1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU.  To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
21 
22 /* Expanded entropy encoder object for Huffman encoding.
23  *
24  * The savable_state subrecord contains fields that change within an MCU,
25  * but must not be updated permanently until we complete the MCU.
26  */
27 
28 typedef struct {
29   INT32 put_buffer;		/* current bit-accumulation buffer */
30   int put_bits;			/* # of bits now in it */
31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32 } savable_state;
33 
34 /* This macro is to work around compilers with missing or broken
35  * structure assignment.  You'll need to fix this code if you have
36  * such a compiler and you change MAX_COMPS_IN_SCAN.
37  */
38 
39 #ifndef NO_STRUCT_ASSIGN
40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
41 #else
42 #if MAX_COMPS_IN_SCAN == 4
43 #define ASSIGN_STATE(dest,src)  \
44 	((dest).put_buffer = (src).put_buffer, \
45 	 (dest).put_bits = (src).put_bits, \
46 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
47 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
48 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
49 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
50 #endif
51 #endif
52 
53 
54 typedef struct {
55   struct jpeg_entropy_encoder pub; /* public fields */
56 
57   savable_state saved;		/* Bit buffer & DC state at start of MCU */
58 
59   /* These fields are NOT loaded into local working state. */
60   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
61   int next_restart_num;		/* next restart number to write (0-7) */
62 
63   /* Pointers to derived tables (these workspaces have image lifespan) */
64   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
65   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
66 
67 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
68   long * dc_count_ptrs[NUM_HUFF_TBLS];
69   long * ac_count_ptrs[NUM_HUFF_TBLS];
70 #endif
71 } huff_entropy_encoder;
72 
73 typedef huff_entropy_encoder * huff_entropy_ptr;
74 
75 /* Working state while writing an MCU.
76  * This struct contains all the fields that are needed by subroutines.
77  */
78 
79 typedef struct {
80   JOCTET * next_output_byte;	/* => next byte to write in buffer */
81   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
82   savable_state cur;		/* Current bit buffer & DC state */
83   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
84 } working_state;
85 
86 
87 /* Forward declarations */
88 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
89 					JBLOCKROW *MCU_data));
90 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
91 #ifdef ENTROPY_OPT_SUPPORTED
92 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
93 					  JBLOCKROW *MCU_data));
94 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
95 #endif
96 
97 
98 /*
99  * Initialize for a Huffman-compressed scan.
100  * If gather_statistics is TRUE, we do not output anything during the scan,
101  * just count the Huffman symbols used and generate Huffman code tables.
102  */
103 
104 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)105 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
106 {
107   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
108   int ci, dctbl, actbl;
109   jpeg_component_info * compptr;
110 
111   if (gather_statistics) {
112 #ifdef ENTROPY_OPT_SUPPORTED
113     entropy->pub.encode_mcu = encode_mcu_gather;
114     entropy->pub.finish_pass = finish_pass_gather;
115 #else
116     ERREXIT(cinfo, JERR_NOT_COMPILED);
117 #endif
118   } else {
119     entropy->pub.encode_mcu = encode_mcu_huff;
120     entropy->pub.finish_pass = finish_pass_huff;
121   }
122 
123   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
124     compptr = cinfo->cur_comp_info[ci];
125     dctbl = compptr->dc_tbl_no;
126     actbl = compptr->ac_tbl_no;
127     if (gather_statistics) {
128 #ifdef ENTROPY_OPT_SUPPORTED
129       /* Check for invalid table indexes */
130       /* (make_c_derived_tbl does this in the other path) */
131       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
132 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
133       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
134 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
135       /* Allocate and zero the statistics tables */
136       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
137       if (entropy->dc_count_ptrs[dctbl] == NULL)
138 	entropy->dc_count_ptrs[dctbl] = (long *)
139 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
140 				      257 * SIZEOF(long));
141       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
142       if (entropy->ac_count_ptrs[actbl] == NULL)
143 	entropy->ac_count_ptrs[actbl] = (long *)
144 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
145 				      257 * SIZEOF(long));
146       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
147 #endif
148     } else {
149       /* Compute derived values for Huffman tables */
150       /* We may do this more than once for a table, but it's not expensive */
151       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
152 			      & entropy->dc_derived_tbls[dctbl]);
153       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
154 			      & entropy->ac_derived_tbls[actbl]);
155     }
156     /* Initialize DC predictions to 0 */
157     entropy->saved.last_dc_val[ci] = 0;
158   }
159 
160   /* Initialize bit buffer to empty */
161   entropy->saved.put_buffer = 0;
162   entropy->saved.put_bits = 0;
163 
164   /* Initialize restart stuff */
165   entropy->restarts_to_go = cinfo->restart_interval;
166   entropy->next_restart_num = 0;
167 }
168 
169 
170 /*
171  * Compute the derived values for a Huffman table.
