1 /* $Id: tif_getimage.c,v 1.90 2015-06-17 01:34:08 bfriesen Exp $ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <stdio.h>
34 
35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int PickContigCase(TIFFRGBAImage*);
40 static int PickSeparateCase(TIFFRGBAImage*);
41 
42 static int BuildMapUaToAa(TIFFRGBAImage* img);
43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
44 
45 static const char photoTag[] = "PhotometricInterpretation";
46 
47 /*
48  * Helper constants used in Orientation tag handling
49  */
50 #define FLIP_VERTICALLY 0x01
51 #define FLIP_HORIZONTALLY 0x02
52 
53 /*
54  * Color conversion constants. We will define display types here.
55  */
56 
57 static const TIFFDisplay display_sRGB = {
58 	{			/* XYZ -> luminance matrix */
59 		{  3.2410F, -1.5374F, -0.4986F },
60 		{  -0.9692F, 1.8760F, 0.0416F },
61 		{  0.0556F, -0.2040F, 1.0570F }
62 	},
63 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
64 	255, 255, 255,		/* Pixel values for ref. white */
65 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
66 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
67 };
68 
69 /*
70  * Check the image to see if TIFFReadRGBAImage can deal with it.
71  * 1/0 is returned according to whether or not the image can
72  * be handled.  If 0 is returned, emsg contains the reason
73  * why it is being rejected.
74  */
75 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
77 {
78 	TIFFDirectory* td = &tif->tif_dir;
79 	uint16 photometric;
80 	int colorchannels;
81 
82 	if (!tif->tif_decodestatus) {
83 		sprintf(emsg, "Sorry, requested compression method is not configured");
84 		return (0);
85 	}
86 	switch (td->td_bitspersample) {
87 		case 1:
88 		case 2:
89 		case 4:
90 		case 8:
91 		case 16:
92 			break;
93 		default:
94 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
95 			    td->td_bitspersample);
96 			return (0);
97 	}
98 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
99 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
100 		switch (colorchannels) {
101 			case 1:
102 				photometric = PHOTOMETRIC_MINISBLACK;
103 				break;
104 			case 3:
105 				photometric = PHOTOMETRIC_RGB;
106 				break;
107 			default:
108 				sprintf(emsg, "Missing needed %s tag", photoTag);
109 				return (0);
110 		}
111 	}
112 	switch (photometric) {
113 		case PHOTOMETRIC_MINISWHITE:
114 		case PHOTOMETRIC_MINISBLACK:
115 		case PHOTOMETRIC_PALETTE:
116 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
117 			    && td->td_samplesperpixel != 1
118 			    && td->td_bitspersample < 8 ) {
119 				sprintf(emsg,
120 				    "Sorry, can not handle contiguous data with %s=%d, "
121 				    "and %s=%d and Bits/Sample=%d",
122 				    photoTag, photometric,
123 				    "Samples/pixel", td->td_samplesperpixel,
124 				    td->td_bitspersample);
125 				return (0);
126 			}
127 			/*
128 			 * We should likely validate that any extra samples are either
129 			 * to be ignored, or are alpha, and if alpha we should try to use
130 			 * them.  But for now we won't bother with this.
131 			*/
132 			break;
133 		case PHOTOMETRIC_YCBCR:
134 			/*
135 			 * TODO: if at all meaningful and useful, make more complete
136 			 * support check here, or better still, refactor to let supporting
137 			 * code decide whether there is support and what meaningfull
138 			 * error to return
139 			 */
140 			break;
141 		case PHOTOMETRIC_RGB:
142 			if (colorchannels < 3) {
143 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
144 				    "Color channels", colorchannels);
145 				return (0);
146 			}
147 			break;
148 		case PHOTOMETRIC_SEPARATED:
149 			{
150 				uint16 inkset;
151 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
152 				if (inkset != INKSET_CMYK) {
153 					sprintf(emsg,
154 					    "Sorry, can not handle separated image with %s=%d",
155 					    "InkSet", inkset);
156 					return 0;
157 				}
158 				if (td->td_samplesperpixel < 4) {
159 					sprintf(emsg,
160 					    "Sorry, can not handle separated image with %s=%d",
161 					    "Samples/pixel", td->td_samplesperpixel);
162 					return 0;
163 				}
164 				break;
165 			}
166 		case PHOTOMETRIC_LOGL:
167 			if (td->td_compression != COMPRESSION_SGILOG) {
168 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
169 				    "Compression", COMPRESSION_SGILOG);
170 				return (0);
171 			}
172 			break;
173 		case PHOTOMETRIC_LOGLUV:
174 			if (td->td_compression != COMPRESSION_SGILOG &&
175 			    td->td_compression != COMPRESSION_SGILOG24) {
176 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
177 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
178 				return (0);
179 			}
180 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
181 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
182 				    "Planarconfiguration", td->td_planarconfig);
183 				return (0);
184 			}
185 			if( td->td_samplesperpixel != 3 || colorchannels != 3 )
186             {
187                 sprintf(emsg,
188                         "Sorry, can not handle image with %s=%d, %s=%d",
189                         "Samples/pixel", td->td_samplesperpixel,
190                         "colorchannels", colorchannels);
191                 return 0;
192             }
193 			break;
194 		case PHOTOMETRIC_CIELAB:
195             if( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 )
196             {
197                 sprintf(emsg,
198                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
199                         "Samples/pixel", td->td_samplesperpixel,
200                         "colorchannels", colorchannels,
201                         "Bits/sample", td->td_bitspersample);
202                 return 0;
203             }
204 			break;
205 		default:
206 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
207 			    photoTag, photometric);
208 			return (0);
209 	}
210 	return (1);
211 }
212 
213 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)214 TIFFRGBAImageEnd(TIFFRGBAImage* img)
215 {
216 	if (img->Map)
217 		_TIFFfree(img->Map), img->Map = NULL;
218 	if (img->BWmap)
219 		_TIFFfree(img->BWmap), img->BWmap = NULL;
220 	if (img->PALmap)
221 		_TIFFfree(img->PALmap), img->PALmap = NULL;
222 	if (img->ycbcr)
223 		_TIFFfree(img->ycbcr), img->ycbcr = NULL;
224 	if (img->cielab)
225 		_TIFFfree(img->cielab), img->cielab = NULL;
226 	if (img->UaToAa)
227 		_TIFFfree(img->UaToAa), img->UaToAa = NULL;
228 	if (img->Bitdepth16To8)
229 		_TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL;
230 
231 	if( img->redcmap ) {
232 		_TIFFfree( img->redcmap );
233 		_TIFFfree( img->greencmap );
234 		_TIFFfree( img->bluecmap );
235                 img->redcmap = img->greencmap = img->bluecmap = NULL;
236 	}
237 }
238 
239 static int
isCCITTCompression(TIFF * tif)240 isCCITTCompression(TIFF* tif)
241 {
242     uint16 compress;
243     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
244     return (compress == COMPRESSION_CCITTFAX3 ||
245 	    compress == COMPRESSION_CCITTFAX4 ||
246 	    compress == COMPRESSION_CCITTRLE ||
247 	    compress == COMPRESSION_CCITTRLEW);
248 }
249 
250 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])251 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
252 {
253 	uint16* sampleinfo;
254 	uint16 extrasamples;
255 	uint16 planarconfig;
256 	uint16 compress;
257 	int colorchannels;
258 	uint16 *red_orig, *green_orig, *blue_orig;
259 	int n_color;
260 
261 	if( !TIFFRGBAImageOK(tif, emsg) )
262 		return 0;
263 
264 	/* Initialize to normal values */
265 	img->row_offset = 0;
266 	img->col_offset = 0;
267 	img->redcmap = NULL;
268 	img->greencmap = NULL;
269 	img->bluecmap = NULL;
270 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
271 
272 	img->tif = tif;
273 	img->stoponerr = stop;
274 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
275 	switch (img->bitspersample) {
276 		case 1:
277 		case 2:
278 		case 4:
279 		case 8:
280 		case 16:
281 			break;
282 		default:
283 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
284 			    img->bitspersample);
285 			goto fail_return;
286 	}
287 	img->alpha = 0;
288 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
289 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
290 	    &extrasamples, &sampleinfo);
291 	if (extrasamples >= 1)
292 	{
293 		switch (sampleinfo[0]) {
294 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
295 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
296 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
297 				break;
298 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
299 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
300 				img->alpha = sampleinfo[0];
301 				break;
302 		}
303 	}
304 
305 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
306 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
307 		img->photometric = PHOTOMETRIC_MINISWHITE;
308 
309 	if( extrasamples == 0
310 	    && img->samplesperpixel == 4
311 	    && img->photometric == PHOTOMETRIC_RGB )
312 	{
313 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
314 		extrasamples = 1;
315 	}
316 #endif
317 
318 	colorchannels = img->samplesperpixel - extrasamples;
319 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
320 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
321 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
322 		switch (colorchannels) {
323 			case 1:
324 				if (isCCITTCompression(tif))
325 					img->photometric = PHOTOMETRIC_MINISWHITE;
326 				else
327 					img->photometric = PHOTOMETRIC_MINISBLACK;
328 				break;
329 			case 3:
330 				img->photometric = PHOTOMETRIC_RGB;
331 				break;
332 			default:
333 				sprintf(emsg, "Missing needed %s tag", photoTag);
334                                 goto fail_return;
335 		}
336 	}
337 	switch (img->photometric) {
338 		case PHOTOMETRIC_PALETTE:
339 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
340 			    &red_orig, &green_orig, &blue_orig)) {
341 				sprintf(emsg, "Missing required \"Colormap\" tag");
342                                 goto fail_return;
343 			}
344 
345 			/* copy the colormaps so we can modify them */
346 			n_color = (1L << img->bitspersample);
347 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
348 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
349 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
350 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
351 				sprintf(emsg, "Out of memory for colormap copy");
352                                 goto fail_return;
353 			}
354 
355 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
356 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
357 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
358 
359 			/* fall thru... */
360 		case PHOTOMETRIC_MINISWHITE:
361 		case PHOTOMETRIC_MINISBLACK:
362 			if (planarconfig == PLANARCONFIG_CONTIG
363 			    && img->samplesperpixel != 1
364 			    && img->bitspersample < 8 ) {
365 				sprintf(emsg,
366 				    "Sorry, can not handle contiguous data with %s=%d, "
367 				    "and %s=%d and Bits/Sample=%d",
368 				    photoTag, img->photometric,
369 				    "Samples/pixel", img->samplesperpixel,
370 				    img->bitspersample);
371                                 goto fail_return;
372 			}
373 			break;
374 		case PHOTOMETRIC_YCBCR:
375 			/* It would probably be nice to have a reality check here. */
376 			if (planarconfig == PLANARCONFIG_CONTIG)
377 				/* can rely on libjpeg to convert to RGB */
378 				/* XXX should restore current state on exit */
379 				switch (compress) {
380 					case COMPRESSION_JPEG:
381 						/*
382 						 * TODO: when complete tests verify complete desubsampling
383 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
384 						 * favor of tif_getimage.c native handling
385 						 */
386 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
387 						img->photometric = PHOTOMETRIC_RGB;
388 						break;
389 					default:
390 						/* do nothing */;
391 						break;
392 				}
393 			/*
394 			 * TODO: if at all meaningful and useful, make more complete
395 			 * support check here, or better still, refactor to let supporting
396 			 * code decide whether there is support and what meaningfull
397 			 * error to return
398 			 */
399 			break;
400 		case PHOTOMETRIC_RGB:
401 			if (colorchannels < 3) {
402 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
403 				    "Color channels", colorchannels);
404                                 goto fail_return;
405 			}
406 			break;
407 		case PHOTOMETRIC_SEPARATED:
408 			{
409 				uint16 inkset;
410 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
411 				if (inkset != INKSET_CMYK) {
412 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
413 					    "InkSet", inkset);
414                                         goto fail_return;
415 				}
416 				if (img->samplesperpixel < 4) {
417 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
418 					    "Samples/pixel", img->samplesperpixel);
419                                         goto fail_return;
420 				}
421 			}
422 			break;
423 		case PHOTOMETRIC_LOGL:
424 			if (compress != COMPRESSION_SGILOG) {
425 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
426 				    "Compression", COMPRESSION_SGILOG);
427                                 goto fail_return;
428 			}
429 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
430 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
431 			img->bitspersample = 8;
432 			break;
433 		case PHOTOMETRIC_LOGLUV:
434 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
435 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
436 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
437                                 goto fail_return;
438 			}
439 			if (planarconfig != PLANARCONFIG_CONTIG) {
440 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
441 				    "Planarconfiguration", planarconfig);
442 				return (0);
443 			}
444 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
445 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
446 			img->bitspersample = 8;
447 			break;
448 		case PHOTOMETRIC_CIELAB:
449 			break;
450 		default:
451 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
452 			    photoTag, img->photometric);
453                         goto fail_return;
454 	}
455 	img->Map = NULL;
456 	img->BWmap = NULL;
457 	img->PALmap = NULL;
458 	img->ycbcr = NULL;
459 	img->cielab = NULL;
460 	img->UaToAa = NULL;
461 	img->Bitdepth16To8 = NULL;
462 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
463 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
464 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
465 	img->isContig =
466 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
467 	if (img->isContig) {
468 		if (!PickContigCase(img)) {
469 			sprintf(emsg, "Sorry, can not handle image");
470 			goto fail_return;
471 		}
472 	} else {
473 		if (!PickSeparateCase(img)) {
474 			sprintf(emsg, "Sorry, can not handle image");
475 			goto fail_return;
476 		}
477 	}
478 	return 1;
479 
480   fail_return:
481         _TIFFfree( img->redcmap );
482         _TIFFfree( img->greencmap );
483         _TIFFfree( img->bluecmap );
484         img->redcmap = img->greencmap = img->bluecmap = NULL;
485         return 0;
486 }
487 
488 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)489 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
490 {
491     if (img->get == NULL) {
492 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
493 		return (0);
494 	}
495 	if (img->put.any == NULL) {
496 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
497 		"No \"put\" routine setupl; probably can not handle image format");
498 		return (0);
499     }
500     return (*img->get)(img, raster, w, h);
501 }
502 
503 /*
504  * Read the specified image into an ABGR-format rastertaking in account
505  * specified orientation.
