1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // This file implements the SSA rewriting algorithm proposed in
16 //
17 //      Simple and Efficient Construction of Static Single Assignment Form.
18 //      Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
19 //      In: Jhala R., De Bosschere K. (eds)
20 //      Compiler Construction. CC 2013.
21 //      Lecture Notes in Computer Science, vol 7791.
22 //      Springer, Berlin, Heidelberg
23 //
24 //      https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
25 //
26 // In contrast to common eager algorithms based on dominance and dominance
27 // frontier information, this algorithm works backwards from load operations.
28 //
29 // When a target variable is loaded, it queries the variable's reaching
30 // definition.  If the reaching definition is unknown at the current location,
31 // it searches backwards in the CFG, inserting Phi instructions at join points
32 // in the CFG along the way until it finds the desired store instruction.
33 //
34 // The algorithm avoids repeated lookups using memoization.
35 //
36 // For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
37 // this algorithm is proven to produce minimal SSA.  That is, it inserts the
38 // minimal number of Phi instructions required to ensure the SSA property, but
39 // some Phi instructions may be dead
40 // (https://en.wikipedia.org/wiki/Static_single_assignment_form).
41 
42 #include "source/opt/ssa_rewrite_pass.h"
43 
44 #include <memory>
45 #include <sstream>
46 
47 #include "source/opcode.h"
48 #include "source/opt/cfg.h"
49 #include "source/opt/mem_pass.h"
50 #include "source/util/make_unique.h"
51 
52 // Debug logging (0: Off, 1-N: Verbosity level).  Replace this with the
53 // implementation done for
54 // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
55 // #define SSA_REWRITE_DEBUGGING_LEVEL 3
56 
57 #ifdef SSA_REWRITE_DEBUGGING_LEVEL
58 #include <ostream>
59 #else
60 #define SSA_REWRITE_DEBUGGING_LEVEL 0
61 #endif
62 
63 namespace spvtools {
64 namespace opt {
65 
66 namespace {
67 const uint32_t kStoreValIdInIdx = 1;
68 const uint32_t kVariableInitIdInIdx = 1;
69 }  // namespace
70 
PrettyPrint(const CFG * cfg) const71 std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
72   std::ostringstream str;
73   str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
74       << "](";
75   if (phi_args_.size() > 0) {
76     uint32_t arg_ix = 0;
77     for (uint32_t pred_label : cfg->preds(bb_->id())) {
78       uint32_t arg_id = phi_args_[arg_ix++];
79       str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
80     }
81   }
82   str << ")";
83   if (copy_of_ != 0) {
84     str << "  [COPY OF " << copy_of_ << "]";
85   }
86   str << ((is_complete_) ? "  [COMPLETE]" : "  [INCOMPLETE]");
87 
88   return str.str();
89 }
90 
CreatePhiCandidate(uint32_t var_id,BasicBlock * bb)91 SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id,
92                                                            BasicBlock* bb) {
93   // TODO(1841): Handle id overflow.
94   uint32_t phi_result_id = pass_->context()->TakeNextId();
95   auto result = phi_candidates_.emplace(
96       phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
97   PhiCandidate& phi_candidate = result.first->second;
98   return phi_candidate;
99 }
100 
ReplacePhiUsersWith(const PhiCandidate & phi_to_remove,uint32_t repl_id)101 void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
102                                       uint32_t repl_id) {
103   for (uint32_t user_id : phi_to_remove.users()) {
104     PhiCandidate* user_phi = GetPhiCandidate(user_id);
105     BasicBlock* bb = pass_->context()->get_instr_block(user_id);
106     if (user_phi) {
107       // If the user is a Phi candidate, replace all arguments that refer to
108       // |phi_to_remove.result_id()| with |repl_id|.
109       for (uint32_t& arg : user_phi->phi_args()) {
110         if (arg == phi_to_remove.result_id()) {
111           arg = repl_id;
112         }
113       }
114     } else if (bb->id() == user_id) {
115       // The phi candidate is the definition of the variable at basic block
116       // |bb|.  We must change this to the replacement.
117       WriteVariable(phi_to_remove.var_id(), bb, repl_id);
118     } else {
119       // For regular loads, traverse the |load_replacement_| table looking for
120       // instances of |phi_to_remove|.
