1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10  *
11  * Permission to use, copy, modify, and distribute this software for any
12  * purpose with or without fee is hereby granted, provided that the above
13  * copyright notice and this permission notice appear in all copies.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22  *
23  */
24 
25 FILE_LICENCE ( MIT );
26 
27 #define _ATH5K_PHY
28 
29 #include <unistd.h>
30 #include <stdlib.h>
31 
32 #include "ath5k.h"
33 #include "reg.h"
34 #include "base.h"
35 #include "rfbuffer.h"
36 #include "rfgain.h"
37 
min(int x,int y)38 static inline int min(int x, int y)
39 {
40 	return (x < y) ? x : y;
41 }
42 
max(int x,int y)43 static inline int max(int x, int y)
44 {
45 	return (x > y) ? x : y;
46 }
47 
48 /*
49  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
50  */
ath5k_hw_rfb_op(struct ath5k_hw * ah,const struct ath5k_rf_reg * rf_regs,u32 val,u8 reg_id,int set)51 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
52 					const struct ath5k_rf_reg *rf_regs,
53 					u32 val, u8 reg_id, int set)
54 {
55 	const struct ath5k_rf_reg *rfreg = NULL;
56 	u8 offset, bank, num_bits, col, position;
57 	u16 entry;
58 	u32 mask, data, last_bit, bits_shifted, first_bit;
59 	u32 *rfb;
60 	s32 bits_left;
61 	unsigned i;
62 
63 	data = 0;
64 	rfb = ah->ah_rf_banks;
65 
66 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
67 		if (rf_regs[i].index == reg_id) {
68 			rfreg = &rf_regs[i];
69 			break;
70 		}
71 	}
72 
73 	if (rfb == NULL || rfreg == NULL) {
74 		DBG("ath5k: RF register not found!\n");
75 		/* should not happen */
76 		return 0;
77 	}
78 
79 	bank = rfreg->bank;
80 	num_bits = rfreg->field.len;
81 	first_bit = rfreg->field.pos;
82 	col = rfreg->field.col;
83 
84 	/* first_bit is an offset from bank's
85 	 * start. Since we have all banks on
86 	 * the same array, we use this offset
87 	 * to mark each bank's start */
88 	offset = ah->ah_offset[bank];
89 
90 	/* Boundary check */
91 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
92 		DBG("ath5k: RF invalid values at offset %d\n", offset);
93 		return 0;
94 	}
95 
96 	entry = ((first_bit - 1) / 8) + offset;
97 	position = (first_bit - 1) % 8;
98 
99 	if (set)
100 		data = ath5k_hw_bitswap(val, num_bits);
101 
102 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
103 	position = 0, entry++) {
104 
105 		last_bit = (position + bits_left > 8) ? 8 :
106 					position + bits_left;
107 
108 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
109 								(col * 8);
110 
111 		if (set) {
112 			rfb[entry] &= ~mask;
113 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
114 			data >>= (8 - position);
115 		} else {
116 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
117 				<< bits_shifted;
118 			bits_shifted += last_bit - position;
119 		}
120 
121 		bits_left -= 8 - position;
122 	}
123 
124 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
125 
126 	return data;
127 }
128 
129 /**********************\
130 * RF Gain optimization *
131 \**********************/
132 
133 /*
134  * This code is used to optimize rf gain on different environments
135  * (temprature mostly) based on feedback from a power detector.
136  *
137  * It's only used on RF5111 and RF5112, later RF chips seem to have
138  * auto adjustment on hw -notice they have a much smaller BANK 7 and
139  * no gain optimization ladder-.
140  *
141  * For more infos check out this patent doc
142  * http://www.freepatentsonline.com/7400691.html
143  *
144  * This paper describes power drops as seen on the receiver due to
145  * probe packets
146  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
147  * %20of%20Power%20Control.pdf
148  *
149  * And this is the MadWiFi bug entry related to the above
150  * http://madwifi-project.org/ticket/1659
151  * with various measurements and diagrams
152  *
153  * TODO: Deal with power drops due to probes by setting an apropriate
154  * tx power on the probe packets ! Make this part of the calibration process.
155  */
156 
157 /* Initialize ah_gain durring attach */
ath5k_hw_rfgain_opt_init(struct ath5k_hw * ah)158 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
159 {
160 	/* Initialize the gain optimization values */
161 	switch (ah->ah_radio) {
162 	case AR5K_RF5111:
163 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
164 		ah->ah_gain.g_low = 20;
165 		ah->ah_gain.g_high = 35;
166 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
167 		break;
168 	case AR5K_RF5112:
169 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
170 		ah->ah_gain.g_low = 20;
171 		ah->ah_gain.g_high = 85;
172 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
173 		break;
174 	default:
175 		return -EINVAL;
176 	}
177 
178 	return 0;
179 }
180 
181 /* Schedule a gain probe check on the next transmited packet.
182  * That means our next packet is going to be sent with lower
183  * tx power and a Peak to Average Power Detector (PAPD) will try
184  * to measure the gain.
185  *
186  * TODO: Use propper tx power setting for the probe packet so
187  * that we don't observe a serious power drop on the receiver
188  *
189  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
190  * just after we enable the probe so that we don't mess with
191  * standard traffic ? Maybe it's time to use sw interrupts and
192  * a probe tasklet !!!
193  */
ath5k_hw_request_rfgain_probe(struct ath5k_hw * ah)194 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
195 {
196 
197 	/* Skip if gain calibration is inactive or
198 	 * we already handle a probe request */
199 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
200 		return;
201 
202 	/* Send the packet with 2dB below max power as
203 	 * patent doc suggest */
204 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
205 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
206 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
207 
208 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
209 
210 }
211 
212 /* Calculate gain_F measurement correction
213  * based on the current step for RF5112 rev. 2 */
ath5k_hw_rf_gainf_corr(struct ath5k_hw * ah)214 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
215 {
216 	u32 mix, step;
217 	const struct ath5k_gain_opt *go;
218 	const struct ath5k_gain_opt_step *g_step;
219 	const struct ath5k_rf_reg *rf_regs;
220 
221 	/* Only RF5112 Rev. 2 supports it */
222 	if ((ah->ah_radio != AR5K_RF5112) ||
223 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
224 		return 0;
225 
226 	go = &rfgain_opt_5112;
227 	rf_regs = rf_regs_5112a;
228 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
229 
230 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
231 
232 	if (ah->ah_rf_banks == NULL)
233 		return 0;
234 
235 	ah->ah_gain.g_f_corr = 0;
236 
237 	/* No VGA (Variable Gain Amplifier) override, skip */
238 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
239 		return 0;
240 
241 	/* Mix gain stepping */
242 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
243 
244 	/* Mix gain override */
245 	mix = g_step->gos_param[0];
246 
247 	switch (mix) {
248 	case 3:
249 		ah->ah_gain.g_f_corr = step * 2;
250 		break;
251 	case 2:
252 		ah->ah_gain.g_f_corr = (step - 5) * 2;
253 		break;
254 	case 1:
255 		ah->ah_gain.g_f_corr = step;
256 		break;
257 	default:
258 		ah->ah_gain.g_f_corr = 0;
259 		break;
260 	}
261 
262 	return ah->ah_gain.g_f_corr;
263 }
264 
265 /* Check if current gain_F measurement is in the range of our
266  * power detector windows. If we get a measurement outside range
267  * we know it's not accurate (detectors can't measure anything outside
268  * their detection window) so we must ignore it */
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw * ah)269 static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
270 {
271 	const struct ath5k_rf_reg *rf_regs;
272 	u32 step, mix_ovr, level[4];
273 
274 	if (ah->ah_rf_banks == NULL)
275 		return 0;
276 
277 	if (ah->ah_radio == AR5K_RF5111) {
278 
279 		rf_regs = rf_regs_5111;
280 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
281 
282 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
283 			0);
284 
285 		level[0] = 0;
286 		level[1] = (step == 63) ? 50 : step + 4;
287 		level[2] = (step != 63) ? 64 : level[0];
288 		level[3] = level[2] + 50 ;
289 
290 		ah->ah_gain.g_high = level[3] -
291 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
292 		ah->ah_gain.g_low = level[0] +
293 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
294 	} else {
295 
296 		rf_regs = rf_regs_5112;
297 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
298 
299 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
300 			0);
301 
302 		level[0] = level[2] = 0;
303 
304 		if (mix_ovr == 1) {
305 			level[1] = level[3] = 83;
306 		} else {
307 			level[1] = level[3] = 107;
308 			ah->ah_gain.g_high = 55;
309 		}
310 	}
311 
312 	return (ah->ah_gain.g_current >= level[0] &&
313 			ah->ah_gain.g_current <= level[1]) ||
314 		(ah->ah_gain.g_current >= level[2] &&
315 			ah->ah_gain.g_current <= level[3]);
316 }
317 
318 /* Perform gain_F adjustment by choosing the right set
319  * of parameters from rf gain optimization ladder */
ath5k_hw_rf_gainf_adjust(struct ath5k_hw * ah)320 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
321 {
322 	const struct ath5k_gain_opt *go;
323 	const struct ath5k_gain_opt_step *g_step;
324 	int ret = 0;
325 
326 	switch (ah->ah_radio) {
327 	case AR5K_RF5111:
328 		go = &rfgain_opt_5111;
329 		break;
330 	case AR5K_RF5112:
331 		go = &rfgain_opt_5112;
332 		break;
333 	default:
334 		return 0;
335 	}
336 
337 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
338 
339 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
340 
341 		/* Reached maximum */
342 		if (ah->ah_gain.g_step_idx == 0)
343 			return -1;
344 
345 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
346 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
347 				ah->ah_gain.g_step_idx > 0;
348 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
349 			ah->ah_gain.g_target -= 2 *
350 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
351 			    g_step->gos_gain);
352 
353 		ret = 1;
354 		goto done;
355 	}
356 
357 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
358 
359 		/* Reached minimum */
360 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
361 			return -2;
362 
363 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
364 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
365 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
366 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
367 			ah->ah_gain.g_target -= 2 *
368 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
369 			    g_step->gos_gain);
370 
371 		ret = 2;
372 		goto done;
373 	}
374 
375 done:
376 	DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
377 	     "target gain %d\n", ret, ah->ah_gain.g_step_idx,
378 	     ah->ah_gain.g_current, ah->ah_gain.g_target);
379 
380 	return ret;
381 }
382 
383 /* Main callback for thermal rf gain calibration engine
384  * Check for a new gain reading and schedule an adjustment
385  * if needed.
