1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 
3    Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
4    Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "gdb_assert.h"
35 #include "dis-asm.h"
36 
37 #define D0_REGNUM 0
38 #define D2_REGNUM 2
39 #define D3_REGNUM 3
40 #define A0_REGNUM 4
41 #define A2_REGNUM 6
42 #define A3_REGNUM 7
43 #define MDR_REGNUM 10
44 #define PSW_REGNUM 11
45 #define LIR_REGNUM 12
46 #define LAR_REGNUM 13
47 #define MDRQ_REGNUM 14
48 #define E0_REGNUM 15
49 #define MCRH_REGNUM 26
50 #define MCRL_REGNUM 27
51 #define MCVF_REGNUM 28
52 
53 enum movm_register_bits {
54   movm_exother_bit = 0x01,
55   movm_exreg1_bit  = 0x02,
56   movm_exreg0_bit  = 0x04,
57   movm_other_bit   = 0x08,
58   movm_a3_bit      = 0x10,
59   movm_a2_bit      = 0x20,
60   movm_d3_bit      = 0x40,
61   movm_d2_bit      = 0x80
62 };
63 
64 extern void _initialize_mn10300_tdep (void);
65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
66 					   CORE_ADDR pc);
67 
68 /* mn10300 private data */
69 struct gdbarch_tdep
70 {
71   int am33_mode;
72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
73 };
74 
75 /* Additional info used by the frame */
76 
77 struct frame_extra_info
78   {
79     int status;
80     int stack_size;
81   };
82 
83 
84 static char *
register_name(int reg,char ** regs,long sizeof_regs)85 register_name (int reg, char **regs, long sizeof_regs)
86 {
87   if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
88     return NULL;
89   else
90     return regs[reg];
91 }
92 
93 static const char *
mn10300_generic_register_name(int reg)94 mn10300_generic_register_name (int reg)
95 {
96   static char *regs[] =
97   { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
98     "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
99     "", "", "", "", "", "", "", "",
100     "", "", "", "", "", "", "", "fp"
101   };
102   return register_name (reg, regs, sizeof regs);
103 }
104 
105 
106 static const char *
am33_register_name(int reg)107 am33_register_name (int reg)
108 {
109   static char *regs[] =
110   { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
111     "sp", "pc", "mdr", "psw", "lir", "lar", "",
112     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
113     "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
114   };
115   return register_name (reg, regs, sizeof regs);
116 }
117 
118 static CORE_ADDR
mn10300_saved_pc_after_call(struct frame_info * fi)119 mn10300_saved_pc_after_call (struct frame_info *fi)
120 {
121   return read_memory_integer (read_register (SP_REGNUM), 4);
122 }
123 
124 static void
mn10300_extract_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * valbuf)125 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
126 			      struct regcache *regcache, void *valbuf)
127 {
128   char buf[MAX_REGISTER_SIZE];
129   int len = TYPE_LENGTH (type);
130   int reg, regsz;
131 
132   if (TYPE_CODE (type) == TYPE_CODE_PTR)
133     reg = 4;
134   else
135     reg = 0;
136 
137   regsz = register_size (gdbarch, reg);
138   if (len <= regsz)
139     {
140       regcache_raw_read (regcache, reg, buf);
141       memcpy (valbuf, buf, len);
142     }
143   else if (len <= 2 * regsz)
144     {
145       regcache_raw_read (regcache, reg, buf);
146       memcpy (valbuf, buf, regsz);
147       gdb_assert (regsz == register_size (gdbarch, reg + 1));
148       regcache_raw_read (regcache, reg + 1, buf);
149       memcpy ((char *) valbuf + regsz, buf, len - regsz);
150     }
151   else
152     internal_error (__FILE__, __LINE__,
153 		    "Cannot extract return value %d bytes long.", len);
154 }
155 
156 static void
mn10300_store_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,const void * valbuf)157 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
158 			    struct regcache *regcache, const void *valbuf)
159 {
160   int len = TYPE_LENGTH (type);
161   int reg, regsz;
162 
163   if (TYPE_CODE (type) == TYPE_CODE_PTR)
164     reg = 4;
165   else
166     reg = 0;
167 
168   regsz = register_size (gdbarch, reg);
169 
170   if (len <= regsz)
171     regcache_raw_write_part (regcache, reg, 0, len, valbuf);
172   else if (len <= 2 * regsz)
173     {
174       regcache_raw_write (regcache, reg, valbuf);
175       gdb_assert (regsz == register_size (gdbarch, reg + 1));
176       regcache_raw_write_part (regcache, reg+1, 0,
177 			       len - regsz, (char *) valbuf + regsz);
178     }
179   else
180     internal_error (__FILE__, __LINE__,
181 		    "Cannot store return value %d bytes long.", len);
182 }
183 
184 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
185 static struct frame_info *
analyze_dummy_frame(CORE_ADDR pc,CORE_ADDR frame)186 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
187 {
188   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
189   struct frame_info *dummy
190     = deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
191 					     sizeof (struct frame_extra_info));
192   deprecated_update_frame_pc_hack (dummy, pc);
193   deprecated_update_frame_base_hack (dummy, frame);
