1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       tuklib_integer.h
4 /// \brief      Various integer and bit operations
5 ///
6 /// This file provides macros or functions to do some basic integer and bit
7 /// operations.
8 ///
9 /// Endianness related integer operations (XX = 16, 32, or 64; Y = b or l):
10 ///   - Byte swapping: bswapXX(num)
11 ///   - Byte order conversions to/from native: convXXYe(num)
12 ///   - Aligned reads: readXXYe(ptr)
13 ///   - Aligned writes: writeXXYe(ptr, num)
14 ///   - Unaligned reads (16/32-bit only): unaligned_readXXYe(ptr)
15 ///   - Unaligned writes (16/32-bit only): unaligned_writeXXYe(ptr, num)
16 ///
17 /// Since they can macros, the arguments should have no side effects since
18 /// they may be evaluated more than once.
19 ///
20 /// \todo       PowerPC and possibly some other architectures support
21 ///             byte swapping load and store instructions. This file
22 ///             doesn't take advantage of those instructions.
23 ///
24 /// Bit scan operations for non-zero 32-bit integers:
25 ///   - Bit scan reverse (find highest non-zero bit): bsr32(num)
26 ///   - Count leading zeros: clz32(num)
27 ///   - Count trailing zeros: ctz32(num)
28 ///   - Bit scan forward (simply an alias for ctz32()): bsf32(num)
29 ///
30 /// The above bit scan operations return 0-31. If num is zero,
31 /// the result is undefined.
32 //
33 //  Authors:    Lasse Collin
34 //              Joachim Henke
35 //
36 //  This file has been put into the public domain.
37 //  You can do whatever you want with this file.
38 //
39 ///////////////////////////////////////////////////////////////////////////////
40 
41 #ifndef TUKLIB_INTEGER_H
42 #define TUKLIB_INTEGER_H
43 
44 #include "tuklib_common.h"
45 
46 
47 ////////////////////////////////////////
48 // Operating system specific features //
49 ////////////////////////////////////////
50 
51 #if defined(HAVE_BYTESWAP_H)
52 	// glibc, uClibc, dietlibc
53 #	include <byteswap.h>
54 #	ifdef HAVE_BSWAP_16
55 #		define bswap16(num) bswap_16(num)
56 #	endif
57 #	ifdef HAVE_BSWAP_32
58 #		define bswap32(num) bswap_32(num)
59 #	endif
60 #	ifdef HAVE_BSWAP_64
61 #		define bswap64(num) bswap_64(num)
62 #	endif
63 
64 #elif defined(HAVE_SYS_ENDIAN_H)
65 	// *BSDs and Darwin
66 #	include <sys/endian.h>
67 
68 #elif defined(HAVE_SYS_BYTEORDER_H)
69 	// Solaris
70 #	include <sys/byteorder.h>
71 #	ifdef BSWAP_16
72 #		define bswap16(num) BSWAP_16(num)
73 #	endif
74 #	ifdef BSWAP_32
75 #		define bswap32(num) BSWAP_32(num)
76 #	endif
77 #	ifdef BSWAP_64
78 #		define bswap64(num) BSWAP_64(num)
79 #	endif
80 #	ifdef BE_16
81 #		define conv16be(num) BE_16(num)
82 #	endif
83 #	ifdef BE_32
84 #		define conv32be(num) BE_32(num)
85 #	endif
86 #	ifdef BE_64
87 #		define conv64be(num) BE_64(num)
88 #	endif
89 #	ifdef LE_16
90 #		define conv16le(num) LE_16(num)
91 #	endif
92 #	ifdef LE_32
93 #		define conv32le(num) LE_32(num)
94 #	endif
95 #	ifdef LE_64
96 #		define conv64le(num) LE_64(num)
97 #	endif
98 #endif
99 
100 #ifdef _MSC_VER
101 #include <Windows.h>
102 #endif
103 
104 
105 ////////////////////////////////
106 // Compiler-specific features //
107 ////////////////////////////////
108 
109 // Newer Intel C compilers require immintrin.h for _bit_scan_reverse()
110 // and such functions.