386  *
387  * TODO: Use sw interrupt to schedule reset if gain_F needs
388  * adjustment */
ath5k_hw_gainf_calibrate(struct ath5k_hw * ah)389 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
390 {
391 	u32 data, type;
392 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
393 
394 	if (ah->ah_rf_banks == NULL ||
395 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
396 		return AR5K_RFGAIN_INACTIVE;
397 
398 	/* No check requested, either engine is inactive
399 	 * or an adjustment is already requested */
400 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
401 		goto done;
402 
403 	/* Read the PAPD (Peak to Average Power Detector)
404 	 * register */
405 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
406 
407 	/* No probe is scheduled, read gain_F measurement */
408 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
409 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
410 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
411 
412 		/* If tx packet is CCK correct the gain_F measurement
413 		 * by cck ofdm gain delta */
414 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
415 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
416 				ah->ah_gain.g_current +=
417 					ee->ee_cck_ofdm_gain_delta;
418 			else
419 				ah->ah_gain.g_current +=
420 					AR5K_GAIN_CCK_PROBE_CORR;
421 		}
422 
423 		/* Further correct gain_F measurement for
424 		 * RF5112A radios */
425 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
426 			ath5k_hw_rf_gainf_corr(ah);
427 			ah->ah_gain.g_current =
428 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
429 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
430 				0;
431 		}
432 
433 		/* Check if measurement is ok and if we need
434 		 * to adjust gain, schedule a gain adjustment,
435 		 * else switch back to the acive state */
436 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
437 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
438 		ath5k_hw_rf_gainf_adjust(ah)) {
439 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
440 		} else {
441 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
442 		}
443 	}
444 
445 done:
446 	return ah->ah_gain.g_state;
447 }
448 
449 /* Write initial rf gain table to set the RF sensitivity
450  * this one works on all RF chips and has nothing to do
451  * with gain_F calibration */
ath5k_hw_rfgain_init(struct ath5k_hw * ah,unsigned int freq)452 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
453 {
454 	const struct ath5k_ini_rfgain *ath5k_rfg;
455 	unsigned int i, size;
456 
457 	switch (ah->ah_radio) {
458 	case AR5K_RF5111:
459 		ath5k_rfg = rfgain_5111;
460 		size = ARRAY_SIZE(rfgain_5111);
461 		break;
462 	case AR5K_RF5112:
463 		ath5k_rfg = rfgain_5112;
464 		size = ARRAY_SIZE(rfgain_5112);
465 		break;
466 	case AR5K_RF2413:
467 		ath5k_rfg = rfgain_2413;
468 		size = ARRAY_SIZE(rfgain_2413);
469 		break;
470 	case AR5K_RF2316:
471 		ath5k_rfg = rfgain_2316;
472 		size = ARRAY_SIZE(rfgain_2316);
473 		break;
474 	case AR5K_RF5413:
475 		ath5k_rfg = rfgain_5413;
476 		size = ARRAY_SIZE(rfgain_5413);
477 		break;
478 	case AR5K_RF2317:
479 	case AR5K_RF2425:
480 		ath5k_rfg = rfgain_2425;
481 		size = ARRAY_SIZE(rfgain_2425);
482 		break;
483 	default:
484 		return -EINVAL;
485 	}
486 
487 	switch (freq) {
488 	case AR5K_INI_RFGAIN_2GHZ:
489 	case AR5K_INI_RFGAIN_5GHZ:
490 		break;
491 	default:
492 		return -EINVAL;
493 	}
494 
495 	for (i = 0; i < size; i++) {
496 		AR5K_REG_WAIT(i);
497 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
498 			(u32)ath5k_rfg[i].rfg_register);
499 	}
500 
501 	return 0;
502 }
503 
504 
505 
506 /********************\
507 * RF Registers setup *
508 \********************/
509 
510 
511 /*
512  * Setup RF registers by writing rf buffer on hw
513  */
ath5k_hw_rfregs_init(struct ath5k_hw * ah,struct net80211_channel * channel,unsigned int mode)514 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel,
515 		unsigned int mode)
516 {
517 	const struct ath5k_rf_reg *rf_regs;
518 	const struct ath5k_ini_rfbuffer *ini_rfb;
519 	const struct ath5k_gain_opt *go = NULL;
520 	const struct ath5k_gain_opt_step *g_step;
521 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
522 	u8 ee_mode = 0;
523 	u32 *rfb;
524 	int obdb = -1, bank = -1;
525 	unsigned i;
526 
527 	switch (ah->ah_radio) {
528 	case AR5K_RF5111:
529 		rf_regs = rf_regs_5111;
530 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
531 		ini_rfb = rfb_5111;
532 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
533 		go = &rfgain_opt_5111;
534 		break;
535 	case AR5K_RF5112:
536 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
537 			rf_regs = rf_regs_5112a;
538 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
539 			ini_rfb = rfb_5112a;
540 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
541 		} else {
542 			rf_regs = rf_regs_5112;
543 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
544 			ini_rfb = rfb_5112;
545 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
546 		}
547 		go = &rfgain_opt_5112;
548 		break;
549 	case AR5K_RF2413:
550 		rf_regs = rf_regs_2413;
551 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
552 		ini_rfb = rfb_2413;
553 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
554 		break;
555 	case AR5K_RF2316:
556 		rf_regs = rf_regs_2316;
557 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
558 		ini_rfb = rfb_2316;
559 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
560 		break;
561 	case AR5K_RF5413:
562 		rf_regs = rf_regs_5413;
563 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
564 		ini_rfb = rfb_5413;
565 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
566 		break;
567 	case AR5K_RF2317:
568 		rf_regs = rf_regs_2425;
569 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
570 		ini_rfb = rfb_2317;
571 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
572 		break;
573 	case AR5K_RF2425:
574 		rf_regs = rf_regs_2425;
575 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
576 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
577 			ini_rfb = rfb_2425;
578 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
579 		} else {
580 			ini_rfb = rfb_2417;
581 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
582 		}
583 		break;
584 	default:
585 		return -EINVAL;
586 	}
587 
588 	/* If it's the first time we set rf buffer, allocate
589 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
590 	 * we set above */
591 	if (ah->ah_rf_banks == NULL) {
592 		ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
593 		if (ah->ah_rf_banks == NULL) {
594 			return -ENOMEM;
595 		}
596 	}
597 
598 	/* Copy values to modify them */
599 	rfb = ah->ah_rf_banks;
600 
601 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
602 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
603 			DBG("ath5k: invalid RF register bank\n");
604 			return -EINVAL;
605 		}
606 
607 		/* Bank changed, write down the offset */
608 		if (bank != ini_rfb[i].rfb_bank) {
609 			bank = ini_rfb[i].rfb_bank;
610 			ah->ah_offset[bank] = i;
611 		}
612 
613 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
614 	}
615 
616 	/* Set Output and Driver bias current (OB/DB) */
617 	if (channel->hw_value & CHANNEL_2GHZ) {
618 
619 		if (channel->hw_value & CHANNEL_CCK)
620 			ee_mode = AR5K_EEPROM_MODE_11B;
621 		else
622 			ee_mode = AR5K_EEPROM_MODE_11G;
623 
624 		/* For RF511X/RF211X combination we
625 		 * use b_OB and b_DB parameters stored
626 		 * in eeprom on ee->ee_ob[ee_mode][0]
627 		 *
628 		 * For all other chips we use OB/DB for 2Ghz
629 		 * stored in the b/g modal section just like
630 		 * 802.11a on ee->ee_ob[ee_mode][1] */
631 		if ((ah->ah_radio == AR5K_RF5111) ||
632 		(ah->ah_radio == AR5K_RF5112))
633 			obdb = 0;
634 		else
635 			obdb = 1;
636 
637 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
638 						AR5K_RF_OB_2GHZ, 1);
639 
640 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
641 						AR5K_RF_DB_2GHZ, 1);
642 
643 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
644 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
645 			(ah->ah_radio == AR5K_RF5111)) {
646 
647 		/* For 11a, Turbo and XR we need to choose
648 		 * OB/DB based on frequency range */
649 		ee_mode = AR5K_EEPROM_MODE_11A;
650 		obdb =	 channel->center_freq >= 5725 ? 3 :
651 			(channel->center_freq >= 5500 ? 2 :
652 			(channel->center_freq >= 5260 ? 1 :
653 			 (channel->center_freq > 4000 ? 0 : -1)));
654 
655 		if (obdb < 0)
656 			return -EINVAL;
657 
658 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
659 						AR5K_RF_OB_5GHZ, 1);
660 
661 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
662 						AR5K_RF_DB_5GHZ, 1);
663 	}
664 
665 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
666 
667 	/* Bank Modifications (chip-specific) */
668 	if (ah->ah_radio == AR5K_RF5111) {
669 
670 		/* Set gain_F settings according to current step */
671 		if (channel->hw_value & CHANNEL_OFDM) {
672 
673 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
674 					AR5K_PHY_FRAME_CTL_TX_CLIP,
675 					g_step->gos_param[0]);
676 
677 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
