1 // Copyright (c) 2013- PPSSPP Project.
2 
3 // This program is free software: you can redistribute it and/or modify
4 // it under the terms of the GNU General Public License as published by
5 // the Free Software Foundation, version 2.0 or later versions.
6 
7 // This program is distributed in the hope that it will be useful,
8 // but WITHOUT ANY WARRANTY; without even the implied warranty of
9 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 // GNU General Public License 2.0 for more details.
11 
12 // A copy of the GPL 2.0 should have been included with the program.
13 // If not, see http://www.gnu.org/licenses/
14 
15 // Official git repository and contact information can be found at
16 // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/.
17 
18 #include <algorithm>
19 #include <cmath>
20 #include "Common/CPUDetect.h"
21 #include "Common/Math/math_util.h"
22 #include "Common/GPU/OpenGL/GLFeatures.h"
23 
24 #include "Core/Config.h"
25 #include "GPU/GPUState.h"
26 #include "GPU/Math3D.h"
27 #include "GPU/Common/FramebufferManagerCommon.h"
28 #include "GPU/Common/GPUStateUtils.h"
29 #include "GPU/Common/SoftwareTransformCommon.h"
30 #include "GPU/Common/TransformCommon.h"
31 #include "GPU/Common/TextureCacheCommon.h"
32 #include "GPU/Common/VertexDecoderCommon.h"
33 
34 // This is the software transform pipeline, which is necessary for supporting RECT
35 // primitives correctly without geometry shaders, and may be easier to use for
36 // debugging than the hardware transform pipeline.
37 
38 // There's code here that simply expands transformed RECTANGLES into plain triangles.
39 
40 // We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0 or DX9.
41 // Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of
42 // this code.
43 
44 // Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed
45 // space and thus make decent use of hardware transform.
46 
47 // Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for
48 // GL_TRIANGLES. Still need to sw transform to compute the extra two corners though.
49 //
50 
51 // The verts are in the order:  BR BL TL TR
SwapUVs(TransformedVertex & a,TransformedVertex & b)52 static void SwapUVs(TransformedVertex &a, TransformedVertex &b) {
53 	float tempu = a.u;
54 	float tempv = a.v;
55 	a.u = b.u;
56 	a.v = b.v;
57 	b.u = tempu;
58 	b.v = tempv;
59 }
60 
61 // 2   3       3   2        0   3          2   1
62 //        to           to            or
63 // 1   0       0   1        1   2          3   0
64 
65 // Note: 0 is BR and 2 is TL.
66 
RotateUV(TransformedVertex v[4],float flippedMatrix[16],bool flippedY)67 static void RotateUV(TransformedVertex v[4], float flippedMatrix[16], bool flippedY) {
68 	// Transform these two coordinates to figure out whether they're flipped or not.
69 	Vec4f tl;
70 	Vec3ByMatrix44(tl.AsArray(), v[2].pos, flippedMatrix);
71 
72 	Vec4f br;
73 	Vec3ByMatrix44(br.AsArray(), v[0].pos, flippedMatrix);
74 
75 	float ySign = flippedY ? -1.0 : 1.0;
76 
77 	const float invtlw = 1.0f / tl.w;
78 	const float invbrw = 1.0f / br.w;
79 	const float x1 = tl.x * invtlw;
80 	const float x2 = br.x * invbrw;
81 	const float y1 = tl.y * invtlw * ySign;
82 	const float y2 = br.y * invbrw * ySign;
83 
84 	if ((x1 < x2 && y1 < y2) || (x1 > x2 && y1 > y2))
85 		SwapUVs(v[1], v[3]);
86 }
87 
RotateUVThrough(TransformedVertex v[4])88 static void RotateUVThrough(TransformedVertex v[4]) {
89 	float x1 = v[2].x;
90 	float x2 = v[0].x;
91 	float y1 = v[2].y;
92 	float y2 = v[0].y;
93 
94 	if ((x1 < x2 && y1 > y2) || (x1 > x2 && y1 < y2))
95 		SwapUVs(v[1], v[3]);
96 }
97 
98 // Clears on the PSP are best done by drawing a series of vertical strips
99 // in clear mode. This tries to detect that.