194   get_frame_extra_info (dummy)->status = 0;
195   get_frame_extra_info (dummy)->stack_size = 0;
196   mn10300_analyze_prologue (dummy, pc);
197   do_cleanups (old_chain);
198   return dummy;
199 }
200 
201 /* Values for frame_info.status */
202 
203 #define MY_FRAME_IN_SP 0x1
204 #define MY_FRAME_IN_FP 0x2
205 #define NO_MORE_FRAMES 0x4
206 
207 /* Compute the alignment required by a type.  */
208 
209 static int
mn10300_type_align(struct type * type)210 mn10300_type_align (struct type *type)
211 {
212   int i, align = 1;
213 
214   switch (TYPE_CODE (type))
215     {
216     case TYPE_CODE_INT:
217     case TYPE_CODE_ENUM:
218     case TYPE_CODE_SET:
219     case TYPE_CODE_RANGE:
220     case TYPE_CODE_CHAR:
221     case TYPE_CODE_BOOL:
222     case TYPE_CODE_FLT:
223     case TYPE_CODE_PTR:
224     case TYPE_CODE_REF:
225       return TYPE_LENGTH (type);
226 
227     case TYPE_CODE_COMPLEX:
228       return TYPE_LENGTH (type) / 2;
229 
230     case TYPE_CODE_STRUCT:
231     case TYPE_CODE_UNION:
232       for (i = 0; i < TYPE_NFIELDS (type); i++)
233 	{
234 	  int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
235 	  while (align < falign)
236 	    align <<= 1;
237 	}
238       return align;
239 
240     case TYPE_CODE_ARRAY:
241       /* HACK!  Structures containing arrays, even small ones, are not
242 	 elligible for returning in registers.  */
243       return 256;
244 
245     case TYPE_CODE_TYPEDEF:
246       return mn10300_type_align (check_typedef (type));
247 
248     default:
249       internal_error (__FILE__, __LINE__, "bad switch");
250     }
251 }
252 
253 /* Should call_function allocate stack space for a struct return?  */
254 static int
mn10300_use_struct_convention(struct type * type)255 mn10300_use_struct_convention (struct type *type)
256 {
257   /* Structures bigger than a pair of words can't be returned in
258      registers.  */
259   if (TYPE_LENGTH (type) > 8)
260     return 1;
261 
262   switch (TYPE_CODE (type))
263     {
264     case TYPE_CODE_STRUCT:
265     case TYPE_CODE_UNION:
266       /* Structures with a single field are handled as the field
267 	 itself.  */
268       if (TYPE_NFIELDS (type) == 1)
269 	return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
270 
271       /* Structures with word or double-word size are passed in memory, as
272 	 long as they require at least word alignment.  */
273       if (mn10300_type_align (type) >= 4)
274 	return 0;
275 
276       return 1;
277 
278       /* Arrays are addressable, so they're never returned in
279 	 registers.  This condition can only hold when the array is
280 	 the only field of a struct or union.  */
281     case TYPE_CODE_ARRAY:
282       return 1;
283 
284     case TYPE_CODE_TYPEDEF:
285       return mn10300_use_struct_convention (check_typedef (type));
286 
287     default:
288       return 0;
289     }
290 }
291 
292 /* Determine, for architecture GDBARCH, how a return value of TYPE
293    should be returned.  If it is supposed to be returned in registers,
294    and READBUF is non-zero, read the appropriate value from REGCACHE,
295    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
296    from WRITEBUF into REGCACHE.  */
297 
298 static enum return_value_convention
mn10300_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * readbuf,const void * writebuf)299 mn10300_return_value (struct gdbarch *gdbarch, struct type *type,
300 		      struct regcache *regcache, void *readbuf,
301 		      const void *writebuf)
302 {
303   if (mn10300_use_struct_convention (type))
304     return RETURN_VALUE_STRUCT_CONVENTION;
305 
306   if (readbuf)
307     mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
308   if (writebuf)
309     mn10300_store_return_value (gdbarch, type, regcache, writebuf);
310 
311   return RETURN_VALUE_REGISTER_CONVENTION;
312 }
313 
314 /* The breakpoint instruction must be the same size as the smallest
315    instruction in the instruction set.
316 
317    The Matsushita mn10x00 processors have single byte instructions
318    so we need a single byte breakpoint.  Matsushita hasn't defined
319    one, so we defined it ourselves.  */
320 
321 const static unsigned char *
mn10300_breakpoint_from_pc(CORE_ADDR * bp_addr,int * bp_size)322 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
323 {
324   static char breakpoint[] =
325   {0xff};
326   *bp_size = 1;
327   return breakpoint;
328 }
329 
330 
331 /* Fix fi->frame if it's bogus at this point.  This is a helper
332    function for mn10300_analyze_prologue. */
333 
334 static void
fix_frame_pointer(struct frame_info * fi,int stack_size)335 fix_frame_pointer (struct frame_info *fi, int stack_size)
336 {
337   if (fi && get_next_frame (fi) == NULL)
338     {
339       if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP)
340 	deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
341       else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP)
342 	deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM));
343     }
344 }
345 
346 
347 /* Set offsets of registers saved by movm instruction.
