1 /*
2  * CPU thread main loop - common bits for user and system mode emulation
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "exec/cpu-common.h"
23 #include "hw/core/cpu.h"
24 #include "sysemu/cpus.h"
25 
26 static QemuMutex qemu_cpu_list_lock;
27 static QemuCond exclusive_cond;
28 static QemuCond exclusive_resume;
29 static QemuCond qemu_work_cond;
30 
31 /* >= 1 if a thread is inside start_exclusive/end_exclusive.  Written
32  * under qemu_cpu_list_lock, read with atomic operations.
33  */
34 static int pending_cpus;
35 
qemu_init_cpu_list(void)36 void qemu_init_cpu_list(void)
37 {
38     /* This is needed because qemu_init_cpu_list is also called by the
39      * child process in a fork.  */
40     pending_cpus = 0;
41 
42     qemu_mutex_init(&qemu_cpu_list_lock);
43     qemu_cond_init(&exclusive_cond);
44     qemu_cond_init(&exclusive_resume);
45     qemu_cond_init(&qemu_work_cond);
46 }
47 
cpu_list_lock(void)48 void cpu_list_lock(void)
49 {
50     qemu_mutex_lock(&qemu_cpu_list_lock);
51 }
52 
cpu_list_unlock(void)53 void cpu_list_unlock(void)
54 {
55     qemu_mutex_unlock(&qemu_cpu_list_lock);
56 }
57 
58 static bool cpu_index_auto_assigned;
59 
cpu_get_free_index(void)60 static int cpu_get_free_index(void)
61 {
62     CPUState *some_cpu;
63     int cpu_index = 0;
64 
65     cpu_index_auto_assigned = true;
66     CPU_FOREACH(some_cpu) {
67         cpu_index++;
68     }
69     return cpu_index;
70 }
71 
cpu_list_add(CPUState * cpu)72 void cpu_list_add(CPUState *cpu)
73 {
74     qemu_mutex_lock(&qemu_cpu_list_lock);
75     if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
76         cpu->cpu_index = cpu_get_free_index();
77         assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
78     } else {
79         assert(!cpu_index_auto_assigned);
80     }
81     QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
82     qemu_mutex_unlock(&qemu_cpu_list_lock);
83 }
84 
cpu_list_remove(CPUState * cpu)85 void cpu_list_remove(CPUState *cpu)
86 {
87     qemu_mutex_lock(&qemu_cpu_list_lock);
88     if (!QTAILQ_IN_USE(cpu, node)) {
89         /* there is nothing to undo since cpu_exec_init() hasn't been called */
90         qemu_mutex_unlock(&qemu_cpu_list_lock);
91         return;
92     }
93 
94     assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus)));
95 
96     QTAILQ_REMOVE_RCU(&cpus, cpu, node);
97     cpu->cpu_index = UNASSIGNED_CPU_INDEX;
98     qemu_mutex_unlock(&qemu_cpu_list_lock);
99 }
100 
101 struct qemu_work_item {
102     struct qemu_work_item *next;
103     run_on_cpu_func func;
104     run_on_cpu_data data;
105     bool free, exclusive, done;
106 };
107 
queue_work_on_cpu(CPUState * cpu,struct qemu_work_item * wi)108 static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
109 {
110     qemu_mutex_lock(&cpu->work_mutex);
111     if (cpu->queued_work_first == NULL) {
112         cpu->queued_work_first = wi;
113     } else {
114         cpu->queued_work_last->next = wi;
115     }
116     cpu->queued_work_last = wi;
117     wi->next = NULL;
118     wi->done = false;
119     qemu_mutex_unlock(&cpu->work_mutex);
120 
121     qemu_cpu_kick(cpu);
122 }
123 
do_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data,QemuMutex * mutex)124 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
125                    QemuMutex *mutex)
126 {
127     struct qemu_work_item wi;
128 
129     if (qemu_cpu_is_self(cpu)) {
130         func(cpu, data);
131         return;
132     }
133 
134     wi.func = func;
135     wi.data = data;
136     wi.done = false;
137     wi.free = false;
138     wi.exclusive = false;
139 
140     queue_work_on_cpu(cpu, &wi);
141     while (!atomic_mb_read(&wi.done)) {
142         CPUState *self_cpu = current_cpu;
143 
144         qemu_cond_wait(&qemu_work_cond, mutex);
145         current_cpu = self_cpu;
146     }
147 }
148 
async_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)149 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
150 {
151     struct qemu_work_item *wi;
152 
153     wi = g_malloc0(sizeof(struct qemu_work_item));
154     wi->func = func;
155     wi->data = data;
156     wi->free = true;
157 
158     queue_work_on_cpu(cpu, wi);
159 }
160 
161 /* Wait for pending exclusive operations to complete.  The CPU list lock
162    must be held.  */
exclusive_idle(void)163 static inline void exclusive_idle(void)
164 {
165     while (pending_cpus) {
166         qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
167     }
168 }
169 
170 /* Start an exclusive operation.