506  */
507 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)508 TIFFReadRGBAImageOriented(TIFF* tif,
509 			  uint32 rwidth, uint32 rheight, uint32* raster,
510 			  int orientation, int stop)
511 {
512     char emsg[1024] = "";
513     TIFFRGBAImage img;
514     int ok;
515 
516 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
517 		img.req_orientation = orientation;
518 		/* XXX verify rwidth and rheight against width and height */
519 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
520 			rwidth, img.height);
521 		TIFFRGBAImageEnd(&img);
522 	} else {
523 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
524 		ok = 0;
525     }
526     return (ok);
527 }
528 
529 /*
530  * Read the specified image into an ABGR-format raster. Use bottom left
531  * origin for raster by default.
532  */
533 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)534 TIFFReadRGBAImage(TIFF* tif,
535 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
536 {
537 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
538 					 ORIENTATION_BOTLEFT, stop);
539 }
540 
541 static int
setorientation(TIFFRGBAImage * img)542 setorientation(TIFFRGBAImage* img)
543 {
544 	switch (img->orientation) {
545 		case ORIENTATION_TOPLEFT:
546 		case ORIENTATION_LEFTTOP:
547 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
548 			    img->req_orientation == ORIENTATION_RIGHTTOP)
549 				return FLIP_HORIZONTALLY;
550 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
551 			    img->req_orientation == ORIENTATION_RIGHTBOT)
552 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
553 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
554 			    img->req_orientation == ORIENTATION_LEFTBOT)
555 				return FLIP_VERTICALLY;
556 			else
557 				return 0;
558 		case ORIENTATION_TOPRIGHT:
559 		case ORIENTATION_RIGHTTOP:
560 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
561 			    img->req_orientation == ORIENTATION_LEFTTOP)
562 				return FLIP_HORIZONTALLY;
563 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
564 			    img->req_orientation == ORIENTATION_RIGHTBOT)
565 				return FLIP_VERTICALLY;
566 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
567 			    img->req_orientation == ORIENTATION_LEFTBOT)
568 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
569 			else
570 				return 0;
571 		case ORIENTATION_BOTRIGHT:
572 		case ORIENTATION_RIGHTBOT:
573 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
574 			    img->req_orientation == ORIENTATION_LEFTTOP)
575 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
576 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
577 			    img->req_orientation == ORIENTATION_RIGHTTOP)
578 				return FLIP_VERTICALLY;
579 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
580 			    img->req_orientation == ORIENTATION_LEFTBOT)
581 				return FLIP_HORIZONTALLY;
582 			else
583 				return 0;
584 		case ORIENTATION_BOTLEFT:
585 		case ORIENTATION_LEFTBOT:
586 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
587 			    img->req_orientation == ORIENTATION_LEFTTOP)
588 				return FLIP_VERTICALLY;
589 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
590 			    img->req_orientation == ORIENTATION_RIGHTTOP)
591 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
592 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
593 			    img->req_orientation == ORIENTATION_RIGHTBOT)
594 				return FLIP_HORIZONTALLY;
595 			else
596 				return 0;
597 		default:	/* NOTREACHED */
598 			return 0;
599 	}
600 }
601 
602 /*
603  * Get an tile-organized image that has
604  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
605  * or
606  *	SamplesPerPixel == 1
607  */
608 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)609 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
610 {
611     TIFF* tif = img->tif;
612     tileContigRoutine put = img->put.contig;
613     uint32 col, row, y, rowstoread;
614     tmsize_t pos;
615     uint32 tw, th;
616     unsigned char* buf;
617     int32 fromskew, toskew;
618     uint32 nrow;
619     int ret = 1, flip;
620     uint32 this_tw, tocol;
621     int32 this_toskew, leftmost_toskew;
622     int32 leftmost_fromskew;
623     uint32 leftmost_tw;
624 
625     buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif));
626     if (buf == 0) {
627 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
628 		return (0);
629     }
630     _TIFFmemset(buf, 0, TIFFTileSize(tif));
631     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
632     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
633 
634     flip = setorientation(img);
635     if (flip & FLIP_VERTICALLY) {
636 	    y = h - 1;
637 	    toskew = -(int32)(tw + w);
638     }
639     else {
640 	    y = 0;
641 	    toskew = -(int32)(tw - w);
642     }
643 
644     /*
645      *	Leftmost tile is clipped on left side if col_offset > 0.
646      */
647     leftmost_fromskew = img->col_offset % tw;
648     leftmost_tw = tw - leftmost_fromskew;
649     leftmost_toskew = toskew + leftmost_fromskew;
650     for (row = 0; row < h; row += nrow)
651     {
652         rowstoread = th - (row + img->row_offset) % th;
653     	nrow = (row + rowstoread > h ? h - row : rowstoread);
654 	fromskew = leftmost_fromskew;
655 	this_tw = leftmost_tw;
656 	this_toskew = leftmost_toskew;
657 	tocol = 0;
658 	col = img->col_offset;
659 	while (tocol < w)
660         {
661 	    if (TIFFReadTile(tif, buf, col,
662 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr)
663             {
664                 ret = 0;
665                 break;
666             }
667             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
668 		   ((tmsize_t) fromskew * img->samplesperpixel);
669 	    if (tocol + this_tw > w)
670 	    {
671 		/*
672 		 * Rightmost tile is clipped on right side.
673 		 */
674 		fromskew = tw - (w - tocol);
675 		this_tw = tw - fromskew;
676 		this_toskew = toskew + fromskew;
677 	    }
678 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
679 	    tocol += this_tw;
680 	    col += this_tw;
681 	    /*
682 	     * After the leftmost tile, tiles are no longer clipped on left side.
683 	     */
684 	    fromskew = 0;
685 	    this_tw = tw;
686 	    this_toskew = toskew;
687 	}
688 
689         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
690     }
691     _TIFFfree(buf);
692 
693     if (flip & FLIP_HORIZONTALLY) {
694 	    uint32 line;
695 
696 	    for (line = 0; line < h; line++) {
697 		    uint32 *left = raster + (line * w);
698 		    uint32 *right = left + w - 1;
699 
700 		    while ( left < right ) {
701 			    uint32 temp = *left;
702 			    *left = *right;
703 			    *right = temp;
704 			    left++, right--;
705 		    }
706 	    }
707     }
708 
709     return (ret);
710 }
711 
712 /*
713  * Get an tile-organized image that has
714  *	 SamplesPerPixel > 1
715  *	 PlanarConfiguration separated
716  * We assume that all such images are RGB.
717  */
718 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)719 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
720 {
721 	TIFF* tif = img->tif;
722 	tileSeparateRoutine put = img->put.separate;
723 	uint32 col, row, y, rowstoread;
724 	tmsize_t pos;
725 	uint32 tw, th;
726 	unsigned char* buf;
727 	unsigned char* p0;
728 	unsigned char* p1;
729 	unsigned char* p2;
730 	unsigned char* pa;
731 	tmsize_t tilesize;
732 	tmsize_t bufsize;
733 	int32 fromskew, toskew;
734 	int alpha = img->alpha;
735 	uint32 nrow;
736 	int ret = 1, flip;
737         int colorchannels;
738 	uint32 this_tw, tocol;
739 	int32 this_toskew, leftmost_toskew;
740 	int32 leftmost_fromskew;
741 	uint32 leftmost_tw;
742 
743 	tilesize = TIFFTileSize(tif);
744 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
745 	if (bufsize == 0) {
746 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
747 		return (0);
748 	}
749 	buf = (unsigned char*) _TIFFmalloc(bufsize);
750 	if (buf == 0) {
751 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
752 		return (0);
753 	}
754 	_TIFFmemset(buf, 0, bufsize);
755 	p0 = buf;
756 	p1 = p0 + tilesize;
757 	p2 = p1 + tilesize;
758 	pa = (alpha?(p2+tilesize):NULL);
759 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
760 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
761 
762 	flip = setorientation(img);
763 	if (flip & FLIP_VERTICALLY) {
764 		y = h - 1;
765 		toskew = -(int32)(tw + w);
766 	}
767 	else {
768 		y = 0;
769 		toskew = -(int32)(tw - w);
770 	}
771 
772         switch( img->photometric )
773         {
774           case PHOTOMETRIC_MINISWHITE:
775           case PHOTOMETRIC_MINISBLACK:
776           case PHOTOMETRIC_PALETTE:
777             colorchannels = 1;
778             p2 = p1 = p0;
779             break;
780 
781           default:
782             colorchannels = 3;
783             break;
784         }
785 
786 	/*
787 	 *	Leftmost tile is clipped on left side if col_offset > 0.