678 							AR5K_RF_PWD_90, 1);
679 
680 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
681 							AR5K_RF_PWD_84, 1);
682 
683 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
684 						AR5K_RF_RFGAIN_SEL, 1);
685 
686 			/* We programmed gain_F parameters, switch back
687 			 * to active state */
688 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
689 
690 		}
691 
692 		/* Bank 6/7 setup */
693 
694 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
695 						AR5K_RF_PWD_XPD, 1);
696 
697 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
698 						AR5K_RF_XPD_GAIN, 1);
699 
700 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
701 						AR5K_RF_GAIN_I, 1);
702 
703 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
704 						AR5K_RF_PLO_SEL, 1);
705 
706 		/* TODO: Half/quarter channel support */
707 	}
708 
709 	if (ah->ah_radio == AR5K_RF5112) {
710 
711 		/* Set gain_F settings according to current step */
712 		if (channel->hw_value & CHANNEL_OFDM) {
713 
714 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
715 						AR5K_RF_MIXGAIN_OVR, 1);
716 
717 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
718 						AR5K_RF_PWD_138, 1);
719 
720 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
721 						AR5K_RF_PWD_137, 1);
722 
723 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
724 						AR5K_RF_PWD_136, 1);
725 
726 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
727 						AR5K_RF_PWD_132, 1);
728 
729 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
730 						AR5K_RF_PWD_131, 1);
731 
732 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
733 						AR5K_RF_PWD_130, 1);
734 
735 			/* We programmed gain_F parameters, switch back
736 			 * to active state */
737 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
738 		}
739 
740 		/* Bank 6/7 setup */
741 
742 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
743 						AR5K_RF_XPD_SEL, 1);
744 
745 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
746 			/* Rev. 1 supports only one xpd */
747 			ath5k_hw_rfb_op(ah, rf_regs,
748 						ee->ee_x_gain[ee_mode],
749 						AR5K_RF_XPD_GAIN, 1);
750 
751 		} else {
752 			/* TODO: Set high and low gain bits */
753 			ath5k_hw_rfb_op(ah, rf_regs,
754 						ee->ee_x_gain[ee_mode],
755 						AR5K_RF_PD_GAIN_LO, 1);
756 			ath5k_hw_rfb_op(ah, rf_regs,
757 						ee->ee_x_gain[ee_mode],
758 						AR5K_RF_PD_GAIN_HI, 1);
759 
760 			/* Lower synth voltage on Rev 2 */
761 			ath5k_hw_rfb_op(ah, rf_regs, 2,
762 					AR5K_RF_HIGH_VC_CP, 1);
763 
764 			ath5k_hw_rfb_op(ah, rf_regs, 2,
765 					AR5K_RF_MID_VC_CP, 1);
766 
767 			ath5k_hw_rfb_op(ah, rf_regs, 2,
768 					AR5K_RF_LOW_VC_CP, 1);
769 
770 			ath5k_hw_rfb_op(ah, rf_regs, 2,
771 					AR5K_RF_PUSH_UP, 1);
772 
773 			/* Decrease power consumption on 5213+ BaseBand */
774 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
775 				ath5k_hw_rfb_op(ah, rf_regs, 1,
776 						AR5K_RF_PAD2GND, 1);
777 
778 				ath5k_hw_rfb_op(ah, rf_regs, 1,
779 						AR5K_RF_XB2_LVL, 1);
780 
781 				ath5k_hw_rfb_op(ah, rf_regs, 1,
782 						AR5K_RF_XB5_LVL, 1);
783 
784 				ath5k_hw_rfb_op(ah, rf_regs, 1,
785 						AR5K_RF_PWD_167, 1);
786 
787 				ath5k_hw_rfb_op(ah, rf_regs, 1,
788 						AR5K_RF_PWD_166, 1);
789 			}
790 		}
791 
792 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
793 						AR5K_RF_GAIN_I, 1);
794 
795 		/* TODO: Half/quarter channel support */
796 
797 	}
798 
799 	if (ah->ah_radio == AR5K_RF5413 &&
800 	channel->hw_value & CHANNEL_2GHZ) {
801 
802 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
803 									1);
804 
805 		/* Set optimum value for early revisions (on pci-e chips) */
806 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
807 		ah->ah_mac_srev < AR5K_SREV_AR5413)
808 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
809 						AR5K_RF_PWD_ICLOBUF_2G, 1);
810 
811 	}
812 
813 	/* Write RF banks on hw */
814 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
815 		AR5K_REG_WAIT(i);
816 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
817 	}
818 
819 	return 0;
820 }
821 
822 
823 /**************************\
824   PHY/RF channel functions
825 \**************************/
826 
827 /*
828  * Check if a channel is supported
829  */
ath5k_channel_ok(struct ath5k_hw * ah,u16 freq,unsigned int flags)830 int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
831 {
832 	/* Check if the channel is in our supported range */
833 	if (flags & CHANNEL_2GHZ) {
834 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
835 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
836 			return 1;
837 	} else if (flags & CHANNEL_5GHZ)
838 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
839 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
840 			return 1;
841 
842 	return 0;
843 }
844 
845 /*
846  * Convertion needed for RF5110
847  */
ath5k_hw_rf5110_chan2athchan(struct net80211_channel * channel)848 static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
849 {
850 	u32 athchan;
851 
852 	/*
853 	 * Convert IEEE channel/MHz to an internal channel value used
854 	 * by the AR5210 chipset. This has not been verified with
855 	 * newer chipsets like the AR5212A who have a completely
856 	 * different RF/PHY part.
857 	 */
858 	athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
859 				     - 24) / 2, 5) << 1)
860 		| (1 << 6) | 0x1;
861 	return athchan;
862 }
863 
864 /*
865  * Set channel on RF5110
866  */
ath5k_hw_rf5110_channel(struct ath5k_hw * ah,struct net80211_channel * channel)867 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
868 		struct net80211_channel *channel)
869 {
870 	u32 data;
871 
872 	/*
873 	 * Set the channel and wait
874 	 */
875 	data = ath5k_hw_rf5110_chan2athchan(channel);
876 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
877 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
878 	mdelay(1);
879 
880 	return 0;
881 }
882 
883 /*
884  * Convertion needed for 5111
885  */
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,struct ath5k_athchan_2ghz * athchan)886 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887 		struct ath5k_athchan_2ghz *athchan)
888 {
889 	int channel;
890 
891 	/* Cast this value to catch negative channel numbers (>= -19) */
892 	channel = (int)ieee;
893 
894 	/*
895 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
896 	 */
897 	if (channel <= 13) {
898 		athchan->a2_athchan = 115 + channel;
899 		athchan->a2_flags = 0x46;
900 	} else if (channel == 14) {
901 		athchan->a2_athchan = 124;
902 		athchan->a2_flags = 0x44;
903 	} else if (channel >= 15 && channel <= 26) {
904 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
905 		athchan->a2_flags = 0x46;
906 	} else
907 		return -EINVAL;
908 
909 	return 0;
910 }
911 
912 /*
913  * Set channel on 5111
914  */
ath5k_hw_rf5111_channel(struct ath5k_hw * ah,struct net80211_channel * channel)915 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
916 		struct net80211_channel *channel)
917 {
918 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
919 	unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
920 	u32 data0, data1, clock;
921 	int ret;
922 
923 	/*
924 	 * Set the channel on the RF5111 radio
925 	 */
926 	data0 = data1 = 0;
927 
928 	if (channel->hw_value & CHANNEL_2GHZ) {
929 		/* Map 2GHz channel to 5GHz Atheros channel ID */
930 		ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
931 						   &ath5k_channel_2ghz);
932 		if (ret)
933 			return ret;
934 
935 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937 		    << 5) | (1 << 4);
938 	}
939 
940 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941 		clock = 1;
942 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943 			(clock << 1) | (1 << 10) | 1;
944 	} else {
945 		clock = 0;
946 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947 			<< 2) | (clock << 1) | (1 << 10) | 1;
948 	}
949 
950 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951 			AR5K_RF_BUFFER);
952 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953 			AR5K_RF_BUFFER_CONTROL_3);
954 
955 	return 0;
956 }
957 
958 /*
959  * Set channel on 5112 and newer
960  */
ath5k_hw_rf5112_channel(struct ath5k_hw * ah,struct net80211_channel * channel)961 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962 		struct net80211_channel *channel)
963 {
964 	u32 data, data0, data1, data2;
965 	u16 c;
966 
967 	data = data0 = data1 = data2 = 0;
968 	c = channel->center_freq;
969 
970 	if (c < 4800) {
971 		if (!((c - 2224) % 5)) {
972 			data0 = ((2 * (c - 704)) - 3040) / 10;
973 			data1 = 1;
974 		} else if (!((c - 2192) % 5)) {
975 			data0 = ((2 * (c - 672)) - 3040) / 10;
976 			data1 = 0;
977 		} else
978 			return -EINVAL;
979 
980 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981 	} else if ((c - (c % 5)) != 2 || c > 5435) {
982 		if (!(c % 20) && c >= 5120) {
983 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984 			data2 = ath5k_hw_bitswap(3, 2);
985 		} else if (!(c % 10)) {
986 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987 			data2 = ath5k_hw_bitswap(2, 2);
988 		} else if (!(c % 5)) {
