1 /*
2  * The copyright in this software is being made available under the 2-clauses
3  * BSD License, included below. This software may be subject to other third
4  * party and contributor rights, including patent rights, and no such rights
5  * are granted under this license.
6  *
7  * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8  * Copyright (c) 2002-2014, Professor Benoit Macq
9  * Copyright (c) 2001-2003, David Janssens
10  * Copyright (c) 2002-2003, Yannick Verschueren
11  * Copyright (c) 2003-2007, Francois-Olivier Devaux
12  * Copyright (c) 2003-2014, Antonin Descampe
13  * Copyright (c) 2005, Herve Drolon, FreeImage Team
14  * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
15  * Copyright (c) 2012, CS Systemes d'Information, France
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
28  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
31  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 #if defined(__SSE__) && !defined(_M_IX86) && !defined(__i386)
41 #define USE_SSE
42 #include <xmmintrin.h>
43 #endif
44 #if defined(__SSE2__) && !defined(_M_IX86) && !defined(__i386)
45 #define USE_SSE2
46 #include <emmintrin.h>
47 #endif
48 #if defined(__SSE4_1__) && !defined(_M_IX86) && !defined(__i386)
49 #define USE_SSE4
50 #include <smmintrin.h>
51 #endif
52 
53 #include "opj_includes.h"
54 
55 /* <summary> */
56 /* This table contains the norms of the basis function of the reversible MCT. */
57 /* </summary> */
58 static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };
59 
60 /* <summary> */
61 /* This table contains the norms of the basis function of the irreversible MCT. */
62 /* </summary> */
63 static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };
64 
opj_mct_get_mct_norms()65 const OPJ_FLOAT64 * opj_mct_get_mct_norms ()
66 {
67 	return opj_mct_norms;
68 }
69 
opj_mct_get_mct_norms_real()70 const OPJ_FLOAT64 * opj_mct_get_mct_norms_real ()
71 {
72 	return opj_mct_norms_real;
73 }
74 
75 /* <summary> */
76 /* Forward reversible MCT. */
77 /* </summary> */
78 #ifdef USE_SSE2
opj_mct_encode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)79 void opj_mct_encode(
80 		OPJ_INT32* restrict c0,
81 		OPJ_INT32* restrict c1,
82 		OPJ_INT32* restrict c2,
83 		OPJ_UINT32 n)
84 {
85 	OPJ_SIZE_T i;
86 	const OPJ_SIZE_T len = n;
87 
88 	for(i = 0; i < (len & ~3U); i += 4) {
89 		__m128i y, u, v;
90 		__m128i r = _mm_load_si128((const __m128i *)&(c0[i]));
91 		__m128i g = _mm_load_si128((const __m128i *)&(c1[i]));
92 		__m128i b = _mm_load_si128((const __m128i *)&(c2[i]));
93 		y = _mm_add_epi32(g, g);
94 		y = _mm_add_epi32(y, b);
95 		y = _mm_add_epi32(y, r);
96 		y = _mm_srai_epi32(y, 2);
97 		u = _mm_sub_epi32(b, g);
98 		v = _mm_sub_epi32(r, g);
99 		_mm_store_si128((__m128i *)&(c0[i]), y);
100 		_mm_store_si128((__m128i *)&(c1[i]), u);
101 		_mm_store_si128((__m128i *)&(c2[i]), v);
102 	}
103 
104 	for(; i < len; ++i) {
105 		OPJ_INT32 r = c0[i];
106 		OPJ_INT32 g = c1[i];
107 		OPJ_INT32 b = c2[i];
108 		OPJ_INT32 y = (r + (g * 2) + b) >> 2;
109 		OPJ_INT32 u = b - g;
110 		OPJ_INT32 v = r - g;
111 		c0[i] = y;
112 		c1[i] = u;
113 		c2[i] = v;
114 	}
115 }
116 #else
opj_mct_encode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)117 void opj_mct_encode(
118 		OPJ_INT32* restrict c0,
119 		OPJ_INT32* restrict c1,
120 		OPJ_INT32* restrict c2,
121 		OPJ_UINT32 n)
122 {
123 	OPJ_SIZE_T i;
124 	const OPJ_SIZE_T len = n;