348    This is a helper function for mn10300_analyze_prologue.  */
349 
350 static void
set_movm_offsets(struct frame_info * fi,int movm_args)351 set_movm_offsets (struct frame_info *fi, int movm_args)
352 {
353   int offset = 0;
354 
355   if (fi == NULL || movm_args == 0)
356     return;
357 
358   if (movm_args & movm_other_bit)
359     {
360       /* The `other' bit leaves a blank area of four bytes at the
361          beginning of its block of saved registers, making it 32 bytes
362          long in total.  */
363       deprecated_get_frame_saved_regs (fi)[LAR_REGNUM]    = get_frame_base (fi) + offset + 4;
364       deprecated_get_frame_saved_regs (fi)[LIR_REGNUM]    = get_frame_base (fi) + offset + 8;
365       deprecated_get_frame_saved_regs (fi)[MDR_REGNUM]    = get_frame_base (fi) + offset + 12;
366       deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
367       deprecated_get_frame_saved_regs (fi)[A0_REGNUM]     = get_frame_base (fi) + offset + 20;
368       deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24;
369       deprecated_get_frame_saved_regs (fi)[D0_REGNUM]     = get_frame_base (fi) + offset + 28;
370       offset += 32;
371     }
372   if (movm_args & movm_a3_bit)
373     {
374       deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset;
375       offset += 4;
376     }
377   if (movm_args & movm_a2_bit)
378     {
379       deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset;
380       offset += 4;
381     }
382   if (movm_args & movm_d3_bit)
383     {
384       deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset;
385       offset += 4;
386     }
387   if (movm_args & movm_d2_bit)
388     {
389       deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset;
390       offset += 4;
391     }
392   if (AM33_MODE)
393     {
394       if (movm_args & movm_exother_bit)
395         {
396           deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM]   = get_frame_base (fi) + offset;
397           deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM]   = get_frame_base (fi) + offset + 4;
398           deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM]   = get_frame_base (fi) + offset + 8;
399           deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM]   = get_frame_base (fi) + offset + 12;
400           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16;
401           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20;
402           offset += 24;
403         }
404       if (movm_args & movm_exreg1_bit)
405         {
406           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset;
407           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4;
408           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8;
409           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12;
410           offset += 16;
411         }
412       if (movm_args & movm_exreg0_bit)
413         {
414           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset;
415           deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4;
416           offset += 8;
417         }
418     }
419 }
420 
421 
422 /* The main purpose of this file is dealing with prologues to extract
423    information about stack frames and saved registers.
424 
425    In gcc/config/mn13000/mn10300.c, the expand_prologue prologue
426    function is pretty readable, and has a nice explanation of how the
427    prologue is generated.  The prologues generated by that code will
428    have the following form (NOTE: the current code doesn't handle all
429    this!):
430 
431    + If this is an old-style varargs function, then its arguments
432      need to be flushed back to the stack:
433 
434         mov d0,(4,sp)
435         mov d1,(4,sp)
436 
437    + If we use any of the callee-saved registers, save them now.
438 
439         movm [some callee-saved registers],(sp)
440 
441    + If we have any floating-point registers to save:
442 
443      - Decrement the stack pointer to reserve space for the registers.
444        If the function doesn't need a frame pointer, we may combine
445        this with the adjustment that reserves space for the frame.
446 
447         add -SIZE, sp
448 
449      - Save the floating-point registers.  We have two possible
450        strategies:
451 
452        . Save them at fixed offset from the SP:
453 
454         fmov fsN,(OFFSETN,sp)
455         fmov fsM,(OFFSETM,sp)
456         ...
457 
458        Note that, if OFFSETN happens to be zero, you'll get the
459        different opcode: fmov fsN,(sp)
460 
461        . Or, set a0 to the start of the save area, and then use
462        post-increment addressing to save the FP registers.
463 
464         mov sp, a0
465         add SIZE, a0
466         fmov fsN,(a0+)
467         fmov fsM,(a0+)
468         ...
469 
470    + If the function needs a frame pointer, we set it here.
471 
472         mov sp, a3
473 
474    + Now we reserve space for the stack frame proper.  This could be
475      merged into the `add -SIZE, sp' instruction for FP saves up
476      above, unless we needed to set the frame pointer in the previous
477      step, or the frame is so large that allocating the whole thing at
478      once would put the FP register save slots out of reach of the
479      addressing mode (128 bytes).
480 
481         add -SIZE, sp
482 
483    One day we might keep the stack pointer constant, that won't
484    change the code for prologues, but it will make the frame
485    pointerless case much more common.  */
486 
487 /* Analyze the prologue to determine where registers are saved,
488    the end of the prologue, etc etc.  Return the end of the prologue
489    scanned.
490 
491    We store into FI (if non-null) several tidbits of information:
492 
493    * stack_size -- size of this stack frame.  Note that if we stop in
494    certain parts of the prologue/epilogue we may claim the size of the
495    current frame is zero.  This happens when the current frame has
496    not been allocated yet or has already been deallocated.
497 
498    * fsr -- Addresses of registers saved in the stack by this frame.
499 
500    * status -- A (relatively) generic status indicator.  It's a bitmask
501    with the following bits:
502 
503    MY_FRAME_IN_SP: The base of the current frame is actually in
504    the stack pointer.  This can happen for frame pointerless
505    functions, or cases where we're stopped in the prologue/epilogue
506    itself.  For these cases mn10300_analyze_prologue will need up
507    update fi->frame before returning or analyzing the register
508    save instructions.
509 
510    MY_FRAME_IN_FP: The base of the current frame is in the
511    frame pointer register ($a3).
512 
513    NO_MORE_FRAMES: Set this if the current frame is "start" or
514    if the first instruction looks like mov <imm>,sp.  This tells
515    frame chain to not bother trying to unwind past this frame.  */
516 
517 static CORE_ADDR
mn10300_analyze_prologue(struct frame_info * fi,CORE_ADDR pc)518 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
519 {
520   CORE_ADDR func_addr, func_end, addr, stop;
521   CORE_ADDR stack_size;
522   int imm_size;
523   unsigned char buf[4];
524   int status, movm_args = 0;
525   char *name;
526 
527   /* Use the PC in the frame if it's provided to look up the
528      start of this function.