788 	 */
789 	leftmost_fromskew = img->col_offset % tw;
790 	leftmost_tw = tw - leftmost_fromskew;
791 	leftmost_toskew = toskew + leftmost_fromskew;
792 	for (row = 0; row < h; row += nrow)
793 	{
794 		rowstoread = th - (row + img->row_offset) % th;
795 		nrow = (row + rowstoread > h ? h - row : rowstoread);
796 		fromskew = leftmost_fromskew;
797 		this_tw = leftmost_tw;
798 		this_toskew = leftmost_toskew;
799 		tocol = 0;
800 		col = img->col_offset;
801 		while (tocol < w)
802 		{
803 			if (TIFFReadTile(tif, p0, col,
804 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
805 			{
806 				ret = 0;
807 				break;
808 			}
809 			if (colorchannels > 1
810                             && TIFFReadTile(tif, p1, col,
811                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
812                             && img->stoponerr)
813 			{
814 				ret = 0;
815 				break;
816 			}
817 			if (colorchannels > 1
818                             && TIFFReadTile(tif, p2, col,
819                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
820                             && img->stoponerr)
821 			{
822 				ret = 0;
823 				break;
824 			}
825 			if (alpha
826                             && TIFFReadTile(tif,pa,col,
827                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
828                             && img->stoponerr)
829                         {
830                             ret = 0;
831                             break;
832 			}
833 
834 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
835 			   ((tmsize_t) fromskew * img->samplesperpixel);
836 			if (tocol + this_tw > w)
837 			{
838 				/*
839 				 * Rightmost tile is clipped on right side.
840 				 */
841 				fromskew = tw - (w - tocol);
842 				this_tw = tw - fromskew;
843 				this_toskew = toskew + fromskew;
844 			}
845 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
846 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
847 			tocol += this_tw;
848 			col += this_tw;
849 			/*
850 			* After the leftmost tile, tiles are no longer clipped on left side.
851 			*/
852 			fromskew = 0;
853 			this_tw = tw;
854 			this_toskew = toskew;
855 		}
856 
857 		y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
858 	}
859 
860 	if (flip & FLIP_HORIZONTALLY) {
861 		uint32 line;
862 
863 		for (line = 0; line < h; line++) {
864 			uint32 *left = raster + (line * w);
865 			uint32 *right = left + w - 1;
866 
867 			while ( left < right ) {
868 				uint32 temp = *left;
869 				*left = *right;
870 				*right = temp;
871 				left++, right--;
872 			}
873 		}
874 	}
875 
876 	_TIFFfree(buf);
877 	return (ret);
878 }
879 
880 /*
881  * Get a strip-organized image that has
882  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
883  * or
884  *	SamplesPerPixel == 1
885  */
886 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)887 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
888 {
889 	TIFF* tif = img->tif;
890 	tileContigRoutine put = img->put.contig;
891 	uint32 row, y, nrow, nrowsub, rowstoread;
892 	tmsize_t pos;
893 	unsigned char* buf;
894 	uint32 rowsperstrip;
895 	uint16 subsamplinghor,subsamplingver;
896 	uint32 imagewidth = img->width;
897 	tmsize_t scanline;
898 	int32 fromskew, toskew;
899 	int ret = 1, flip;
900 
901 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
902 	if( subsamplingver == 0 ) {
903 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
904 		return (0);
905 	}
906 
907 	buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif));
908 	if (buf == 0) {
909 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
910 		return (0);
911 	}
912 	_TIFFmemset(buf, 0, TIFFStripSize(tif));
913 
914 	flip = setorientation(img);
915 	if (flip & FLIP_VERTICALLY) {
916 		y = h - 1;
917 		toskew = -(int32)(w + w);
918 	} else {
919 		y = 0;
920 		toskew = -(int32)(w - w);
921 	}
922 
923 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
924 
925 	scanline = TIFFScanlineSize(tif);
926 	fromskew = (w < imagewidth ? imagewidth - w : 0);
927 	for (row = 0; row < h; row += nrow)
928 	{
929 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
930 		nrow = (row + rowstoread > h ? h - row : rowstoread);
931 		nrowsub = nrow;
932 		if ((nrowsub%subsamplingver)!=0)
933 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
934 		if (TIFFReadEncodedStrip(tif,
935 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
936 		    buf,
937 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
938 		    && img->stoponerr)
939 		{
940 			ret = 0;
941 			break;
942 		}
943 
944 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
945 			((tmsize_t) img->col_offset * img->samplesperpixel);
946 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
947 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
948 	}
949 
950 	if (flip & FLIP_HORIZONTALLY) {
951 		uint32 line;
952 
953 		for (line = 0; line < h; line++) {
954 			uint32 *left = raster + (line * w);
955 			uint32 *right = left + w - 1;
956 
957 			while ( left < right ) {
958 				uint32 temp = *left;
959 				*left = *right;
960 				*right = temp;
961 				left++, right--;
962 			}
963 		}
964 	}
965 
966 	_TIFFfree(buf);
967 	return (ret);
968 }
969 
970 /*
971  * Get a strip-organized image with
972  *	 SamplesPerPixel > 1
973  *	 PlanarConfiguration separated
974  * We assume that all such images are RGB.
975  */
976 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)977 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
978 {
979 	TIFF* tif = img->tif;
980 	tileSeparateRoutine put = img->put.separate;
981 	unsigned char *buf;
982 	unsigned char *p0, *p1, *p2, *pa;
983 	uint32 row, y, nrow, rowstoread;
984 	tmsize_t pos;
985 	tmsize_t scanline;
986 	uint32 rowsperstrip, offset_row;
987 	uint32 imagewidth = img->width;
988 	tmsize_t stripsize;
989 	tmsize_t bufsize;
990 	int32 fromskew, toskew;
991 	int alpha = img->alpha;
992 	int ret = 1, flip, colorchannels;
993 
994 	stripsize = TIFFStripSize(tif);
995 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
996 	if (bufsize == 0) {
997 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
998 		return (0);
999 	}
1000 	p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
1001 	if (buf == 0) {
1002 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
1003 		return (0);
1004 	}
1005 	_TIFFmemset(buf, 0, bufsize);
1006 	p1 = p0 + stripsize;
1007 	p2 = p1 + stripsize;
1008 	pa = (alpha?(p2+stripsize):NULL);
1009 
1010 	flip = setorientation(img);
1011 	if (flip & FLIP_VERTICALLY) {
1012 		y = h - 1;
1013 		toskew = -(int32)(w + w);
1014 	}
1015 	else {
1016 		y = 0;
1017 		toskew = -(int32)(w - w);
1018 	}
1019 
1020         switch( img->photometric )
1021         {
1022           case PHOTOMETRIC_MINISWHITE:
1023           case PHOTOMETRIC_MINISBLACK:
1024           case PHOTOMETRIC_PALETTE:
1025             colorchannels = 1;
1026             p2 = p1 = p0;
1027             break;
1028 
1029           default:
1030             colorchannels = 3;
1031             break;
1032         }
1033 
1034 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1035 	scanline = TIFFScanlineSize(tif);
1036 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1037 	for (row = 0; row < h; row += nrow)
1038 	{
1039 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1040 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1041 		offset_row = row + img->row_offset;
1042 		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1043 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1044 		    && img->stoponerr)
1045 		{
1046 			ret = 0;
1047 			break;
1048 		}
1049 		if (colorchannels > 1
1050                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1051                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1052 		    && img->stoponerr)
1053 		{
1054 			ret = 0;
1055 			break;
1056 		}
1057 		if (colorchannels > 1
1058                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1059                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1060 		    && img->stoponerr)
1061 		{
1062 			ret = 0;
1063 			break;
1064 		}
1065 		if (alpha)
1066 		{
1067 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1068 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1069 			    && img->stoponerr)
1070 			{
1071 				ret = 0;
1072 				break;
1073 			}
1074 		}
1075 
1076 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1077 			((tmsize_t) img->col_offset * img->samplesperpixel);
1078 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1079 		    p2 + pos, (alpha?(pa+pos):NULL));
1080 		y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
1081 	}
1082 
1083 	if (flip & FLIP_HORIZONTALLY) {
1084 		uint32 line;
1085 
1086 		for (line = 0; line < h; line++) {
1087 			uint32 *left = raster + (line * w);
1088 			uint32 *right = left + w - 1;
1089 
1090 			while ( left < right ) {
1091 				uint32 temp = *left;
1092 				*left = *right;
1093 				*right = temp;
1094 				left++, right--;
1095 			}
1096 		}
1097 	}
1098 
1099 	_TIFFfree(buf);
1100 	return (ret);
1101 }
1102 
1103 /*
1104  * The following routines move decoded data returned
1105  * from the TIFF library into rasters filled with packed
1106  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1107  *
1108  * The routines have been created according to the most
1109  * important cases and optimized.  PickContigCase and
1110  * PickSeparateCase analyze the parameters and select
1111  * the appropriate "get" and "put" routine to use.