125 
126 	for(i = 0; i < len; ++i) {
127 		OPJ_INT32 r = c0[i];
128 		OPJ_INT32 g = c1[i];
129 		OPJ_INT32 b = c2[i];
130 		OPJ_INT32 y = (r + (g * 2) + b) >> 2;
131 		OPJ_INT32 u = b - g;
132 		OPJ_INT32 v = r - g;
133 		c0[i] = y;
134 		c1[i] = u;
135 		c2[i] = v;
136 	}
137 }
138 #endif
139 
140 /* <summary> */
141 /* Inverse reversible MCT. */
142 /* </summary> */
143 #ifdef USE_SSE2
opj_mct_decode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)144 void opj_mct_decode(
145 		OPJ_INT32* restrict c0,
146 		OPJ_INT32* restrict c1,
147 		OPJ_INT32* restrict c2,
148 		OPJ_UINT32 n)
149 {
150 	OPJ_SIZE_T i;
151 	const OPJ_SIZE_T len = n;
152 
153 	for(i = 0; i < (len & ~3U); i += 4) {
154 		__m128i r, g, b;
155 		__m128i y = _mm_load_si128((const __m128i *)&(c0[i]));
156 		__m128i u = _mm_load_si128((const __m128i *)&(c1[i]));
157 		__m128i v = _mm_load_si128((const __m128i *)&(c2[i]));
158 		g = y;
159 		g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2));
160 		r = _mm_add_epi32(v, g);
161 		b = _mm_add_epi32(u, g);
162 		_mm_store_si128((__m128i *)&(c0[i]), r);
163 		_mm_store_si128((__m128i *)&(c1[i]), g);
164 		_mm_store_si128((__m128i *)&(c2[i]), b);
165 	}
166 	for (; i < len; ++i) {
167 		OPJ_INT32 y = c0[i];
168 		OPJ_INT32 u = c1[i];
169 		OPJ_INT32 v = c2[i];
170 		OPJ_INT32 g = y - ((u + v) >> 2);
171 		OPJ_INT32 r = v + g;
172 		OPJ_INT32 b = u + g;
173 		c0[i] = r;
174 		c1[i] = g;
175 		c2[i] = b;
176 	}
177 }
178 #else
opj_mct_decode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)179 void opj_mct_decode(
180 		OPJ_INT32* restrict c0,
181 		OPJ_INT32* restrict c1,
182 		OPJ_INT32* restrict c2,
183 		OPJ_UINT32 n)
184 {
185 	OPJ_UINT32 i;
186 	for (i = 0; i < n; ++i) {
187 		OPJ_INT32 y = c0[i];
188 		OPJ_INT32 u = c1[i];
189 		OPJ_INT32 v = c2[i];
190 		OPJ_INT32 g = y - ((u + v) >> 2);
191 		OPJ_INT32 r = v + g;
192 		OPJ_INT32 b = u + g;
193 		c0[i] = r;
194 		c1[i] = g;
195 		c2[i] = b;
196 	}
197 }
198 #endif
199 
200 /* <summary> */
201 /* Get norm of basis function of reversible MCT. */
202 /* </summary> */
opj_mct_getnorm(OPJ_UINT32 compno)203 OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) {
204 	return opj_mct_norms[compno];
205 }
206 
207 /* <summary> */
208 /* Forward irreversible MCT. */
209 /* </summary> */
210 #ifdef USE_SSE4
opj_mct_encode_real(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)211 void opj_mct_encode_real(
212 												 OPJ_INT32* restrict c0,
213 												 OPJ_INT32* restrict c1,
214 												 OPJ_INT32* restrict c2,
215 												 OPJ_UINT32 n)
216 {
217 	OPJ_SIZE_T i;
218 	const OPJ_SIZE_T len = n;
219 
220 	const __m128i ry = _mm_set1_epi32(2449);
221 	const __m128i gy = _mm_set1_epi32(4809);
222 	const __m128i by = _mm_set1_epi32(934);
223 	const __m128i ru = _mm_set1_epi32(1382);
224 	const __m128i gu = _mm_set1_epi32(2714);
225 	/* const __m128i bu = _mm_set1_epi32(4096); */
226 	/* const __m128i rv = _mm_set1_epi32(4096); */
227 	const __m128i gv = _mm_set1_epi32(3430);
228 	const __m128i bv = _mm_set1_epi32(666);
229 	const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), _MM_SHUFFLE(1, 0, 1, 0));
230 
231 	for(i = 0; i < (len & ~3U); i += 4) {
232 		__m128i lo, hi;
233 		__m128i y, u, v;
234 		__m128i r = _mm_load_si128((const __m128i *)&(c0[i]));
235 		__m128i g = _mm_load_si128((const __m128i *)&(c1[i]));