529 
530      Note: kevinb/2003-07-16: We used to do the following here:
531 	pc = (fi ? get_frame_pc (fi) : pc);
532      But this is (now) badly broken when called from analyze_dummy_frame().
533   */
534   pc = (pc ? pc : get_frame_pc (fi));
535 
536   /* Find the start of this function.  */
537   status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
538 
539   /* Do nothing if we couldn't find the start of this function or if we're
540      stopped at the first instruction in the prologue.  */
541   if (status == 0)
542     {
543       return pc;
544     }
545 
546   /* If we're in start, then give up.  */
547   if (strcmp (name, "start") == 0)
548     {
549       if (fi != NULL)
550 	get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
551       return pc;
552     }
553 
554   /* At the start of a function our frame is in the stack pointer.  */
555   if (fi)
556     get_frame_extra_info (fi)->status = MY_FRAME_IN_SP;
557 
558   /* Get the next two bytes into buf, we need two because rets is a two
559      byte insn and the first isn't enough to uniquely identify it.  */
560   status = read_memory_nobpt (pc, buf, 2);
561   if (status != 0)
562     return pc;
563 
564 #if 0
565   /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of
566      changes to the frame in prologue examination code.  */
567   /* If we're physically on an "rets" instruction, then our frame has
568      already been deallocated.  Note this can also be true for retf
569      and ret if they specify a size of zero.
570 
571      In this case fi->frame is bogus, we need to fix it.  */
572   if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
573     {
574       if (get_next_frame (fi) == NULL)
575 	deprecated_update_frame_base_hack (fi, read_sp ());
576       return get_frame_pc (fi);
577     }
578 
579   /* Similarly if we're stopped on the first insn of a prologue as our
580      frame hasn't been allocated yet.  */
581   if (fi && get_frame_pc (fi) == func_addr)
582     {
583       if (get_next_frame (fi) == NULL)
584 	deprecated_update_frame_base_hack (fi, read_sp ());
585       return get_frame_pc (fi);
586     }
587 #endif
588 
589   /* Figure out where to stop scanning.  */
590   stop = fi ? pc : func_end;
591 
592   /* Don't walk off the end of the function.  */
593   stop = stop > func_end ? func_end : stop;
594 
595   /* Start scanning on the first instruction of this function.  */
596   addr = func_addr;
597 
598   /* Suck in two bytes.  */
599   if (addr + 2 >= stop
600       || (status = read_memory_nobpt (addr, buf, 2)) != 0)
601     {
602       fix_frame_pointer (fi, 0);
603       return addr;
604     }
605 
606   /* First see if this insn sets the stack pointer from a register; if
607      so, it's probably the initialization of the stack pointer in _start,
608      so mark this as the bottom-most frame.  */
609   if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
610     {
611       if (fi)
612 	get_frame_extra_info (fi)->status = NO_MORE_FRAMES;
613       return addr;
614     }
615 
616   /* Now look for movm [regs],sp, which saves the callee saved registers.
617 
618      At this time we don't know if fi->frame is valid, so we only note
619      that we encountered a movm instruction.  Later, we'll set the entries
620      in fsr.regs as needed.  */
621   if (buf[0] == 0xcf)
622     {
623       /* Extract the register list for the movm instruction.  */
624       status = read_memory_nobpt (addr + 1, buf, 1);
625       movm_args = *buf;
626 
627       addr += 2;
628 
629       /* Quit now if we're beyond the stop point.  */
630       if (addr >= stop)
631 	{
632 	  /* Fix fi->frame since it's bogus at this point.  */
633 	  if (fi && get_next_frame (fi) == NULL)
634 	    deprecated_update_frame_base_hack (fi, read_sp ());
635 
636 	  /* Note if/where callee saved registers were saved.  */
637 	  set_movm_offsets (fi, movm_args);
638 	  return addr;
639 	}
640 
641       /* Get the next two bytes so the prologue scan can continue.  */
642       status = read_memory_nobpt (addr, buf, 2);
643       if (status != 0)
644 	{
645 	  /* Fix fi->frame since it's bogus at this point.  */
646 	  if (fi && get_next_frame (fi) == NULL)
647 	    deprecated_update_frame_base_hack (fi, read_sp ());
648 
649 	  /* Note if/where callee saved registers were saved.  */
650 	  set_movm_offsets (fi, movm_args);
651 	  return addr;
652 	}
653     }
654 
655   /* Now see if we set up a frame pointer via "mov sp,a3" */
656   if (buf[0] == 0x3f)
657     {
658       addr += 1;
659 
660       /* The frame pointer is now valid.  */
661       if (fi)
662 	{
663 	  get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP;
664 	  get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP;
665 	}
666 
667       /* Quit now if we're beyond the stop point.  */
668       if (addr >= stop)
669 	{
670 	  /* Fix fi->frame if it's bogus at this point.  */
671 	  fix_frame_pointer (fi, 0);
672 
673 	  /* Note if/where callee saved registers were saved.  */
674 	  set_movm_offsets (fi, movm_args);
675 	  return addr;
676 	}
677 
678       /* Get two more bytes so scanning can continue.  */
679       status = read_memory_nobpt (addr, buf, 2);
680       if (status != 0)
681 	{
682 	  /* Fix fi->frame if it's bogus at this point.  */
683 	  fix_frame_pointer (fi, 0);
684 
685 	  /* Note if/where callee saved registers were saved.  */
686 	  set_movm_offsets (fi, movm_args);
687 	  return addr;
688 	}
689     }
690 
691   /* Next we should allocate the local frame.  No more prologue insns
692      are found after allocating the local frame.
