  locB = &XEXP (x, 0);
562 	else if (code0 == REG && code1 == REG)
563 	  {
564 	    int index_op;
565 
566 	    if (REG_OK_FOR_INDEX_P (op0)
567 		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
568 	      index_op = 0;
569 	    else if (REG_OK_FOR_INDEX_P (op1)
570 		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
571 	      index_op = 1;
572 	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
573 	      index_op = 0;
574 	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
575 	      index_op = 1;
576 	    else if (REG_OK_FOR_INDEX_P (op1))
577 	      index_op = 1;
578 	    else
579 	      index_op = 0;
580 
581 	    locI = &XEXP (x, index_op);
582 	    locB = &XEXP (x, !index_op);
583 	  }
584 	else if (code0 == REG)
585 	  {
586 	    locI = &XEXP (x, 0);
587 	    locB = &XEXP (x, 1);
588 	  }
589 	else if (code1 == REG)
590 	  {
591 	    locI = &XEXP (x, 1);
592 	    locB = &XEXP (x, 0);
593 	  }
594 
595 	if (locI)
596 	  scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
597 	if (locB)
598 	  scan_rtx_address (insn, locB, MODE_BASE_REG_CLASS (mode), action, mode);
599 	return;
600       }
601 
602     case POST_INC:
603     case POST_DEC:
604     case POST_MODIFY:
605     case PRE_INC:
606     case PRE_DEC:
607     case PRE_MODIFY:
608 #ifndef AUTO_INC_DEC
609       /* If the target doesn't claim to handle autoinc, this must be
610 	 something special, like a stack push.  Kill this chain.  */
611       action = terminate_all_read;
612 #endif
613       break;
614 
615     case MEM:
616       scan_rtx_address (insn, &XEXP (x, 0),
617 			MODE_BASE_REG_CLASS (GET_MODE (x)), action,
618 			GET_MODE (x));
619       return;
620 
621     case REG:
622       scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
623       return;
624 
625     default:
626       break;
627     }
628 
629   fmt = GET_RTX_FORMAT (code);
630   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
631     {
632       if (fmt[i] == 'e')
633 	scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
634       else if (fmt[i] == 'E')
635 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
636 	  scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
637     }
638 }
639 
640 static void
scan_rtx(rtx insn,rtx * loc,enum reg_class class,enum scan_actions action,enum op_type type,int earlyclobber)641 scan_rtx (rtx insn, rtx *loc, enum reg_class class,
642 	  enum scan_actions action, enum op_type type, int earlyclobber)
643 {
644   const char *fmt;
645   rtx x = *loc;
646   enum rtx_code code = GET_CODE (x);
647   int i, j;
648 
649   code = GET_CODE (x);
650   switch (code)
651     {
652     case CONST:
653     case CONST_INT:
654     case CONST_DOUBLE:
655     case CONST_VECTOR:
656     case SYMBOL_REF:
657     case LABEL_REF:
658     case CC0:
659     case PC:
660       return;
661 
662     case REG:
663       scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
664       return;
665 
666     case MEM:
667       scan_rtx_address (insn, &XEXP (x, 0),
668 			MODE_BASE_REG_CLASS (GET_MODE (x)), action,
669 			GET_MODE (x));
670       return;
671 
672     case SET:
673       scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
674       scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
675       return;
676 
677     case STRICT_LOW_PART:
678       scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
679       return;
680 
681     case ZERO_EXTRACT:
682     case SIGN_EXTRACT:
683       scan_rtx (insn, &XEXP (x, 0), class, action,
684 		type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
685       scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
686       scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
687       return;
688 
689     case POST_INC:
690     case PRE_INC:
691     case POST_DEC:
692     case PRE_DEC:
693     case POST_MODIFY:
694     case PRE_MODIFY:
695       /* Should only happen inside MEM.  */
696       abort ();
697 
698     case CLOBBER:
699       scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
700       return;
701 
702     case EXPR_LIST:
703       scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
704       if (XEXP (x, 1))
705 	scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
706       return;
707 
708     default:
709       break;
710     }
711 
712   fmt = GET_RTX_FORMAT (code);
713   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
714     {
715       if (fmt[i] == 'e')
716 	scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
717       else if (fmt[i] == 'E')
718 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
719 	  scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
720     }
721 }
722 
723 /* Build def/use chain.  */
724 
725 static struct du_chain *
build_def_use(basic_block bb)726 build_def_use (basic_block bb)
727 {
728   rtx insn;
729 
730   open_chains = closed_chains = NULL;
731 
732   for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
733     {
734       if (INSN_P (insn))
735 	{
736 	  int n_ops;
737 	  rtx note;
738 	  rtx old_operands[MAX_RECOG_OPERANDS];
739 	  rtx old_dups[MAX_DUP_OPERANDS];
740 	  int i, icode;
741 	  int alt;
742 	  int predicated;
743 
744 	  /* Process the insn, determining its effect on the def-use
745 	     chains.  We perform the following steps with the register
746 	     references in the insn:
747 	     (1) Any read that overlaps an open chain, but doesn't exactly
748 	         match, causes that chain to be closed.  We can't deal
749 	         with overlaps yet.
750 	     (2) Any read outside an operand causes any chain it overlaps
751 	         with to be closed, since we can't replace it.
752 	     (3) Any read inside an operand is added if there's already
753 	         an open chain for it.
754 	     (4) For any REG_DEAD note we find, close open chains that
755 	         overlap it.
756 	     (5) For any write we find, close open chains that overlap it.
757 	     (6) For any write we find in an operand, make a new chain.
758 	     (7) For any REG_UNUSED, close any chains we just opened.  */
759 
760 	  icode = recog_memoized (insn);
761 	  extract_insn (insn);
762 	  if (! constrain_operands (1))
763 	    fatal_insn_not_found (insn);
764 	  preprocess_constraints ();
765 	  alt = which_alternative;
766 	  n_ops = recog_data.n_operands;
767 
768 	  /* Simplify the code below by rewriting things to reflect
769 	     matching constraints.  Also promote OP_OUT to OP_INOUT
770 	     in predicated instructions.  */
771 
772 	  predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
773 	  for (i = 0; i < n_ops; ++i)
774 	    {
775 	      int matches = recog_op_alt[i][alt].matches;
776 	      if (matches >= 0)
777 		recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
778 	      if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
779 	          || (predicated && recog_data.operand_type[i] == OP_OUT))
780 		recog_data.operand_type[i] = OP_INOUT;
781 	    }
782 
783 	  /* Step 1: Close chains for which we have overlapping reads.  */
784 	  for (i = 0; i < n_ops; i++)
785 	    scan_rtx (insn, recog_data.operand_loc[i],
786 		      NO_REGS, terminate_overlapping_read,
787 		      recog_data.operand_type[i], 0);
788 
789 	  /* Step 2: Close chains for which we have reads outside operands.