172  * This routine also performs some validation checks on the table.
173  *
174  * Note this is also used by jcphuff.c.
175  */
176 
177 GLOBAL(void)
jpeg_make_c_derived_tbl(j_compress_ptr cinfo,boolean isDC,int tblno,c_derived_tbl ** pdtbl)178 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
179 			 c_derived_tbl ** pdtbl)
180 {
181   JHUFF_TBL *htbl;
182   c_derived_tbl *dtbl;
183   int p, i, l, lastp, _si, maxsymbol;
184   char huffsize[257];
185   unsigned int huffcode[257];
186   unsigned int code;
187 
188   /* Note that huffsize[] and huffcode[] are filled in code-length order,
189    * paralleling the order of the symbols themselves in htbl->huffval[].
190    */
191 
192   /* Find the input Huffman table */
193   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
194     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
195   htbl =
196     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
197   if (htbl == NULL)
198     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
199 
200   /* Allocate a workspace if we haven't already done so. */
201   if (*pdtbl == NULL)
202     *pdtbl = (c_derived_tbl *)
203       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
204 				  SIZEOF(c_derived_tbl));
205   dtbl = *pdtbl;
206 
207   /* Figure C.1: make table of Huffman code length for each symbol */
208 
209   p = 0;
210   for (l = 1; l <= 16; l++) {
211     i = (int) htbl->bits[l];
212     if (i < 0 || p + i > 256)	/* protect against table overrun */
213       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
214     while (i--)
215       huffsize[p++] = (char) l;
216   }
217   huffsize[p] = 0;
218   lastp = p;
219 
220   /* Figure C.2: generate the codes themselves */
221   /* We also validate that the counts represent a legal Huffman code tree. */
222 
223   code = 0;
224   _si = huffsize[0];
225   p = 0;
226   while (huffsize[p]) {
227     while (((int) huffsize[p]) == _si) {
228       huffcode[p++] = code;
229       code++;
230     }
231     /* code is now 1 more than the last code used for codelength si; but
232      * it must still fit in si bits, since no code is allowed to be all ones.
233      */
234     if (((INT32) code) >= (((INT32) 1) << _si))
235       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
236     code <<= 1;
237     _si++;
238   }
239 
240   /* Figure C.3: generate encoding tables */
241   /* These are code and size indexed by symbol value */
242 
243   /* Set all codeless symbols to have code length 0;
244    * this lets us detect duplicate VAL entries here, and later
245    * allows emit_bits to detect any attempt to emit such symbols.
246    */
247   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
248 
249   /* This is also a convenient place to check for out-of-range
250    * and duplicated VAL entries.  We allow 0..255 for AC symbols
251    * but only 0..15 for DC.  (We could constrain them further
252    * based on data depth and mode, but this seems enough.)