IsReallyAClear(const TransformedVertex * transformed,int numVerts,float x2,float y2)100 static bool IsReallyAClear(const TransformedVertex *transformed, int numVerts, float x2, float y2) {
101 	if (transformed[0].x != 0.0f || transformed[0].y != 0.0f)
102 		return false;
103 
104 	// Color and Z are decided by the second vertex, so only need to check those for matching color.
105 	u32 matchcolor = transformed[1].color0_32;
106 	float matchz = transformed[1].z;
107 
108 	for (int i = 1; i < numVerts; i++) {
109 		if ((i & 1) == 0) {
110 			// Top left of a rectangle
111 			if (transformed[i].y != 0.0f)
112 				return false;
113 			if (i > 0 && transformed[i].x != transformed[i - 1].x)
114 				return false;
115 		} else {
116 			if (transformed[i].color0_32 != matchcolor || transformed[i].z != matchz)
117 				return false;
118 			// Bottom right
119 			if (transformed[i].y < y2)
120 				return false;
121 			if (transformed[i].x <= transformed[i - 1].x)
122 				return false;
123 		}
124 	}
125 
126 	// The last vertical strip often extends outside the drawing area.
127 	if (transformed[numVerts - 1].x < x2)
128 		return false;
129 
130 	return true;
131 }
132 
ColorIndexOffset(int prim,GEShadeMode shadeMode,bool clearMode)133 static int ColorIndexOffset(int prim, GEShadeMode shadeMode, bool clearMode) {
134 	if (shadeMode != GE_SHADE_FLAT || clearMode) {
135 		return 0;
136 	}
137 
138 	switch (prim) {
139 	case GE_PRIM_LINES:
140 	case GE_PRIM_LINE_STRIP:
141 		return 1;
142 
143 	case GE_PRIM_TRIANGLES:
144 	case GE_PRIM_TRIANGLE_STRIP:
145 		return 2;
146 
147 	case GE_PRIM_TRIANGLE_FAN:
148 		return 1;
149 
150 	case GE_PRIM_RECTANGLES:
151 		// We already use BR color when expanding, so no need to offset.
152 		return 0;
153 
154 	default:
155 		break;
156 	}
157 	return 0;
158 }
159 
Decode(int prim,u32 vertType,const DecVtxFormat & decVtxFormat,int maxIndex,SoftwareTransformResult * result)160 void SoftwareTransform::Decode(int prim, u32 vertType, const DecVtxFormat &decVtxFormat, int maxIndex, SoftwareTransformResult *result) {
161 	u8 *decoded = params_.decoded;
162 	TransformedVertex *transformed = params_.transformed;
163 	bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
164 	bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled();
165 
166 	float uscale = 1.0f;
167 	float vscale = 1.0f;
168 	if (throughmode) {
169 		uscale /= gstate_c.curTextureWidth;
170 		vscale /= gstate_c.curTextureHeight;
171 	}
172 
173 	bool skinningEnabled = vertTypeIsSkinningEnabled(vertType);
174 
175 	const int w = gstate.getTextureWidth(0);
176 	const int h = gstate.getTextureHeight(0);
177 	float widthFactor = (float) w / (float) gstate_c.curTextureWidth;
178 	float heightFactor = (float) h / (float) gstate_c.curTextureHeight;
179 
180 	Lighter lighter(vertType);
181 	float fog_end = getFloat24(gstate.fog1);
182 	float fog_slope = getFloat24(gstate.fog2);
183 	// Same fixup as in ShaderManagerGLES.cpp
184 	if (my_isnanorinf(fog_end)) {
185 		// Not really sure what a sensible value might be, but let's try 64k.
186 		fog_end = std::signbit(fog_end) ? -65535.0f : 65535.0f;
187 	}
188 	if (my_isnanorinf(fog_slope)) {
189 		fog_slope = std::signbit(fog_slope) ? -65535.0f : 65535.0f;
190 	}
191 
192 	int provokeIndOffset = 0;
193 	if (params_.provokeFlatFirst) {
194 		provokeIndOffset = ColorIndexOffset(prim, gstate.getShadeMode(), gstate.isModeClear());
195 	}
196 
197 	VertexReader reader(decoded, decVtxFormat, vertType);
198 	if (throughmode) {
199 		for (int index = 0; index < maxIndex; index++) {
200 			// Do not touch the coordinates or the colors. No lighting.