790 	     We do this by munging all operands into CC0, and closing
791 	     everything remaining.  */
792 
793 	  for (i = 0; i < n_ops; i++)
794 	    {
795 	      old_operands[i] = recog_data.operand[i];
796 	      /* Don't squash match_operator or match_parallel here, since
797 		 we don't know that all of the contained registers are
798 		 reachable by proper operands.  */
799 	      if (recog_data.constraints[i][0] == '\0')
800 		continue;
801 	      *recog_data.operand_loc[i] = cc0_rtx;
802 	    }
803 	  for (i = 0; i < recog_data.n_dups; i++)
804 	    {
805 	      int dup_num = recog_data.dup_num[i];
806 
807 	      old_dups[i] = *recog_data.dup_loc[i];
808 	      *recog_data.dup_loc[i] = cc0_rtx;
809 
810 	      /* For match_dup of match_operator or match_parallel, share
811 		 them, so that we don't miss changes in the dup.  */
812 	      if (icode >= 0
813 		  && insn_data[icode].operand[dup_num].eliminable == 0)
814 		old_dups[i] = recog_data.operand[dup_num];
815 	    }
816 
817 	  scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
818 		    OP_IN, 0);
819 
820 	  for (i = 0; i < recog_data.n_dups; i++)
821 	    *recog_data.dup_loc[i] = old_dups[i];
822 	  for (i = 0; i < n_ops; i++)
823 	    *recog_data.operand_loc[i] = old_operands[i];
824 
825 	  /* Step 2B: Can't rename function call argument registers.  */
826 	  if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
827 	    scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
828 		      NO_REGS, terminate_all_read, OP_IN, 0);
829 
830 	  /* Step 2C: Can't rename asm operands that were originally
831 	     hard registers.  */
832 	  if (asm_noperands (PATTERN (insn)) > 0)
833 	    for (i = 0; i < n_ops; i++)
834 	      {
835 		rtx *loc = recog_data.operand_loc[i];
836 		rtx op = *loc;
837 
838 		if (GET_CODE (op) == REG
839 		    && REGNO (op) == ORIGINAL_REGNO (op)
840 		    && (recog_data.operand_type[i] == OP_IN
841 			|| recog_data.operand_type[i] == OP_INOUT))
842 		  scan_rtx (insn, loc, NO_REGS, terminate_all_read, OP_IN, 0);
843 	      }
844 
845 	  /* Step 3: Append to chains for reads inside operands.  */
846 	  for (i = 0; i < n_ops + recog_data.n_dups; i++)
847 	    {
848 	      int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
849 	      rtx *loc = (i < n_ops
850 			  ? recog_data.operand_loc[opn]
851 			  : recog_data.dup_loc[i - n_ops]);
852 	      enum reg_class class = recog_op_alt[opn][alt].class;
853 	      enum op_type type = recog_data.operand_type[opn];
854 
855 	      /* Don't scan match_operand here, since we've no reg class
856 		 information to pass down.  Any operands that we could
857 		 substitute in will be represented elsewhere.  */
858 	      if (recog_data.constraints[opn][0] == '\0')
859 		continue;
860 
861 	      if (recog_op_alt[opn][alt].is_address)
862 		scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
863 	      else
864 		scan_rtx (insn, loc, class, mark_read, type, 0);
865 	    }
866 
867 	  /* Step 4: Close chains for registers that die here.
868 	     Also record updates for REG_INC notes.  */
869 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
870 	    {
871 	      if (REG_NOTE_KIND (note) == REG_DEAD)
872 		scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
873 			  OP_IN, 0);
874 	      else if (REG_NOTE_KIND (note) == REG_INC)
875 		scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
876 			  OP_INOUT, 0);
877 	    }
878 
879 	  /* Step 4B: If this is a call, any chain live at this point
880 	     requires a caller-saved reg.  */
881 	  if (GET_CODE (insn) == CALL_INSN)
882 	    {
883 	      struct du_chain *p;
884 	      for (p = open_chains; p; p = p->next_chain)
885 		p->need_caller_save_reg = 1;
886 	    }
887 
888 	  /* Step 5: Close open chains that overlap writes.  Similar to
889 	     step 2, we hide in-out operands, since we do not want to
890 	     close these chains.  */
891 
892 	  for (i = 0; i < n_ops; i++)
893 	    {
894 	      old_operands[i] = recog_data.operand[i];
895 	      if (recog_data.operand_type[i] == OP_INOUT)
896 		*recog_data.operand_loc[i] = cc0_rtx;
897 	    }
898 	  for (i = 0; i < recog_data.n_dups; i++)
899 	    {
900 	      int opn = recog_data.dup_num[i];
901 	      old_dups[i] = *recog_data.dup_loc[i];
902 	      if (recog_data.operand_type[opn] == OP_INOUT)
903 		*recog_data.dup_loc[i] = cc0_rtx;
904 	    }
905 
906 	  scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
907 
908 	  for (i = 0; i < recog_data.n_dups; i++)
909 	    *recog_data.dup_loc[i] = old_dups[i];
910 	  for (i = 0; i < n_ops; i++)
911 	    *recog_data.operand_loc[i] = old_operands[i];