1112  */
1113 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1114 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1115 #define	REPEAT2(op)	op; op
1116 #define	CASE8(x,op)			\
1117     switch (x) {			\
1118     case 7: op; case 6: op; case 5: op;	\
1119     case 4: op; case 3: op; case 2: op;	\
1120     case 1: op;				\
1121     }
1122 #define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }
1123 #define	NOP
1124 
1125 #define	UNROLL8(w, op1, op2) {		\
1126     uint32 _x;				\
1127     for (_x = w; _x >= 8; _x -= 8) {	\
1128 	op1;				\
1129 	REPEAT8(op2);			\
1130     }					\
1131     if (_x > 0) {			\
1132 	op1;				\
1133 	CASE8(_x,op2);			\
1134     }					\
1135 }
1136 #define	UNROLL4(w, op1, op2) {		\
1137     uint32 _x;				\
1138     for (_x = w; _x >= 4; _x -= 4) {	\
1139 	op1;				\
1140 	REPEAT4(op2);			\
1141     }					\
1142     if (_x > 0) {			\
1143 	op1;				\
1144 	CASE4(_x,op2);			\
1145     }					\
1146 }
1147 #define	UNROLL2(w, op1, op2) {		\
1148     uint32 _x;				\
1149     for (_x = w; _x >= 2; _x -= 2) {	\
1150 	op1;				\
1151 	REPEAT2(op2);			\
1152     }					\
1153     if (_x) {				\
1154 	op1;				\
1155 	op2;				\
1156     }					\
1157 }
1158 
1159 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1160 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1161 
1162 #define A1 (((uint32)0xffL)<<24)
1163 #define	PACK(r,g,b)	\
1164 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1165 #define	PACK4(r,g,b,a)	\
1166 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1167 #define W2B(v) (((v)>>8)&0xff)
1168 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1169 #define	PACKW(r,g,b)	\
1170 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1171 #define	PACKW4(r,g,b,a)	\
1172 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1173 
1174 #define	DECLAREContigPutFunc(name) \
1175 static void name(\
1176     TIFFRGBAImage* img, \
1177     uint32* cp, \
1178     uint32 x, uint32 y, \
1179     uint32 w, uint32 h, \
1180     int32 fromskew, int32 toskew, \
1181     unsigned char* pp \
1182 )
1183 
1184 /*
1185  * 8-bit palette => colormap/RGB
1186  */
DECLAREContigPutFunc(put8bitcmaptile)1187 DECLAREContigPutFunc(put8bitcmaptile)
1188 {
1189     uint32** PALmap = img->PALmap;
1190     int samplesperpixel = img->samplesperpixel;
1191 
1192     (void) y;
1193     while (h-- > 0) {
1194 	for (x = w; x-- > 0;)
1195         {
1196 	    *cp++ = PALmap[*pp][0];
1197             pp += samplesperpixel;
1198         }
1199 	cp += toskew;
1200 	pp += fromskew;
1201     }
1202 }
1203 
1204 /*
1205  * 4-bit palette => colormap/RGB
1206  */
DECLAREContigPutFunc(put4bitcmaptile)1207 DECLAREContigPutFunc(put4bitcmaptile)
1208 {
1209     uint32** PALmap = img->PALmap;
1210 
1211     (void) x; (void) y;
1212     fromskew /= 2;
1213     while (h-- > 0) {
1214 	uint32* bw;
1215 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1216 	cp += toskew;
1217 	pp += fromskew;
1218     }
1219 }
1220 
1221 /*
1222  * 2-bit palette => colormap/RGB
1223  */
DECLAREContigPutFunc(put2bitcmaptile)1224 DECLAREContigPutFunc(put2bitcmaptile)
1225 {
1226     uint32** PALmap = img->PALmap;
1227 
1228     (void) x; (void) y;
1229     fromskew /= 4;
1230     while (h-- > 0) {
1231 	uint32* bw;
1232 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1233 	cp += toskew;
1234 	pp += fromskew;
1235     }
1236 }
1237 
1238 /*
1239  * 1-bit palette => colormap/RGB
1240  */
DECLAREContigPutFunc(put1bitcmaptile)1241 DECLAREContigPutFunc(put1bitcmaptile)
1242 {
1243     uint32** PALmap = img->PALmap;
1244 
1245     (void) x; (void) y;
1246     fromskew /= 8;
1247     while (h-- > 0) {
1248 	uint32* bw;
1249 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1250 	cp += toskew;
1251 	pp += fromskew;
1252     }
1253 }
1254 
1255 /*
1256  * 8-bit greyscale => colormap/RGB
1257  */
DECLAREContigPutFunc(putgreytile)1258 DECLAREContigPutFunc(putgreytile)
1259 {
1260     int samplesperpixel = img->samplesperpixel;
1261     uint32** BWmap = img->BWmap;
1262 
1263     (void) y;
1264     while (h-- > 0) {
1265 	for (x = w; x-- > 0;)
1266         {
1267 	    *cp++ = BWmap[*pp][0];
1268             pp += samplesperpixel;
1269         }
1270 	cp += toskew;
1271 	pp += fromskew;
1272     }
1273 }
1274 
1275 /*
1276  * 8-bit greyscale with associated alpha => colormap/RGBA
1277  */
DECLAREContigPutFunc(putagreytile)1278 DECLAREContigPutFunc(putagreytile)
1279 {
1280     int samplesperpixel = img->samplesperpixel;
1281     uint32** BWmap = img->BWmap;
1282 
1283     (void) y;
1284     while (h-- > 0) {
1285 	for (x = w; x-- > 0;)
1286         {
1287             *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1);
1288             pp += samplesperpixel;
1289         }
1290 	cp += toskew;
1291 	pp += fromskew;
1292     }
1293 }
1294 
1295 /*
1296  * 16-bit greyscale => colormap/RGB
1297  */
DECLAREContigPutFunc(put16bitbwtile)1298 DECLAREContigPutFunc(put16bitbwtile)
1299 {
1300     int samplesperpixel = img->samplesperpixel;
1301     uint32** BWmap = img->BWmap;
1302 
1303     (void) y;
1304     while (h-- > 0) {
1305         uint16 *wp = (uint16 *) pp;
1306 
1307 	for (x = w; x-- > 0;)
1308         {
1309             /* use high order byte of 16bit value */
1310 
1311 	    *cp++ = BWmap[*wp >> 8][0];
1312             pp += 2 * samplesperpixel;
1313             wp += samplesperpixel;
1314         }
1315 	cp += toskew;
1316 	pp += fromskew;
1317     }
1318 }
1319 
1320 /*
1321  * 1-bit bilevel => colormap/RGB
1322  */
DECLAREContigPutFunc(put1bitbwtile)1323 DECLAREContigPutFunc(put1bitbwtile)
1324 {
1325     uint32** BWmap = img->BWmap;
1326 
1327     (void) x; (void) y;
1328     fromskew /= 8;
1329     while (h-- > 0) {
1330 	uint32* bw;
1331 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1332 	cp += toskew;
1333 	pp += fromskew;
1334     }
1335 }
1336 
1337 /*
1338  * 2-bit greyscale => colormap/RGB
1339  */
DECLAREContigPutFunc(put2bitbwtile)1340 DECLAREContigPutFunc(put2bitbwtile)
1341 {
1342     uint32** BWmap = img->BWmap;
1343 
1344     (void) x; (void) y;
1345     fromskew /= 4;
1346     while (h-- > 0) {
1347 	uint32* bw;
1348 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1349 	cp += toskew;
1350 	pp += fromskew;
1351     }
1352 }
1353 
1354 /*
1355  * 4-bit greyscale => colormap/RGB
1356  */
DECLAREContigPutFunc(put4bitbwtile)1357 DECLAREContigPutFunc(put4bitbwtile)
1358 {
1359     uint32** BWmap = img->BWmap;
1360 
1361     (void) x; (void) y;
1362     fromskew /= 2;
1363     while (h-- > 0) {
1364 	uint32* bw;
1365 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1366 	cp += toskew;
1367 	pp += fromskew;
1368     }
1369 }
1370 
1371 /*
1372  * 8-bit packed samples, no Map => RGB
1373  */
DECLAREContigPutFunc(putRGBcontig8bittile)1374 DECLAREContigPutFunc(putRGBcontig8bittile)
1375 {
1376     int samplesperpixel = img->samplesperpixel;
1377 
1378     (void) x; (void) y;
1379     fromskew *= samplesperpixel;
1380     while (h-- > 0) {
1381 	UNROLL8(w, NOP,
1382 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1383 	    pp += samplesperpixel);
1384 	cp += toskew;
1385 	pp += fromskew;
1386     }
1387 }
1388 
1389 /*
1390  * 8-bit packed samples => RGBA w/ associated alpha
1391  * (known to have Map == NULL)
1392  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1393 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1394 {
1395     int samplesperpixel = img->samplesperpixel;
1396 
1397     (void) x; (void) y;
1398     fromskew *= samplesperpixel;
1399     while (h-- > 0) {
1400 	UNROLL8(w, NOP,
1401 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1402 	    pp += samplesperpixel);
1403 	cp += toskew;
1404 	pp += fromskew;
1405     }
1406 }
1407 
1408 /*
1409  * 8-bit packed samples => RGBA w/ unassociated alpha
1410  * (known to have Map == NULL)
1411  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1412 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1413 {
1414 	int samplesperpixel = img->samplesperpixel;
1415 	(void) y;
1416 	fromskew *= samplesperpixel;
1417 	while (h-- > 0) {
1418 		uint32 r, g, b, a;
1419 		uint8* m;
1420 		for (x = w; x-- > 0;) {
1421 			a = pp[3];
1422 			m = img->UaToAa+(a<<8);
1423 			r = m[pp[0]];
1424 			g = m[pp[1]];
1425 			b = m[pp[2]];
1426 			*cp++ = PACK4(r,g,b,a);
1427 			pp += samplesperpixel;
1428 		}
1429 		cp += toskew;
1430 		pp += fromskew;
1431 	}
1432 }
1433 
1434 /*
1435  * 16-bit packed samples => RGB
1436  */
DECLAREContigPutFunc(putRGBcontig16bittile)1437 DECLAREContigPutFunc(putRGBcontig16bittile)
1438 {
1439 	int samplesperpixel = img->samplesperpixel;
1440 	uint16 *wp = (uint16 *)pp;
1441 	(void) y;
1442 	fromskew *= samplesperpixel;
1443 	while (h-- > 0) {
1444 		for (x = w; x-- > 0;) {
1445 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1446 			    img->Bitdepth16To8[wp[1]],
1447 			    img->Bitdepth16To8[wp[2]]);
1448 			wp += samplesperpixel;
1449 		}
1450 		cp += toskew;
1451 		wp += fromskew;
1452 	}
1453 }
1454 
1455 /*
1456  * 16-bit packed samples => RGBA w/ associated alpha
1457  * (known to have Map == NULL)
1458  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1459 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1460 {
1461 	int samplesperpixel = img->samplesperpixel;
1462 	uint16 *wp = (uint16 *)pp;
1463 	(void) y;
1464 	fromskew *= samplesperpixel;
1465 	while (h-- > 0) {
1466 		for (x = w; x-- > 0;) {
1467 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1468 			    img->Bitdepth16To8[wp[1]],
1469 			    img->Bitdepth16To8[wp[2]],
1470 			    img->Bitdepth16To8[wp[3]]);
1471 			wp += samplesperpixel;
1472 		}
1473 		cp += toskew;
1474 		wp += fromskew;
1475 	}
1476 }
1477 
1478 /*
1479  * 16-bit packed samples => RGBA w/ unassociated alpha
1480  * (known to have Map == NULL)
1481  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1482 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1483 {
1484 	int samplesperpixel = img->samplesperpixel;
1485 	uint16 *wp = (uint16 *)pp;
1486 	(void) y;
1487 	fromskew *= samplesperpixel;
1488 	while (h-- > 0) {
1489 		uint32 r,g,b,a;
1490 		uint8* m;
1491 		for (x = w; x-- > 0;) {
1492 			a = img->Bitdepth16To8[wp[3]];
1493 			m = img->UaToAa+(a<<8);
1494 			r = m[img->Bitdepth16To8[wp[0]]];
1495 			g = m[img->Bitdepth16To8[wp[1]]];
1496 			b = m[img->Bitdepth16To8[wp[2]]];
1497 			*cp++ = PACK4(r,g,b,a);
1498 			wp += samplesperpixel;
1499 		}
1500 		cp += toskew;
1501 		wp += fromskew;
1502 	}
1503 }
1504 
1505 /*
1506  * 8-bit packed CMYK samples w/o Map => RGB
1507  *
1508  * NB: The conversion of CMYK->RGB is *very* crude.