236 		__m128i b = _mm_load_si128((const __m128i *)&(c2[i]));
237 
238 		lo = r;
239 		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
240 		lo = _mm_mul_epi32(lo, ry);
241 		hi = _mm_mul_epi32(hi, ry);
242 		lo = _mm_add_epi64(lo, mulround);
243 		hi = _mm_add_epi64(hi, mulround);
244 		lo = _mm_srli_epi64(lo, 13);
245 		hi = _mm_slli_epi64(hi, 32-13);
246 		y = _mm_blend_epi16(lo, hi, 0xCC);
247 
248 		lo = g;
249 		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
250 		lo = _mm_mul_epi32(lo, gy);
251 		hi = _mm_mul_epi32(hi, gy);
252 		lo = _mm_add_epi64(lo, mulround);
253 		hi = _mm_add_epi64(hi, mulround);
254 		lo = _mm_srli_epi64(lo, 13);
255 		hi = _mm_slli_epi64(hi, 32-13);
256 		y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
257 
258 		lo = b;
259 		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
260 		lo = _mm_mul_epi32(lo, by);
261 		hi = _mm_mul_epi32(hi, by);
262 		lo = _mm_add_epi64(lo, mulround);
263 		hi = _mm_add_epi64(hi, mulround);
264 		lo = _mm_srli_epi64(lo, 13);
265 		hi = _mm_slli_epi64(hi, 32-13);
266 		y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
267 		_mm_store_si128((__m128i *)&(c0[i]), y);
268 
269 		/*lo = b;
270 		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
271 		lo = _mm_mul_epi32(lo, mulround);
272 		hi = _mm_mul_epi32(hi, mulround);*/
273 		lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0)));
274 		hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1)));
275 		lo = _mm_slli_epi64(lo, 12);
276 		hi = _mm_slli_epi64(hi, 12);
277 		lo = _mm_add_epi64(lo, mulround);
278 		hi = _mm_add_epi64(hi, mulround);
279 		lo = _mm_srli_epi64(lo, 13);
280 		hi = _mm_slli_epi64(hi, 32-13);
281 		u = _mm_blend_epi16(lo, hi, 0xCC);
282 
283 		lo = r;
284 		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
285 		lo = _mm_mul_epi32(lo, ru);
286 		hi = _mm_mul_epi32(hi, ru);
287 		lo = _mm_add_epi64(lo, mulround);
288 		hi = _mm_add_epi64(hi, mulround);
289 		lo = _mm_srli_epi64(lo, 13);
290 		hi = _mm_slli_epi64(hi, 32-13);
291 		u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
292 
293 		lo = g;
294 		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
295 		lo = _mm_mul_epi32(lo, gu);
296 		hi = _mm_mul_epi32(hi, gu);
297 		lo = _mm_add_epi64(lo, mulround);
298 		hi = _mm_add_epi64(hi, mulround);
299 		lo = _mm_srli_epi64(lo, 13);
300 		hi = _mm_slli_epi64(hi, 32-13);
301 		u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
302 		_mm_store_si128((__m128i *)&(c1[i]), u);
303 
304 		/*lo = r;
305 		hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
306 		lo = _mm_mul_epi32(lo, mulround);
307 		hi = _mm_mul_epi32(hi, mulround);*/
308 		lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0)));
309 		hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1)));
310 		lo = _mm_slli_epi64(lo, 12);
311 		hi = _mm_slli_epi64(hi, 12);
312 		lo = _mm_add_epi64(lo, mulround);
313 		hi = _mm_add_epi64(hi, mulround);
314 		lo = _mm_srli_epi64(lo, 13);
315 		hi = _mm_slli_epi64(hi, 32-13);
316 		v = _mm_blend_epi16(lo, hi, 0xCC);
317 
318 		lo = g;
319 		hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
320 		lo = _mm_mul_epi32(lo, gv);
321 		hi = _mm_mul_epi32(hi, gv);
322 		lo = _mm_add_epi64(lo, mulround);
323 		hi = _mm_add_epi64(hi, mulround);
324 		lo = _mm_srli_epi64(lo, 13);
325 		hi = _mm_slli_epi64(hi, 32-13);
326 		v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
327 