912 
913 	  /* Step 6: Begin new chains for writes inside operands.  */
914 	  /* ??? Many targets have output constraints on the SET_DEST
915 	     of a call insn, which is stupid, since these are certainly
916 	     ABI defined hard registers.  Don't change calls at all.
917 	     Similarly take special care for asm statement that originally
918 	     referenced hard registers.  */
919 	  if (asm_noperands (PATTERN (insn)) > 0)
920 	    {
921 	      for (i = 0; i < n_ops; i++)
922 		if (recog_data.operand_type[i] == OP_OUT)
923 		  {
924 		    rtx *loc = recog_data.operand_loc[i];
925 		    rtx op = *loc;
926 		    enum reg_class class = recog_op_alt[i][alt].class;
927 
928 		    if (GET_CODE (op) == REG
929 			&& REGNO (op) == ORIGINAL_REGNO (op))
930 		      continue;
931 
932 		    scan_rtx (insn, loc, class, mark_write, OP_OUT,
933 			      recog_op_alt[i][alt].earlyclobber);
934 		  }
935 	    }
936 	  else if (GET_CODE (insn) != CALL_INSN)
937 	    for (i = 0; i < n_ops + recog_data.n_dups; i++)
938 	      {
939 		int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
940 		rtx *loc = (i < n_ops
941 			    ? recog_data.operand_loc[opn]
942 			    : recog_data.dup_loc[i - n_ops]);
943 		enum reg_class class = recog_op_alt[opn][alt].class;
944 
945 		if (recog_data.operand_type[opn] == OP_OUT)
946 		  scan_rtx (insn, loc, class, mark_write, OP_OUT,
947 			    recog_op_alt[opn][alt].earlyclobber);
948 	      }
949 
950 	  /* Step 7: Close chains for registers that were never
951 	     really used here.  */
952 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
953 	    if (REG_NOTE_KIND (note) == REG_UNUSED)
954 	      scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
955 			OP_IN, 0);
956 	}
957       if (insn == BB_END (bb))
958 	break;
959     }
960 
961   /* Since we close every chain when we find a REG_DEAD note, anything that
962      is still open lives past the basic block, so it can't be renamed.  */
963   return closed_chains;
964 }
965 
966 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE.  They are
967    printed in reverse order as that's how we build them.  */
968 
969 static void
dump_def_use_chain(struct du_chain * chains)970 dump_def_use_chain (struct du_chain *chains)
971 {
972   while (chains)
973     {
974       struct du_chain *this = chains;
975       int r = REGNO (*this->loc);
976       int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
977       fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
978       while (this)
979 	{
980 	  fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
981 		   reg_class_names[this->class]);
982 	  this = this->next_use;
983 	}
984       fprintf (rtl_dump_file, "\n");
985       chains = chains->next_chain;
986     }
987 }
988 
989 /* The following code does forward propagation of hard register copies.
990    The object is to eliminate as many dependencies as possible, so that
991    we have the most scheduling freedom.  As a side effect, we also clean
992    up some silly register allocation decisions made by reload.  This
993    code may be obsoleted by a new register allocator.  */
994 
995 /* For each register, we have a list of registers that contain the same
996    value.  The OLDEST_REGNO field points to the head of the list, and
997    the NEXT_REGNO field runs through the list.  The MODE field indicates
998    what mode the data is known to be in; this field is VOIDmode when the
999    register is not known to contain valid data.  */
1000 
1001 struct value_data_entry
1002 {
1003   enum machine_mode mode;
1004   unsigned int oldest_regno;
1005   unsigned int next_regno;
1006 };
1007 
1008 struct value_data
1009 {
1010   struct value_data_entry e[FIRST_PSEUDO_REGISTER];
1011   unsigned int max_value_regs;
1012 };
1013 
1014 static void kill_value_regno (unsigned, struct value_data *);
1015 static void kill_value (rtx, struct value_data *);
1016 static void set_value_regno (unsigned, enum machine_mode, struct value_data *);
1017 static void init_value_data (struct value_data *);
1018 static void kill_clobbered_value (rtx, rtx, void *);
1019 static void kill_set_value (rtx, rtx, void *);
1020 static int kill_autoinc_value (rtx *, void *);
1021 static void copy_value (rtx, rtx, struct value_data *);
1022 static bool mode_change_ok (enum machine_mode, enum machine_mode,
1023 			    unsigned int);
1024 static rtx maybe_mode_change (enum machine_mode, enum machine_mode,
1025 			      enum machine_mode, unsigned int, unsigned int);
1026 static rtx find_oldest_value_reg (enum reg_class, rtx, struct value_data *);
1027 static bool replace_oldest_value_reg (rtx *, enum reg_class, rtx,
1028 				      struct value_data *);
1029 static bool replace_oldest_value_addr (rtx *, enum reg_class,
1030 				       enum machine_mode, rtx,
1031 				       struct value_data *);
1032 static bool replace_oldest_value_mem (rtx, rtx, struct value_data *);
1033 static bool copyprop_hardreg_forward_1 (basic_block, struct value_data *);
1034 extern void debug_value_data (struct value_data *);
1035 #ifdef ENABLE_CHECKING
1036 static void validate_value_data (struct value_data *);
1037 #endif
1038 
1039 /* Kill register REGNO.  This involves removing it from any value lists,
1040    and resetting the value mode to VOIDmode.  */
1041 
1042 static void
kill_value_regno(unsigned int regno,struct value_data * vd)1043 kill_value_regno (unsigned int regno, struct value_data *vd)
1044 {
1045   unsigned int i, next;
1046 
1047   if (vd->e[regno].oldest_regno != regno)
1048     {
1049       for (i = vd->e[regno].oldest_regno;
1050 	   vd->e[i].next_regno != regno;
1051 	   i = vd->e[i].next_regno)
1052 	continue;
1053       vd->e[i].next_regno = vd->e[regno].next_regno;
1054     }
1055   else if ((next = vd->e[regno].next_regno) != INVALID_REGNUM)
1056     {
1057       for (i = next; i != INVALID_REGNUM; i = vd->e[i].next_regno)
1058 	vd->e[i].oldest_regno = next;
1059     }
1060 
1061   vd->e[regno].mode = VOIDmode;
1062   vd->e[regno].oldest_regno = regno;
1063   vd->e[regno].next_regno = INVALID_REGNUM;
1064 
1065 #ifdef ENABLE_CHECKING
1066   validate_value_data (vd);