1509  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1510 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1511 {
1512     int samplesperpixel = img->samplesperpixel;
1513     uint16 r, g, b, k;
1514 
1515     (void) x; (void) y;
1516     fromskew *= samplesperpixel;
1517     while (h-- > 0) {
1518 	UNROLL8(w, NOP,
1519 	    k = 255 - pp[3];
1520 	    r = (k*(255-pp[0]))/255;
1521 	    g = (k*(255-pp[1]))/255;
1522 	    b = (k*(255-pp[2]))/255;
1523 	    *cp++ = PACK(r, g, b);
1524 	    pp += samplesperpixel);
1525 	cp += toskew;
1526 	pp += fromskew;
1527     }
1528 }
1529 
1530 /*
1531  * 8-bit packed CMYK samples w/Map => RGB
1532  *
1533  * NB: The conversion of CMYK->RGB is *very* crude.
1534  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1535 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1536 {
1537     int samplesperpixel = img->samplesperpixel;
1538     TIFFRGBValue* Map = img->Map;
1539     uint16 r, g, b, k;
1540 
1541     (void) y;
1542     fromskew *= samplesperpixel;
1543     while (h-- > 0) {
1544 	for (x = w; x-- > 0;) {
1545 	    k = 255 - pp[3];
1546 	    r = (k*(255-pp[0]))/255;
1547 	    g = (k*(255-pp[1]))/255;
1548 	    b = (k*(255-pp[2]))/255;
1549 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1550 	    pp += samplesperpixel;
1551 	}
1552 	pp += fromskew;
1553 	cp += toskew;
1554     }
1555 }
1556 
1557 #define	DECLARESepPutFunc(name) \
1558 static void name(\
1559     TIFFRGBAImage* img,\
1560     uint32* cp,\
1561     uint32 x, uint32 y, \
1562     uint32 w, uint32 h,\
1563     int32 fromskew, int32 toskew,\
1564     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1565 )
1566 
1567 /*
1568  * 8-bit unpacked samples => RGB
1569  */
DECLARESepPutFunc(putRGBseparate8bittile)1570 DECLARESepPutFunc(putRGBseparate8bittile)
1571 {
1572     (void) img; (void) x; (void) y; (void) a;
1573     while (h-- > 0) {
1574 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1575 	SKEW(r, g, b, fromskew);
1576 	cp += toskew;
1577     }
1578 }
1579 
1580 /*
1581  * 8-bit unpacked samples => RGBA w/ associated alpha
1582  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1583 DECLARESepPutFunc(putRGBAAseparate8bittile)
1584 {
1585 	(void) img; (void) x; (void) y;
1586 	while (h-- > 0) {
1587 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1588 		SKEW4(r, g, b, a, fromskew);
1589 		cp += toskew;
1590 	}
1591 }
1592 
1593 /*
1594  * 8-bit unpacked CMYK samples => RGBA
1595  */
DECLARESepPutFunc(putCMYKseparate8bittile)1596 DECLARESepPutFunc(putCMYKseparate8bittile)
1597 {
1598 	(void) img; (void) y;
1599 	while (h-- > 0) {
1600 		uint32 rv, gv, bv, kv;
1601 		for (x = w; x-- > 0;) {
1602 			kv = 255 - *a++;
1603 			rv = (kv*(255-*r++))/255;
1604 			gv = (kv*(255-*g++))/255;
1605 			bv = (kv*(255-*b++))/255;
1606 			*cp++ = PACK4(rv,gv,bv,255);
1607 		}
1608 		SKEW4(r, g, b, a, fromskew);
1609 		cp += toskew;
1610 	}
1611 }
1612 
1613 /*
1614  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1615  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1616 DECLARESepPutFunc(putRGBUAseparate8bittile)
1617 {
1618 	(void) img; (void) y;
1619 	while (h-- > 0) {
1620 		uint32 rv, gv, bv, av;
1621 		uint8* m;
1622 		for (x = w; x-- > 0;) {
1623 			av = *a++;
1624 			m = img->UaToAa+(av<<8);
1625 			rv = m[*r++];
1626 			gv = m[*g++];
1627 			bv = m[*b++];
1628 			*cp++ = PACK4(rv,gv,bv,av);
1629 		}
1630 		SKEW4(r, g, b, a, fromskew);
1631 		cp += toskew;
1632 	}
1633 }
1634 
1635 /*
1636  * 16-bit unpacked samples => RGB
1637  */
DECLARESepPutFunc(putRGBseparate16bittile)1638 DECLARESepPutFunc(putRGBseparate16bittile)
1639 {
1640 	uint16 *wr = (uint16*) r;
1641 	uint16 *wg = (uint16*) g;
1642 	uint16 *wb = (uint16*) b;
1643 	(void) img; (void) y; (void) a;
1644 	while (h-- > 0) {
1645 		for (x = 0; x < w; x++)
1646 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1647 			    img->Bitdepth16To8[*wg++],
1648 			    img->Bitdepth16To8[*wb++]);
1649 		SKEW(wr, wg, wb, fromskew);
1650 		cp += toskew;
1651 	}
1652 }
1653 
1654 /*
1655  * 16-bit unpacked samples => RGBA w/ associated alpha
1656  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1657 DECLARESepPutFunc(putRGBAAseparate16bittile)
1658 {
1659 	uint16 *wr = (uint16*) r;
1660 	uint16 *wg = (uint16*) g;
1661 	uint16 *wb = (uint16*) b;
1662 	uint16 *wa = (uint16*) a;
1663 	(void) img; (void) y;
1664 	while (h-- > 0) {
1665 		for (x = 0; x < w; x++)
1666 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1667 			    img->Bitdepth16To8[*wg++],
1668 			    img->Bitdepth16To8[*wb++],
1669 			    img->Bitdepth16To8[*wa++]);
1670 		SKEW4(wr, wg, wb, wa, fromskew);
1671 		cp += toskew;
1672 	}
1673 }
1674 
1675 /*
1676  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1677  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1678 DECLARESepPutFunc(putRGBUAseparate16bittile)
1679 {
1680 	uint16 *wr = (uint16*) r;
1681 	uint16 *wg = (uint16*) g;
1682 	uint16 *wb = (uint16*) b;
1683 	uint16 *wa = (uint16*) a;
1684 	(void) img; (void) y;
1685 	while (h-- > 0) {
1686 		uint32 r,g,b,a;
1687 		uint8* m;
1688 		for (x = w; x-- > 0;) {
1689 			a = img->Bitdepth16To8[*wa++];
1690 			m = img->UaToAa+(a<<8);
1691 			r = m[img->Bitdepth16To8[*wr++]];
1692 			g = m[img->Bitdepth16To8[*wg++]];
1693 			b = m[img->Bitdepth16To8[*wb++]];
1694 			*cp++ = PACK4(r,g,b,a);
1695 		}
1696 		SKEW4(wr, wg, wb, wa, fromskew);
1697 		cp += toskew;
1698 	}
1699 }
1700 
1701 /*
1702  * 8-bit packed CIE L*a*b 1976 samples => RGB
1703  */
DECLAREContigPutFunc(putcontig8bitCIELab)1704 DECLAREContigPutFunc(putcontig8bitCIELab)
1705 {
1706 	float X, Y, Z;
1707 	uint32 r, g, b;
1708 	(void) y;
1709 	fromskew *= 3;
1710 	while (h-- > 0) {
1711 		for (x = w; x-- > 0;) {
1712 			TIFFCIELabToXYZ(img->cielab,
1713 					(unsigned char)pp[0],
1714 					(signed char)pp[1],
1715 					(signed char)pp[2],
1716 					&X, &Y, &Z);
1717 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1718 			*cp++ = PACK(r, g, b);
1719 			pp += 3;
1720 		}
1721 		cp += toskew;
1722 		pp += fromskew;
1723 	}
1724 }
1725 
1726 /*
1727  * YCbCr -> RGB conversion and packing routines.
1728  */
1729 
1730 #define	YCbCrtoRGB(dst, Y) {						\
1731 	uint32 r, g, b;							\
1732 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1733 	dst = PACK(r, g, b);						\
1734 }
1735 
1736 /*
1737  * 8-bit packed YCbCr samples => RGB
1738  * This function is generic for different sampling sizes,
1739  * and can handle blocks sizes that aren't multiples of the
1740  * sampling size.  However, it is substantially less optimized
1741  * than the specific sampling cases.  It is used as a fallback
1742  * for difficult blocks.