989 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990 			data2 = ath5k_hw_bitswap(1, 2);
991 		} else
992 			return -EINVAL;
993 	} else {
994 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
995 		data2 = ath5k_hw_bitswap(0, 2);
996 	}
997 
998 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999 
1000 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Set the channel on the RF2425
1008  */
ath5k_hw_rf2425_channel(struct ath5k_hw * ah,struct net80211_channel * channel)1009 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010 		struct net80211_channel *channel)
1011 {
1012 	u32 data, data0, data2;
1013 	u16 c;
1014 
1015 	data = data0 = data2 = 0;
1016 	c = channel->center_freq;
1017 
1018 	if (c < 4800) {
1019 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1020 		data2 = 0;
1021 	/* ? 5GHz ? */
1022 	} else if ((c - (c % 5)) != 2 || c > 5435) {
1023 		if (!(c % 20) && c < 5120)
1024 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025 		else if (!(c % 10))
1026 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027 		else if (!(c % 5))
1028 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029 		else
1030 			return -EINVAL;
1031 		data2 = ath5k_hw_bitswap(1, 2);
1032 	} else {
1033 		data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1034 		data2 = ath5k_hw_bitswap(0, 2);
1035 	}
1036 
1037 	data = (data0 << 4) | data2 << 2 | 0x1001;
1038 
1039 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Set a channel on the radio chip
1047  */
ath5k_hw_channel(struct ath5k_hw * ah,struct net80211_channel * channel)1048 int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
1049 {
1050 	int ret;
1051 	/*
1052 	 * Check bounds supported by the PHY (we don't care about regultory
1053 	 * restrictions at this point). Note: hw_value already has the band
1054 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055 	 * of the band by that */
1056 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057 		DBG("ath5k: channel frequency (%d MHz) out of supported "
1058 		    "range\n", channel->center_freq);
1059 		return -EINVAL;
1060 	}
1061 
1062 	/*
1063 	 * Set the channel and wait
1064 	 */
1065 	switch (ah->ah_radio) {
1066 	case AR5K_RF5110:
1067 		ret = ath5k_hw_rf5110_channel(ah, channel);
1068 		break;
1069 	case AR5K_RF5111:
1070 		ret = ath5k_hw_rf5111_channel(ah, channel);
1071 		break;
1072 	case AR5K_RF2425:
1073 		ret = ath5k_hw_rf2425_channel(ah, channel);
1074 		break;
1075 	default:
1076 		ret = ath5k_hw_rf5112_channel(ah, channel);
1077 		break;
1078 	}
1079 
1080 	if (ret) {
1081 		DBG("ath5k: setting channel failed: %s\n", strerror(ret));
1082 		return ret;
1083 	}
1084 
1085 	/* Set JAPAN setting for channel 14 */
1086 	if (channel->center_freq == 2484) {
1087 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088 				AR5K_PHY_CCKTXCTL_JAPAN);
1089 	} else {
1090 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 				AR5K_PHY_CCKTXCTL_WORLD);
1092 	}
1093 
1094 	ah->ah_current_channel = channel;
1095 	ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
1096 
1097 	return 0;
1098 }
1099 
1100 /*****************\
1101   PHY calibration
1102 \*****************/
1103 
1104 /**
1105  * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1106  *
1107  * @ah: struct ath5k_hw pointer we are operating on
1108  * @freq: the channel frequency, just used for error logging
1109  *
1110  * This function performs a noise floor calibration of the PHY and waits for
1111  * it to complete. Then the noise floor value is compared to some maximum
1112  * noise floor we consider valid.
1113  *
1114  * Note that this is different from what the madwifi HAL does: it reads the
1115  * noise floor and afterwards initiates the calibration. Since the noise floor
1116  * calibration can take some time to finish, depending on the current channel
1117  * use, that avoids the occasional timeout warnings we are seeing now.
1118  *
1119  * See the following link for an Atheros patent on noise floor calibration:
1120  * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1121  * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1122  *
1123  * XXX: Since during noise floor calibration antennas are detached according to
1124  * the patent, we should stop tx queues here.
1125  */
1126 int
ath5k_hw_noise_floor_calibration(struct ath5k_hw * ah,short freq)1127 ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1128 {
1129 	int ret;
1130 	unsigned int i;
1131 	s32 noise_floor;
1132 
1133 	/*
1134 	 * Enable noise floor calibration
1135 	 */
1136 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1137 				AR5K_PHY_AGCCTL_NF);
1138 
1139 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1140 			AR5K_PHY_AGCCTL_NF, 0, 0);
1141 
1142 	if (ret) {
1143 		DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
1144 		return -EAGAIN;
1145 	}
1146 
1147 	/* Wait until the noise floor is calibrated and read the value */
1148 	for (i = 20; i > 0; i--) {
1149 		mdelay(1);
1150 		noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1151 		noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1152 		if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1153 			noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1154 
1155 			if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1156 				break;
1157 		}
1158 	}
1159 
1160 	DBG2("ath5k: noise floor %d\n", noise_floor);
1161 
1162 	if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1163 		DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
1164 		return -EAGAIN;
1165 	}
1166 
1167 	ah->ah_noise_floor = noise_floor;
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Perform a PHY calibration on RF5110
1174  * -Fix BPSK/QAM Constellation (I/Q correction)
1175  * -Calculate Noise Floor
1176  */
ath5k_hw_rf5110_calibrate(struct ath5k_hw * ah,struct net80211_channel * channel)1177 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1178 		struct net80211_channel *channel)
1179 {
1180 	u32 phy_sig, phy_agc, phy_sat, beacon;
1181 	int ret;
1182 
1183 	/*
1184 	 * Disable beacons and RX/TX queues, wait
1185 	 */
1186 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1187 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1188 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1189 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1190 
1191 	mdelay(2);
1192 
1193 	/*
1194 	 * Set the channel (with AGC turned off)
1195 	 */
1196 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1197 	udelay(10);
1198 	ret = ath5k_hw_channel(ah, channel);
1199 
1200 	/*
1201 	 * Activate PHY and wait
1202 	 */
1203 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1204 	mdelay(1);
1205 
1206 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1207 
1208 	if (ret)
1209 		return ret;
1210 
1211 	/*
1212 	 * Calibrate the radio chip
1213 	 */
1214 
1215 	/* Remember normal state */
1216 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1217 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1218 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1219 
1220 	/* Update radio registers */
1221 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1222 		AR5K_REG_SM(-1U, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1223 
1224 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1225 			AR5K_PHY_AGCCOARSE_LO)) |
1226 		AR5K_REG_SM(-1U, AR5K_PHY_AGCCOARSE_HI) |
1227 		AR5K_REG_SM(-127U, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1228 
1229 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1230 			AR5K_PHY_ADCSAT_THR)) |
1231 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1232 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1233 
1234 	udelay(20);
1235 
1236 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1237 	udelay(10);
1238 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1239 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1240 
1241 	mdelay(1);
1242 
1243 	/*
1244 	 * Enable calibration and wait until completion
1245 	 */
1246 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1247 
1248 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1249 			AR5K_PHY_AGCCTL_CAL, 0, 0);
1250 
1251 	/* Reset to normal state */
1252 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1253 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1254 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1255 
1256 	if (ret) {
1257 		DBG("ath5k: calibration timeout (%d MHz)\n",
1258 		    channel->center_freq);
1259 		return ret;
1260 	}
1261 
1262 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1263 
1264 	/*
1265 	 * Re-enable RX/TX and beacons
1266 	 */
1267 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1268 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1269 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1270 
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Perform a PHY calibration on RF5111/5112 and newer chips
1276  */
ath5k_hw_rf511x_calibrate(struct ath5k_hw * ah,struct net80211_channel * channel)1277 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1278 		struct net80211_channel *channel)
1279 {
1280 	u32 i_pwr, q_pwr;