693 
694      Search for add imm8,sp (0xf8feXX)
695      or add imm16,sp (0xfafeXXXX)
696      or add imm32,sp (0xfcfeXXXXXXXX).
697 
698      If none of the above was found, then this prologue has no
699      additional stack.  */
700 
701   status = read_memory_nobpt (addr, buf, 2);
702   if (status != 0)
703     {
704       /* Fix fi->frame if it's bogus at this point.  */
705       fix_frame_pointer (fi, 0);
706 
707       /* Note if/where callee saved registers were saved.  */
708       set_movm_offsets (fi, movm_args);
709       return addr;
710     }
711 
712   imm_size = 0;
713   if (buf[0] == 0xf8 && buf[1] == 0xfe)
714     imm_size = 1;
715   else if (buf[0] == 0xfa && buf[1] == 0xfe)
716     imm_size = 2;
717   else if (buf[0] == 0xfc && buf[1] == 0xfe)
718     imm_size = 4;
719 
720   if (imm_size != 0)
721     {
722       /* Suck in imm_size more bytes, they'll hold the size of the
723          current frame.  */
724       status = read_memory_nobpt (addr + 2, buf, imm_size);
725       if (status != 0)
726 	{
727 	  /* Fix fi->frame if it's bogus at this point.  */
728 	  fix_frame_pointer (fi, 0);
729 
730 	  /* Note if/where callee saved registers were saved.  */
731 	  set_movm_offsets (fi, movm_args);
732 	  return addr;
733 	}
734 
735       /* Note the size of the stack in the frame info structure.  */
736       stack_size = extract_signed_integer (buf, imm_size);
737       if (fi)
738 	get_frame_extra_info (fi)->stack_size = stack_size;
739 
740       /* We just consumed 2 + imm_size bytes.  */
741       addr += 2 + imm_size;
742 
743       /* No more prologue insns follow, so begin preparation to return.  */
744       /* Fix fi->frame if it's bogus at this point.  */
745       fix_frame_pointer (fi, stack_size);
746 
747       /* Note if/where callee saved registers were saved.  */
748       set_movm_offsets (fi, movm_args);
749       return addr;
750     }
751 
752   /* We never found an insn which allocates local stack space, regardless
753      this is the end of the prologue.  */
754   /* Fix fi->frame if it's bogus at this point.  */
755   fix_frame_pointer (fi, 0);
756 
757   /* Note if/where callee saved registers were saved.  */
758   set_movm_offsets (fi, movm_args);
759   return addr;
760 }
761 
762 
763 /* Function: saved_regs_size
764    Return the size in bytes of the register save area, based on the
765    saved_regs array in FI.  */
766 static int
saved_regs_size(struct frame_info * fi)767 saved_regs_size (struct frame_info *fi)
768 {
769   int adjust = 0;
770   int i;
771 
772   /* Reserve four bytes for every register saved.  */
773   for (i = 0; i < NUM_REGS; i++)
774     if (deprecated_get_frame_saved_regs (fi)[i])
775       adjust += 4;
776 
777   /* If we saved LIR, then it's most likely we used a `movm'
778      instruction with the `other' bit set, in which case the SP is
779      decremented by an extra four bytes, "to simplify calculation
780      of the transfer area", according to the processor manual.  */
781   if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM])
782     adjust += 4;
783 
784   return adjust;
785 }
786 
787 
788 /* Function: frame_chain
789    Figure out and return the caller's frame pointer given current
790    frame_info struct.
791 
792    We don't handle dummy frames yet but we would probably just return the
793    stack pointer that was in use at the time the function call was made?  */
794 
795 static CORE_ADDR
mn10300_frame_chain(struct frame_info * fi)796 mn10300_frame_chain (struct frame_info *fi)
797 {
798   struct frame_info *dummy;
799   /* Walk through the prologue to determine the stack size,
800      location of saved registers, end of the prologue, etc.  */
801   if (get_frame_extra_info (fi)->status == 0)
802     mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
803 
804   /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES.  */
805   if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES)
806     return 0;
807 
808   /* Now that we've analyzed our prologue, determine the frame
809      pointer for our caller.
810 
811      If our caller has a frame pointer, then we need to
812      find the entry value of $a3 to our function.
813 
814      If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
815      location pointed to by fsr.regs[A3_REGNUM].
816 
817      Else it's still in $a3.
818 
819      If our caller does not have a frame pointer, then his
820      frame base is fi->frame + -caller's stack size.  */
821 
822   /* The easiest way to get that info is to analyze our caller's frame.