328 		lo = b;
329 		hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
330 		lo = _mm_mul_epi32(lo, bv);
331 		hi = _mm_mul_epi32(hi, bv);
332 		lo = _mm_add_epi64(lo, mulround);
333 		hi = _mm_add_epi64(hi, mulround);
334 		lo = _mm_srli_epi64(lo, 13);
335 		hi = _mm_slli_epi64(hi, 32-13);
336 		v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
337 		_mm_store_si128((__m128i *)&(c2[i]), v);
338 	}
339 	for(; i < len; ++i) {
340 		OPJ_INT32 r = c0[i];
341 		OPJ_INT32 g = c1[i];
342 		OPJ_INT32 b = c2[i];
343 		OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
344 		OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
345 		OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
346 		c0[i] = y;
347 		c1[i] = u;
348 		c2[i] = v;
349 	}
350 }
351 #else
opj_mct_encode_real(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)352 void opj_mct_encode_real(
353 		OPJ_INT32* restrict c0,
354 		OPJ_INT32* restrict c1,
355 		OPJ_INT32* restrict c2,
356 		OPJ_UINT32 n)
357 {
358 	OPJ_UINT32 i;
359 	for(i = 0; i < n; ++i) {
360 		OPJ_INT32 r = c0[i];
361 		OPJ_INT32 g = c1[i];
362 		OPJ_INT32 b = c2[i];
363 		OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
364 		OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
365 		OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
366 		c0[i] = y;
367 		c1[i] = u;
368 		c2[i] = v;
369 	}
370 }
371 #endif
372 
373 /* <summary> */
374 /* Inverse irreversible MCT. */
375 /* </summary> */
opj_mct_decode_real(OPJ_FLOAT32 * restrict c0,OPJ_FLOAT32 * restrict c1,OPJ_FLOAT32 * restrict c2,OPJ_UINT32 n)376 void opj_mct_decode_real(
377 		OPJ_FLOAT32* restrict c0,
378 		OPJ_FLOAT32* restrict c1,
379 		OPJ_FLOAT32* restrict c2,
380 		OPJ_UINT32 n)
381 {
382 	OPJ_UINT32 i;
383 #ifdef USE_SSE
384 	__m128 vrv, vgu, vgv, vbu;
385 	vrv = _mm_set1_ps(1.402f);
386 	vgu = _mm_set1_ps(0.34413f);
387 	vgv = _mm_set1_ps(0.71414f);
388 	vbu = _mm_set1_ps(1.772f);
389 	for (i = 0; i < (n >> 3); ++i) {
390 		__m128 vy, vu, vv;
391 		__m128 vr, vg, vb;
392 
393 		vy = _mm_load_ps(c0);
394 		vu = _mm_load_ps(c1);
395 		vv = _mm_load_ps(c2);
396 		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
397 		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
398 		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
399 		_mm_store_ps(c0, vr);
400 		_mm_store_ps(c1, vg);
401 		_mm_store_ps(c2, vb);
402 		c0 += 4;
403 		c1 += 4;
404 		c2 += 4;
405 
406 		vy = _mm_load_ps(c0);
407 		vu = _mm_load_ps(c1);
408 		vv = _mm_load_ps(c2);
409 		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
410 		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
411 		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
412 		_mm_store_ps(c0, vr);
413 		_mm_store_ps(c1, vg);
414 		_mm_store_ps(c2, vb);
415 		c0 += 4;
416 		c1 += 4;
417 		c2 += 4;
418 	}
419 	n &= 7;
420 #endif
421 	for(i = 0; i < n; ++i) {
422 		OPJ_FLOAT32 y = c0[i];
423 		OPJ_FLOAT32 u = c1[i];
424 		OPJ_FLOAT32 v = c2[i];
425 		OPJ_FLOAT32 r = y + (v * 1.402f);
426 		OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
427 		OPJ_FLOAT32 b = y + (u * 1.772f);
428 		c0[i] = r;
429 		c1[i] = g;
430 		c2[i] = b;
431 	}
432 }
433 
434 /* <summary> */
435 /* Get norm of basis function of irreversible MCT. */
436 /* </summary> */
opj_mct_getnorm_real(OPJ_UINT32 compno)437 OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) {
438 	return opj_mct_norms_real[compno];