1067 #endif
1068 }
1069 
1070 /* Kill X.  This is a convenience function for kill_value_regno
1071    so that we mind the mode the register is in.  */
1072 
1073 static void
kill_value(rtx x,struct value_data * vd)1074 kill_value (rtx x, struct value_data *vd)
1075 {
1076   /* SUBREGS are supposed to have been eliminated by now.  But some
1077      ports, e.g. i386 sse, use them to smuggle vector type information
1078      through to instruction selection.  Each such SUBREG should simplify,
1079      so if we get a NULL  we've done something wrong elsewhere.  */
1080 
1081   if (GET_CODE (x) == SUBREG)
1082     x = simplify_subreg (GET_MODE (x), SUBREG_REG (x),
1083 			 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
1084   if (REG_P (x))
1085     {
1086       unsigned int regno = REGNO (x);
1087       unsigned int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
1088       unsigned int i, j;
1089 
1090       /* Kill the value we're told to kill.  */
1091       for (i = 0; i < n; ++i)
1092 	kill_value_regno (regno + i, vd);
1093 
1094       /* Kill everything that overlapped what we're told to kill.  */
1095       if (regno < vd->max_value_regs)
1096 	j = 0;
1097       else
1098 	j = regno - vd->max_value_regs;
1099       for (; j < regno; ++j)
1100 	{
1101 	  if (vd->e[j].mode == VOIDmode)
1102 	    continue;
1103 	  n = HARD_REGNO_NREGS (j, vd->e[j].mode);
1104 	  if (j + n > regno)
1105 	    for (i = 0; i < n; ++i)
1106 	      kill_value_regno (j + i, vd);
1107 	}
1108     }
1109 }
1110 
1111 /* Remember that REGNO is valid in MODE.  */
1112 
1113 static void
set_value_regno(unsigned int regno,enum machine_mode mode,struct value_data * vd)1114 set_value_regno (unsigned int regno, enum machine_mode mode,
1115 		 struct value_data *vd)
1116 {
1117   unsigned int nregs;
1118 
1119   vd->e[regno].mode = mode;
1120 
1121   nregs = HARD_REGNO_NREGS (regno, mode);
1122   if (nregs > vd->max_value_regs)
1123     vd->max_value_regs = nregs;
1124 }
1125 
1126 /* Initialize VD such that there are no known relationships between regs.  */
1127 
1128 static void
init_value_data(struct value_data * vd)1129 init_value_data (struct value_data *vd)
1130 {
1131   int i;
1132   for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1133     {
1134       vd->e[i].mode = VOIDmode;
1135       vd->e[i].oldest_regno = i;
1136       vd->e[i].next_regno = INVALID_REGNUM;
1137     }
1138   vd->max_value_regs = 0;
1139 }
1140 
1141 /* Called through note_stores.  If X is clobbered, kill its value.  */
1142 
1143 static void
kill_clobbered_value(rtx x,rtx set,void * data)1144 kill_clobbered_value (rtx x, rtx set, void *data)
1145 {
1146   struct value_data *vd = data;
1147   if (GET_CODE (set) == CLOBBER)
1148     kill_value (x, vd);
1149 }
1150 
1151 /* Called through note_stores.  If X is set, not clobbered, kill its
1152    current value and install it as the root of its own value list.  */
1153 
1154 static void
kill_set_value(rtx x,rtx set,void * data)1155 kill_set_value (rtx x, rtx set, void *data)
1156 {
1157   struct value_data *vd = data;
1158   if (GET_CODE (set) != CLOBBER)
1159     {
1160       kill_value (x, vd);
1161       if (REG_P (x))
1162 	set_value_regno (REGNO (x), GET_MODE (x), vd);
1163     }
1164 }
1165 
1166 /* Called through for_each_rtx.  Kill any register used as the base of an
1167    auto-increment expression, and install that register as the root of its
1168    own value list.  */
1169 
1170 static int
kill_autoinc_value(rtx * px,void * data)1171 kill_autoinc_value (rtx *px, void *data)
1172 {
1173   rtx x = *px;
1174   struct value_data *vd = data;
1175 
1176   if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
1177     {
1178       x = XEXP (x, 0);
1179       kill_value (x, vd);
1180       set_value_regno (REGNO (x), Pmode, vd);
1181       return -1;
1182     }
1183 
1184   return 0;
1185 }
1186 
1187 /* Assert that SRC has been copied to DEST.  Adjust the data structures
1188    to reflect that SRC contains an older copy of the shared value.  */
1189 
1190 static void
copy_value(rtx dest,rtx src,struct value_data * vd)1191 copy_value (rtx dest, rtx src, struct value_data *vd)
1192 {
1193   unsigned int dr = REGNO (dest);
1194   unsigned int sr = REGNO (src);
1195   unsigned int dn, sn;
1196   unsigned int i;
1197 
1198   /* ??? At present, it's possible to see noop sets.  It'd be nice if
1199      this were cleaned up beforehand...  */
1200   if (sr == dr)
1201     return;
1202 
1203   /* Do not propagate copies to the stack pointer, as that can leave
1204      memory accesses with no scheduling dependency on the stack update.  */
1205   if (dr == STACK_POINTER_REGNUM)
1206     return;
1207 
1208   /* Likewise with the frame pointer, if we're using one.  */
1209   if (frame_pointer_needed && dr == HARD_FRAME_POINTER_REGNUM)
1210     return;
1211 
1212   /* If SRC and DEST overlap, don't record anything.  */
1213   dn = HARD_REGNO_NREGS (dr, GET_MODE (dest));
1214   sn = HARD_REGNO_NREGS (sr, GET_MODE (dest));
1215   if ((dr > sr && dr < sr + sn)
1216       || (sr > dr && sr < dr + dn))
1217     return;
1218 
1219   /* If SRC had no assigned mode (i.e. we didn't know it was live)
1220      assign it now and assume the value came from an input argument
1221      or somesuch.  */
1222   if (vd->e[sr].mode == VOIDmode)
1223     set_value_regno (sr, vd->e[dr].mode, vd);
1224 
1225   /* If we are narrowing the input to a smaller number of hard regs,
1226      and it is in big endian, we are really extracting a high part.
1227      Since we generally associate a low part of a value with the value itself,
1228      we must not do the same for the high part.
1229      Note we can still get low parts for the same mode combination through
1230      a two-step copy involving differently sized hard regs.
1231      Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1232      (set (reg:DI r0) (reg:DI fr0))
1233      (set (reg:SI fr2) (reg:SI r0))
1234      loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1235      (set (reg:SI fr2) (reg:SI fr0))
1236      loads the high part of (reg:DI fr0) into fr2.