111 #if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1500)
112 #	include <immintrin.h>
113 #endif
114 
115 
116 ///////////////////
117 // Byte swapping //
118 ///////////////////
119 
120 #ifndef bswap16
121 #	define bswap16(num) \
122 		(((uint16_t)(num) << 8) | ((uint16_t)(num) >> 8))
123 #endif
124 
125 #ifndef bswap32
126 #	define bswap32(num) \
127 		( (((uint32_t)(num) << 24)                       ) \
128 		| (((uint32_t)(num) <<  8) & UINT32_C(0x00FF0000)) \
129 		| (((uint32_t)(num) >>  8) & UINT32_C(0x0000FF00)) \
130 		| (((uint32_t)(num) >> 24)                       ) )
131 #endif
132 
133 #ifndef bswap64
134 #	define bswap64(num) \
135 		( (((uint64_t)(num) << 56)                               ) \
136 		| (((uint64_t)(num) << 40) & UINT64_C(0x00FF000000000000)) \
137 		| (((uint64_t)(num) << 24) & UINT64_C(0x0000FF0000000000)) \
138 		| (((uint64_t)(num) <<  8) & UINT64_C(0x000000FF00000000)) \
139 		| (((uint64_t)(num) >>  8) & UINT64_C(0x00000000FF000000)) \
140 		| (((uint64_t)(num) >> 24) & UINT64_C(0x0000000000FF0000)) \
141 		| (((uint64_t)(num) >> 40) & UINT64_C(0x000000000000FF00)) \
142 		| (((uint64_t)(num) >> 56)                               ) )
143 #endif
144 
145 // Define conversion macros using the basic byte swapping macros.
146 #ifdef WORDS_BIGENDIAN
147 #	ifndef conv16be
148 #		define conv16be(num) ((uint16_t)(num))
149 #	endif
150 #	ifndef conv32be
151 #		define conv32be(num) ((uint32_t)(num))
152 #	endif
153 #	ifndef conv64be
154 #		define conv64be(num) ((uint64_t)(num))
155 #	endif
156 #	ifndef conv16le
157 #		define conv16le(num) bswap16(num)
158 #	endif
159 #	ifndef conv32le
160 #		define conv32le(num) bswap32(num)
161 #	endif
162 #	ifndef conv64le
163 #		define conv64le(num) bswap64(num)
164 #	endif
165 #else
166 #	ifndef conv16be
167 #		define conv16be(num) bswap16(num)
168 #	endif
169 #	ifndef conv32be
170 #		define conv32be(num) bswap32(num)
171 #	endif
172 #	ifndef conv64be
173 #		define conv64be(num) bswap64(num)
174 #	endif
175 #	ifndef conv16le
176 #		define conv16le(num) ((uint16_t)(num))
177 #	endif
178 #	ifndef conv32le
179 #		define conv32le(num) ((uint32_t)(num))
180 #	endif
181 #	ifndef conv64le
182 #		define conv64le(num) ((uint64_t)(num))
183 #	endif
184 #endif
185 
186 
187 //////////////////////////////
188 // Aligned reads and writes //
189 //////////////////////////////
190 
191 static inline uint16_t
read16be(const uint8_t * buf)192 read16be(const uint8_t *buf)
193 {
194 	uint16_t num = *(const uint16_t *)buf;
195 	return conv16be(num);
196 }
197 
198 
199 static inline uint16_t
read16le(const uint8_t * buf)200 read16le(const uint8_t *buf)
201 {
202 	uint16_t num = *(const uint16_t *)buf;
203 	return conv16le(num);
204 }
205 
206 
207 static inline uint32_t
read32be(const uint8_t * buf)208 read32be(const uint8_t *buf)
209 {
210 	uint32_t num = *(const uint32_t *)buf;
211 	return conv32be(num);
212 }
213 
214 
215 static inline uint32_t
read32le(const uint8_t * buf)216 read32le(const uint8_t *buf)
217 {
218 	uint32_t num = *(const uint32_t *)buf;
219 	return conv32le(num);
220 }
221 
222 
223 static inline uint64_t
read64be(const uint8_t * buf)224 read64be(const uint8_t *buf)
225 {
226 	uint64_t num = *(const uint64_t *)buf;
227 	return conv64be(num);
228 }
229 
230 
231 static inline uint64_t
read64le(const uint8_t * buf)232 read64le(const uint8_t *buf)
233 {
234 	uint64_t num = *(const uint64_t *)buf;
235 	return conv64le(num);
236 }
237 
238 
239 // NOTE: Possible byte swapping must be done in a macro to allow GCC
240 // to optimize byte swapping of constants when using glibc's or *BSD's
241 // byte swapping macros. The actual write is done in an inline function
242 // to make type checking of the buf pointer possible similarly to readXXYe()
243 // functions.