1743  */
1744 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1745 static void putcontig8bitYCbCrGenericTile(
1746     TIFFRGBAImage* img,
1747     uint32* cp,
1748     uint32 x, uint32 y,
1749     uint32 w, uint32 h,
1750     int32 fromskew, int32 toskew,
1751     unsigned char* pp,
1752     int h_group,
1753     int v_group )
1754 
1755 {
1756     uint32* cp1 = cp+w+toskew;
1757     uint32* cp2 = cp1+w+toskew;
1758     uint32* cp3 = cp2+w+toskew;
1759     int32 incr = 3*w+4*toskew;
1760     int32   Cb, Cr;
1761     int     group_size = v_group * h_group + 2;
1762 
1763     (void) y;
1764     fromskew = (fromskew * group_size) / h_group;
1765 
1766     for( yy = 0; yy < h; yy++ )
1767     {
1768         unsigned char *pp_line;
1769         int     y_line_group = yy / v_group;
1770         int     y_remainder = yy - y_line_group * v_group;
1771 
1772         pp_line = pp + v_line_group *
1773 
1774 
1775         for( xx = 0; xx < w; xx++ )
1776         {
1777             Cb = pp
1778         }
1779     }
1780     for (; h >= 4; h -= 4) {
1781 	x = w>>2;
1782 	do {
1783 	    Cb = pp[16];
1784 	    Cr = pp[17];
1785 
1786 	    YCbCrtoRGB(cp [0], pp[ 0]);
1787 	    YCbCrtoRGB(cp [1], pp[ 1]);
1788 	    YCbCrtoRGB(cp [2], pp[ 2]);
1789 	    YCbCrtoRGB(cp [3], pp[ 3]);
1790 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1791 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1792 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1793 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1794 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1795 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1796 	    YCbCrtoRGB(cp2[2], pp[10]);
1797 	    YCbCrtoRGB(cp2[3], pp[11]);
1798 	    YCbCrtoRGB(cp3[0], pp[12]);
1799 	    YCbCrtoRGB(cp3[1], pp[13]);
1800 	    YCbCrtoRGB(cp3[2], pp[14]);
1801 	    YCbCrtoRGB(cp3[3], pp[15]);
1802 
1803 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1804 	    pp += 18;
1805 	} while (--x);
1806 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1807 	pp += fromskew;
1808     }
1809 }
1810 #endif
1811 
1812 /*
1813  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1814  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1815 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1816 {
1817     uint32* cp1 = cp+w+toskew;
1818     uint32* cp2 = cp1+w+toskew;
1819     uint32* cp3 = cp2+w+toskew;
1820     int32 incr = 3*w+4*toskew;
1821 
1822     (void) y;
1823     /* adjust fromskew */
1824     fromskew = (fromskew * 18) / 4;
1825     if ((h & 3) == 0 && (w & 3) == 0) {
1826         for (; h >= 4; h -= 4) {
1827             x = w>>2;
1828             do {
1829                 int32 Cb = pp[16];
1830                 int32 Cr = pp[17];
1831 
1832                 YCbCrtoRGB(cp [0], pp[ 0]);
1833                 YCbCrtoRGB(cp [1], pp[ 1]);
1834                 YCbCrtoRGB(cp [2], pp[ 2]);
1835                 YCbCrtoRGB(cp [3], pp[ 3]);
1836                 YCbCrtoRGB(cp1[0], pp[ 4]);
1837                 YCbCrtoRGB(cp1[1], pp[ 5]);
1838                 YCbCrtoRGB(cp1[2], pp[ 6]);
1839                 YCbCrtoRGB(cp1[3], pp[ 7]);
1840                 YCbCrtoRGB(cp2[0], pp[ 8]);
1841                 YCbCrtoRGB(cp2[1], pp[ 9]);
1842                 YCbCrtoRGB(cp2[2], pp[10]);
1843                 YCbCrtoRGB(cp2[3], pp[11]);
1844                 YCbCrtoRGB(cp3[0], pp[12]);
1845                 YCbCrtoRGB(cp3[1], pp[13]);
1846                 YCbCrtoRGB(cp3[2], pp[14]);
1847                 YCbCrtoRGB(cp3[3], pp[15]);
1848 
1849                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1850                 pp += 18;
1851             } while (--x);
1852             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1853             pp += fromskew;
1854         }
1855     } else {
1856         while (h > 0) {
1857             for (x = w; x > 0;) {
1858                 int32 Cb = pp[16];
1859                 int32 Cr = pp[17];
1860                 switch (x) {
1861                 default:
1862                     switch (h) {
1863                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1864                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1865                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1866                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1867                     }                                    /* FALLTHROUGH */
1868                 case 3:
1869                     switch (h) {
1870                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1871                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1872                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1873                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1874                     }                                    /* FALLTHROUGH */
1875                 case 2:
1876                     switch (h) {
1877                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1878                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1879                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1880                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1881                     }                                    /* FALLTHROUGH */
1882                 case 1:
1883                     switch (h) {
1884                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1885                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1886                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1887                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1888                     }                                    /* FALLTHROUGH */
1889                 }
1890                 if (x < 4) {
1891                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1892                     x = 0;
1893                 }
1894                 else {
1895                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1896                     x -= 4;
1897                 }
1898                 pp += 18;
1899             }
1900             if (h <= 4)
1901                 break;
1902             h -= 4;
1903             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1904             pp += fromskew;
1905         }
1906     }
1907 }
1908 
1909 /*
1910  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1911  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1912 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1913 {
1914     uint32* cp1 = cp+w+toskew;
1915     int32 incr = 2*toskew+w;
1916 
1917     (void) y;
1918     fromskew = (fromskew * 10) / 4;
1919     if ((w & 3) == 0 && (h & 1) == 0) {
1920         for (; h >= 2; h -= 2) {
1921             x = w>>2;
1922             do {
1923                 int32 Cb = pp[8];
1924                 int32 Cr = pp[9];
1925 
1926                 YCbCrtoRGB(cp [0], pp[0]);
1927                 YCbCrtoRGB(cp [1], pp[1]);
1928                 YCbCrtoRGB(cp [2], pp[2]);
1929                 YCbCrtoRGB(cp [3], pp[3]);
1930                 YCbCrtoRGB(cp1[0], pp[4]);
1931                 YCbCrtoRGB(cp1[1], pp[5]);
1932                 YCbCrtoRGB(cp1[2], pp[6]);
1933                 YCbCrtoRGB(cp1[3], pp[7]);
1934 
1935                 cp += 4, cp1 += 4;
1936                 pp += 10;
1937             } while (--x);
1938             cp += incr, cp1 += incr;
1939             pp += fromskew;
1940         }
1941     } else {
1942         while (h > 0) {
1943             for (x = w; x > 0;) {
1944                 int32 Cb = pp[8];
1945                 int32 Cr = pp[9];
1946                 switch (x) {
1947                 default:
1948                     switch (h) {
1949                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1950                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1951                     }                                    /* FALLTHROUGH */
1952                 case 3:
1953                     switch (h) {
1954                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1955                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1956                     }                                    /* FALLTHROUGH */
1957                 case 2:
1958                     switch (h) {
1959                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1960                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1961                     }                                    /* FALLTHROUGH */
1962                 case 1:
1963                     switch (h) {
1964                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1965                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1966                     }                                    /* FALLTHROUGH */
1967                 }
1968                 if (x < 4) {
1969                     cp += x; cp1 += x;
1970                     x = 0;
1971                 }
1972                 else {
1973                     cp += 4; cp1 += 4;
1974                     x -= 4;
1975                 }
1976                 pp += 10;
1977             }
1978             if (h <= 2)
1979                 break;
1980             h -= 2;
1981             cp += incr, cp1 += incr;
1982             pp += fromskew;
1983         }
1984     }
1985 }
1986 
1987 /*
1988  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
1989  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)1990 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
1991 {
1992     (void) y;
1993     /* XXX adjust fromskew */
1994     do {
1995 	x = w>>2;
1996 	while(x>0) {
1997 	    int32 Cb = pp[4];
1998 	    int32 Cr = pp[5];
1999 
2000 	    YCbCrtoRGB(cp [0], pp[0]);
2001 	    YCbCrtoRGB(cp [1], pp[1]);
2002 	    YCbCrtoRGB(cp [2], pp[2]);
2003 	    YCbCrtoRGB(cp [3], pp[3]);
2004 
2005 	    cp += 4;
2006 	    pp += 6;
2007 		x--;
2008 	}
2009 
2010         if( (w&3) != 0 )
2011         {
2012 	    int32 Cb = pp[4];
2013 	    int32 Cr = pp[5];
2014 
2015             switch( (w&3) ) {
2016               case 3: YCbCrtoRGB(cp [2], pp[2]);
2017               case 2: YCbCrtoRGB(cp [1], pp[1]);
2018               case 1: YCbCrtoRGB(cp [0], pp[0]);
2019               case 0: break;
2020             }
2021 
2022             cp += (w&3);
2023             pp += 6;
2024         }
2025 
2026 	cp += toskew;
2027 	pp += fromskew;
2028     } while (--h);
2029 
2030 }
2031 
2032 /*
2033  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2034  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)2035 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2036 {
2037 	uint32* cp2;
2038 	int32 incr = 2*toskew+w;
2039 	(void) y;
2040 	fromskew = (fromskew / 2) * 6;
2041 	cp2 = cp+w+toskew;
2042 	while (h>=2) {
2043 		x = w;
2044 		while (x>=2) {
2045 			uint32 Cb = pp[4];
2046 			uint32 Cr = pp[5];
2047 			YCbCrtoRGB(cp[0], pp[0]);
2048 			YCbCrtoRGB(cp[1], pp[1]);
2049 			YCbCrtoRGB(cp2[0], pp[2]);
2050 			YCbCrtoRGB(cp2[1], pp[3]);
2051 			cp += 2;
2052 			cp2 += 2;
2053 			pp += 6;
2054 			x -= 2;
2055 		}
2056 		if (x==1) {
2057 			uint32 Cb = pp[4];
2058 			uint32 Cr = pp[5];
2059 			YCbCrtoRGB(cp[0], pp[0]);
2060 			YCbCrtoRGB(cp2[0], pp[2]);
2061 			cp ++ ;
2062 			cp2 ++ ;
2063 			pp += 6;
2064 		}
2065 		cp += incr;
2066 		cp2 += incr;
2067 		pp += fromskew;
2068 		h-=2;
2069 	}
2070 	if (h==1) {
2071 		x = w;
2072 		while (x>=2) {
2073 			uint32 Cb = pp[4];
2074 			uint32 Cr = pp[5];
2075 			YCbCrtoRGB(cp[0], pp[0]);
2076 			YCbCrtoRGB(cp[1], pp[1]);
2077 			cp += 2;
2078 			cp2 += 2;
2079 			pp += 6;
2080 			x -= 2;
2081 		}
2082 		if (x==1) {
2083 			uint32 Cb = pp[4];
2084 			uint32 Cr = pp[5];
2085 			YCbCrtoRGB(cp[0], pp[0]);
2086 		}
2087 	}
2088 }
2089 
2090 /*
2091  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2092  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2093 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2094 {
2095 	(void) y;
2096 	fromskew = (fromskew * 4) / 2;
2097 	do {
2098 		x = w>>1;
2099 		while(x>0) {
2100 			int32 Cb = pp[2];
2101 			int32 Cr = pp[3];
2102 
2103 			YCbCrtoRGB(cp[0], pp[0]);
2104 			YCbCrtoRGB(cp[1], pp[1]);
2105 
2106 			cp += 2;
2107 			pp += 4;
2108 			x --;
2109 		}
2110 
2111 		if( (w&1) != 0 )
2112 		{
2113 			int32 Cb = pp[2];
2114 			int32 Cr = pp[3];
2115 
2116 			YCbCrtoRGB(cp[0], pp[0]);
2117 
2118 			cp += 1;
2119 			pp += 4;
2120 		}
2121 
2122 		cp += toskew;
2123 		pp += fromskew;
2124 	} while (--h);
2125 }
2126 
2127 /*
2128  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2129  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2130 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2131 {
2132 	uint32* cp2;
2133 	int32 incr = 2*toskew+w;
2134 	(void) y;
2135 	fromskew = (fromskew / 2) * 4;
2136 	cp2 = cp+w+toskew;
2137 	while (h>=2) {
2138 		x = w;
2139 		do {
2140 			uint32 Cb = pp[2];
2141 			uint32 Cr = pp[3];
2142 			YCbCrtoRGB(cp[0], pp[0]);
2143 			YCbCrtoRGB(cp2[0], pp[1]);
2144 			cp ++;
2145 			cp2 ++;
2146 			pp += 4;
2147 		} while (--x);
2148 		cp += incr;
2149 		cp2 += incr;
2150 		pp += fromskew;
2151 		h-=2;
2152 	}
2153 	if (h==1) {
2154 		x = w;
2155 		do {
2156 			uint32 Cb = pp[2];
2157 			uint32 Cr = pp[3];
2158 			YCbCrtoRGB(cp[0], pp[0]);
2159 			cp ++;
2160 			pp += 4;
2161 		} while (--x);
2162 	}
2163 }
2164 
2165 /*
2166  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2167  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2168 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2169 {
2170 	(void) y;
2171 	fromskew *= 3;
2172 	do {
2173 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2174 		do {
2175 			int32 Cb = pp[1];
2176 			int32 Cr = pp[2];
2177 
2178 			YCbCrtoRGB(*cp++, pp[0]);
2179 
2180 			pp += 3;
2181 		} while (--x);
2182 		cp += toskew;
2183 		pp += fromskew;
2184 	} while (--h);
2185 }
2186 
2187 /*
2188  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2189  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2190 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2191 {
2192 	(void) y;
2193 	(void) a;
2194 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2195 	while (h-- > 0) {
2196 		x = w;
2197 		do {
2198 			uint32 dr, dg, db;
2199 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2200 			*cp++ = PACK(dr,dg,db);
2201 		} while (--x);
2202 		SKEW(r, g, b, fromskew);
2203 		cp += toskew;
2204 	}
2205 }
2206 #undef YCbCrtoRGB
2207 
2208 static int
initYCbCrConversion(TIFFRGBAImage * img)2209 initYCbCrConversion(TIFFRGBAImage* img)
2210 {
2211 	static const char module[] = "initYCbCrConversion";
2212 
2213 	float *luma, *refBlackWhite;
2214 
2215 	if (img->ycbcr == NULL) {
2216 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2217 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2218 		    + 4*256*sizeof (TIFFRGBValue)
2219 		    + 2*256*sizeof (int)
2220 		    + 3*256*sizeof (int32)
2221 		    );
2222 		if (img->ycbcr == NULL) {
2223 			TIFFErrorExt(img->tif->tif_clientdata, module,
2224 			    "No space for YCbCr->RGB conversion state");
2225 			return (0);
2226 		}
2227 	}
2228 
2229 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2230 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2231 	    &refBlackWhite);
2232 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2233 		return(0);
2234 	return (1);
2235 }
2236 
2237 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2238 initCIELabConversion(TIFFRGBAImage* img)
2239 {
2240 	static const char module[] = "initCIELabConversion";
2241 
2242 	float   *whitePoint;
2243 	float   refWhite[3];
2244 
2245 	if (!img->cielab) {
2246 		img->cielab = (TIFFCIELabToRGB *)
2247 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2248 		if (!img->cielab) {
2249 			TIFFErrorExt(img->tif->tif_clientdata, module,
2250 			    "No space for CIE L*a*b*->RGB conversion state.");
2251 			return NULL;
2252 		}
2253 	}
2254 
2255 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2256 	refWhite[1] = 100.0F;
2257 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2258 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2259 		      / whitePoint[1] * refWhite[1];
2260 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2261 		TIFFErrorExt(img->tif->tif_clientdata, module,
2262 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2263 		_TIFFfree(img->cielab);
2264 		return NULL;
2265 	}
2266 
2267 	return putcontig8bitCIELab;
2268 }
2269 
2270 /*
2271  * Greyscale images with less than 8 bits/sample are handled
2272  * with a table to avoid lots of shifts and masks.  The table
2273  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2274  * pixel values simply by indexing into the table with one
2275  * number.