201 			reader.Goto(index);
202 			// TODO: Write to a flexible buffer, we don't always need all four components.
203 			TransformedVertex &vert = transformed[index];
204 			reader.ReadPos(vert.pos);
205 
206 			if (reader.hasColor0()) {
207 				if (provokeIndOffset != 0 && index + provokeIndOffset < maxIndex) {
208 					reader.Goto(index + provokeIndOffset);
209 					reader.ReadColor0_8888(vert.color0);
210 					reader.Goto(index);
211 				} else {
212 					reader.ReadColor0_8888(vert.color0);
213 				}
214 			} else {
215 				vert.color0_32 = gstate.getMaterialAmbientRGBA();
216 			}
217 
218 			if (reader.hasUV()) {
219 				reader.ReadUV(vert.uv);
220 
221 				vert.u *= uscale;
222 				vert.v *= vscale;
223 			} else {
224 				vert.u = 0.0f;
225 				vert.v = 0.0f;
226 			}
227 
228 			// Ignore color1 and fog, never used in throughmode anyway.
229 			// The w of uv is also never used (hardcoded to 1.0.)
230 		}
231 	} else {
232 		// Okay, need to actually perform the full transform.
233 		for (int index = 0; index < maxIndex; index++) {
234 			reader.Goto(index);
235 
236 			float v[3] = {0, 0, 0};
237 			Vec4f c0 = Vec4f(1, 1, 1, 1);
238 			Vec4f c1 = Vec4f(0, 0, 0, 0);
239 			float uv[3] = {0, 0, 1};
240 			float fogCoef = 1.0f;
241 
242 			float out[3];
243 			float pos[3];
244 			Vec3f normal(0, 0, 1);
245 			Vec3f worldnormal(0, 0, 1);
246 			reader.ReadPos(pos);
247 
248 			float ruv[2] = { 0.0f, 0.0f };
249 			if (reader.hasUV())
250 				reader.ReadUV(ruv);
251 
252 			// Read all the provoking vertex values here.
253 			Vec4f unlitColor;
254 			if (provokeIndOffset != 0 && index + provokeIndOffset < maxIndex)
255 				reader.Goto(index + provokeIndOffset);
256 			if (reader.hasColor0())
257 				reader.ReadColor0(unlitColor.AsArray());
258 			else
259 				unlitColor = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA());
260 			if (reader.hasNormal())
261 				reader.ReadNrm(normal.AsArray());
262 
263 			if (!skinningEnabled) {
264 				Vec3ByMatrix43(out, pos, gstate.worldMatrix);
265 				if (reader.hasNormal()) {
266 					if (gstate.areNormalsReversed()) {
267 						normal = -normal;
268 					}
269 					Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix);
270 					worldnormal = worldnormal.NormalizedOr001(cpu_info.bSSE4_1);
271 				}
272 			} else {
273 				float weights[8];
274 				// TODO: For flat, are weights from the provoking used for color/normal?
275 				reader.Goto(index);
276 				reader.ReadWeights(weights);
277 
278 				// Skinning
279 				Vec3f psum(0, 0, 0);
280 				Vec3f nsum(0, 0, 0);
281 				for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) {
282 					if (weights[i] != 0.0f) {
283 						Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12);
284 						Vec3f tpos(out);
285 						psum += tpos * weights[i];
286 						if (reader.hasNormal()) {
287 							Vec3f norm;
288 							Norm3ByMatrix43(norm.AsArray(), normal.AsArray(), gstate.boneMatrix+i*12);
289 							nsum += norm * weights[i];
290 						}
291 					}
292 				}
293 
294 				// Yes, we really must multiply by the world matrix too.
295 				Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix);
296 				if (reader.hasNormal()) {
297 					normal = nsum;
298 					if (gstate.areNormalsReversed()) {
299 						normal = -normal;
300 					}
301 					Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix);
302 					worldnormal = worldnormal.NormalizedOr001(cpu_info.bSSE4_1);
303 				}
304 			}
305 
306 			// Perform lighting here if enabled.