1237 
1238      We can't properly represent the latter case in our tables, so don't
1239      record anything then.  */
1240   else if (sn < (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode)
1241 	   && (GET_MODE_SIZE (vd->e[sr].mode) > UNITS_PER_WORD
1242 	       ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
1243     return;
1244 
1245   /* If SRC had been assigned a mode narrower than the copy, we can't
1246      link DEST into the chain, because not all of the pieces of the
1247      copy came from oldest_regno.  */
1248   else if (sn > (unsigned int) HARD_REGNO_NREGS (sr, vd->e[sr].mode))
1249     return;
1250 
1251   /* Link DR at the end of the value chain used by SR.  */
1252 
1253   vd->e[dr].oldest_regno = vd->e[sr].oldest_regno;
1254 
1255   for (i = sr; vd->e[i].next_regno != INVALID_REGNUM; i = vd->e[i].next_regno)
1256     continue;
1257   vd->e[i].next_regno = dr;
1258 
1259 #ifdef ENABLE_CHECKING
1260   validate_value_data (vd);
1261 #endif
1262 }
1263 
1264 /* Return true if a mode change from ORIG to NEW is allowed for REGNO.  */
1265 
1266 static bool
mode_change_ok(enum machine_mode orig_mode,enum machine_mode new_mode,unsigned int regno ATTRIBUTE_UNUSED)1267 mode_change_ok (enum machine_mode orig_mode, enum machine_mode new_mode,
1268 		unsigned int regno ATTRIBUTE_UNUSED)
1269 {
1270   if (GET_MODE_SIZE (orig_mode) < GET_MODE_SIZE (new_mode))
1271     return false;
1272 
1273 #ifdef CANNOT_CHANGE_MODE_CLASS
1274   return !REG_CANNOT_CHANGE_MODE_P (regno, orig_mode, new_mode);
1275 #endif
1276 
1277   return true;
1278 }
1279 
1280 /* Register REGNO was originally set in ORIG_MODE.  It - or a copy of it -
1281    was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1282    in NEW_MODE.
1283    Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX.  */
1284 
1285 static rtx
maybe_mode_change(enum machine_mode orig_mode,enum machine_mode copy_mode,enum machine_mode new_mode,unsigned int regno,unsigned int copy_regno ATTRIBUTE_UNUSED)1286 maybe_mode_change (enum machine_mode orig_mode, enum machine_mode copy_mode,
1287 		   enum machine_mode new_mode, unsigned int regno,
1288 		   unsigned int copy_regno ATTRIBUTE_UNUSED)
1289 {
1290   if (orig_mode == new_mode)
1291     return gen_rtx_raw_REG (new_mode, regno);
1292   else if (mode_change_ok (orig_mode, new_mode, regno))
1293     {
1294       int copy_nregs = HARD_REGNO_NREGS (copy_regno, copy_mode);
1295       int use_nregs = HARD_REGNO_NREGS (copy_regno, new_mode);
1296       int copy_offset
1297 	= GET_MODE_SIZE (copy_mode) / copy_nregs * (copy_nregs - use_nregs);
1298       int offset
1299 	= GET_MODE_SIZE (orig_mode) - GET_MODE_SIZE (new_mode) - copy_offset;
1300       int byteoffset = offset % UNITS_PER_WORD;
1301       int wordoffset = offset - byteoffset;
1302 
1303       offset = ((WORDS_BIG_ENDIAN ? wordoffset : 0)
1304 		+ (BYTES_BIG_ENDIAN ? byteoffset : 0));
1305       return gen_rtx_raw_REG (new_mode,
1306 			      regno + subreg_regno_offset (regno, orig_mode,
1307 							   offset,
1308 							   new_mode));
1309     }
1310   return NULL_RTX;
1311 }
1312 
1313 /* Find the oldest copy of the value contained in REGNO that is in
1314    register class CLASS and has mode MODE.  If found, return an rtx
1315    of that oldest register, otherwise return NULL.  */
1316 
1317 static rtx
find_oldest_value_reg(enum reg_class class,rtx reg,struct value_data * vd)1318 find_oldest_value_reg (enum reg_class class, rtx reg, struct value_data *vd)
1319 {
1320   unsigned int regno = REGNO (reg);
1321   enum machine_mode mode = GET_MODE (reg);
1322   unsigned int i;
1323 
1324   /* If we are accessing REG in some mode other that what we set it in,
1325      make sure that the replacement is valid.  In particular, consider
1326 	(set (reg:DI r11) (...))
1327 	(set (reg:SI r9) (reg:SI r11))
1328 	(set (reg:SI r10) (...))
1329 	(set (...) (reg:DI r9))
1330      Replacing r9 with r11 is invalid.  */
1331   if (mode != vd->e[regno].mode)
1332     {
1333       if (HARD_REGNO_NREGS (regno, mode)
1334 	  > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1335 	return NULL_RTX;
1336     }
1337 
1338   for (i = vd->e[regno].oldest_regno; i != regno; i = vd->e[i].next_regno)
1339     {
1340       enum machine_mode oldmode = vd->e[i].mode;
1341       rtx new;
1342       unsigned int last;
1343 
1344       for (last = i; last < i + HARD_REGNO_NREGS (i, mode); last++)
1345 	if (!TEST_HARD_REG_BIT (reg_class_contents[class], last))
1346 	  return NULL_RTX;
1347 
1348       new = maybe_mode_change (oldmode, vd->e[regno].mode, mode, i, regno);
1349       if (new)
1350 	{
1351 	  ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg);
1352 	  REG_ATTRS (new) = REG_ATTRS (reg);
1353 	  return new;
1354 	}
1355     }
1356 
1357   return NULL_RTX;
1358 }
1359 
1360 /* If possible, replace the register at *LOC with the oldest register
1361    in register class CLASS.  Return true if successfully replaced.  */
1362 
1363 static bool
replace_oldest_value_reg(rtx * loc,enum reg_class class,rtx insn,struct value_data * vd)1364 replace_oldest_value_reg (rtx *loc, enum reg_class class, rtx insn,
1365 			  struct value_data *vd)
1366 {
1367   rtx new = find_oldest_value_reg (class, *loc, vd);
1368   if (new)
1369     {
1370       if (rtl_dump_file)
1371 	fprintf (rtl_dump_file, "insn %u: replaced reg %u with %u\n",
1372 		 INSN_UID (insn), REGNO (*loc), REGNO (new));
1373 
1374       *loc = new;
1375       return true;
1376     }
1377   return false;
1378 }
1379 
1380 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1381    Adapted from find_reloads_address_1.  CLASS is INDEX_REG_CLASS or
1382    BASE_REG_CLASS depending on how the register is being considered.  */
1383 
1384 static bool
replace_oldest_value_addr(rtx * loc,enum reg_class class,enum machine_mode mode,rtx insn,struct value_data * vd)1385 replace_oldest_value_addr (rtx *loc, enum reg_class class,