121       for (auto& it : load_replacement_) {
122         if (it.second == phi_to_remove.result_id()) {
123           it.second = repl_id;
124         }
125       }
126     }
127   }
128 }
129 
TryRemoveTrivialPhi(PhiCandidate * phi_candidate)130 uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
131   uint32_t same_id = 0;
132   for (uint32_t arg_id : phi_candidate->phi_args()) {
133     if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
134       // This is a self-reference operand or a reference to the same value ID.
135       continue;
136     }
137     if (same_id != 0) {
138       // This Phi candidate merges at least two values.  Therefore, it is not
139       // trivial.
140       assert(phi_candidate->copy_of() == 0 &&
141              "Phi candidate transitioning from copy to non-copy.");
142       return phi_candidate->result_id();
143     }
144     same_id = arg_id;
145   }
146 
147   // The previous logic has determined that this Phi candidate |phi_candidate|
148   // is trivial.  It is essentially the copy operation phi_candidate->phi_result
149   // = Phi(same, same, same, ...).  Since it is not necessary, we can re-route
150   // all the users of |phi_candidate->phi_result| to all its users, and remove
151   // |phi_candidate|.
152 
153   // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
154   // generated.
155   phi_candidate->MarkCopyOf(same_id);
156 
157   assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
158 
159   // Since |phi_candidate| always produces |same_id|, replace all the users of
160   // |phi_candidate| with |same_id|.
161   ReplacePhiUsersWith(*phi_candidate, same_id);
162 
163   return same_id;
164 }
165 
AddPhiOperands(PhiCandidate * phi_candidate)166 uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
167   assert(phi_candidate->phi_args().size() == 0 &&
168          "Phi candidate already has arguments");
169 
170   bool found_0_arg = false;
171   for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
172     BasicBlock* pred_bb = pass_->cfg()->block(pred);
173 
174     // If |pred_bb| is not sealed, use %0 to indicate that
175     // |phi_candidate| needs to be completed after the whole CFG has
176     // been processed.
177     //
178     // Note that we cannot call GetReachingDef() in these cases
179     // because this would generate an empty Phi candidate in
180     // |pred_bb|.  When |pred_bb| is later processed, a new definition
181     // for |phi_candidate->var_id_| will be lost because
182     // |phi_candidate| will still be reached by the empty Phi.
183     //
184     // Consider:
185     //
186     //       BB %23:
187     //           %38 = Phi[%i](%int_0[%1], %39[%25])
188     //
189     //           ...
190     //
191     //       BB %25: [Starts unsealed]
192     //       %39 = Phi[%i]()
193     //       %34 = ...
194     //       OpStore %i %34    -> Currdef(%i) at %25 is %34
195     //       OpBranch %23
196     //
197     // When we first create the Phi in %38, we add an operandless Phi in
198     // %39 to hold the unknown reaching def for %i.
199     //
200     // But then, when we go to complete %39 at the end.  The reaching def
201     // for %i in %25's predecessor is %38 itself.  So we miss the fact
202     // that %25 has a def for %i that should be used.
203     //
204     // By making the argument %0, we make |phi_candidate| incomplete,
205     // which will cause it to be completed after the whole CFG has
206     // been scanned.
207     uint32_t arg_id = IsBlockSealed(pred_bb)
208                           ? GetReachingDef(phi_candidate->var_id(), pred_bb)
209                           : 0;
210     phi_candidate->phi_args().push_back(arg_id);
211 
212     if (arg_id == 0) {
213       found_0_arg = true;
214     } else {
215       // If this argument is another Phi candidate, add |phi_candidate| to the
216       // list of users for the defining Phi.
217       PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
218       if (defining_phi && defining_phi != phi_candidate) {
219         defining_phi->AddUser(phi_candidate->result_id());
220       }
221     }
222   }
223 
224   // If we could not fill-in all the arguments of this Phi, mark it incomplete
225   // so it gets completed after the whole CFG has been processed.
226   if (found_0_arg) {
227     phi_candidate->MarkIncomplete();
228     incomplete_phis_.push(phi_candidate);
229     return phi_candidate->result_id();
230   }
231 
232   // Try to remove |phi_candidate|, if it's trivial.
233   uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
234   if (repl_id == phi_candidate->result_id()) {
235     // |phi_candidate| is complete and not trivial.  Add it to the
236     // list of Phi candidates to generate.
237     phi_candidate->MarkComplete();
238     phis_to_generate_.push_back(phi_candidate);
239   }
240 
241   return repl_id;
242 }
243 
GetReachingDef(uint32_t var_id,BasicBlock * bb)244 uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
245   // If |var_id| has a definition in |bb|, return it.