307 			if (gstate.isLightingEnabled()) {
308 				float litColor0[4];
309 				float litColor1[4];
310 				lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal);
311 
312 				// Don't ignore gstate.lmode - we should send two colors in that case
313 				for (int j = 0; j < 4; j++) {
314 					c0[j] = litColor0[j];
315 				}
316 				if (lmode) {
317 					// Separate colors
318 					for (int j = 0; j < 4; j++) {
319 						c1[j] = litColor1[j];
320 					}
321 				} else {
322 					// Summed color into c0 (will clamp in ToRGBA().)
323 					for (int j = 0; j < 4; j++) {
324 						c0[j] += litColor1[j];
325 					}
326 				}
327 			} else {
328 				for (int j = 0; j < 4; j++) {
329 					c0[j] = unlitColor[j];
330 				}
331 				if (lmode) {
332 					// c1 is already 0.
333 				}
334 			}
335 
336 			// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
337 			switch (gstate.getUVGenMode()) {
338 			case GE_TEXMAP_TEXTURE_COORDS:	// UV mapping
339 			case GE_TEXMAP_UNKNOWN: // Seen in Riviera.  Unsure of meaning, but this works.
340 				// We always prescale in the vertex decoder now.
341 				uv[0] = ruv[0];
342 				uv[1] = ruv[1];
343 				uv[2] = 1.0f;
344 				break;
345 
346 			case GE_TEXMAP_TEXTURE_MATRIX:
347 				{
348 					// TODO: What's the correct behavior with flat shading?  Provoked normal or real normal?
349 
350 					// Projection mapping
351 					Vec3f source;
352 					switch (gstate.getUVProjMode())	{
353 					case GE_PROJMAP_POSITION: // Use model space XYZ as source
354 						source = pos;
355 						break;
356 
357 					case GE_PROJMAP_UV: // Use unscaled UV as source
358 						source = Vec3f(ruv[0], ruv[1], 0.0f);
359 						break;
360 
361 					case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source
362 						source = normal.NormalizedOr001(cpu_info.bSSE4_1);
363 						if (!reader.hasNormal()) {
364 							ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
365 						}
366 						break;
367 
368 					case GE_PROJMAP_NORMAL: // Use non-normalized normal as source!
369 						source = normal;
370 						if (!reader.hasNormal()) {
371 							ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?");
372 						}
373 						break;
374 					}
375 
376 					float uvw[3];
377 					Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
378 					uv[0] = uvw[0];
379 					uv[1] = uvw[1];
380 					uv[2] = uvw[2];
381 				}
382 				break;
383 
384 			case GE_TEXMAP_ENVIRONMENT_MAP:
385 				// Shade mapping - use two light sources to generate U and V.
386 				{
387 					auto getLPosFloat = [&](int l, int i) {
388 						return getFloat24(gstate.lpos[l * 3 + i]);
389 					};
390 					auto getLPos = [&](int l) {
391 						return Vec3f(getLPosFloat(l, 0), getLPosFloat(l, 1), getLPosFloat(l, 2));
392 					};
393 					auto calcShadingLPos = [&](int l) {
394 						Vec3f pos = getLPos(l);
395 						return pos.NormalizedOr001(cpu_info.bSSE4_1);
396 					};
397 					// Might not have lighting enabled, so don't use lighter.
398 					Vec3f lightpos0 = calcShadingLPos(gstate.getUVLS0());
399 					Vec3f lightpos1 = calcShadingLPos(gstate.getUVLS1());
400 
401 					uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f;
402 					uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f;
403 					uv[2] = 1.0f;
404 				}
405 				break;
406 
407 			default:
408 				// Illegal
409 				ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode());
410 				break;
411 			}
412 
413 			uv[0] = uv[0] * widthFactor;
414 			uv[1] = uv[1] * heightFactor;
415 
416 			// Transform the coord by the view matrix.
417 			Vec3ByMatrix43(v, out, gstate.viewMatrix);
418 			fogCoef = (v[2] + fog_end) * fog_slope;
419 
420 			// TODO: Write to a flexible buffer, we don't always need all four components.
421 			memcpy(&transformed[index].x, v, 3 * sizeof(float));
422 			transformed[index].fog = fogCoef;
423 			memcpy(&transformed[index].u, uv, 3 * sizeof(float));
424 			transformed[index].color0_32 = c0.ToRGBA();
425 			transformed[index].color1_32 = c1.ToRGBA();
426 
427 			// The multiplication by the projection matrix is still performed in the vertex shader.