1386 			   enum machine_mode mode, rtx insn,
1387 			   struct value_data *vd)
1388 {
1389   rtx x = *loc;
1390   RTX_CODE code = GET_CODE (x);
1391   const char *fmt;
1392   int i, j;
1393   bool changed = false;
1394 
1395   switch (code)
1396     {
1397     case PLUS:
1398       {
1399 	rtx orig_op0 = XEXP (x, 0);
1400 	rtx orig_op1 = XEXP (x, 1);
1401 	RTX_CODE code0 = GET_CODE (orig_op0);
1402 	RTX_CODE code1 = GET_CODE (orig_op1);
1403 	rtx op0 = orig_op0;
1404 	rtx op1 = orig_op1;
1405 	rtx *locI = NULL;
1406 	rtx *locB = NULL;
1407 
1408 	if (GET_CODE (op0) == SUBREG)
1409 	  {
1410 	    op0 = SUBREG_REG (op0);
1411 	    code0 = GET_CODE (op0);
1412 	  }
1413 
1414 	if (GET_CODE (op1) == SUBREG)
1415 	  {
1416 	    op1 = SUBREG_REG (op1);
1417 	    code1 = GET_CODE (op1);
1418 	  }
1419 
1420 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1421 	    || code0 == ZERO_EXTEND || code1 == MEM)
1422 	  {
1423 	    locI = &XEXP (x, 0);
1424 	    locB = &XEXP (x, 1);
1425 	  }
1426 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1427 		 || code1 == ZERO_EXTEND || code0 == MEM)
1428 	  {
1429 	    locI = &XEXP (x, 1);
1430 	    locB = &XEXP (x, 0);
1431 	  }
1432 	else if (code0 == CONST_INT || code0 == CONST
1433 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1434 	  locB = &XEXP (x, 1);
1435 	else if (code1 == CONST_INT || code1 == CONST
1436 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1437 	  locB = &XEXP (x, 0);
1438 	else if (code0 == REG && code1 == REG)
1439 	  {
1440 	    int index_op;
1441 
1442 	    if (REG_OK_FOR_INDEX_P (op0)
1443 		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
1444 	      index_op = 0;
1445 	    else if (REG_OK_FOR_INDEX_P (op1)
1446 		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
1447 	      index_op = 1;
1448 	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
1449 	      index_op = 0;
1450 	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
1451 	      index_op = 1;
1452 	    else if (REG_OK_FOR_INDEX_P (op1))
1453 	      index_op = 1;
1454 	    else
1455 	      index_op = 0;
1456 
1457 	    locI = &XEXP (x, index_op);
1458 	    locB = &XEXP (x, !index_op);
1459 	  }
1460 	else if (code0 == REG)
1461 	  {
1462 	    locI = &XEXP (x, 0);
1463 	    locB = &XEXP (x, 1);
1464 	  }
1465 	else if (code1 == REG)
1466 	  {
1467 	    locI = &XEXP (x, 1);
1468 	    locB = &XEXP (x, 0);
1469 	  }
1470 
1471 	if (locI)
1472 	  changed |= replace_oldest_value_addr (locI, INDEX_REG_CLASS, mode,
1473 						insn, vd);
1474 	if (locB)
1475 	  changed |= replace_oldest_value_addr (locB,
1476 						MODE_BASE_REG_CLASS (mode),
1477 						mode, insn, vd);
1478 	return changed;
1479       }
1480 
1481     case POST_INC:
1482     case POST_DEC:
1483     case POST_MODIFY:
1484     case PRE_INC:
1485     case PRE_DEC:
1486     case PRE_MODIFY:
1487       return false;
1488 
1489     case MEM:
1490       return replace_oldest_value_mem (x, insn, vd);
1491 
1492     case REG:
1493       return replace_oldest_value_reg (loc, class, insn, vd);
1494 
1495     default:
1496       break;
1497     }
1498 
1499   fmt = GET_RTX_FORMAT (code);
1500   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1501     {
1502       if (fmt[i] == 'e')
1503 	changed |= replace_oldest_value_addr (&XEXP (x, i), class, mode,
1504 					      insn, vd);
1505       else if (fmt[i] == 'E')
1506 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 	  changed |= replace_oldest_value_addr (&XVECEXP (x, i, j), class,
1508 						mode, insn, vd);
1509     }
1510 
1511   return changed;
1512 }
1513 
1514 /* Similar to replace_oldest_value_reg, but X contains a memory.  */
1515 
1516 static bool
replace_oldest_value_mem(rtx x,rtx insn,struct value_data * vd)1517 replace_oldest_value_mem (rtx x, rtx insn, struct value_data *vd)
1518 {
1519   return replace_oldest_value_addr (&XEXP (x, 0),
1520 				    MODE_BASE_REG_CLASS (GET_MODE (x)),
1521 				    GET_MODE (x), insn, vd);
1522 }
1523 
1524 /* Perform the forward copy propagation on basic block BB.  */
1525 
1526 static bool
copyprop_hardreg_forward_1(basic_block bb,struct value_data * vd)1527 copyprop_hardreg_forward_1 (basic_block bb, struct value_data *vd)
1528 {
1529   bool changed = false;
1530   rtx insn;
1531 
1532   for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1533     {
1534       int n_ops, i, alt, predicated;
1535       bool is_asm;
1536       rtx set;
1537 
1538       if (! INSN_P (insn))
1539 	{
1540 	  if (insn == BB_END (bb))
1541 	    break;
1542 	  else
1543 	    continue;
1544 	}
1545 
1546       set = single_set (insn);
1547       extract_insn (insn);
1548       if (! constrain_operands (1))
1549 	fatal_insn_not_found (insn);
1550       preprocess_constraints ();
1551       alt = which_alternative;
1552       n_ops = recog_data.n_operands;
1553       is_asm = asm_noperands (PATTERN (insn)) >= 0;
1554 
1555       /* Simplify the code below by rewriting things to reflect
1556 	 matching constraints.  Also promote OP_OUT to OP_INOUT
1557 	 in predicated instructions.  */
1558 
1559       predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1560       for (i = 0; i < n_ops; ++i)
1561 	{
1562 	  int matches = recog_op_alt[i][alt].matches;
1563 	  if (matches >= 0)
1564 	    recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
1565 	  if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
1566 	      || (predicated && recog_data.operand_type[i] == OP_OUT))
1567 	    recog_data.operand_type[i] = OP_INOUT;
1568 	}
1569 
1570       /* For each earlyclobber operand, zap the value data.  */
1571       for (i = 0; i < n_ops; i++)
1572 	if (recog_op_alt[i][alt].earlyclobber)
1573 	  kill_value (recog_data.operand[i], vd);
1574 
1575       /* Within asms, a clobber cannot overlap inputs or outputs.