823      So we set up a dummy frame and call mn10300_analyze_prologue to
824      find stuff for us.  */
825   dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi));
826 
827   if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP)
828     {
829       /* Our caller has a frame pointer.  So find the frame in $a3 or
830          in the stack.  */
831       if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM])
832 	return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM],
833 				     DEPRECATED_REGISTER_SIZE));
834       else
835 	return read_register (A3_REGNUM);
836     }
837   else
838     {
839       int adjust = saved_regs_size (fi);
840 
841       /* Our caller does not have a frame pointer.  So his frame starts
842          at the base of our frame (fi->frame) + register save space
843          + <his size>.  */
844       return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size;
845     }
846 }
847 
848 /* Function: skip_prologue
849    Return the address of the first inst past the prologue of the function.  */
850 
851 static CORE_ADDR
mn10300_skip_prologue(CORE_ADDR pc)852 mn10300_skip_prologue (CORE_ADDR pc)
853 {
854   /* We used to check the debug symbols, but that can lose if
855      we have a null prologue.  */
856   return mn10300_analyze_prologue (NULL, pc);
857 }
858 
859 /* generic_pop_current_frame calls this function if the current
860    frame isn't a dummy frame.  */
861 static void
mn10300_pop_frame_regular(struct frame_info * frame)862 mn10300_pop_frame_regular (struct frame_info *frame)
863 {
864   int regnum;
865 
866   write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
867 
868   /* Restore any saved registers.  */
869   for (regnum = 0; regnum < NUM_REGS; regnum++)
870     if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
871       {
872         ULONGEST value;
873 
874         value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
875                                               DEPRECATED_REGISTER_RAW_SIZE (regnum));
876         write_register (regnum, value);
877       }
878 
879   /* Actually cut back the stack, adjusted by the saved registers like
880      ret would.  */
881   write_register (SP_REGNUM, get_frame_base (frame) + saved_regs_size (frame));
882 }
883 
884 /* Function: pop_frame
885    This routine gets called when either the user uses the `return'
886    command, or the call dummy breakpoint gets hit.  */
887 static void
mn10300_pop_frame(void)888 mn10300_pop_frame (void)
889 {
890   struct frame_info *frame = get_current_frame ();
891   if (get_frame_type (frame) == DUMMY_FRAME)
892     /* NOTE: cagney/2002-22-23: Does this ever occure?  Surely a dummy
893        frame will have already been poped by the "infrun.c" code.  */
894     deprecated_pop_dummy_frame ();
895   else
896     mn10300_pop_frame_regular (frame);
897   /* Throw away any cached frame information.  */
898   flush_cached_frames ();
899 }
900 
901 /* Function: push_arguments
902    Setup arguments for a call to the target.  Arguments go in
903    order on the stack.  */
904 
905 static CORE_ADDR
mn10300_push_arguments(int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)906 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
907 			int struct_return, CORE_ADDR struct_addr)
908 {
909   int argnum = 0;
910   int len = 0;
911   int stack_offset = 0;
912   int regsused = struct_return ? 1 : 0;
913 
914   /* This should be a nop, but align the stack just in case something
915      went wrong.  Stacks are four byte aligned on the mn10300.  */
916   sp &= ~3;
917 
918   /* Now make space on the stack for the args.
919 
920      XXX This doesn't appear to handle pass-by-invisible reference
921      arguments.  */
922   for (argnum = 0; argnum < nargs; argnum++)
923     {
924       int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
925 
926       while (regsused < 2 && arg_length > 0)
927 	{
928 	  regsused++;
929 	  arg_length -= 4;
930 	}
931       len += arg_length;
932     }
933 
934   /* Allocate stack space.  */
935   sp -= len;
936 
937   regsused = struct_return ? 1 : 0;
938   /* Push all arguments onto the stack. */
939   for (argnum = 0; argnum < nargs; argnum++)
940     {
941       int len;
942       char *val;
943 
944       /* XXX Check this.  What about UNIONS?  */
945       if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
946 	  && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
947 	{
948 	  /* XXX Wrong, we want a pointer to this argument.  */
949 	  len = TYPE_LENGTH (VALUE_TYPE (*args));
950 	  val = (char *) VALUE_CONTENTS (*args);
951 	}
952       else
953 	{
954 	  len = TYPE_LENGTH (VALUE_TYPE (*args));
955 	  val = (char *) VALUE_CONTENTS (*args);
956 	}
957 
958       while (regsused < 2 && len > 0)
959 	{
960 	  write_register (regsused, extract_unsigned_integer (val, 4));
961 	  val += 4;
962 	  len -= 4;
963 	  regsused++;
964 	}
965 
966       while (len > 0)
967 	{
968 	  write_memory (sp + stack_offset, val, 4);
969 	  len -= 4;
970 	  val += 4;
971 	  stack_offset += 4;
972 	}
973 
974       args++;
975     }
976 
977   /* Make space for the flushback area.  */
978   sp -= 8;
979   return sp;
980 }
981 
982 /* Function: push_return_address (pc)
983    Set up the return address for the inferior function call.
984    Needed for targets where we don't actually execute a JSR/BSR instruction */
985 
986 static CORE_ADDR
mn10300_push_return_address(CORE_ADDR pc,CORE_ADDR sp)987 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
988 {
989   unsigned char buf[4];
990 
991   store_unsigned_integer (buf, 4, entry_point_address ());
992   write_memory (sp - 4, buf, 4);
993   return sp - 4;
994 }
995 
996 /* Function: store_struct_return (addr,sp)
997    Store the structure value return address for an inferior function
998    call.  */
999 
1000 static void
mn10300_store_struct_return(CORE_ADDR addr,CORE_ADDR sp)1001 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1002 {
1003   /* The structure return address is passed as the first argument.  */
1004   write_register (0, addr);
1005 }
1006 
1007 /* Function: frame_saved_pc
1008    Find the caller of this frame.  We do this by seeing if RP_REGNUM
1009    is saved in the stack anywhere, otherwise we get it from the
1010    registers.  If the inner frame is a dummy frame, return its PC
1011    instead of RP, because that's where "caller" of the dummy-frame
1012    will be found.  */
1013 
1014 static CORE_ADDR
mn10300_frame_saved_pc(struct frame_info * fi)1015 mn10300_frame_saved_pc (struct frame_info *fi)
1016 {
1017   int adjust = saved_regs_size (fi);
1018 
1019   return (read_memory_integer (get_frame_base (fi) + adjust,
1020 			       DEPRECATED_REGISTER_SIZE));
1021 }
1022 
1023 /* Function: mn10300_init_extra_frame_info
1024    Setup the frame's frame pointer, pc, and frame addresses for saved
1025    registers.  Most of the work is done in mn10300_analyze_prologue().