246   const auto& bb_it = defs_at_block_.find(bb);
247   if (bb_it != defs_at_block_.end()) {
248     const auto& current_defs = bb_it->second;
249     const auto& var_it = current_defs.find(var_id);
250     if (var_it != current_defs.end()) {
251       return var_it->second;
252     }
253   }
254 
255   // Otherwise, look up the value for |var_id| in |bb|'s predecessors.
256   uint32_t val_id = 0;
257   auto& predecessors = pass_->cfg()->preds(bb->id());
258   if (predecessors.size() == 1) {
259     // If |bb| has exactly one predecessor, we look for |var_id|'s definition
260     // there.
261     val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
262   } else if (predecessors.size() > 1) {
263     // If there is more than one predecessor, this is a join block which may
264     // require a Phi instruction.  This will act as |var_id|'s current
265     // definition to break potential cycles.
266     PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb);
267 
268     // Set the value for |bb| to avoid an infinite recursion.
269     WriteVariable(var_id, bb, phi_candidate.result_id());
270     val_id = AddPhiOperands(&phi_candidate);
271   }
272 
273   // If we could not find a store for this variable in the path from the root
274   // of the CFG, the variable is not defined, so we use undef.
275   if (val_id == 0) {
276     val_id = pass_->GetUndefVal(var_id);
277     if (val_id == 0) {
278       return 0;
279     }
280   }
281 
282   WriteVariable(var_id, bb, val_id);
283 
284   return val_id;
285 }
286 
SealBlock(BasicBlock * bb)287 void SSARewriter::SealBlock(BasicBlock* bb) {
288   auto result = sealed_blocks_.insert(bb);
289   (void)result;
290   assert(result.second == true &&
291          "Tried to seal the same basic block more than once.");
292 }
293 
ProcessStore(Instruction * inst,BasicBlock * bb)294 void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
295   auto opcode = inst->opcode();
296   assert((opcode == SpvOpStore || opcode == SpvOpVariable) &&
297          "Expecting a store or a variable definition instruction.");
298 
299   uint32_t var_id = 0;
300   uint32_t val_id = 0;
301   if (opcode == SpvOpStore) {
302     (void)pass_->GetPtr(inst, &var_id);
303     val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
304   } else if (inst->NumInOperands() >= 2) {
305     var_id = inst->result_id();
306     val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
307   }
308   if (pass_->IsTargetVar(var_id)) {
309     WriteVariable(var_id, bb, val_id);
310 
311 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
312     std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
313               << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
314               << "\n";
315 #endif
316   }
317 }
318 
ProcessLoad(Instruction * inst,BasicBlock * bb)319 bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
320   uint32_t var_id = 0;
321   (void)pass_->GetPtr(inst, &var_id);
322   if (pass_->IsTargetVar(var_id)) {
323     // Get the immediate reaching definition for |var_id|.
324     uint32_t val_id = GetReachingDef(var_id, bb);
325     if (val_id == 0) {
326       return false;
327     }
328 
329     // Schedule a replacement for the result of this load instruction with
330     // |val_id|. After all the rewriting decisions are made, every use of
331     // this load will be replaced with |val_id|.
332     const uint32_t load_id = inst->result_id();
333     assert(load_replacement_.count(load_id) == 0);
334     load_replacement_[load_id] = val_id;
335     PhiCandidate* defining_phi = GetPhiCandidate(val_id);
336     if (defining_phi) {
337       defining_phi->AddUser(load_id);
338     }
339 
340 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
341     std::cerr << "\tFound load: "
342               << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
343               << " (replacement for %" << load_id << " is %" << val_id << ")\n";
344 #endif
345   }
346   return true;
347 }
348 
PrintPhiCandidates() const349 void SSARewriter::PrintPhiCandidates() const {
350   std::cerr << "\nPhi candidates:\n";
351   for (const auto& phi_it : phi_candidates_) {
352     std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
353               << phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
354   }
355   std::cerr << "\n";
356 }
357 
PrintReplacementTable() const358 void SSARewriter::PrintReplacementTable() const {
359   std::cerr << "\nLoad replacement table\n";
360   for (const auto& it : load_replacement_) {
361     std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
362   }
363   std::cerr << "\n";
364 }
365 
GenerateSSAReplacements(BasicBlock * bb)366 bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
367 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
368   std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
369   std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
370             << "\n";
371 #endif
372 
373   for (auto& inst : *bb) {
374     auto opcode = inst.opcode();
375     if (opcode == SpvOpStore || opcode == SpvOpVariable) {
376       ProcessStore(&inst, bb);
377     } else if (inst.opcode() == SpvOpLoad) {
378       if (!ProcessLoad(&inst, bb)) {
379         return false;
380       }
381     }
382   }
383 
384   // Seal |bb|. This means that all the stores in it have been scanned and it's
385   // ready to feed them into its successors.