2276  */
2277 static int
makebwmap(TIFFRGBAImage * img)2278 makebwmap(TIFFRGBAImage* img)
2279 {
2280     TIFFRGBValue* Map = img->Map;
2281     int bitspersample = img->bitspersample;
2282     int nsamples = 8 / bitspersample;
2283     int i;
2284     uint32* p;
2285 
2286     if( nsamples == 0 )
2287         nsamples = 1;
2288 
2289     img->BWmap = (uint32**) _TIFFmalloc(
2290 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2291     if (img->BWmap == NULL) {
2292 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2293 		return (0);
2294     }
2295     p = (uint32*)(img->BWmap + 256);
2296     for (i = 0; i < 256; i++) {
2297 	TIFFRGBValue c;
2298 	img->BWmap[i] = p;
2299 	switch (bitspersample) {
2300 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2301 	case 1:
2302 	    GREY(i>>7);
2303 	    GREY((i>>6)&1);
2304 	    GREY((i>>5)&1);
2305 	    GREY((i>>4)&1);
2306 	    GREY((i>>3)&1);
2307 	    GREY((i>>2)&1);
2308 	    GREY((i>>1)&1);
2309 	    GREY(i&1);
2310 	    break;
2311 	case 2:
2312 	    GREY(i>>6);
2313 	    GREY((i>>4)&3);
2314 	    GREY((i>>2)&3);
2315 	    GREY(i&3);
2316 	    break;
2317 	case 4:
2318 	    GREY(i>>4);
2319 	    GREY(i&0xf);
2320 	    break;
2321 	case 8:
2322         case 16:
2323 	    GREY(i);
2324 	    break;
2325 	}
2326 #undef	GREY
2327     }
2328     return (1);
2329 }
2330 
2331 /*
2332  * Construct a mapping table to convert from the range
2333  * of the data samples to [0,255] --for display.  This
2334  * process also handles inverting B&W images when needed.
2335  */
2336 static int
setupMap(TIFFRGBAImage * img)2337 setupMap(TIFFRGBAImage* img)
2338 {
2339     int32 x, range;
2340 
2341     range = (int32)((1L<<img->bitspersample)-1);
2342 
2343     /* treat 16 bit the same as eight bit */
2344     if( img->bitspersample == 16 )
2345         range = (int32) 255;
2346 
2347     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2348     if (img->Map == NULL) {
2349 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2350 			"No space for photometric conversion table");
2351 		return (0);
2352     }
2353     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2354 	for (x = 0; x <= range; x++)
2355 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2356     } else {
2357 	for (x = 0; x <= range; x++)
2358 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2359     }
2360     if (img->bitspersample <= 16 &&
2361 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2362 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2363 	/*
2364 	 * Use photometric mapping table to construct
2365 	 * unpacking tables for samples <= 8 bits.
2366 	 */
2367 	if (!makebwmap(img))
2368 	    return (0);
2369 	/* no longer need Map, free it */
2370 	_TIFFfree(img->Map), img->Map = NULL;
2371     }
2372     return (1);
2373 }
2374 
2375 static int
checkcmap(TIFFRGBAImage * img)2376 checkcmap(TIFFRGBAImage* img)
2377 {
2378     uint16* r = img->redcmap;
2379     uint16* g = img->greencmap;
2380     uint16* b = img->bluecmap;
2381     long n = 1L<<img->bitspersample;
2382 
2383     while (n-- > 0)
2384 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2385 	    return (16);
2386     return (8);
2387 }
2388 
2389 static void
cvtcmap(TIFFRGBAImage * img)2390 cvtcmap(TIFFRGBAImage* img)
2391 {
2392     uint16* r = img->redcmap;
2393     uint16* g = img->greencmap;
2394     uint16* b = img->bluecmap;
2395     long i;
2396 
2397     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2398 #define	CVT(x)		((uint16)((x)>>8))
2399 	r[i] = CVT(r[i]);
2400 	g[i] = CVT(g[i]);
2401 	b[i] = CVT(b[i]);
2402 #undef	CVT
2403     }
2404 }
2405 
2406 /*
2407  * Palette images with <= 8 bits/sample are handled
2408  * with a table to avoid lots of shifts and masks.  The table
2409  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2410  * pixel values simply by indexing into the table with one
2411  * number.
2412  */
2413 static int
makecmap(TIFFRGBAImage * img)2414 makecmap(TIFFRGBAImage* img)
2415 {
2416     int bitspersample = img->bitspersample;
2417     int nsamples = 8 / bitspersample;
2418     uint16* r = img->redcmap;
2419     uint16* g = img->greencmap;
2420     uint16* b = img->bluecmap;
2421     uint32 *p;
2422     int i;
2423 
2424     img->PALmap = (uint32**) _TIFFmalloc(
2425 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2426     if (img->PALmap == NULL) {
2427 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2428 		return (0);
2429 	}
2430     p = (uint32*)(img->PALmap + 256);
2431     for (i = 0; i < 256; i++) {
2432 	TIFFRGBValue c;
2433 	img->PALmap[i] = p;
2434 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2435 	switch (bitspersample) {
2436 	case 1:
2437 	    CMAP(i>>7);
2438 	    CMAP((i>>6)&1);
2439 	    CMAP((i>>5)&1);
2440 	    CMAP((i>>4)&1);
2441 	    CMAP((i>>3)&1);
2442 	    CMAP((i>>2)&1);
2443 	    CMAP((i>>1)&1);
2444 	    CMAP(i&1);
2445 	    break;
2446 	case 2:
2447 	    CMAP(i>>6);
2448 	    CMAP((i>>4)&3);
2449 	    CMAP((i>>2)&3);
2450 	    CMAP(i&3);
2451 	    break;
2452 	case 4:
2453 	    CMAP(i>>4);
2454 	    CMAP(i&0xf);
2455 	    break;
2456 	case 8:
2457 	    CMAP(i);
2458 	    break;
2459 	}
2460 #undef CMAP
2461     }
2462     return (1);
2463 }
2464 
2465 /*
2466  * Construct any mapping table used
2467  * by the associated put routine.
2468  */
2469 static int
buildMap(TIFFRGBAImage * img)2470 buildMap(TIFFRGBAImage* img)
2471 {
2472     switch (img->photometric) {
2473     case PHOTOMETRIC_RGB:
2474     case PHOTOMETRIC_YCBCR:
2475     case PHOTOMETRIC_SEPARATED:
2476 	if (img->bitspersample == 8)
2477 	    break;
2478 	/* fall thru... */
2479     case PHOTOMETRIC_MINISBLACK:
2480     case PHOTOMETRIC_MINISWHITE:
2481 	if (!setupMap(img))
2482 	    return (0);
2483 	break;
2484     case PHOTOMETRIC_PALETTE:
2485 	/*
2486 	 * Convert 16-bit colormap to 8-bit (unless it looks
2487 	 * like an old-style 8-bit colormap).
2488 	 */
2489 	if (checkcmap(img) == 16)
2490 	    cvtcmap(img);
2491 	else
2492 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2493 	/*
2494 	 * Use mapping table and colormap to construct
2495 	 * unpacking tables for samples < 8 bits.
2496 	 */
2497 	if (img->bitspersample <= 8 && !makecmap(img))
2498 	    return (0);
2499 	break;
2500     }
2501     return (1);
2502 }
2503 
2504 /*
2505  * Select the appropriate conversion routine for packed data.