171    Must only be called from outside cpu_exec.  */
start_exclusive(void)172 void start_exclusive(void)
173 {
174     CPUState *other_cpu;
175     int running_cpus;
176 
177     qemu_mutex_lock(&qemu_cpu_list_lock);
178     exclusive_idle();
179 
180     /* Make all other cpus stop executing.  */
181     atomic_set(&pending_cpus, 1);
182 
183     /* Write pending_cpus before reading other_cpu->running.  */
184     smp_mb();
185     running_cpus = 0;
186     CPU_FOREACH(other_cpu) {
187         if (atomic_read(&other_cpu->running)) {
188             other_cpu->has_waiter = true;
189             running_cpus++;
190             qemu_cpu_kick(other_cpu);
191         }
192     }
193 
194     atomic_set(&pending_cpus, running_cpus + 1);
195     while (pending_cpus > 1) {
196         qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
197     }
198 
199     /* Can release mutex, no one will enter another exclusive
200      * section until end_exclusive resets pending_cpus to 0.
201      */
202     qemu_mutex_unlock(&qemu_cpu_list_lock);
203 
204     current_cpu->in_exclusive_context = true;
205 }
206 
207 /* Finish an exclusive operation.  */
end_exclusive(void)208 void end_exclusive(void)
209 {
210     current_cpu->in_exclusive_context = false;
211 
212     qemu_mutex_lock(&qemu_cpu_list_lock);
213     atomic_set(&pending_cpus, 0);
214     qemu_cond_broadcast(&exclusive_resume);
215     qemu_mutex_unlock(&qemu_cpu_list_lock);
216 }
217 
218 /* Wait for exclusive ops to finish, and begin cpu execution.  */
cpu_exec_start(CPUState * cpu)219 void cpu_exec_start(CPUState *cpu)
220 {
221     atomic_set(&cpu->running, true);
222 
223     /* Write cpu->running before reading pending_cpus.  */
224     smp_mb();
225 
226     /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
227      * After taking the lock we'll see cpu->has_waiter == true and run---not
228      * for long because start_exclusive kicked us.  cpu_exec_end will
229      * decrement pending_cpus and signal the waiter.
230      *
231      * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
232      * This includes the case when an exclusive item is running now.
233      * Then we'll see cpu->has_waiter == false and wait for the item to
234      * complete.
235      *
236      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
237      * see cpu->running == true, and it will kick the CPU.
238      */
239     if (unlikely(atomic_read(&pending_cpus))) {
240         qemu_mutex_lock(&qemu_cpu_list_lock);
241         if (!cpu->has_waiter) {
242             /* Not counted in pending_cpus, let the exclusive item
243              * run.  Since we have the lock, just set cpu->running to true
244              * while holding it; no need to check pending_cpus again.