253    */
254   maxsymbol = isDC ? 15 : 255;
255 
256   for (p = 0; p < lastp; p++) {
257     i = htbl->huffval[p];
258     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
259       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
260     dtbl->ehufco[i] = huffcode[p];
261     dtbl->ehufsi[i] = huffsize[p];
262   }
263 }
264 
265 
266 /* Outputting bytes to the file */
267 
268 /* Emit a byte, taking 'action' if must suspend. */
269 #define emit_byte(state,val,action)  \
270 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
271 	  if (--(state)->free_in_buffer == 0)  \
272 	    if (! dump_buffer(state))  \
273 	      { action; } }
274 
275 
276 LOCAL(boolean)
dump_buffer(working_state * state)277 dump_buffer (working_state * state)
278 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
279 {
280   struct jpeg_destination_mgr * dest = state->cinfo->dest;
281 
282   if (! (*dest->empty_output_buffer) (state->cinfo))
283     return FALSE;
284   /* After a successful buffer dump, must reset buffer pointers */
285   state->next_output_byte = dest->next_output_byte;
286   state->free_in_buffer = dest->free_in_buffer;
287   return TRUE;
288 }
289 
290 
291 /* Outputting bits to the file */
292 
293 /* Only the right 24 bits of put_buffer are used; the valid bits are
294  * left-justified in this part.  At most 16 bits can be passed to emit_bits
295  * in one call, and we never retain more than 7 bits in put_buffer
296  * between calls, so 24 bits are sufficient.
297  */
298 
299 INLINE
LOCAL(boolean)300 LOCAL(boolean)
301 emit_bits (working_state * state, unsigned int code, int size)
302 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
303 {
304   /* This routine is heavily used, so it's worth coding tightly. */
305   register INT32 put_buffer = (INT32) code;
306   register int put_bits = state->cur.put_bits;
307 
308   /* if size is 0, caller used an invalid Huffman table entry */
309   if (size == 0)
310     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
311 
312   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
313 
314   put_bits += size;		/* new number of bits in buffer */
315 
316   put_buffer <<= 24 - put_bits; /* align incoming bits */
317 
318   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
319 
320   while (put_bits >= 8) {
321     int c = (int) ((put_buffer >> 16) & 0xFF);
322 
323     emit_byte(state, c, return FALSE);
324     if (c == 0xFF) {		/* need to stuff a zero byte? */
325       emit_byte(state, 0, return FALSE);
326     }
327     put_buffer <<= 8;
328     put_bits -= 8;
329   }
330 
331   state->cur.put_buffer = put_buffer; /* update state variables */
332   state->cur.put_bits = put_bits;
333 
334   return TRUE;
335 }
336 
337 
338 LOCAL(boolean)
flush_bits(working_state * state)339 flush_bits (working_state * state)
340 {
341   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
342     return FALSE;
343   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
344   state->cur.put_bits = 0;
345   return TRUE;
346 }
347 
348 
349 /* Encode a single block's worth of coefficients */
350 
351 LOCAL(boolean)
encode_one_block(working_state * state,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)352 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
353 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
354 {
355   register int temp, temp2;
356   register int nbits;
357   register int k, r, i;
358 
359   /* Encode the DC coefficient difference per section F.1.2.1 */
360 
361   temp = temp2 = block[0] - last_dc_val;
362 
363   if (temp < 0) {
364     temp = -temp;		/* temp is abs value of input */
365     /* For a negative input, want temp2 = bitwise complement of abs(input) */
366     /* This code assumes we are on a two's complement machine */
367     temp2--;
368   }
369 
370   /* Find the number of bits needed for the magnitude of the coefficient */
371   nbits = 0;
372   while (temp) {
373     nbits++;
374     temp >>= 1;
375   }
376   /* Check for out-of-range coefficient values.
377    * Since we're encoding a difference, the range limit is twice as much.