1026 
1027    Note that when we are called for the last frame (currently active frame),
1028    that get_frame_pc (fi) and fi->frame will already be setup.  However, fi->frame will
1029    be valid only if this routine uses FP.  For previous frames, fi-frame will
1030    always be correct.  mn10300_analyze_prologue will fix fi->frame if
1031    it's not valid.
1032 
1033    We can be called with the PC in the call dummy under two
1034    circumstances.  First, during normal backtracing, second, while
1035    figuring out the frame pointer just prior to calling the target
1036    function (see call_function_by_hand).  */
1037 
1038 static void
mn10300_init_extra_frame_info(int fromleaf,struct frame_info * fi)1039 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1040 {
1041   if (get_next_frame (fi))
1042     deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
1043 
1044   frame_saved_regs_zalloc (fi);
1045   frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1046 
1047   get_frame_extra_info (fi)->status = 0;
1048   get_frame_extra_info (fi)->stack_size = 0;
1049 
1050   mn10300_analyze_prologue (fi, 0);
1051 }
1052 
1053 
1054 /* This function's job is handled by init_extra_frame_info.  */
1055 static void
mn10300_frame_init_saved_regs(struct frame_info * frame)1056 mn10300_frame_init_saved_regs (struct frame_info *frame)
1057 {
1058 }
1059 
1060 
1061 /* Function: mn10300_virtual_frame_pointer
1062    Return the register that the function uses for a frame pointer,
1063    plus any necessary offset to be applied to the register before
1064    any frame pointer offsets.  */
1065 
1066 static void
mn10300_virtual_frame_pointer(CORE_ADDR pc,int * reg,LONGEST * offset)1067 mn10300_virtual_frame_pointer (CORE_ADDR pc,
1068 			       int *reg,
1069 			       LONGEST *offset)
1070 {
1071   struct frame_info *dummy = analyze_dummy_frame (pc, 0);
1072   /* Set up a dummy frame_info, Analyze the prolog and fill in the
1073      extra info.  */
1074   /* Results will tell us which type of frame it uses.  */
1075   if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP)
1076     {
1077       *reg = SP_REGNUM;
1078       *offset = -(get_frame_extra_info (dummy)->stack_size);
1079     }
1080   else
1081     {
1082       *reg = A3_REGNUM;
1083       *offset = 0;
1084     }
1085 }
1086 
1087 static int
mn10300_reg_struct_has_addr(int gcc_p,struct type * type)1088 mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
1089 {
1090   return (TYPE_LENGTH (type) > 8);
1091 }
1092 
1093 static struct type *
mn10300_register_virtual_type(int reg)1094 mn10300_register_virtual_type (int reg)
1095 {
1096   return builtin_type_int;
1097 }
1098 
1099 static int
mn10300_register_byte(int reg)1100 mn10300_register_byte (int reg)
1101 {
1102   return (reg * 4);
1103 }
1104 
1105 static int
mn10300_register_virtual_size(int reg)1106 mn10300_register_virtual_size (int reg)
1107 {
1108   return 4;
1109 }
1110 
1111 static int
mn10300_register_raw_size(int reg)1112 mn10300_register_raw_size (int reg)
1113 {
1114   return 4;
1115 }
1116 
1117 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1118    mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1119    register number.  Why don't Dwarf2 and GDB use the same numbering?
1120    Who knows?  But since people have object files lying around with
1121    the existing Dwarf2 numbering, and other people have written stubs
1122    to work with the existing GDB, neither of them can change.  So we
1123    just have to cope.  */
1124 static int
mn10300_dwarf2_reg_to_regnum(int dwarf2)1125 mn10300_dwarf2_reg_to_regnum (int dwarf2)
1126 {
1127   /* This table is supposed to be shaped like the REGISTER_NAMES
1128      initializer in gcc/config/mn10300/mn10300.h.  Registers which
1129      appear in GCC's numbering, but have no counterpart in GDB's
1130      world, are marked with a -1.  */
1131   static int dwarf2_to_gdb[] = {
1132     0,  1,  2,  3,  4,  5,  6,  7, -1, 8,
1133     15, 16, 17, 18, 19, 20, 21, 22
1134   };
1135   int gdb;
1136 
1137   if (dwarf2 < 0
1138       || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0]))
1139       || dwarf2_to_gdb[dwarf2] == -1)
1140     internal_error (__FILE__, __LINE__,
1141                     "bogus register number in debug info: %d", dwarf2);
1142 
1143   return dwarf2_to_gdb[dwarf2];
1144 }
1145 
1146 static void
mn10300_print_register(const char * name,int regnum,int reg_width)1147 mn10300_print_register (const char *name, int regnum, int reg_width)
1148 {
1149   char raw_buffer[MAX_REGISTER_SIZE];
1150 
1151   if (reg_width)
1152     printf_filtered ("%*s: ", reg_width, name);
1153   else
1154     printf_filtered ("%s: ", name);
1155 
1156   /* Get the data */
1157   if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
1158     {
1159       printf_filtered ("[invalid]");
1160       return;
1161     }
1162   else
1163     {
1164       int byte;
1165       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1166 	{
1167 	  for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
1168 	       byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
1169 	       byte++)
1170 	    printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1171 	}
1172       else
1173 	{
1174 	  for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
1175 	       byte >= 0;
1176 	       byte--)
1177 	    printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1178 	}
1179     }
1180 }
1181 
1182 static void
mn10300_do_registers_info(int regnum,int fpregs)1183 mn10300_do_registers_info (int regnum, int fpregs)
1184 {
1185   if (regnum >= 0)
1186     {
1187       const char *name = REGISTER_NAME (regnum);
1188       if (name == NULL || name[0] == '\0')