245              */
246             atomic_set(&cpu->running, false);
247             exclusive_idle();
248             /* Now pending_cpus is zero.  */
249             atomic_set(&cpu->running, true);
250         } else {
251             /* Counted in pending_cpus, go ahead and release the
252              * waiter at cpu_exec_end.
253              */
254         }
255         qemu_mutex_unlock(&qemu_cpu_list_lock);
256     }
257 }
258 
259 /* Mark cpu as not executing, and release pending exclusive ops.  */
cpu_exec_end(CPUState * cpu)260 void cpu_exec_end(CPUState *cpu)
261 {
262     atomic_set(&cpu->running, false);
263 
264     /* Write cpu->running before reading pending_cpus.  */
265     smp_mb();
266 
267     /* 1. start_exclusive saw cpu->running == true.  Then it will increment
268      * pending_cpus and wait for exclusive_cond.  After taking the lock
269      * we'll see cpu->has_waiter == true.
270      *
271      * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
272      * This includes the case when an exclusive item started after setting
273      * cpu->running to false and before we read pending_cpus.  Then we'll see
274      * cpu->has_waiter == false and not touch pending_cpus.  The next call to
275      * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
276      * for the item to complete.
277      *
278      * 3. pending_cpus == 0.  Then start_exclusive is definitely going to
279      * see cpu->running == false, and it can ignore this CPU until the
280      * next cpu_exec_start.
281      */
282     if (unlikely(atomic_read(&pending_cpus))) {
283         qemu_mutex_lock(&qemu_cpu_list_lock);
284         if (cpu->has_waiter) {
285             cpu->has_waiter = false;
286             atomic_set(&pending_cpus, pending_cpus - 1);
287             if (pending_cpus == 1) {
288                 qemu_cond_signal(&exclusive_cond);
289             }
290         }
291         qemu_mutex_unlock(&qemu_cpu_list_lock);
292     }
293 }
294 
async_safe_run_on_cpu(CPUState * cpu,run_on_cpu_func func,run_on_cpu_data data)295 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
296                            run_on_cpu_data data)
297 {
298     struct qemu_work_item *wi;
299 
300     wi = g_malloc0(sizeof(struct qemu_work_item));
301     wi->func = func;
302     wi->data = data;
303     wi->free = true;
304     wi->exclusive = true;
305 
306     queue_work_on_cpu(cpu, wi);
307 }
308 
process_queued_cpu_work(CPUState * cpu)309 void process_queued_cpu_work(CPUState *cpu)
310 {
311     struct qemu_work_item *wi;
312 
313     if (cpu->queued_work_first == NULL) {
314         return;
315     }
316 
317     qemu_mutex_lock(&cpu->work_mutex);
318     while (cpu->queued_work_first != NULL) {
319         wi = cpu->queued_work_first;
320         cpu->queued_work_first = wi->next;
321         if (!cpu->queued_work_first) {
322             cpu->queued_work_last = NULL;
323         }
324         qemu_mutex_unlock(&cpu->work_mutex);
325         if (wi->exclusive) {
326             /* Running work items outside the BQL avoids the following deadlock:
327              * 1) start_exclusive() is called with the BQL taken while another
328              * CPU is running; 2) cpu_exec in the other CPU tries to takes the
329              * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
330              * neither CPU can proceed.
331              */
332             qemu_mutex_unlock_iothread();
333             start_exclusive();
334             wi->func(cpu, wi->data);
335             end_exclusive();
336             qemu_mutex_lock_iothread();
337         } else {
338             wi->func(cpu, wi->data);
339         }
340         qemu_mutex_lock(&cpu->work_mutex);
341         if (wi->free) {
342             g_free(wi);
343         } else {
344             atomic_mb_set(&wi->done, true);
345         }
346     }
347     qemu_mutex_unlock(&cpu->work_mutex);
348     qemu_cond_broadcast(&qemu_work_cond);
349 }
350