378    */
379   if (nbits > MAX_COEF_BITS+1)
380     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
381 
382   /* Emit the Huffman-coded symbol for the number of bits */
383   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
384     return FALSE;
385 
386   /* Emit that number of bits of the value, if positive, */
387   /* or the complement of its magnitude, if negative. */
388   if (nbits)			/* emit_bits rejects calls with size 0 */
389     if (! emit_bits(state, (unsigned int) temp2, nbits))
390       return FALSE;
391 
392   /* Encode the AC coefficients per section F.1.2.2 */
393 
394   r = 0;			/* r = run length of zeros */
395 
396   for (k = 1; k < DCTSIZE2; k++) {
397     if ((temp = block[jpeg_natural_order[k]]) == 0) {
398       r++;
399     } else {
400       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
401       while (r > 15) {
402 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
403 	  return FALSE;
404 	r -= 16;
405       }
406 
407       temp2 = temp;
408       if (temp < 0) {
409 	temp = -temp;		/* temp is abs value of input */
410 	/* This code assumes we are on a two's complement machine */
411 	temp2--;
412       }
413 
414       /* Find the number of bits needed for the magnitude of the coefficient */
415       nbits = 1;		/* there must be at least one 1 bit */
416       while ((temp >>= 1))
417 	nbits++;
418       /* Check for out-of-range coefficient values */
419       if (nbits > MAX_COEF_BITS)
420 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
421 
422       /* Emit Huffman symbol for run length / number of bits */
423       i = (r << 4) + nbits;
424       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
425 	return FALSE;
426 
427       /* Emit that number of bits of the value, if positive, */
428       /* or the complement of its magnitude, if negative. */
429       if (! emit_bits(state, (unsigned int) temp2, nbits))
430 	return FALSE;
431 
432       r = 0;
433     }
434   }
435 
436   /* If the last coef(s) were zero, emit an end-of-block code */
437   if (r > 0)
438     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
439       return FALSE;
440 
441   return TRUE;
442 }
443 
444 
445 /*
446  * Emit a restart marker & resynchronize predictions.
447  */
448 
449 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)450 emit_restart (working_state * state, int restart_num)
451 {
452   int ci;
453 
454   if (! flush_bits(state))
455     return FALSE;
456 
457   emit_byte(state, 0xFF, return FALSE);
458   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
459 
460   /* Re-initialize DC predictions to 0 */
461   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
462     state->cur.last_dc_val[ci] = 0;
463 
464   /* The restart counter is not updated until we successfully write the MCU. */
465 
466   return TRUE;
467 }
468 
469 
470 /*
471  * Encode and output one MCU's worth of Huffman-compressed coefficients.
472  */
473 
474 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)475 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
476 {
477   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
478   working_state state;
479   int blkn, ci;
480   jpeg_component_info * compptr;
481 
482   /* Load up working state */
483   state.next_output_byte = cinfo->dest->next_output_byte;
484   state.free_in_buffer = cinfo->dest->free_in_buffer;
485   ASSIGN_STATE(state.cur, entropy->saved);
486   state.cinfo = cinfo;
487 
488   /* Emit restart marker if needed */
489   if (cinfo->restart_interval) {
490     if (entropy->restarts_to_go == 0)
491       if (! emit_restart(&state, entropy->next_restart_num))
492 	return FALSE;
493   }
494 
495   /* Encode the MCU data blocks */
496   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
497     ci = cinfo->MCU_membership[blkn];
498     compptr = cinfo->cur_comp_info[ci];
499     if (! encode_one_block(&state,
500 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
501 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
502 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
503       return FALSE;
504     /* Update last_dc_val */
505     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
506   }
507 
508   /* Completed MCU, so update state */
509   cinfo->dest->next_output_byte = state.next_output_byte;
510   cinfo->dest->free_in_buffer = state.free_in_buffer;
511   ASSIGN_STATE(entropy->saved, state.cur);
512 
513   /* Update restart-interval state too */
514   if (cinfo->restart_interval) {
515     if (entropy->restarts_to_go == 0) {
516       entropy->restarts_to_go = cinfo->restart_interval;
517       entropy->next_restart_num++;
518       entropy->next_restart_num &= 7;
519     }
520     entropy->restarts_to_go--;
521   }
522 
523   return TRUE;
524 }
525 
526 
527 /*
528  * Finish up at the end of a Huffman-compressed scan.