439 }
440 
441 
opj_mct_encode_custom(OPJ_BYTE * pCodingdata,OPJ_UINT32 n,OPJ_BYTE ** pData,OPJ_UINT32 pNbComp,OPJ_UINT32 isSigned)442 OPJ_BOOL opj_mct_encode_custom(
443 					   OPJ_BYTE * pCodingdata,
444 					   OPJ_UINT32 n,
445 					   OPJ_BYTE ** pData,
446 					   OPJ_UINT32 pNbComp,
447 					   OPJ_UINT32 isSigned)
448 {
449 	OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
450 	OPJ_UINT32 i;
451 	OPJ_UINT32 j;
452 	OPJ_UINT32 k;
453 	OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
454 	OPJ_INT32 * lCurrentData = 00;
455 	OPJ_INT32 * lCurrentMatrix = 00;
456 	OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
457 	OPJ_UINT32 lMultiplicator = 1 << 13;
458 	OPJ_INT32 * lMctPtr;
459 
460     OPJ_ARG_NOT_USED(isSigned);
461 
462 	lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32));
463 	if (! lCurrentData) {
464 		return OPJ_FALSE;
465 	}
466 
467 	lCurrentMatrix = lCurrentData + pNbComp;
468 
469 	for (i =0;i<lNbMatCoeff;++i) {
470 		lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
471 	}
472 
473 	for (i = 0; i < n; ++i)  {
474 		lMctPtr = lCurrentMatrix;
475 		for (j=0;j<pNbComp;++j) {
476 			lCurrentData[j] = (*(lData[j]));
477 		}
478 
479 		for (j=0;j<pNbComp;++j) {
480 			*(lData[j]) = 0;
481 			for (k=0;k<pNbComp;++k) {
482 				*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
483 				++lMctPtr;
484 			}
485 
486 			++lData[j];
487 		}
488 	}
489 
490 	opj_free(lCurrentData);
491 
492 	return OPJ_TRUE;
493 }
494 
opj_mct_decode_custom(OPJ_BYTE * pDecodingData,OPJ_UINT32 n,OPJ_BYTE ** pData,OPJ_UINT32 pNbComp,OPJ_UINT32 isSigned)495 OPJ_BOOL opj_mct_decode_custom(
496 					   OPJ_BYTE * pDecodingData,
497 					   OPJ_UINT32 n,
498 					   OPJ_BYTE ** pData,
499 					   OPJ_UINT32 pNbComp,
500 					   OPJ_UINT32 isSigned)
501 {
502 	OPJ_FLOAT32 * lMct;
503 	OPJ_UINT32 i;
504 	OPJ_UINT32 j;
505 	OPJ_UINT32 k;
506 
507 	OPJ_FLOAT32 * lCurrentData = 00;
508 	OPJ_FLOAT32 * lCurrentResult = 00;
509 	OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
510 
511     OPJ_ARG_NOT_USED(isSigned);
512 
513 	lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
514 	if (! lCurrentData) {
515 		return OPJ_FALSE;
516 	}
517 	lCurrentResult = lCurrentData + pNbComp;
518 
519 	for (i = 0; i < n; ++i) {
520 		lMct = (OPJ_FLOAT32 *) pDecodingData;
521 		for (j=0;j<pNbComp;++j) {
522 			lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
523 		}
524 		for (j=0;j<pNbComp;++j) {
525 			lCurrentResult[j] = 0;
526 			for	(k=0;k<pNbComp;++k)	{
527 				lCurrentResult[j] += *(lMct++) * lCurrentData[k];
528 			}
529 			*(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
530 		}
531 	}
532 	opj_free(lCurrentData);
533 	return OPJ_TRUE;
534 }
535 
opj_calculate_norms(OPJ_FLOAT64 * pNorms,OPJ_UINT32 pNbComps,OPJ_FLOAT32 * pMatrix)536 void opj_calculate_norms(	OPJ_FLOAT64 * pNorms,
537 							OPJ_UINT32 pNbComps,
538 							OPJ_FLOAT32 * pMatrix)
539 {
540 	OPJ_UINT32 i,j,lIndex;
541 	OPJ_FLOAT32 lCurrentValue;
542 	OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
543 	OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
544 
545 	for	(i=0;i<pNbComps;++i) {
546 		lNorms[i] = 0;
547 		lIndex = i;
548 
549 		for	(j=0;j<pNbComps;++j) {
550 			lCurrentValue = lMatrix[lIndex];
551 			lIndex += pNbComps;
552 			lNorms[i] += lCurrentValue * lCurrentValue;
553 		}
554 		lNorms[i] = sqrt(lNorms[i]);
555 	}
556 }
557