1576 	 I wouldn't think this were true for regular insns, but
1577 	 scan_rtx treats them like that...  */
1578       note_stores (PATTERN (insn), kill_clobbered_value, vd);
1579 
1580       /* Kill all auto-incremented values.  */
1581       /* ??? REG_INC is useless, since stack pushes aren't done that way.  */
1582       for_each_rtx (&PATTERN (insn), kill_autoinc_value, vd);
1583 
1584       /* Kill all early-clobbered operands.  */
1585       for (i = 0; i < n_ops; i++)
1586 	if (recog_op_alt[i][alt].earlyclobber)
1587 	  kill_value (recog_data.operand[i], vd);
1588 
1589       /* Special-case plain move instructions, since we may well
1590 	 be able to do the move from a different register class.  */
1591       if (set && REG_P (SET_SRC (set)))
1592 	{
1593 	  rtx src = SET_SRC (set);
1594 	  unsigned int regno = REGNO (src);
1595 	  enum machine_mode mode = GET_MODE (src);
1596 	  unsigned int i;
1597 	  rtx new;
1598 
1599 	  /* If we are accessing SRC in some mode other that what we
1600 	     set it in, make sure that the replacement is valid.  */
1601 	  if (mode != vd->e[regno].mode)
1602 	    {
1603 	      if (HARD_REGNO_NREGS (regno, mode)
1604 		  > HARD_REGNO_NREGS (regno, vd->e[regno].mode))
1605 		goto no_move_special_case;
1606 	    }
1607 
1608 	  /* If the destination is also a register, try to find a source
1609 	     register in the same class.  */
1610 	  if (REG_P (SET_DEST (set)))
1611 	    {
1612 	      new = find_oldest_value_reg (REGNO_REG_CLASS (regno), src, vd);
1613 	      if (new && validate_change (insn, &SET_SRC (set), new, 0))
1614 		{
1615 		  if (rtl_dump_file)
1616 		    fprintf (rtl_dump_file,
1617 			     "insn %u: replaced reg %u with %u\n",
1618 			     INSN_UID (insn), regno, REGNO (new));
1619 		  changed = true;
1620 		  goto did_replacement;
1621 		}
1622 	    }
1623 
1624 	  /* Otherwise, try all valid registers and see if its valid.  */
1625 	  for (i = vd->e[regno].oldest_regno; i != regno;
1626 	       i = vd->e[i].next_regno)
1627 	    {
1628 	      new = maybe_mode_change (vd->e[i].mode, vd->e[regno].mode,
1629 				       mode, i, regno);
1630 	      if (new != NULL_RTX)
1631 		{
1632 		  if (validate_change (insn, &SET_SRC (set), new, 0))
1633 		    {
1634 		      ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src);
1635 		      REG_ATTRS (new) = REG_ATTRS (src);
1636 		      if (rtl_dump_file)
1637 			fprintf (rtl_dump_file,
1638 				 "insn %u: replaced reg %u with %u\n",
1639 				 INSN_UID (insn), regno, REGNO (new));
1640 		      changed = true;
1641 		      goto did_replacement;
1642 		    }
1643 		}
1644 	    }
1645 	}
1646       no_move_special_case:
1647 
1648       /* For each input operand, replace a hard register with the
1649 	 eldest live copy that's in an appropriate register class.  */
1650       for (i = 0; i < n_ops; i++)
1651 	{
1652 	  bool replaced = false;
1653 
1654 	  /* Don't scan match_operand here, since we've no reg class
1655 	     information to pass down.  Any operands that we could
1656 	     substitute in will be represented elsewhere.  */
1657 	  if (recog_data.constraints[i][0] == '\0')
1658 	    continue;
1659 
1660 	  /* Don't replace in asms intentionally referencing hard regs.  */
1661 	  if (is_asm && GET_CODE (recog_data.operand[i]) == REG
1662 	      && (REGNO (recog_data.operand[i])
1663 		  == ORIGINAL_REGNO (recog_data.operand[i])))
1664 	    continue;
1665 
1666 	  if (recog_data.operand_type[i] == OP_IN)
1667 	    {
1668 	      if (recog_op_alt[i][alt].is_address)
1669 		replaced
1670 		  = replace_oldest_value_addr (recog_data.operand_loc[i],
1671 					       recog_op_alt[i][alt].class,
1672 					       VOIDmode, insn, vd);
1673 	      else if (REG_P (recog_data.operand[i]))
1674 		replaced
1675 		  = replace_oldest_value_reg (recog_data.operand_loc[i],
1676 					      recog_op_alt[i][alt].class,
1677 					      insn, vd);
1678 	      else if (GET_CODE (recog_data.operand[i]) == MEM)
1679 		replaced = replace_oldest_value_mem (recog_data.operand[i],
1680 						     insn, vd);
1681 	    }
1682 	  else if (GET_CODE (recog_data.operand[i]) == MEM)
1683 	    replaced = replace_oldest_value_mem (recog_data.operand[i],
1684 						 insn, vd);
1685 
1686 	  /* If we performed any replacement, update match_dups.  */
1687 	  if (replaced)
1688 	    {
1689 	      int j;
1690 	      rtx new;
1691 
1692 	      changed = true;
1693 
1694 	      new = *recog_data.operand_loc[i];
1695 	      recog_data.operand[i] = new;
1696 	      for (j = 0; j < recog_data.n_dups; j++)
1697 		if (recog_data.dup_num[j] == i)
1698 		  *recog_data.dup_loc[j] = new;
1699 	    }
1700 	}
1701 
1702     did_replacement:
1703       /* Clobber call-clobbered registers.  */
1704       if (GET_CODE (insn) == CALL_INSN)
1705 	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1706 	  if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1707 	    kill_value_regno (i, vd);
1708 
1709       /* Notice stores.  */
1710       note_stores (PATTERN (insn), kill_set_value, vd);
1711 
1712       /* Notice copies.  */
1713       if (set && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