529  */
530 
531 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)532 finish_pass_huff (j_compress_ptr cinfo)
533 {
534   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
535   working_state state;
536 
537   /* Load up working state ... flush_bits needs it */
538   state.next_output_byte = cinfo->dest->next_output_byte;
539   state.free_in_buffer = cinfo->dest->free_in_buffer;
540   ASSIGN_STATE(state.cur, entropy->saved);
541   state.cinfo = cinfo;
542 
543   /* Flush out the last data */
544   if (! flush_bits(&state))
545     ERREXIT(cinfo, JERR_CANT_SUSPEND);
546 
547   /* Update state */
548   cinfo->dest->next_output_byte = state.next_output_byte;
549   cinfo->dest->free_in_buffer = state.free_in_buffer;
550   ASSIGN_STATE(entropy->saved, state.cur);
551 }
552 
553 
554 /*
555  * Huffman coding optimization.
556  *
557  * We first scan the supplied data and count the number of uses of each symbol
558  * that is to be Huffman-coded. (This process MUST agree with the code above.)
559  * Then we build a Huffman coding tree for the observed counts.
560  * Symbols which are not needed at all for the particular image are not
561  * assigned any code, which saves space in the DHT marker as well as in
562  * the compressed data.
563  */
564 
565 #ifdef ENTROPY_OPT_SUPPORTED
566 
567 
568 /* Process a single block's worth of coefficients */
569 
570 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])571 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
572 		 long dc_counts[], long ac_counts[])
573 {
574   register int temp;
575   register int nbits;
576   register int k, r;
577 
578   /* Encode the DC coefficient difference per section F.1.2.1 */
579 
580   temp = block[0] - last_dc_val;
581   if (temp < 0)
582     temp = -temp;
583 
584   /* Find the number of bits needed for the magnitude of the coefficient */
585   nbits = 0;
586   while (temp) {
587     nbits++;
588     temp >>= 1;
589   }
590   /* Check for out-of-range coefficient values.
591    * Since we're encoding a difference, the range limit is twice as much.
592    */
593   if (nbits > MAX_COEF_BITS+1)
594     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
595 
596   /* Count the Huffman symbol for the number of bits */
597   dc_counts[nbits]++;
598 
599   /* Encode the AC coefficients per section F.1.2.2 */
600 
601   r = 0;			/* r = run length of zeros */
602 
603   for (k = 1; k < DCTSIZE2; k++) {
604     if ((temp = block[jpeg_natural_order[k]]) == 0) {
605       r++;
606     } else {
607       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
608       while (r > 15) {
609 	ac_counts[0xF0]++;
610 	r -= 16;
611       }
612 
613       /* Find the number of bits needed for the magnitude of the coefficient */
614       if (temp < 0)
615 	temp = -temp;
616 
617       /* Find the number of bits needed for the magnitude of the coefficient */
618       nbits = 1;		/* there must be at least one 1 bit */
619       while ((temp >>= 1))
620 	nbits++;
621       /* Check for out-of-range coefficient values */
622       if (nbits > MAX_COEF_BITS)
623 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
624 
625       /* Count Huffman symbol for run length / number of bits */
626       ac_counts[(r << 4) + nbits]++;
627 
628       r = 0;
629     }
630   }
631 
632   /* If the last coef(s) were zero, emit an end-of-block code */
633   if (r > 0)
634     ac_counts[0]++;
635 }
636 
637 
638 /*
639  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
640  * No data is actually output, so no suspension return is possible.
641  */
642 
643 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)644 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
645 {
646   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
647   int blkn, ci;
648   jpeg_component_info * compptr;
649 
650   /* Take care of restart intervals if needed */
651   if (cinfo->restart_interval) {
652     if (entropy->restarts_to_go == 0) {
653       /* Re-initialize DC predictions to 0 */
654       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
655 	entropy->saved.last_dc_val[ci] = 0;
656       /* Update restart state */
657       entropy->restarts_to_go = cinfo->restart_interval;
658     }
659     entropy->restarts_to_go--;
660   }
661 
662   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
663     ci = cinfo->MCU_membership[blkn];
664     compptr = cinfo->cur_comp_info[ci];
665     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
666 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
667 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
668     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
669   }
670 
671   return TRUE;
672 }
673 
674 
675 /*
676  * Generate the best Huffman code table for the given counts, fill htbl.
677  * Note this is also used by jcphuff.c.