1281 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1282 	int i;
1283 
1284 	if (!ah->ah_calibration ||
1285 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1286 		goto done;
1287 
1288 	/* Calibration has finished, get the results and re-run */
1289 	for (i = 0; i <= 10; i++) {
1290 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1291 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1292 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1293 	}
1294 
1295 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1296 	q_coffd = q_pwr >> 7;
1297 
1298 	/* No correction */
1299 	if (i_coffd == 0 || q_coffd == 0)
1300 		goto done;
1301 
1302 	i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1303 
1304 	/* Boundary check */
1305 	if (i_coff > 31)
1306 		i_coff = 31;
1307 	if (i_coff < -32)
1308 		i_coff = -32;
1309 
1310 	q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1311 
1312 	/* Boundary check */
1313 	if (q_coff > 15)
1314 		q_coff = 15;
1315 	if (q_coff < -16)
1316 		q_coff = -16;
1317 
1318 	/* Commit new I/Q value */
1319 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1320 		((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1321 
1322 	/* Re-enable calibration -if we don't we'll commit
1323 	 * the same values again and again */
1324 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1325 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1326 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1327 
1328 done:
1329 
1330 	/* TODO: Separate noise floor calibration from I/Q calibration
1331 	 * since noise floor calibration interrupts rx path while I/Q
1332 	 * calibration doesn't. We don't need to run noise floor calibration
1333 	 * as often as I/Q calibration.*/
1334 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1335 
1336 	/* Initiate a gain_F calibration */
1337 	ath5k_hw_request_rfgain_probe(ah);
1338 
1339 	return 0;
1340 }
1341 
1342 /*
1343  * Perform a PHY calibration
1344  */
ath5k_hw_phy_calibrate(struct ath5k_hw * ah,struct net80211_channel * channel)1345 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1346 		struct net80211_channel *channel)
1347 {
1348 	int ret;
1349 
1350 	if (ah->ah_radio == AR5K_RF5110)
1351 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1352 	else
1353 		ret = ath5k_hw_rf511x_calibrate(ah, channel);
1354 
1355 	return ret;
1356 }
1357 
ath5k_hw_phy_disable(struct ath5k_hw * ah)1358 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1359 {
1360 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1361 
1362 	return 0;
1363 }
1364 
1365 /********************\
1366   Misc PHY functions
1367 \********************/
1368 
1369 /*
1370  * Get the PHY Chip revision
1371  */
ath5k_hw_radio_revision(struct ath5k_hw * ah,unsigned int chan)1372 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1373 {
1374 	unsigned int i;
1375 	u32 srev;
1376 	u16 ret;
1377 
1378 	/*
1379 	 * Set the radio chip access register
1380 	 */
1381 	switch (chan) {
1382 	case CHANNEL_2GHZ:
1383 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1384 		break;
1385 	case CHANNEL_5GHZ:
1386 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1387 		break;
1388 	default:
1389 		return 0;
1390 	}
1391 
1392 	mdelay(2);
1393 
1394 	/* ...wait until PHY is ready and read the selected radio revision */
1395 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1396 
1397 	for (i = 0; i < 8; i++)
1398 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1399 
1400 	if (ah->ah_version == AR5K_AR5210) {
1401 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1402 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1403 	} else {
1404 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1405 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1406 				((srev & 0x0f) << 4), 8);
1407 	}
1408 
1409 	/* Reset to the 5GHz mode */
1410 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1411 
1412 	return ret;
1413 }
1414 
1415 void /*TODO:Boundary check*/
ath5k_hw_set_def_antenna(struct ath5k_hw * ah,unsigned int ant)1416 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1417 {
1418 	if (ah->ah_version != AR5K_AR5210)
1419 		ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
1420 }
1421 
ath5k_hw_get_def_antenna(struct ath5k_hw * ah)1422 unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1423 {
1424 	if (ah->ah_version != AR5K_AR5210)
1425 		return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1426 
1427 	return 0; /*XXX: What do we return for 5210 ?*/
1428 }
1429 
1430 
1431 /****************\
1432 * TX power setup *
1433 \****************/
1434 
1435 /*
1436  * Helper functions
1437  */
1438 
1439 /*
1440  * Do linear interpolation between two given (x, y) points
1441  */
1442 static s16
ath5k_get_interpolated_value(s16 target,s16 x_left,s16 x_right,s16 y_left,s16 y_right)1443 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1444 					s16 y_left, s16 y_right)
1445 {
1446 	s16 ratio, result;
1447 
1448 	/* Avoid divide by zero and skip interpolation
1449 	 * if we have the same point */
1450 	if ((x_left == x_right) || (y_left == y_right))
1451 		return y_left;
1452 
1453 	/*
1454 	 * Since we use ints and not fps, we need to scale up in
1455 	 * order to get a sane ratio value (or else we 'll eg. get
1456 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1457 	 * to have some accuracy both for 0.5 and 0.25 steps.
1458 	 */
1459 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1460 
1461 	/* Now scale down to be in range */
1462 	result = y_left + (ratio * (target - x_left) / 100);
1463 
1464 	return result;
1465 }
1466 
1467 /*
1468  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1469  *
1470  * Since we have the top of the curve and we draw the line below
1471  * until we reach 1 (1 pcdac step) we need to know which point
1472  * (x value) that is so that we don't go below y axis and have negative
1473  * pcdac values when creating the curve, or fill the table with zeroes.
1474  */
1475 static s16
ath5k_get_linear_pcdac_min(const u8 * stepL,const u8 * stepR,const s16 * pwrL,const s16 * pwrR)1476 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1477 				const s16 *pwrL, const s16 *pwrR)
1478 {
1479 	s8 tmp;
1480 	s16 min_pwrL, min_pwrR;
1481 	s16 pwr_i;
1482 
1483 	if (pwrL[0] == pwrL[1])
1484 		min_pwrL = pwrL[0];
1485 	else {
1486 		pwr_i = pwrL[0];
1487 		do {
1488 			pwr_i--;
1489 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1490 							pwrL[0], pwrL[1],
1491 							stepL[0], stepL[1]);
1492 		} while (tmp > 1);
1493 
1494 		min_pwrL = pwr_i;
1495 	}
1496 
1497 	if (pwrR[0] == pwrR[1])
1498 		min_pwrR = pwrR[0];
1499 	else {
1500 		pwr_i = pwrR[0];
1501 		do {
1502 			pwr_i--;
1503 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1504 							pwrR[0], pwrR[1],
1505 							stepR[0], stepR[1]);
1506 		} while (tmp > 1);
1507 
1508 		min_pwrR = pwr_i;
1509 	}
1510 
1511 	/* Keep the right boundary so that it works for both curves */
1512 	return max(min_pwrL, min_pwrR);
1513 }
1514 
1515 /*
1516  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1517  * Power to PCDAC curve.
1518  *
1519  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1520  * steps (offsets) on y axis. Power can go up to 31.5dB and max
1521  * PCDAC/PDADC step for each curve is 64 but we can write more than
1522  * one curves on hw so we can go up to 128 (which is the max step we
1523  * can write on the final table).
1524  *
1525  * We write y values (PCDAC/PDADC steps) on hw.
1526  */
1527 static void
ath5k_create_power_curve(s16 pmin,s16 pmax,const s16 * pwr,const u8 * vpd,u8 num_points,u8 * vpd_table,u8 type)1528 ath5k_create_power_curve(s16 pmin, s16 pmax,
1529 			const s16 *pwr, const u8 *vpd,
1530 			u8 num_points,
1531 			u8 *vpd_table, u8 type)
1532 {
1533 	u8 idx[2] = { 0, 1 };
1534 	s16 pwr_i = 2*pmin;
1535 	int i;
1536 
1537 	if (num_points < 2)
1538 		return;
1539 
1540 	/* We want the whole line, so adjust boundaries
1541 	 * to cover the entire power range. Note that
1542 	 * power values are already 0.25dB so no need
1543 	 * to multiply pwr_i by 2 */
1544 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1545 		pwr_i = pmin;
1546 		pmin = 0;
1547 		pmax = 63;
1548 	}
1549 
1550 	/* Find surrounding turning points (TPs)
1551 	 * and interpolate between them */
1552 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
1553 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1554 
1555 		/* We passed the right TP, move to the next set of TPs
1556 		 * if we pass the last TP, extrapolate above using the last
1557 		 * two TPs for ratio */
1558 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1559 			idx[0]++;
1560 			idx[1]++;
1561 		}
1562 
1563 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1564 						pwr[idx[0]], pwr[idx[1]],
1565 						vpd[idx[0]], vpd[idx[1]]);
1566 
1567 		/* Increase by 0.5dB
1568 		 * (0.25 dB units) */
1569 		pwr_i += 2;
1570 	}
1571 }
1572 
1573 /*
1574  * Get the surrounding per-channel power calibration piers
1575  * for a given frequency so that we can interpolate between
1576  * them and come up with an apropriate dataset for our current
1577  * channel.