1714 	copy_value (SET_DEST (set), SET_SRC (set), vd);
1715 
1716       if (insn == BB_END (bb))
1717 	break;
1718     }
1719 
1720   return changed;
1721 }
1722 
1723 /* Main entry point for the forward copy propagation optimization.  */
1724 
1725 void
copyprop_hardreg_forward(void)1726 copyprop_hardreg_forward (void)
1727 {
1728   struct value_data *all_vd;
1729   bool need_refresh;
1730   basic_block bb, bbp = 0;
1731 
1732   need_refresh = false;
1733 
1734   all_vd = xmalloc (sizeof (struct value_data) * last_basic_block);
1735 
1736   FOR_EACH_BB (bb)
1737     {
1738       /* If a block has a single predecessor, that we've already
1739 	 processed, begin with the value data that was live at
1740 	 the end of the predecessor block.  */
1741       /* ??? Ought to use more intelligent queuing of blocks.  */
1742       if (bb->pred)
1743 	for (bbp = bb; bbp && bbp != bb->pred->src; bbp = bbp->prev_bb);
1744       if (bb->pred
1745 	  && ! bb->pred->pred_next
1746 	  && ! (bb->pred->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1747 	  && bb->pred->src != ENTRY_BLOCK_PTR
1748 	  && bbp)
1749 	all_vd[bb->index] = all_vd[bb->pred->src->index];
1750       else
1751 	init_value_data (all_vd + bb->index);
1752 
1753       if (copyprop_hardreg_forward_1 (bb, all_vd + bb->index))
1754 	need_refresh = true;
1755     }
1756 
1757   if (need_refresh)
1758     {
1759       if (rtl_dump_file)
1760 	fputs ("\n\n", rtl_dump_file);
1761 
1762       /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1763 	 to scan, so we have to do a life update with no initial set of
1764 	 blocks Just In Case.  */
1765       delete_noop_moves (get_insns ());
1766       update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1767 			PROP_DEATH_NOTES
1768 			| PROP_SCAN_DEAD_CODE
1769 			| PROP_KILL_DEAD_CODE);
1770     }
1771 
1772   free (all_vd);
1773 }
1774 
1775 /* Dump the value chain data to stderr.  */
1776 
1777 void
debug_value_data(struct value_data * vd)1778 debug_value_data (struct value_data *vd)
1779 {
1780   HARD_REG_SET set;
1781   unsigned int i, j;
1782 
1783   CLEAR_HARD_REG_SET (set);
1784 
1785   for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1786     if (vd->e[i].oldest_regno == i)
1787       {
1788 	if (vd->e[i].mode == VOIDmode)
1789 	  {
1790 	    if (vd->e[i].next_regno != INVALID_REGNUM)
1791 	      fprintf (stderr, "[%u] Bad next_regno for empty chain (%u)\n",
1792 		       i, vd->e[i].next_regno);
1793 	    continue;
1794 	  }
1795 
1796 	SET_HARD_REG_BIT (set, i);
1797 	fprintf (stderr, "[%u %s] ", i, GET_MODE_NAME (vd->e[i].mode));
1798 
1799 	for (j = vd->e[i].next_regno;
1800 	     j != INVALID_REGNUM;
1801 	     j = vd->e[j].next_regno)
1802 	  {
1803 	    if (TEST_HARD_REG_BIT (set, j))
1804 	      {
1805 		fprintf (stderr, "[%u] Loop in regno chain\n", j);
1806 		return;
1807 	      }
1808 
1809 	    if (vd->e[j].oldest_regno != i)
1810 	      {
1811 		fprintf (stderr, "[%u] Bad oldest_regno (%u)\n",
1812 			 j, vd->e[j].oldest_regno);
1813 		return;
1814 	      }
1815 	    SET_HARD_REG_BIT (set, j);
1816 	    fprintf (stderr, "[%u %s] ", j, GET_MODE_NAME (vd->e[j].mode));
1817 	  }
1818 	fputc ('\n', stderr);
1819       }
1820 
1821   for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1822     if (! TEST_HARD_REG_BIT (set, i)
1823 	&& (vd->e[i].mode != VOIDmode
1824 	    || vd->e[i].oldest_regno != i
1825 	    || vd->e[i].next_regno != INVALID_REGNUM))
1826       fprintf (stderr, "[%u] Non-empty reg in chain (%s %u %i)\n",
1827 	       i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1828 	       vd->e[i].next_regno);
1829 }
1830 
1831 #ifdef ENABLE_CHECKING
1832 static void
validate_value_data(struct value_data * vd)1833 validate_value_data (struct value_data *vd)
1834 {
1835   HARD_REG_SET set;
1836   unsigned int i, j;
1837 
1838   CLEAR_HARD_REG_SET (set);
1839 
1840   for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1841     if (vd->e[i].oldest_regno == i)
1842       {
1843 	if (vd->e[i].mode == VOIDmode)
1844 	  {
1845 	    if (vd->e[i].next_regno != INVALID_REGNUM)
1846 	      internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1847 			      i, vd->e[i].next_regno);
1848 	    continue;
1849 	  }
1850 
1851 	SET_HARD_REG_BIT (set, i);
1852 
1853 	for (j = vd->e[i].next_regno;
1854 	     j != INVALID_REGNUM;
1855 	     j = vd->e[j].next_regno)
1856 	  {
1857 	    if (TEST_HARD_REG_BIT (set, j))
1858 	      internal_error ("validate_value_data: Loop in regno chain (%u)",
1859 			      j);
1860 	    if (vd->e[j].oldest_regno != i)
1861 	      internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1862 			      j, vd->e[j].oldest_regno);
1863 
1864 	    SET_HARD_REG_BIT (set, j);
1865 	  }
1866       }
1867 
1868   for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1869     if (! TEST_HARD_REG_BIT (set, i)
1870 	&& (vd->e[i].mode != VOIDmode
1871 	    || vd->e[i].oldest_regno != i
1872 	    || vd->e[i].next_regno != INVALID_REGNUM))
1873       internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1874 		      i, GET_MODE_NAME (vd->e[i].mode), vd->e[i].oldest_regno,
1875 		      vd->e[i].next_regno);
1876 }
1877 #endif
1878