678  *
679  * The JPEG standard requires that no symbol be assigned a codeword of all
680  * one bits (so that padding bits added at the end of a compressed segment
681  * can't look like a valid code).  Because of the canonical ordering of
682  * codewords, this just means that there must be an unused slot in the
683  * longest codeword length category.  Section K.2 of the JPEG spec suggests
684  * reserving such a slot by pretending that symbol 256 is a valid symbol
685  * with count 1.  In theory that's not optimal; giving it count zero but
686  * including it in the symbol set anyway should give a better Huffman code.
687  * But the theoretically better code actually seems to come out worse in
688  * practice, because it produces more all-ones bytes (which incur stuffed
689  * zero bytes in the final file).  In any case the difference is tiny.
690  *
691  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
692  * If some symbols have a very small but nonzero probability, the Huffman tree
693  * must be adjusted to meet the code length restriction.  We currently use
694  * the adjustment method suggested in JPEG section K.2.  This method is *not*
695  * optimal; it may not choose the best possible limited-length code.  But
696  * typically only very-low-frequency symbols will be given less-than-optimal
697  * lengths, so the code is almost optimal.  Experimental comparisons against
698  * an optimal limited-length-code algorithm indicate that the difference is
699  * microscopic --- usually less than a hundredth of a percent of total size.
700  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
701  */
702 
703 GLOBAL(void)
jpeg_gen_optimal_table(j_compress_ptr cinfo,JHUFF_TBL * htbl,long freq[])704 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
705 {
706 #define MAX_CLEN 32		/* assumed maximum initial code length */
707   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
708   int codesize[257];		/* codesize[k] = code length of symbol k */
709   int others[257];		/* next symbol in current branch of tree */
710   int c1, c2;
711   int p, i, j;
712   long v;
713 
714   /* This algorithm is explained in section K.2 of the JPEG standard */
715 
716   MEMZERO(bits, SIZEOF(bits));
717   MEMZERO(codesize, SIZEOF(codesize));
718   for (i = 0; i < 257; i++)
719     others[i] = -1;		/* init links to empty */
720 
721   freq[256] = 1;		/* make sure 256 has a nonzero count */
722   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
723    * that no real symbol is given code-value of all ones, because 256
724    * will be placed last in the largest codeword category.
725    */
726 
727   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
728 
729   for (;;) {
730     /* Find the smallest nonzero frequency, set c1 = its symbol */
731     /* In case of ties, take the larger symbol number */
732     c1 = -1;
733     v = 1000000000L;
734     for (i = 0; i <= 256; i++) {
735       if (freq[i] && freq[i] <= v) {
736 	v = freq[i];
737 	c1 = i;
738       }
739     }
740 
741     /* Find the next smallest nonzero frequency, set c2 = its symbol */
742     /* In case of ties, take the larger symbol number */
743     c2 = -1;
744     v = 1000000000L;
745     for (i = 0; i <= 256; i++) {
746       if (freq[i] && freq[i] <= v && i != c1) {
747 	v = freq[i];
748 	c2 = i;
749       }
750     }
751 
752     /* Done if we've merged everything into one frequency */
753     if (c2 < 0)
754       break;
755 
756     /* Else merge the two counts/trees */
757     freq[c1] += freq[c2];
758     freq[c2] = 0;
759 
760     /* Increment the codesize of everything in c1's tree branch */
761     codesize[c1]++;
762     while (others[c1] >= 0) {
763       c1 = others[c1];
764       codesize[c1]++;
765     }
766 
767     others[c1] = c2;		/* chain c2 onto c1's tree branch */
768 
769     /* Increment the codesize of everything in c2's tree branch */
770     codesize[c2]++;
771     while (others[c2] >= 0) {
772       c2 = others[c2];
773       codesize[c2]++;
774     }
775   }
776 
777   /* Now count the number of symbols of each code length */
778   for (i = 0; i <= 256; i++) {
779     if (codesize[i]) {
780       /* The JPEG standard seems to think that this can't happen, */
781       /* but I'm paranoid... */
782       if (codesize[i] > MAX_CLEN)
783 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
784 
785       bits[codesize[i]]++;
786     }
787   }
788 
789   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
790    * Huffman procedure assigned any such lengths, we must adjust the coding.