1578  */
1579 static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw * ah,struct net80211_channel * channel,struct ath5k_chan_pcal_info ** pcinfo_l,struct ath5k_chan_pcal_info ** pcinfo_r)1580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1581 			struct net80211_channel *channel,
1582 			struct ath5k_chan_pcal_info **pcinfo_l,
1583 			struct ath5k_chan_pcal_info **pcinfo_r)
1584 {
1585 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1586 	struct ath5k_chan_pcal_info *pcinfo;
1587 	u8 idx_l, idx_r;
1588 	u8 mode, max, i;
1589 	u32 target = channel->center_freq;
1590 
1591 	idx_l = 0;
1592 	idx_r = 0;
1593 
1594 	if (!(channel->hw_value & CHANNEL_OFDM)) {
1595 		pcinfo = ee->ee_pwr_cal_b;
1596 		mode = AR5K_EEPROM_MODE_11B;
1597 	} else if (channel->hw_value & CHANNEL_2GHZ) {
1598 		pcinfo = ee->ee_pwr_cal_g;
1599 		mode = AR5K_EEPROM_MODE_11G;
1600 	} else {
1601 		pcinfo = ee->ee_pwr_cal_a;
1602 		mode = AR5K_EEPROM_MODE_11A;
1603 	}
1604 	max = ee->ee_n_piers[mode] - 1;
1605 
1606 	/* Frequency is below our calibrated
1607 	 * range. Use the lowest power curve
1608 	 * we have */
1609 	if (target < pcinfo[0].freq) {
1610 		idx_l = idx_r = 0;
1611 		goto done;
1612 	}
1613 
1614 	/* Frequency is above our calibrated
1615 	 * range. Use the highest power curve
1616 	 * we have */
1617 	if (target > pcinfo[max].freq) {
1618 		idx_l = idx_r = max;
1619 		goto done;
1620 	}
1621 
1622 	/* Frequency is inside our calibrated
1623 	 * channel range. Pick the surrounding
1624 	 * calibration piers so that we can
1625 	 * interpolate */
1626 	for (i = 0; i <= max; i++) {
1627 
1628 		/* Frequency matches one of our calibration
1629 		 * piers, no need to interpolate, just use
1630 		 * that calibration pier */
1631 		if (pcinfo[i].freq == target) {
1632 			idx_l = idx_r = i;
1633 			goto done;
1634 		}
1635 
1636 		/* We found a calibration pier that's above
1637 		 * frequency, use this pier and the previous
1638 		 * one to interpolate */
1639 		if (target < pcinfo[i].freq) {
1640 			idx_r = i;
1641 			idx_l = idx_r - 1;
1642 			goto done;
1643 		}
1644 	}
1645 
1646 done:
1647 	*pcinfo_l = &pcinfo[idx_l];
1648 	*pcinfo_r = &pcinfo[idx_r];
1649 
1650 	return;
1651 }
1652 
1653 /*
1654  * Get the surrounding per-rate power calibration data
1655  * for a given frequency and interpolate between power
1656  * values to set max target power supported by hw for
1657  * each rate.
1658  */
1659 static void
ath5k_get_rate_pcal_data(struct ath5k_hw * ah,struct net80211_channel * channel,struct ath5k_rate_pcal_info * rates)1660 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1661 			struct net80211_channel *channel,
1662 			struct ath5k_rate_pcal_info *rates)
1663 {
1664 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1665 	struct ath5k_rate_pcal_info *rpinfo;
1666 	u8 idx_l, idx_r;
1667 	u8 mode, max, i;
1668 	u32 target = channel->center_freq;
1669 
1670 	idx_l = 0;
1671 	idx_r = 0;
1672 
1673 	if (!(channel->hw_value & CHANNEL_OFDM)) {
1674 		rpinfo = ee->ee_rate_tpwr_b;
1675 		mode = AR5K_EEPROM_MODE_11B;
1676 	} else if (channel->hw_value & CHANNEL_2GHZ) {
1677 		rpinfo = ee->ee_rate_tpwr_g;
1678 		mode = AR5K_EEPROM_MODE_11G;
1679 	} else {
1680 		rpinfo = ee->ee_rate_tpwr_a;
1681 		mode = AR5K_EEPROM_MODE_11A;
1682 	}
1683 	max = ee->ee_rate_target_pwr_num[mode] - 1;
1684 
1685 	/* Get the surrounding calibration
1686 	 * piers - same as above */
1687 	if (target < rpinfo[0].freq) {
1688 		idx_l = idx_r = 0;
1689 		goto done;
1690 	}
1691 
1692 	if (target > rpinfo[max].freq) {
1693 		idx_l = idx_r = max;
1694 		goto done;
1695 	}
1696 
1697 	for (i = 0; i <= max; i++) {
1698 
1699 		if (rpinfo[i].freq == target) {
1700 			idx_l = idx_r = i;
1701 			goto done;
1702 		}
1703 
1704 		if (target < rpinfo[i].freq) {
1705 			idx_r = i;
1706 			idx_l = idx_r - 1;
1707 			goto done;
1708 		}
1709 	}
1710 
1711 done:
1712 	/* Now interpolate power value, based on the frequency */
1713 	rates->freq = target;
1714 
1715 	rates->target_power_6to24 =
1716 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1717 					rpinfo[idx_r].freq,
1718 					rpinfo[idx_l].target_power_6to24,
1719 					rpinfo[idx_r].target_power_6to24);
1720 
1721 	rates->target_power_36 =
1722 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1723 					rpinfo[idx_r].freq,
1724 					rpinfo[idx_l].target_power_36,
1725 					rpinfo[idx_r].target_power_36);
1726 
1727 	rates->target_power_48 =
1728 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1729 					rpinfo[idx_r].freq,
1730 					rpinfo[idx_l].target_power_48,
1731 					rpinfo[idx_r].target_power_48);
1732 
1733 	rates->target_power_54 =
1734 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1735 					rpinfo[idx_r].freq,
1736 					rpinfo[idx_l].target_power_54,
1737 					rpinfo[idx_r].target_power_54);
1738 }
1739 
1740 /*
1741  * Get the max edge power for this channel if
1742  * we have such data from EEPROM's Conformance Test
1743  * Limits (CTL), and limit max power if needed.
1744  *
1745  * FIXME: Only works for world regulatory domains
1746  */
1747 static void
ath5k_get_max_ctl_power(struct ath5k_hw * ah,struct net80211_channel * channel)1748 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1749 			struct net80211_channel *channel)
1750 {
1751 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1752 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1753 	u8 *ctl_val = ee->ee_ctl;
1754 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1755 	s16 edge_pwr = 0;
1756 	u8 rep_idx;
1757 	u8 i, ctl_mode;
1758 	u8 ctl_idx = 0xFF;
1759 	u32 target = channel->center_freq;
1760 
1761 	/* Find out a CTL for our mode that's not mapped
1762 	 * on a specific reg domain.
1763 	 *
1764 	 * TODO: Map our current reg domain to one of the 3 available
1765 	 * reg domain ids so that we can support more CTLs. */
1766 	switch (channel->hw_value & CHANNEL_MODES) {
1767 	case CHANNEL_A:
1768 		ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1769 		break;
1770 	case CHANNEL_G:
1771 		ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1772 		break;
1773 	case CHANNEL_B:
1774 		ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1775 		break;
1776 	case CHANNEL_T:
1777 		ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1778 		break;
1779 	case CHANNEL_TG:
1780 		ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1781 		break;
1782 	case CHANNEL_XR:
1783 		/* Fall through */
1784 	default:
1785 		return;
1786 	}
1787 
1788 	for (i = 0; i < ee->ee_ctls; i++) {
1789 		if (ctl_val[i] == ctl_mode) {
1790 			ctl_idx = i;
1791 			break;
1792 		}
1793 	}
1794 
1795 	/* If we have a CTL dataset available grab it and find the
1796 	 * edge power for our frequency */
1797 	if (ctl_idx == 0xFF)
1798 		return;
1799 
1800 	/* Edge powers are sorted by frequency from lower
1801 	 * to higher. Each CTL corresponds to 8 edge power
1802 	 * measurements. */
1803 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1804 
1805 	/* Don't do boundaries check because we
1806 	 * might have more that one bands defined
1807 	 * for this mode */
1808 
1809 	/* Get the edge power that's closer to our
1810 	 * frequency */
1811 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1812 		rep_idx += i;
1813 		if (target <= rep[rep_idx].freq)
1814 			edge_pwr = (s16) rep[rep_idx].edge;
1815 	}
1816 
1817 	if (edge_pwr) {
1818 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1819 	}
1820 }
1821 
1822 
1823 /*
1824  * Power to PCDAC table functions
1825  */
1826 
1827 /*
1828  * Fill Power to PCDAC table on RF5111
1829  *
1830  * No further processing is needed for RF5111, the only thing we have to
1831  * do is fill the values below and above calibration range since eeprom data
1832  * may not cover the entire PCDAC table.
1833  */
1834 static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw * ah,s16 * table_min,s16 * table_max)1835 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1836 							s16 *table_max)
1837 {
1838 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1839 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
1840 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1841 	s16	min_pwr, max_pwr;
1842 
1843 	/* Get table boundaries */
1844 	min_pwr = table_min[0];
1845 	pcdac_0 = pcdac_tmp[0];
1846 
1847 	max_pwr = table_max[0];
1848 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1849 
1850 	/* Extrapolate below minimum using pcdac_0 */
1851 	pcdac_i = 0;
1852 	for (i = 0; i < min_pwr; i++)
1853 		pcdac_out[pcdac_i++] = pcdac_0;
1854 
1855 	/* Copy values from pcdac_tmp */
1856 	pwr_idx = min_pwr;
1857 	for (i = 0 ; pwr_idx <= max_pwr &&
1858 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1859 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
1860 		pwr_idx++;
1861 	}
1862 
1863 	/* Extrapolate above maximum */
1864 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1865 		pcdac_out[pcdac_i++] = pcdac_n;
1866 
1867 }
1868 
1869 /*
1870  * Combine available XPD Curves and fill Linear Power to PCDAC table
1871  * on RF5112
1872  *
1873  * RFX112 can have up to 2 curves (one for low txpower range and one for
1874  * higher txpower range). We need to put them both on pcdac_out and place
1875  * them in the correct location. In case we only have one curve available
1876  * just fit it on pcdac_out (it's supposed to cover the entire range of
1877  * available pwr levels since it's always the higher power curve). Extrapolate
1878  * below and above final table if needed.