428 			// So is vertex depth rounding, to simulate the 16-bit depth buffer.
429 		}
430 	}
431 
432 	// Here's the best opportunity to try to detect rectangles used to clear the screen, and
433 	// replace them with real clears. This can provide a speedup on certain mobile chips.
434 	//
435 	// An alternative option is to simply ditch all the verts except the first and last to create a single
436 	// rectangle out of many. Quite a small optimization though.
437 	// Experiment: Disable on PowerVR (see issue #6290)
438 	// TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not.
439 	// TODO: Allow creating a depth clear and a color draw.
440 	bool reallyAClear = false;
441 	if (maxIndex > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear()) {
442 		int scissorX2 = gstate.getScissorX2() + 1;
443 		int scissorY2 = gstate.getScissorY2() + 1;
444 		reallyAClear = IsReallyAClear(transformed, maxIndex, scissorX2, scissorY2);
445 		if (reallyAClear && gstate.getColorMask() != 0xFFFFFFFF && (gstate.isClearModeColorMask() || gstate.isClearModeAlphaMask())) {
446 			result->setSafeSize = true;
447 			result->safeWidth = scissorX2;
448 			result->safeHeight = scissorY2;
449 		}
450 	}
451 	if (params_.allowClear && reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_IMGTEC) {
452 		// If alpha is not allowed to be separate, it must match for both depth/stencil and color.  Vulkan requires this.
453 		bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask();
454 		bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask();
455 		bool matchingComponents = params_.allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil);
456 		bool stencilNotMasked = !gstate.isClearModeAlphaMask() || gstate.getStencilWriteMask() == 0x00;
457 		if (matchingComponents && stencilNotMasked) {
458 			result->color = transformed[1].color0_32;
459 			// Need to rescale from a [0, 1] float.  This is the final transformed value.
460 			result->depth = ToScaledDepthFromIntegerScale((int)(transformed[1].z * 65535.0f));
461 			result->action = SW_CLEAR;
462 			gpuStats.numClears++;
463 			return;
464 		}
465 	}
466 
467 	// Detect full screen "clears" that might not be so obvious, to set the safe size if possible.
468 	if (!result->setSafeSize && prim == GE_PRIM_RECTANGLES && maxIndex == 2) {
469 		bool clearingColor = gstate.isModeClear() && (gstate.isClearModeColorMask() || gstate.isClearModeAlphaMask());
470 		bool writingColor = gstate.getColorMask() != 0xFFFFFFFF;
471 		bool startsZeroX = transformed[0].x <= 0.0f && transformed[1].x > 0.0f && transformed[1].x > transformed[0].x;
472 		bool startsZeroY = transformed[0].y <= 0.0f && transformed[1].y > 0.0f && transformed[1].y > transformed[0].y;
473 
474 		if (startsZeroX && startsZeroY && (clearingColor || writingColor)) {
475 			int scissorX2 = gstate.getScissorX2() + 1;
476 			int scissorY2 = gstate.getScissorY2() + 1;
477 			result->setSafeSize = true;
478 			result->safeWidth = std::min(scissorX2, (int)transformed[1].x);
479 			result->safeHeight = std::min(scissorY2, (int)transformed[1].y);
480 		}
481 	}
482 }
483 
484 // Also, this assumes SetTexture() has already figured out the actual texture height.
DetectOffsetTexture(int maxIndex)485 void SoftwareTransform::DetectOffsetTexture(int maxIndex) {
486 	TransformedVertex *transformed = params_.transformed;
487 
488 	const int w = gstate.getTextureWidth(0);
489 	const int h = gstate.getTextureHeight(0);
490 	float widthFactor = (float)w / (float)gstate_c.curTextureWidth;
491 	float heightFactor = (float)h / (float)gstate_c.curTextureHeight;
492 
493 	// Breath of Fire 3 does some interesting rendering here, probably from being a port.
494 	// It draws at 384x240 to two buffers in VRAM, one right after the other.
495 	// We end up creating separate framebuffers, and rendering to each.
496 	// But the game then stretches this to the screen - and reads from a single 512 tall texture.