791    * Here is what the JPEG spec says about how this next bit works:
792    * Since symbols are paired for the longest Huffman code, the symbols are
793    * removed from this length category two at a time.  The prefix for the pair
794    * (which is one bit shorter) is allocated to one of the pair; then,
795    * skipping the BITS entry for that prefix length, a code word from the next
796    * shortest nonzero BITS entry is converted into a prefix for two code words
797    * one bit longer.
798    */
799 
800   for (i = MAX_CLEN; i > 16; i--) {
801     while (bits[i] > 0) {
802       j = i - 2;		/* find length of new prefix to be used */
803       while (bits[j] == 0)
804 	j--;
805 
806       bits[i] -= 2;		/* remove two symbols */
807       bits[i-1]++;		/* one goes in this length */
808       bits[j+1] += 2;		/* two new symbols in this length */
809       bits[j]--;		/* symbol of this length is now a prefix */
810     }
811   }
812 
813   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
814   while (bits[i] == 0)		/* find largest codelength still in use */
815     i--;
816   bits[i]--;
817 
818   /* Return final symbol counts (only for lengths 0..16) */
819   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
820 
821   /* Return a list of the symbols sorted by code length */
822   /* It's not real clear to me why we don't need to consider the codelength
823    * changes made above, but the JPEG spec seems to think this works.
824    */
825   p = 0;
826   for (i = 1; i <= MAX_CLEN; i++) {
827     for (j = 0; j <= 255; j++) {
828       if (codesize[j] == i) {
829 	htbl->huffval[p] = (UINT8) j;
830 	p++;
831       }
832     }
833   }
834 
835   /* Set sent_table FALSE so updated table will be written to JPEG file. */
836   htbl->sent_table = FALSE;
837 }
838 
839 
840 /*
841  * Finish up a statistics-gathering pass and create the new Huffman tables.
842  */
843 
844 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)845 finish_pass_gather (j_compress_ptr cinfo)
846 {
847   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
848   int ci, dctbl, actbl;
849   jpeg_component_info * compptr;
850   JHUFF_TBL **htblptr;
851   boolean did_dc[NUM_HUFF_TBLS];
852   boolean did_ac[NUM_HUFF_TBLS];
853 
854   /* It's important not to apply jpeg_gen_optimal_table more than once
855    * per table, because it clobbers the input frequency counts!
856    */
857   MEMZERO(did_dc, SIZEOF(did_dc));
858   MEMZERO(did_ac, SIZEOF(did_ac));
859 
860   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
861     compptr = cinfo->cur_comp_info[ci];
862     dctbl = compptr->dc_tbl_no;
863     actbl = compptr->ac_tbl_no;
864     if (! did_dc[dctbl]) {
865       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
866       if (*htblptr == NULL)
867 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
868       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
869       did_dc[dctbl] = TRUE;
870     }
871     if (! did_ac[actbl]) {
872       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
873       if (*htblptr == NULL)
874 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
875       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
876       did_ac[actbl] = TRUE;
877     }
878   }
879 }
880 
881 
882 #endif /* ENTROPY_OPT_SUPPORTED */
883 
884 
885 /*
886  * Module initialization routine for Huffman entropy encoding.
887  */
888 
889 GLOBAL(void)
jinit_huff_encoder(j_compress_ptr cinfo)890 jinit_huff_encoder (j_compress_ptr cinfo)
891 {
892   huff_entropy_ptr entropy;
893   int i;
894 
895   entropy = (huff_entropy_ptr)
896     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
897 				SIZEOF(huff_entropy_encoder));
898   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
899   entropy->pub.start_pass = start_pass_huff;
900 
901   /* Mark tables unallocated */
902   for (i = 0; i < NUM_HUFF_TBLS; i++) {
903     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
904 #ifdef ENTROPY_OPT_SUPPORTED
905     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
906 #endif
907   }
908 }
909