1879  */
1880 static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw * ah,s16 * table_min,s16 * table_max,u8 pdcurves)1881 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1882 						s16 *table_max, u8 pdcurves)
1883 {
1884 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1885 	u8	*pcdac_low_pwr;
1886 	u8	*pcdac_high_pwr;
1887 	u8	*pcdac_tmp;
1888 	u8	pwr;
1889 	s16	max_pwr_idx;
1890 	s16	min_pwr_idx;
1891 	s16	mid_pwr_idx = 0;
1892 	/* Edge flag turs on the 7nth bit on the PCDAC
1893 	 * to delcare the higher power curve (force values
1894 	 * to be greater than 64). If we only have one curve
1895 	 * we don't need to set this, if we have 2 curves and
1896 	 * fill the table backwards this can also be used to
1897 	 * switch from higher power curve to lower power curve */
1898 	u8	edge_flag;
1899 	int	i;
1900 
1901 	/* When we have only one curve available
1902 	 * that's the higher power curve. If we have
1903 	 * two curves the first is the high power curve
1904 	 * and the next is the low power curve. */
1905 	if (pdcurves > 1) {
1906 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1907 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1908 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
1909 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1910 
1911 		/* If table size goes beyond 31.5dB, keep the
1912 		 * upper 31.5dB range when setting tx power.
1913 		 * Note: 126 = 31.5 dB in quarter dB steps */
1914 		if (table_max[0] - table_min[1] > 126)
1915 			min_pwr_idx = table_max[0] - 126;
1916 		else
1917 			min_pwr_idx = table_min[1];
1918 
1919 		/* Since we fill table backwards
1920 		 * start from high power curve */
1921 		pcdac_tmp = pcdac_high_pwr;
1922 
1923 		edge_flag = 0x40;
1924 	} else {
1925 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1926 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1927 		min_pwr_idx = table_min[0];
1928 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1929 		pcdac_tmp = pcdac_high_pwr;
1930 		edge_flag = 0;
1931 	}
1932 
1933 	/* This is used when setting tx power*/
1934 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1935 
1936 	/* Fill Power to PCDAC table backwards */
1937 	pwr = max_pwr_idx;
1938 	for (i = 63; i >= 0; i--) {
1939 		/* Entering lower power range, reset
1940 		 * edge flag and set pcdac_tmp to lower
1941 		 * power curve.*/
1942 		if (edge_flag == 0x40 &&
1943 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1944 			edge_flag = 0x00;
1945 			pcdac_tmp = pcdac_low_pwr;
1946 			pwr = mid_pwr_idx/2;
1947 		}
1948 
1949 		/* Don't go below 1, extrapolate below if we have
1950 		 * already swithced to the lower power curve -or
1951 		 * we only have one curve and edge_flag is zero
1952 		 * anyway */
1953 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1954 			while (i >= 0) {
1955 				pcdac_out[i] = pcdac_out[i + 1];
1956 				i--;
1957 			}
1958 			break;
1959 		}
1960 
1961 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1962 
1963 		/* Extrapolate above if pcdac is greater than
1964 		 * 126 -this can happen because we OR pcdac_out
1965 		 * value with edge_flag on high power curve */
1966 		if (pcdac_out[i] > 126)
1967 			pcdac_out[i] = 126;
1968 
1969 		/* Decrease by a 0.5dB step */
1970 		pwr--;
1971 	}
1972 }
1973 
1974 /* Write PCDAC values on hw */
1975 static void
ath5k_setup_pcdac_table(struct ath5k_hw * ah)1976 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1977 {
1978 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
1979 	int	i;
1980 
1981 	/*
1982 	 * Write TX power values
1983 	 */
1984 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1985 		ath5k_hw_reg_write(ah,
1986 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
1987 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
1988 			AR5K_PHY_PCDAC_TXPOWER(i));
1989 	}
1990 }
1991 
1992 
1993 /*
1994  * Power to PDADC table functions
1995  */
1996 
1997 /*
1998  * Set the gain boundaries and create final Power to PDADC table
1999  *
2000  * We can have up to 4 pd curves, we need to do a simmilar process
2001  * as we do for RF5112. This time we don't have an edge_flag but we
2002  * set the gain boundaries on a separate register.
2003  */
2004 static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw * ah,s16 * pwr_min,s16 * pwr_max,u8 pdcurves)2005 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2006 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2007 {
2008 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2009 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2010 	u8 *pdadc_tmp;
2011 	s16 pdadc_0;
2012 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2013 	u8 pd_gain_overlap;
2014 
2015 	/* Note: Register value is initialized on initvals
2016 	 * there is no feedback from hw.
2017 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2018 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2019 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2020 
2021 	/* Create final PDADC table */
2022 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2023 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2024 
2025 		if (pdg == pdcurves - 1)
2026 			/* 2 dB boundary stretch for last
2027 			 * (higher power) curve */
2028 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2029 		else
2030 			/* Set gain boundary in the middle
2031 			 * between this curve and the next one */
2032 			gain_boundaries[pdg] =
2033 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2034 
2035 		/* Sanity check in case our 2 db stretch got out of
2036 		 * range. */
2037 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2038 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2039 
2040 		/* For the first curve (lower power)
2041 		 * start from 0 dB */
2042 		if (pdg == 0)
2043 			pdadc_0 = 0;
2044 		else
2045 			/* For the other curves use the gain overlap */
2046 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2047 							pd_gain_overlap;
2048 
2049 		/* Force each power step to be at least 0.5 dB */
2050 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2051 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2052 		else
2053 			pwr_step = 1;
2054 
2055 		/* If pdadc_0 is negative, we need to extrapolate
2056 		 * below this pdgain by a number of pwr_steps */
2057 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2058 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2059 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2060 			pdadc_0++;
2061 		}
2062 
2063 		/* Set last pwr level, using gain boundaries */
2064 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2065 		/* Limit it to be inside pwr range */
2066 		table_size = pwr_max[pdg] - pwr_min[pdg];
2067 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2068 
2069 		/* Fill pdadc_out table */
2070 		while (pdadc_0 < max_idx)
2071 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2072 
2073 		/* Need to extrapolate above this pdgain? */
2074 		if (pdadc_n <= max_idx)
2075 			continue;
2076 
2077 		/* Force each power step to be at least 0.5 dB */
2078 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2079 			pwr_step = pdadc_tmp[table_size - 1] -
2080 						pdadc_tmp[table_size - 2];
2081 		else
2082 			pwr_step = 1;
2083 
2084 		/* Extrapolate above */
2085 		while ((pdadc_0 < (s16) pdadc_n) &&
2086 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2087 			s16 tmp = pdadc_tmp[table_size - 1] +
2088 					(pdadc_0 - max_idx) * pwr_step;
2089 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2090 			pdadc_0++;
2091 		}
2092 	}
2093 
2094 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2095 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2096 		pdg++;
2097 	}
2098 
2099 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2100 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2101 		pdadc_i++;
2102 	}
2103 
2104 	/* Set gain boundaries */
2105 	ath5k_hw_reg_write(ah,
2106 		AR5K_REG_SM(pd_gain_overlap,
2107 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2108 		AR5K_REG_SM(gain_boundaries[0],
2109 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2110 		AR5K_REG_SM(gain_boundaries[1],
2111 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2112 		AR5K_REG_SM(gain_boundaries[2],
2113 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2114 		AR5K_REG_SM(gain_boundaries[3],
2115 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2116 		AR5K_PHY_TPC_RG5);
2117 
2118 	/* Used for setting rate power table */
2119 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2120 
2121 }
2122 
2123 /* Write PDADC values on hw */
2124 static void
ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw * ah,u8 pdcurves,u8 * pdg_to_idx)2125 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2126 			u8 pdcurves, u8 *pdg_to_idx)
2127 {
2128 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2129 	u32 reg;
2130 	u8 i;
2131 
2132 	/* Select the right pdgain curves */
2133 
2134 	/* Clear current settings */
2135 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2136 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2137 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2138 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2139 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2140 
2141 	/*
2142 	 * Use pd_gains curve from eeprom
2143 	 *
2144 	 * This overrides the default setting from initvals
2145 	 * in case some vendors (e.g. Zcomax) don't use the default
2146 	 * curves. If we don't honor their settings we 'll get a
2147 	 * 5dB (1 * gain overlap ?) drop.
2148 	 */
2149 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2150 
2151 	switch (pdcurves) {
2152 	case 3:
2153 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2154 		/* Fall through */
2155 	case 2:
2156 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2157 		/* Fall through */
2158 	case 1:
2159 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2160 		break;
2161 	}
2162 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2163 
2164 	/*
2165 	 * Write TX power values
2166 	 */
2167 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2168 		ath5k_hw_reg_write(ah,
2169 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2170 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2171 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2172 			((pdadc_out[4*i + 3] & 0xff) << 24),
2173 			AR5K_PHY_PDADC_TXPOWER(i));
2174 	}
2175 }
2176 
2177 
2178 /*
2179  * Common code for PCDAC/PDADC tables
2180  */
2181 
2182 /*
2183  * This is the main function that uses all of the above
2184  * to set PCDAC/PDADC table on hw for the current channel.