386   SealBlock(bb);
387 
388 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
389   PrintPhiCandidates();
390   PrintReplacementTable();
391   std::cerr << "\n\n";
392 #endif
393   return true;
394 }
395 
GetReplacement(std::pair<uint32_t,uint32_t> repl)396 uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
397   uint32_t val_id = repl.second;
398   auto it = load_replacement_.find(val_id);
399   while (it != load_replacement_.end()) {
400     val_id = it->second;
401     it = load_replacement_.find(val_id);
402   }
403   return val_id;
404 }
405 
GetPhiArgument(const PhiCandidate * phi_candidate,uint32_t ix)406 uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
407                                      uint32_t ix) {
408   assert(phi_candidate->IsReady() &&
409          "Tried to get the final argument from an incomplete/trivial Phi");
410 
411   uint32_t arg_id = phi_candidate->phi_args()[ix];
412   while (arg_id != 0) {
413     PhiCandidate* phi_user = GetPhiCandidate(arg_id);
414     if (phi_user == nullptr || phi_user->IsReady()) {
415       // If the argument is not a Phi or it's a Phi candidate ready to be
416       // emitted, return it.
417       return arg_id;
418     }
419     arg_id = phi_user->copy_of();
420   }
421 
422   assert(false &&
423          "No Phi candidates in the copy-of chain are ready to be generated");
424 
425   return 0;
426 }
427 
ApplyReplacements()428 bool SSARewriter::ApplyReplacements() {
429   bool modified = false;
430 
431 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
432   std::cerr << "\n\nApplying replacement decisions to IR\n\n";
433   PrintPhiCandidates();
434   PrintReplacementTable();
435   std::cerr << "\n\n";
436 #endif
437 
438   // Add Phi instructions from completed Phi candidates.
439   std::vector<Instruction*> generated_phis;
440   for (const PhiCandidate* phi_candidate : phis_to_generate_) {
441 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
442     std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
443               << "\n";
444 #endif
445 
446     assert(phi_candidate->is_complete() &&
447            "Tried to instantiate a Phi instruction from an incomplete Phi "
448            "candidate");
449 
450     // Build the vector of operands for the new OpPhi instruction.
451     uint32_t type_id = pass_->GetPointeeTypeId(
452         pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id()));
453     std::vector<Operand> phi_operands;
454     uint32_t arg_ix = 0;
455     std::unordered_map<uint32_t, uint32_t> already_seen;
456     for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
457       uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
458       if (already_seen.count(pred_label) == 0) {
459         phi_operands.push_back(
460             {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
461         phi_operands.push_back(
462             {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
463         already_seen[pred_label] = op_val_id;
464       } else {
465         // It is possible that there are two edges from the same parent block.
466         // Since the OpPhi can have only one entry for each parent, we have to
467         // make sure the two edges are consistent with each other.
468         assert(already_seen[pred_label] == op_val_id &&
469                "Inconsistent value for duplicate edges.");
470       }
471     }
472 
473     // Generate a new OpPhi instruction and insert it in its basic
474     // block.
475     std::unique_ptr<Instruction> phi_inst(
476         new Instruction(pass_->context(), SpvOpPhi, type_id,
477                         phi_candidate->result_id(), phi_operands));
478     generated_phis.push_back(phi_inst.get());
479     pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
480     pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
481     auto insert_it = phi_candidate->bb()->begin();
482     insert_it.InsertBefore(std::move(phi_inst));
483     pass_->context()->get_decoration_mgr()->CloneDecorations(
484         phi_candidate->var_id(), phi_candidate->result_id(),
485         {SpvDecorationRelaxedPrecision});
486 
487     modified = true;
488   }
489 
490   // Scan uses for all inserted Phi instructions. Do this separately from the
491   // registration of the Phi instruction itself to avoid trying to analyze uses
492   // of Phi instructions that have not been registered yet.