497 	// We initially use the first framebuffer.  This code detects the read from the second.
498 	//
499 	// First Vs: 12, 228 - second Vs: 252, 468 - estimated fb height: 272
500 
501 	// If curTextureHeight is < h, it must be a framebuffer that wasn't full height.
502 	if (gstate_c.curTextureHeight < (u32)h && maxIndex >= 2) {
503 		// This is the max V that will still land within the framebuffer (since it's shorter.)
504 		// We already adjusted V to the framebuffer above.
505 		const float maxAvailableV = 1.0f;
506 		// This is the max V that would've been inside the original texture size.
507 		const float maxValidV = heightFactor;
508 
509 		// Apparently, Assassin's Creed: Bloodlines accesses just outside.
510 		const float invTexH = 1.0f / gstate_c.curTextureHeight; // size of one texel.
511 
512 		// Are either TL or BR inside the texture but outside the framebuffer?
513 		const bool tlOutside = transformed[0].v > maxAvailableV + invTexH && transformed[0].v <= maxValidV;
514 		const bool brOutside = transformed[1].v > maxAvailableV + invTexH && transformed[1].v <= maxValidV;
515 
516 		// If TL isn't outside, is it at least near the end?
517 		// We check this because some games do 0-512 from a 272 tall framebuf.
518 		const bool tlAlmostOutside = transformed[0].v > maxAvailableV * 0.5f && transformed[0].v <= maxValidV;
519 
520 		if (tlOutside || (brOutside && tlAlmostOutside)) {
521 			const u32 prevXOffset = gstate_c.curTextureXOffset;
522 			const u32 prevYOffset = gstate_c.curTextureYOffset;
523 
524 			// This is how far the nearest coord is, so that's where we'll look for the next framebuf.
525 			const u32 yOffset = (int)(gstate_c.curTextureHeight * std::min(transformed[0].v, transformed[1].v));
526 			if (params_.texCache->SetOffsetTexture(yOffset)) {
527 				const float oldWidthFactor = widthFactor;
528 				const float oldHeightFactor = heightFactor;
529 				widthFactor = (float)w / (float)gstate_c.curTextureWidth;
530 				heightFactor = (float)h / (float)gstate_c.curTextureHeight;
531 
532 				// We need to subtract this offset from the UVs to address the new framebuf.
533 				const float adjustedYOffset = yOffset + prevYOffset - gstate_c.curTextureYOffset;
534 				const float yDiff = (float)adjustedYOffset / (float)h;
535 				const float adjustedXOffset = prevXOffset - gstate_c.curTextureXOffset;
536 				const float xDiff = (float)adjustedXOffset / (float)w;
537 
538 				for (int index = 0; index < maxIndex; ++index) {
539 					transformed[index].u = (transformed[index].u / oldWidthFactor - xDiff) * widthFactor;
540 					transformed[index].v = (transformed[index].v / oldHeightFactor - yDiff) * heightFactor;
541 				}
542 
543 				// We undid the offset, so reset.  This avoids a different shader.
544 				gstate_c.curTextureXOffset = prevXOffset;
545 				gstate_c.curTextureYOffset = prevYOffset;
546 			}
547 		}
548 	}
549 }
550 
551 // NOTE: The viewport must be up to date!
BuildDrawingParams(int prim,int vertexCount,u32 vertType,u16 * & inds,int & maxIndex,SoftwareTransformResult * result)552 void SoftwareTransform::BuildDrawingParams(int prim, int vertexCount, u32 vertType, u16 *&inds, int &maxIndex, SoftwareTransformResult *result) {
553 	TransformedVertex *transformed = params_.transformed;
554 	TransformedVertex *transformedExpanded = params_.transformedExpanded;
555 	bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0;
556 
557 	// Step 2: expand rectangles.
558 	result->drawBuffer = transformed;
559 	int numTrans = 0;
560 
561 	FramebufferManagerCommon *fbman = params_.fbman;
562 	bool useBufferedRendering = fbman->UseBufferedRendering();
563 
564 	bool flippedY = g_Config.iGPUBackend == (int)GPUBackend::OPENGL && !useBufferedRendering;
565 
566 	if (prim != GE_PRIM_RECTANGLES) {
567 		// We can simply draw the unexpanded buffer.