244 
245 #define write16be(buf, num) write16ne((buf), conv16be(num))
246 #define write16le(buf, num) write16ne((buf), conv16le(num))
247 #define write32be(buf, num) write32ne((buf), conv32be(num))
248 #define write32le(buf, num) write32ne((buf), conv32le(num))
249 #define write64be(buf, num) write64ne((buf), conv64be(num))
250 #define write64le(buf, num) write64ne((buf), conv64le(num))
251 
252 
253 static inline void
write16ne(uint8_t * buf,uint16_t num)254 write16ne(uint8_t *buf, uint16_t num)
255 {
256 	*(uint16_t *)buf = num;
257 	return;
258 }
259 
260 
261 static inline void
write32ne(uint8_t * buf,uint32_t num)262 write32ne(uint8_t *buf, uint32_t num)
263 {
264 	*(uint32_t *)buf = num;
265 	return;
266 }
267 
268 
269 static inline void
write64ne(uint8_t * buf,uint64_t num)270 write64ne(uint8_t *buf, uint64_t num)
271 {
272 	*(uint64_t *)buf = num;
273 	return;
274 }
275 
276 
277 ////////////////////////////////
278 // Unaligned reads and writes //
279 ////////////////////////////////
280 
281 // NOTE: TUKLIB_FAST_UNALIGNED_ACCESS indicates only support for 16-bit and
282 // 32-bit unaligned integer loads and stores. It's possible that 64-bit
283 // unaligned access doesn't work or is slower than byte-by-byte access.
284 // Since unaligned 64-bit is probably not needed as often as 16-bit or
285 // 32-bit, we simply don't support 64-bit unaligned access for now.
286 #ifdef TUKLIB_FAST_UNALIGNED_ACCESS
287 #	define unaligned_read16be read16be
288 #	define unaligned_read16le read16le
289 #	define unaligned_read32be read32be
290 #	define unaligned_read32le read32le
291 #	define unaligned_write16be write16be
292 #	define unaligned_write16le write16le
293 #	define unaligned_write32be write32be
294 #	define unaligned_write32le write32le
295 
296 #else
297 
298 static inline uint16_t
unaligned_read16be(const uint8_t * buf)299 unaligned_read16be(const uint8_t *buf)
300 {
301 	uint16_t num = ((uint16_t)buf[0] << 8) | (uint16_t)buf[1];
302 	return num;
303 }
304 
305 
306 static inline uint16_t
unaligned_read16le(const uint8_t * buf)307 unaligned_read16le(const uint8_t *buf)
308 {
309 	uint16_t num = ((uint16_t)buf[0]) | ((uint16_t)buf[1] << 8);
310 	return num;
311 }
312 
313 
314 static inline uint32_t
unaligned_read32be(const uint8_t * buf)315 unaligned_read32be(const uint8_t *buf)
316 {
317 	uint32_t num = (uint32_t)buf[0] << 24;
318 	num |= (uint32_t)buf[1] << 16;
319 	num |= (uint32_t)buf[2] << 8;
320 	num |= (uint32_t)buf[3];
321 	return num;
322 }
323 
324 
325 static inline uint32_t
unaligned_read32le(const uint8_t * buf)326 unaligned_read32le(const uint8_t *buf)
327 {
328 	uint32_t num = (uint32_t)buf[0];
329 	num |= (uint32_t)buf[1] << 8;
330 	num |= (uint32_t)buf[2] << 16;
331 	num |= (uint32_t)buf[3] << 24;
332 	return num;
333 }
334 
335 
336 static inline void
unaligned_write16be(uint8_t * buf,uint16_t num)337 unaligned_write16be(uint8_t *buf, uint16_t num)
338 {
339 	buf[0] = (uint8_t)(num >> 8);
340 	buf[1] = (uint8_t)num;
341 	return;
342 }
343 
344 
345 static inline void
unaligned_write16le(uint8_t * buf,uint16_t num)346 unaligned_write16le(uint8_t *buf, uint16_t num)
347 {
348 	buf[0] = (uint8_t)num;
349 	buf[1] = (uint8_t)(num >> 8);
350 	return;
351 }
352 
353 
354 static inline void
unaligned_write32be(uint8_t * buf,uint32_t num)355 unaligned_write32be(uint8_t *buf, uint32_t num)
356 {
357 	buf[0] = (uint8_t)(num >> 24);
358 	buf[1] = (uint8_t)(num >> 16);
359 	buf[2] = (uint8_t)(num >> 8);
360 	buf[3] = (uint8_t)num;
361 	return;
362 }
363 
364 
365 static inline void
unaligned_write32le(uint8_t * buf,uint32_t num)366 unaligned_write32le(uint8_t *buf, uint32_t num)
367 {
368 	buf[0] = (uint8_t)num;
369 	buf[1] = (uint8_t)(num >> 8);
370 	buf[2] = (uint8_t)(num >> 16);
371 	buf[3] = (uint8_t)(num >> 24);
372 	return;
373 }
374 
375 #endif
376 
377 
378 static inline uint32_t
bsr32(uint32_t n)379 bsr32(uint32_t n)
380 {
381 	// Check for ICC first, since it tends to define __GNUC__ too.