493   for (Instruction* phi_inst : generated_phis) {
494     pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
495   }
496 
497 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
498   std::cerr << "\n\nReplacing the result of load instructions with the "
499                "corresponding SSA id\n\n";
500 #endif
501 
502   // Apply replacements from the load replacement table.
503   for (auto& repl : load_replacement_) {
504     uint32_t load_id = repl.first;
505     uint32_t val_id = GetReplacement(repl);
506     Instruction* load_inst =
507         pass_->context()->get_def_use_mgr()->GetDef(load_id);
508 
509 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
510     std::cerr << "\t"
511               << load_inst->PrettyPrint(
512                      SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
513               << "  (%" << load_id << " -> %" << val_id << ")\n";
514 #endif
515 
516     // Remove the load instruction and replace all the uses of this load's
517     // result with |val_id|.  Kill any names or decorates using the load's
518     // result before replacing to prevent incorrect replacement in those
519     // instructions.
520     pass_->context()->KillNamesAndDecorates(load_id);
521     pass_->context()->ReplaceAllUsesWith(load_id, val_id);
522     pass_->context()->KillInst(load_inst);
523     modified = true;
524   }
525 
526   return modified;
527 }
528 
FinalizePhiCandidate(PhiCandidate * phi_candidate)529 void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
530   assert(phi_candidate->phi_args().size() > 0 &&
531          "Phi candidate should have arguments");
532 
533   uint32_t ix = 0;
534   for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
535     BasicBlock* pred_bb = pass_->cfg()->block(pred);
536     uint32_t& arg_id = phi_candidate->phi_args()[ix++];
537     if (arg_id == 0) {
538       // If |pred_bb| is still not sealed, it means it's unreachable. In this
539       // case, we just use Undef as an argument.
540       arg_id = IsBlockSealed(pred_bb)
541                    ? GetReachingDef(phi_candidate->var_id(), pred_bb)
542                    : pass_->GetUndefVal(phi_candidate->var_id());
543     }
544   }
545 
546   // This candidate is now completed.
547   phi_candidate->MarkComplete();
548 
549   // If |phi_candidate| is not trivial, add it to the list of Phis to generate.
550   if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
551     // If we could not remove |phi_candidate|, it means that it is complete
552     // and not trivial. Add it to the list of Phis to generate.
553     assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
554     phis_to_generate_.push_back(phi_candidate);
555   }
556 }
557 
FinalizePhiCandidates()558 void SSARewriter::FinalizePhiCandidates() {
559 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
560   std::cerr << "Finalizing Phi candidates:\n\n";
561   PrintPhiCandidates();
562   std::cerr << "\n";
563 #endif
564 
565   // Now, complete the collected candidates.
566   while (incomplete_phis_.size() > 0) {
567     PhiCandidate* phi_candidate = incomplete_phis_.front();
568     incomplete_phis_.pop();
569     FinalizePhiCandidate(phi_candidate);
570   }
571 }
572 
RewriteFunctionIntoSSA(Function * fp)573 Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
574 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
575   std::cerr << "Function before SSA rewrite:\n"
576             << fp->PrettyPrint(0) << "\n\n\n";
577 #endif
578 
579   // Collect variables that can be converted into SSA IDs.
580   pass_->CollectTargetVars(fp);
581 
582   // Generate all the SSA replacements and Phi candidates. This will
583   // generate incomplete and trivial Phis.
584   bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder(
585       fp->entry().get(), [this](BasicBlock* bb) {
586         if (!GenerateSSAReplacements(bb)) {
587           return false;
588         }
589         return true;
590       });
591 
592   if (!succeeded) {
593     return Pass::Status::Failure;
594   }
595 
596   // Remove trivial Phis and add arguments to incomplete Phis.
597   FinalizePhiCandidates();
598 
599   // Finally, apply all the replacements in the IR.
600   bool modified = ApplyReplacements();
601 
602 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
603   std::cerr << "\n\n\nFunction after SSA rewrite:\n"
604             << fp->PrettyPrint(0) << "\n";
605 #endif
606 
607   return modified ? Pass::Status::SuccessWithChange
608                   : Pass::Status::SuccessWithoutChange;
609 }
610 
Process()611 Pass::Status SSARewritePass::Process() {
612   Status status = Status::SuccessWithoutChange;
613   for (auto& fn : *get_module()) {
614     status =
615         CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn));
616     if (status == Status::Failure) {
617       break;
618     }
619   }
620   return status;
621 }
622 
623 }  // namespace opt
624 }  // namespace spvtools
625