568 		numTrans = vertexCount;
569 		result->drawIndexed = true;
570 	} else {
571 		// Pretty bad hackery where we re-do the transform (in RotateUV) to see if the vertices are flipped in screen space.
572 		// Since we've already got API-specific assumptions (Y direction, etc) baked into the projMatrix (which we arguably shouldn't),
573 		// this gets nasty and very hard to understand.
574 
575 		float flippedMatrix[16];
576 		if (!throughmode) {
577 			memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float));
578 
579 			const bool invertedY = flippedY ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0);
580 			if (invertedY) {
581 				flippedMatrix[1] = -flippedMatrix[1];
582 				flippedMatrix[5] = -flippedMatrix[5];
583 				flippedMatrix[9] = -flippedMatrix[9];
584 				flippedMatrix[13] = -flippedMatrix[13];
585 			}
586 			const bool invertedX = gstate_c.vpWidth < 0;
587 			if (invertedX) {
588 				flippedMatrix[0] = -flippedMatrix[0];
589 				flippedMatrix[4] = -flippedMatrix[4];
590 				flippedMatrix[8] = -flippedMatrix[8];
591 				flippedMatrix[12] = -flippedMatrix[12];
592 			}
593 		}
594 
595 		//rectangles always need 2 vertices, disregard the last one if there's an odd number
596 		vertexCount = vertexCount & ~1;
597 		numTrans = 0;
598 		result->drawBuffer = transformedExpanded;
599 		TransformedVertex *trans = &transformedExpanded[0];
600 		const u16 *indsIn = (const u16 *)inds;
601 		u16 *newInds = inds + vertexCount;
602 		u16 *indsOut = newInds;
603 		maxIndex = 4 * (vertexCount / 2);
604 		for (int i = 0; i < vertexCount; i += 2) {
605 			const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]];
606 			const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]];
607 
608 			// We have to turn the rectangle into two triangles, so 6 points.
609 			// This is 4 verts + 6 indices.
610 
611 			// bottom right
612 			trans[0] = transVtxBR;
613 
614 			// top right
615 			trans[1] = transVtxBR;
616 			trans[1].y = transVtxTL.y;
617 			trans[1].v = transVtxTL.v;
618 
619 			// top left
620 			trans[2] = transVtxBR;
621 			trans[2].x = transVtxTL.x;
622 			trans[2].y = transVtxTL.y;
623 			trans[2].u = transVtxTL.u;
624 			trans[2].v = transVtxTL.v;
625 
626 			// bottom left
627 			trans[3] = transVtxBR;
628 			trans[3].x = transVtxTL.x;
629 			trans[3].u = transVtxTL.u;
630 
631 			// That's the four corners. Now process UV rotation.
632 			if (throughmode)
633 				RotateUVThrough(trans);
634 			else
635 				RotateUV(trans, flippedMatrix, flippedY);
636 
637 			// Triangle: BR-TR-TL
638 			indsOut[0] = i * 2 + 0;
639 			indsOut[1] = i * 2 + 1;
640 			indsOut[2] = i * 2 + 2;
641 			// Triangle: BL-BR-TL
642 			indsOut[3] = i * 2 + 3;
643 			indsOut[4] = i * 2 + 0;
644 			indsOut[5] = i * 2 + 2;
645 			trans += 4;
646 			indsOut += 6;
647 
648 			numTrans += 6;
649 		}
650 		inds = newInds;
651 		result->drawIndexed = true;
652 
653 		// We don't know the color until here, so we have to do it now, instead of in StateMapping.
654 		// Might want to reconsider the order of things later...
655 		if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) {
656 			result->setStencil = true;
657 			if (vertexCount > 1) {
658 				// Take the bottom right alpha value of the first rect as the stencil value.
659 				// Technically, each rect could individually fill its stencil, but most of the
660 				// time they use the same one.
661 				result->stencilValue = transformed[indsIn[1]].color0[3];
662 			} else {
663 				result->stencilValue = 0;
664 			}
665 		}
666 	}
667 
668 	if (gstate.isModeClear()) {
669 		gpuStats.numClears++;
670 	}
671 
672 	result->action = SW_DRAW_PRIMITIVES;
673 	result->drawNumTrans = numTrans;
674 }
675