382 #if defined(__INTEL_COMPILER)
383 	return _bit_scan_reverse(n);
384 
385 #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
386 	// GCC >= 3.4 has __builtin_clz(), which gives good results on
387 	// multiple architectures. On x86, __builtin_clz() ^ 31U becomes
388 	// either plain BSR (so the XOR gets optimized away) or LZCNT and
389 	// XOR (if -march indicates that SSE4a instructions are supported).
390 	return __builtin_clz(n) ^ 31U;
391 
392 #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
393 	uint32_t i;
394 	__asm__("bsrl %1, %0" : "=r" (i) : "rm" (n));
395 	return i;
396 
397 #elif defined(_MSC_VER) && _MSC_VER >= 1400
398 	// MSVC isn't supported by tuklib, but since this code exists,
399 	// it doesn't hurt to have it here anyway.
400 	uint32_t i;
401 	_BitScanReverse((DWORD *)&i, n);
402 	return i;
403 
404 #else
405 	uint32_t i = 31;
406 
407 	if ((n & UINT32_C(0xFFFF0000)) == 0) {
408 		n <<= 16;
409 		i = 15;
410 	}
411 
412 	if ((n & UINT32_C(0xFF000000)) == 0) {
413 		n <<= 8;
414 		i -= 8;
415 	}
416 
417 	if ((n & UINT32_C(0xF0000000)) == 0) {
418 		n <<= 4;
419 		i -= 4;
420 	}
421 
422 	if ((n & UINT32_C(0xC0000000)) == 0) {
423 		n <<= 2;
424 		i -= 2;
425 	}
426 
427 	if ((n & UINT32_C(0x80000000)) == 0)
428 		--i;
429 
430 	return i;
431 #endif
432 }
433 
434 
435 static inline uint32_t
clz32(uint32_t n)436 clz32(uint32_t n)
437 {
438 #if defined(__INTEL_COMPILER)
439 	return _bit_scan_reverse(n) ^ 31U;
440 
441 #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX == UINT32_MAX
442 	return __builtin_clz(n);
443 
444 #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
445 	uint32_t i;
446 	__asm__("bsrl %1, %0\n\t"
447 		"xorl $31, %0"
448 		: "=r" (i) : "rm" (n));
449 	return i;
450 
451 #elif defined(_MSC_VER) && _MSC_VER >= 1400
452 	uint32_t i;
453 	_BitScanReverse((DWORD *)&i, n);
454 	return i ^ 31U;
455 
456 #else
457 	uint32_t i = 0;
458 
459 	if ((n & UINT32_C(0xFFFF0000)) == 0) {
460 		n <<= 16;
461 		i = 16;
462 	}
463 
464 	if ((n & UINT32_C(0xFF000000)) == 0) {
465 		n <<= 8;
466 		i += 8;
467 	}
468 
469 	if ((n & UINT32_C(0xF0000000)) == 0) {
470 		n <<= 4;
471 		i += 4;
472 	}
473 
474 	if ((n & UINT32_C(0xC0000000)) == 0) {
475 		n <<= 2;
476 		i += 2;
477 	}
478 
479 	if ((n & UINT32_C(0x80000000)) == 0)
480 		++i;
481 
482 	return i;
483 #endif
484 }
485 
486 
487 static inline uint32_t
ctz32(uint32_t n)488 ctz32(uint32_t n)
489 {
490 #if defined(__INTEL_COMPILER)
491 	return _bit_scan_forward(n);
492 
493 #elif TUKLIB_GNUC_REQ(3, 4) && UINT_MAX >= UINT32_MAX
494 	return __builtin_ctz(n);
495 
496 #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
497 	uint32_t i;
498 	__asm__("bsfl %1, %0" : "=r" (i) : "rm" (n));
499 	return i;
500 
501 #elif defined(_MSC_VER) && _MSC_VER >= 1400
502 	uint32_t i;
503 	_BitScanForward((DWORD *)&i, n);
504 	return i;
505 
506 #else
507 	uint32_t i = 0;
508 
509 	if ((n & UINT32_C(0x0000FFFF)) == 0) {
510 		n >>= 16;
511 		i = 16;
512 	}
513 
514 	if ((n & UINT32_C(0x000000FF)) == 0) {
515 		n >>= 8;
516 		i += 8;
517 	}
518 
519 	if ((n & UINT32_C(0x0000000F)) == 0) {
520 		n >>= 4;
521 		i += 4;
522 	}
523 
524 	if ((n & UINT32_C(0x00000003)) == 0) {
525 		n >>= 2;
526 		i += 2;
527 	}
528 
529 	if ((n & UINT32_C(0x00000001)) == 0)
530 		++i;
531 
532 	return i;
533 #endif
534 }
535 
536 #define bsf32 ctz32
537 
538 #endif
539