1189 	error ("Not a valid register for the current processor type");
1190       mn10300_print_register (name, regnum, 0);
1191       printf_filtered ("\n");
1192     }
1193   else
1194     {
1195       /* print registers in an array 4x8 */
1196       int r;
1197       int reg;
1198       const int nr_in_row = 4;
1199       const int reg_width = 4;
1200       for (r = 0; r < NUM_REGS; r += nr_in_row)
1201 	{
1202 	  int c;
1203 	  int printing = 0;
1204 	  int padding = 0;
1205 	  for (c = r; c < r + nr_in_row; c++)
1206 	    {
1207 	      const char *name = REGISTER_NAME (c);
1208 	      if (name != NULL && *name != '\0')
1209 		{
1210 		  printing = 1;
1211 		  while (padding > 0)
1212 		    {
1213 		      printf_filtered (" ");
1214 		      padding--;
1215 		    }
1216 		  mn10300_print_register (name, c, reg_width);
1217 		  printf_filtered (" ");
1218 		}
1219 	      else
1220 		{
1221 		  padding += (reg_width + 2 + 8 + 1);
1222 		}
1223 	    }
1224 	  if (printing)
1225 	    printf_filtered ("\n");
1226 	}
1227     }
1228 }
1229 
1230 static CORE_ADDR
mn10300_read_fp(void)1231 mn10300_read_fp (void)
1232 {
1233   /* That's right, we're using the stack pointer as our frame pointer.  */
1234   gdb_assert (SP_REGNUM >= 0);
1235   return read_register (SP_REGNUM);
1236 }
1237 
1238 /* Dump out the mn10300 speciic architecture information. */
1239 
1240 static void
mn10300_dump_tdep(struct gdbarch * current_gdbarch,struct ui_file * file)1241 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1242 {
1243   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1244   fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
1245 		      tdep->am33_mode);
1246 }
1247 
1248 static struct gdbarch *
mn10300_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)1249 mn10300_gdbarch_init (struct gdbarch_info info,
1250 		      struct gdbarch_list *arches)
1251 {
1252   struct gdbarch *gdbarch;
1253   struct gdbarch_tdep *tdep = NULL;
1254   int am33_mode;
1255   gdbarch_register_name_ftype *register_name;
1256   int mach;
1257   int num_regs;
1258 
1259   arches = gdbarch_list_lookup_by_info (arches, &info);
1260   if (arches != NULL)
1261     return arches->gdbarch;
1262   tdep = xmalloc (sizeof (struct gdbarch_tdep));
1263   gdbarch = gdbarch_alloc (&info, tdep);
1264 
1265   if (info.bfd_arch_info != NULL
1266       && info.bfd_arch_info->arch == bfd_arch_mn10300)
1267     mach = info.bfd_arch_info->mach;
1268   else
1269     mach = 0;
1270   switch (mach)
1271     {
1272     case 0:
1273     case bfd_mach_mn10300:
1274       am33_mode = 0;
1275       register_name = mn10300_generic_register_name;
1276       num_regs = 32;
1277       break;
1278     case bfd_mach_am33:
1279       am33_mode = 1;
1280       register_name = am33_register_name;
1281       num_regs = 32;
1282       break;
1283     default:
1284       internal_error (__FILE__, __LINE__,
1285 		      "mn10300_gdbarch_init: Unknown mn10300 variant");
1286       return NULL; /* keep GCC happy. */
1287     }
1288 
1289   /* Registers.  */
1290   set_gdbarch_num_regs (gdbarch, num_regs);
1291   set_gdbarch_register_name (gdbarch, register_name);
1292   set_gdbarch_deprecated_register_size (gdbarch, 4);
1293   set_gdbarch_deprecated_register_bytes (gdbarch, num_regs * gdbarch_deprecated_register_size (gdbarch));
1294   set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size);
1295   set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte);
1296   set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size);
1297   set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type);
1298   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
1299   set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info);
1300   set_gdbarch_sp_regnum (gdbarch, 8);
1301   set_gdbarch_pc_regnum (gdbarch, 9);
1302   set_gdbarch_deprecated_fp_regnum (gdbarch, 31);
1303   set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer);
1304 
1305   /* Breakpoints.  */
1306   set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
1307 
1308   /* Stack unwinding.  */
1309   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1310   set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call);
1311   set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info);
1312   set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs);
1313   set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain);
1314   set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc);
1315   set_gdbarch_return_value (gdbarch, mn10300_return_value);
1316   set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return);
1317   set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame);
1318   set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
1319   /* That's right, we're using the stack pointer as our frame pointer.  */
1320   set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp);
1321 
1322   /* Calling functions in the inferior from GDB.  */
1323   set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments);
1324   set_gdbarch_deprecated_reg_struct_has_addr
1325     (gdbarch, mn10300_reg_struct_has_addr);
1326   set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address);
1327 
1328   tdep->am33_mode = am33_mode;
1329 
1330   /* Should be using push_dummy_call.  */
1331   set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
1332 
1333   set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
1334 
1335   return gdbarch;
1336 }
1337 
1338 void
_initialize_mn10300_tdep(void)1339 _initialize_mn10300_tdep (void)
1340 {
1341 /*  printf("_initialize_mn10300_tdep\n"); */
1342   gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
1343 }
1344