2506  */
2507 static int
PickContigCase(TIFFRGBAImage * img)2508 PickContigCase(TIFFRGBAImage* img)
2509 {
2510 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2511 	img->put.contig = NULL;
2512 	switch (img->photometric) {
2513 		case PHOTOMETRIC_RGB:
2514 			switch (img->bitspersample) {
2515 				case 8:
2516 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2517 						img->samplesperpixel >= 4)
2518 						img->put.contig = putRGBAAcontig8bittile;
2519 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2520 							 img->samplesperpixel >= 4)
2521 					{
2522 						if (BuildMapUaToAa(img))
2523 							img->put.contig = putRGBUAcontig8bittile;
2524 					}
2525 					else if( img->samplesperpixel >= 3 )
2526 						img->put.contig = putRGBcontig8bittile;
2527 					break;
2528 				case 16:
2529 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2530 						img->samplesperpixel >=4 )
2531 					{
2532 						if (BuildMapBitdepth16To8(img))
2533 							img->put.contig = putRGBAAcontig16bittile;
2534 					}
2535 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2536 							 img->samplesperpixel >=4 )
2537 					{
2538 						if (BuildMapBitdepth16To8(img) &&
2539 						    BuildMapUaToAa(img))
2540 							img->put.contig = putRGBUAcontig16bittile;
2541 					}
2542 					else if( img->samplesperpixel >=3 )
2543 					{
2544 						if (BuildMapBitdepth16To8(img))
2545 							img->put.contig = putRGBcontig16bittile;
2546 					}
2547 					break;
2548 			}
2549 			break;
2550 		case PHOTOMETRIC_SEPARATED:
2551 			if (img->samplesperpixel >=4 && buildMap(img)) {
2552 				if (img->bitspersample == 8) {
2553 					if (!img->Map)
2554 						img->put.contig = putRGBcontig8bitCMYKtile;
2555 					else
2556 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2557 				}
2558 			}
2559 			break;
2560 		case PHOTOMETRIC_PALETTE:
2561 			if (buildMap(img)) {
2562 				switch (img->bitspersample) {
2563 					case 8:
2564 						img->put.contig = put8bitcmaptile;
2565 						break;
2566 					case 4:
2567 						img->put.contig = put4bitcmaptile;
2568 						break;
2569 					case 2:
2570 						img->put.contig = put2bitcmaptile;
2571 						break;
2572 					case 1:
2573 						img->put.contig = put1bitcmaptile;
2574 						break;
2575 				}
2576 			}
2577 			break;
2578 		case PHOTOMETRIC_MINISWHITE:
2579 		case PHOTOMETRIC_MINISBLACK:
2580 			if (buildMap(img)) {
2581 				switch (img->bitspersample) {
2582 					case 16:
2583 						img->put.contig = put16bitbwtile;
2584 						break;
2585 					case 8:
2586 						if (img->alpha && img->samplesperpixel == 2)
2587 							img->put.contig = putagreytile;
2588 						else
2589 							img->put.contig = putgreytile;
2590 						break;
2591 					case 4:
2592 						img->put.contig = put4bitbwtile;
2593 						break;
2594 					case 2:
2595 						img->put.contig = put2bitbwtile;
2596 						break;
2597 					case 1:
2598 						img->put.contig = put1bitbwtile;
2599 						break;
2600 				}
2601 			}
2602 			break;
2603 		case PHOTOMETRIC_YCBCR:
2604 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2605 			{
2606 				if (initYCbCrConversion(img)!=0)
2607 				{
2608 					/*
2609 					 * The 6.0 spec says that subsampling must be
2610 					 * one of 1, 2, or 4, and that vertical subsampling
2611 					 * must always be <= horizontal subsampling; so
2612 					 * there are only a few possibilities and we just
2613 					 * enumerate the cases.
2614 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2615 					 * some OJPEG files
2616 					 */
2617 					uint16 SubsamplingHor;
2618 					uint16 SubsamplingVer;
2619 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2620 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2621 						case 0x44:
2622 							img->put.contig = putcontig8bitYCbCr44tile;
2623 							break;
2624 						case 0x42:
2625 							img->put.contig = putcontig8bitYCbCr42tile;
2626 							break;
2627 						case 0x41:
2628 							img->put.contig = putcontig8bitYCbCr41tile;
2629 							break;
2630 						case 0x22:
2631 							img->put.contig = putcontig8bitYCbCr22tile;
2632 							break;
2633 						case 0x21:
2634 							img->put.contig = putcontig8bitYCbCr21tile;
2635 							break;
2636 						case 0x12:
2637 							img->put.contig = putcontig8bitYCbCr12tile;
2638 							break;
2639 						case 0x11:
2640 							img->put.contig = putcontig8bitYCbCr11tile;
2641 							break;
2642 					}
2643 				}
2644 			}
2645 			break;
2646 		case PHOTOMETRIC_CIELAB:
2647 			if (img->samplesperpixel == 3 && buildMap(img)) {
2648 				if (img->bitspersample == 8)
2649 					img->put.contig = initCIELabConversion(img);
2650 				break;
2651 			}
2652 	}
2653 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2654 }
2655 
2656 /*
2657  * Select the appropriate conversion routine for unpacked data.
2658  *
2659  * NB: we assume that unpacked single channel data is directed
2660  *	 to the "packed routines.
2661  */
2662 static int
PickSeparateCase(TIFFRGBAImage * img)2663 PickSeparateCase(TIFFRGBAImage* img)
2664 {
2665 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2666 	img->put.separate = NULL;
2667 	switch (img->photometric) {
2668 	case PHOTOMETRIC_MINISWHITE:
2669 	case PHOTOMETRIC_MINISBLACK:
2670 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2671 	case PHOTOMETRIC_RGB:
2672 		switch (img->bitspersample) {
2673 		case 8:
2674 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2675 				img->put.separate = putRGBAAseparate8bittile;
2676 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2677 			{
2678 				if (BuildMapUaToAa(img))
2679 					img->put.separate = putRGBUAseparate8bittile;
2680 			}
2681 			else
2682 				img->put.separate = putRGBseparate8bittile;
2683 			break;
2684 		case 16:
2685 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2686 			{
2687 				if (BuildMapBitdepth16To8(img))
2688 					img->put.separate = putRGBAAseparate16bittile;
2689 			}
2690 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2691 			{
2692 				if (BuildMapBitdepth16To8(img) &&
2693 				    BuildMapUaToAa(img))
2694 					img->put.separate = putRGBUAseparate16bittile;
2695 			}
2696 			else
2697 			{
2698 				if (BuildMapBitdepth16To8(img))
2699 					img->put.separate = putRGBseparate16bittile;
2700 			}
2701 			break;
2702 		}
2703 		break;
2704 	case PHOTOMETRIC_SEPARATED:
2705 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2706 		{
2707 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2708 			img->put.separate = putCMYKseparate8bittile;
2709 		}
2710 		break;
2711 	case PHOTOMETRIC_YCBCR:
2712 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2713 		{
2714 			if (initYCbCrConversion(img)!=0)
2715 			{
2716 				uint16 hs, vs;
2717 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2718 				switch ((hs<<4)|vs) {
2719 				case 0x11:
2720 					img->put.separate = putseparate8bitYCbCr11tile;
2721 					break;
2722 					/* TODO: add other cases here */
2723 				}
2724 			}
2725 		}
2726 		break;
2727 	}
2728 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2729 }
2730 
2731 static int
BuildMapUaToAa(TIFFRGBAImage * img)2732 BuildMapUaToAa(TIFFRGBAImage* img)
2733 {
2734 	static const char module[]="BuildMapUaToAa";
2735 	uint8* m;
2736 	uint16 na,nv;
2737 	assert(img->UaToAa==NULL);
2738 	img->UaToAa=_TIFFmalloc(65536);
2739 	if (img->UaToAa==NULL)
2740 	{
2741 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2742 		return(0);
2743 	}
2744 	m=img->UaToAa;
2745 	for (na=0; na<256; na++)
2746 	{
2747 		for (nv=0; nv<256; nv++)
2748 			*m++=(nv*na+127)/255;
2749 	}
2750 	return(1);
2751 }
2752 
2753 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2754 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2755 {
2756 	static const char module[]="BuildMapBitdepth16To8";
2757 	uint8* m;
2758 	uint32 n;
2759 	assert(img->Bitdepth16To8==NULL);
2760 	img->Bitdepth16To8=_TIFFmalloc(65536);
2761 	if (img->Bitdepth16To8==NULL)
2762 	{
2763 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2764 		return(0);
2765 	}
2766 	m=img->Bitdepth16To8;
2767 	for (n=0; n<65536; n++)
2768 		*m++=(n+128)/257;
2769 	return(1);
2770 }
2771 
2772 
2773 /*
2774  * Read a whole strip off data from the file, and convert to RGBA form.
2775  * If this is the last strip, then it will only contain the portion of
2776  * the strip that is actually within the image space.  The result is
2777  * organized in bottom to top form.
2778  */
2779 
2780 
2781 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2782 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2783 
2784 {
2785     char 	emsg[1024] = "";
2786     TIFFRGBAImage img;
2787     int 	ok;
2788     uint32	rowsperstrip, rows_to_read;
2789 
2790     if( TIFFIsTiled( tif ) )
2791     {
2792 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2793                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2794 	return (0);
2795     }
2796 
2797     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2798     if( (row % rowsperstrip) != 0 )
2799     {
2800 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2801 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2802 		return (0);
2803     }
2804 
2805     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2806 
2807         img.row_offset = row;
2808         img.col_offset = 0;
2809 
2810         if( row + rowsperstrip > img.height )
2811             rows_to_read = img.height - row;
2812         else
2813             rows_to_read = rowsperstrip;
2814 
2815 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2816 
2817 	TIFFRGBAImageEnd(&img);
2818     } else {
2819 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2820 		ok = 0;
2821     }
2822 
2823     return (ok);
2824 }
2825 
2826 /*
2827  * Read a whole tile off data from the file, and convert to RGBA form.
2828  * The returned RGBA data is organized from bottom to top of tile,
2829  * and may include zeroed areas if the tile extends off the image.
2830  */
2831 
2832 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2833 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2834 
2835 {
2836     char 	emsg[1024] = "";
2837     TIFFRGBAImage img;
2838     int 	ok;
2839     uint32	tile_xsize, tile_ysize;
2840     uint32	read_xsize, read_ysize;
2841     uint32	i_row;
2842 
2843     /*
2844      * Verify that our request is legal - on a tile file, and on a
2845      * tile boundary.
2846      */
2847 
2848     if( !TIFFIsTiled( tif ) )
2849     {
2850 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2851 				  "Can't use TIFFReadRGBATile() with stripped file.");
2852 		return (0);
2853     }
2854 
2855     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2856     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2857     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2858     {
2859 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2860                   "Row/col passed to TIFFReadRGBATile() must be top"
2861                   "left corner of a tile.");
2862 	return (0);
2863     }
2864 
2865     /*
2866      * Setup the RGBA reader.
2867      */
2868 
2869     if (!TIFFRGBAImageOK(tif, emsg)
2870 	|| !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2871 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2872 	    return( 0 );
2873     }
2874 
2875     /*
2876      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2877      * edge of the image, even to fill an otherwise valid tile.  So we
2878      * figure out how much we can read, and fix up the tile buffer to
2879      * a full tile configuration afterwards.
2880      */
2881 
2882     if( row + tile_ysize > img.height )
2883         read_ysize = img.height - row;
2884     else
2885         read_ysize = tile_ysize;
2886 
2887     if( col + tile_xsize > img.width )
2888         read_xsize = img.width - col;
2889     else
2890         read_xsize = tile_xsize;
2891 
2892     /*
2893      * Read the chunk of imagery.
2894      */
2895 
2896     img.row_offset = row;
2897     img.col_offset = col;
2898 
2899     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
2900 
2901     TIFFRGBAImageEnd(&img);
2902 
2903     /*
2904      * If our read was incomplete we will need to fix up the tile by
2905      * shifting the data around as if a full tile of data is being returned.
2906      *
2907      * This is all the more complicated because the image is organized in
2908      * bottom to top format.
2909      */
2910 
2911     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
2912         return( ok );
2913 
2914     for( i_row = 0; i_row < read_ysize; i_row++ ) {
2915         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
2916                  raster + (read_ysize - i_row - 1) * read_xsize,
2917                  read_xsize * sizeof(uint32) );
2918         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
2919                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
2920     }
2921 
2922     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
2923         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
2924                      0, sizeof(uint32) * tile_xsize );
2925     }
2926 
2927     return (ok);
2928 }
2929 
2930 /* vim: set ts=8 sts=8 sw=8 noet: */
2931 /*
2932  * Local Variables:
2933  * mode: c
2934  * c-basic-offset: 8
2935  * fill-column: 78
2936  * End:
2937  */
2938