2185  * This table is used for tx power calibration on the basband,
2186  * without it we get weird tx power levels and in some cases
2187  * distorted spectral mask
2188  */
2189 static int
ath5k_setup_channel_powertable(struct ath5k_hw * ah,struct net80211_channel * channel,u8 ee_mode,u8 type)2190 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2191 			struct net80211_channel *channel,
2192 			u8 ee_mode, u8 type)
2193 {
2194 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2195 	struct ath5k_chan_pcal_info *pcinfo_L;
2196 	struct ath5k_chan_pcal_info *pcinfo_R;
2197 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2198 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2199 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2200 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2201 	u8 *tmpL;
2202 	u8 *tmpR;
2203 	u32 target = channel->center_freq;
2204 	int pdg, i;
2205 
2206 	/* Get surounding freq piers for this channel */
2207 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2208 						&pcinfo_L,
2209 						&pcinfo_R);
2210 
2211 	/* Loop over pd gain curves on
2212 	 * surounding freq piers by index */
2213 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2214 
2215 		/* Fill curves in reverse order
2216 		 * from lower power (max gain)
2217 		 * to higher power. Use curve -> idx
2218 		 * backmaping we did on eeprom init */
2219 		u8 idx = pdg_curve_to_idx[pdg];
2220 
2221 		/* Grab the needed curves by index */
2222 		pdg_L = &pcinfo_L->pd_curves[idx];
2223 		pdg_R = &pcinfo_R->pd_curves[idx];
2224 
2225 		/* Initialize the temp tables */
2226 		tmpL = ah->ah_txpower.tmpL[pdg];
2227 		tmpR = ah->ah_txpower.tmpR[pdg];
2228 
2229 		/* Set curve's x boundaries and create
2230 		 * curves so that they cover the same
2231 		 * range (if we don't do that one table
2232 		 * will have values on some range and the
2233 		 * other one won't have any so interpolation
2234 		 * will fail) */
2235 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2236 					pdg_R->pd_pwr[0]) / 2;
2237 
2238 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2239 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2240 
2241 		/* Now create the curves on surrounding channels
2242 		 * and interpolate if needed to get the final
2243 		 * curve for this gain on this channel */
2244 		switch (type) {
2245 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2246 			/* Override min/max so that we don't loose
2247 			 * accuracy (don't divide by 2) */
2248 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2249 						pdg_R->pd_pwr[0]);
2250 
2251 			table_max[pdg] =
2252 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2253 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2254 
2255 			/* Override minimum so that we don't get
2256 			 * out of bounds while extrapolating
2257 			 * below. Don't do this when we have 2
2258 			 * curves and we are on the high power curve
2259 			 * because table_min is ok in this case */
2260 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2261 
2262 				table_min[pdg] =
2263 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2264 								pdg_R->pd_step,
2265 								pdg_L->pd_pwr,
2266 								pdg_R->pd_pwr);
2267 
2268 				/* Don't go too low because we will
2269 				 * miss the upper part of the curve.
2270 				 * Note: 126 = 31.5dB (max power supported)
2271 				 * in 0.25dB units */
2272 				if (table_max[pdg] - table_min[pdg] > 126)
2273 					table_min[pdg] = table_max[pdg] - 126;
2274 			}
2275 
2276 			/* Fall through */
2277 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2278 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2279 
2280 			ath5k_create_power_curve(table_min[pdg],
2281 						table_max[pdg],
2282 						pdg_L->pd_pwr,
2283 						pdg_L->pd_step,
2284 						pdg_L->pd_points, tmpL, type);
2285 
2286 			/* We are in a calibration
2287 			 * pier, no need to interpolate
2288 			 * between freq piers */
2289 			if (pcinfo_L == pcinfo_R)
2290 				continue;
2291 
2292 			ath5k_create_power_curve(table_min[pdg],
2293 						table_max[pdg],
2294 						pdg_R->pd_pwr,
2295 						pdg_R->pd_step,
2296 						pdg_R->pd_points, tmpR, type);
2297 			break;
2298 		default:
2299 			return -EINVAL;
2300 		}
2301 
2302 		/* Interpolate between curves
2303 		 * of surounding freq piers to
2304 		 * get the final curve for this
2305 		 * pd gain. Re-use tmpL for interpolation
2306 		 * output */
2307 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2308 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2309 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2310 							(s16) pcinfo_L->freq,
2311 							(s16) pcinfo_R->freq,
2312 							(s16) tmpL[i],
2313 							(s16) tmpR[i]);
2314 		}
2315 	}
2316 
2317 	/* Now we have a set of curves for this
2318 	 * channel on tmpL (x range is table_max - table_min
2319 	 * and y values are tmpL[pdg][]) sorted in the same
2320 	 * order as EEPROM (because we've used the backmaping).
2321 	 * So for RF5112 it's from higher power to lower power
2322 	 * and for RF2413 it's from lower power to higher power.
2323 	 * For RF5111 we only have one curve. */
2324 
2325 	/* Fill min and max power levels for this
2326 	 * channel by interpolating the values on
2327 	 * surounding channels to complete the dataset */
2328 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2329 					(s16) pcinfo_L->freq,
2330 					(s16) pcinfo_R->freq,
2331 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2332 
2333 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2334 					(s16) pcinfo_L->freq,
2335 					(s16) pcinfo_R->freq,
2336 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2337 
2338 	/* We are ready to go, fill PCDAC/PDADC
2339 	 * table and write settings on hardware */
2340 	switch (type) {
2341 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2342 		/* For RF5112 we can have one or two curves
2343 		 * and each curve covers a certain power lvl
2344 		 * range so we need to do some more processing */
2345 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2346 						ee->ee_pd_gains[ee_mode]);
2347 
2348 		/* Set txp.offset so that we can
2349 		 * match max power value with max
2350 		 * table index */
2351 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2352 
2353 		/* Write settings on hw */
2354 		ath5k_setup_pcdac_table(ah);
2355 		break;
2356 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2357 		/* We are done for RF5111 since it has only
2358 		 * one curve, just fit the curve on the table */
2359 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2360 
2361 		/* No rate powertable adjustment for RF5111 */
2362 		ah->ah_txpower.txp_min_idx = 0;
2363 		ah->ah_txpower.txp_offset = 0;
2364 
2365 		/* Write settings on hw */
2366 		ath5k_setup_pcdac_table(ah);
2367 		break;
2368 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2369 		/* Set PDADC boundaries and fill
2370 		 * final PDADC table */
2371 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2372 						ee->ee_pd_gains[ee_mode]);
2373 
2374 		/* Write settings on hw */
2375 		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2376 
2377 		/* Set txp.offset, note that table_min
2378 		 * can be negative */
2379 		ah->ah_txpower.txp_offset = table_min[0];
2380 		break;
2381 	default:
2382 		return -EINVAL;
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 
2389 /*
2390  * Per-rate tx power setting
2391  *
2392  * This is the code that sets the desired tx power (below
2393  * maximum) on hw for each rate (we also have TPC that sets
2394  * power per packet). We do that by providing an index on the
2395  * PCDAC/PDADC table we set up.
2396  */
2397 
2398 /*
2399  * Set rate power table
2400  *
2401  * For now we only limit txpower based on maximum tx power
2402  * supported by hw (what's inside rate_info). We need to limit
2403  * this even more, based on regulatory domain etc.
2404  *
2405  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2406  * and is indexed as follows:
2407  * rates[0] - rates[7] -> OFDM rates
2408  * rates[8] - rates[14] -> CCK rates
2409  * rates[15] -> XR rates (they all have the same power)
2410  */
2411 static void
ath5k_setup_rate_powertable(struct ath5k_hw * ah,u16 max_pwr,struct ath5k_rate_pcal_info * rate_info,u8 ee_mode)2412 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2413 			struct ath5k_rate_pcal_info *rate_info,
2414 			u8 ee_mode)
2415 {
2416 	unsigned int i;
2417 	u16 *rates;
2418 
2419 	/* max_pwr is power level we got from driver/user in 0.5dB
2420 	 * units, switch to 0.25dB units so we can compare */
2421 	max_pwr *= 2;
2422 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2423 
2424 	/* apply rate limits */
2425 	rates = ah->ah_txpower.txp_rates_power_table;
2426 
2427 	/* OFDM rates 6 to 24Mb/s */
2428 	for (i = 0; i < 5; i++)
2429 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2430 
2431 	/* Rest OFDM rates */
2432 	rates[5] = min(rates[0], rate_info->target_power_36);
2433 	rates[6] = min(rates[0], rate_info->target_power_48);
2434 	rates[7] = min(rates[0], rate_info->target_power_54);
2435 
2436 	/* CCK rates */
2437 	/* 1L */
2438 	rates[8] = min(rates[0], rate_info->target_power_6to24);
2439 	/* 2L */
2440 	rates[9] = min(rates[0], rate_info->target_power_36);
2441 	/* 2S */
2442 	rates[10] = min(rates[0], rate_info->target_power_36);
2443 	/* 5L */
2444 	rates[11] = min(rates[0], rate_info->target_power_48);
2445 	/* 5S */
2446 	rates[12] = min(rates[0], rate_info->target_power_48);
2447 	/* 11L */
2448 	rates[13] = min(rates[0], rate_info->target_power_54);
2449 	/* 11S */
2450 	rates[14] = min(rates[0], rate_info->target_power_54);
2451 
2452 	/* XR rates */
2453 	rates[15] = min(rates[0], rate_info->target_power_6to24);
2454 
2455 	/* CCK rates have different peak to average ratio
2456 	 * so we have to tweak their power so that gainf
2457 	 * correction works ok. For this we use OFDM to
2458 	 * CCK delta from eeprom */
2459 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2460 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2461 		for (i = 8; i <= 15; i++)
2462 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2463 
2464 	ah->ah_txpower.txp_min_pwr = rates[7];
2465 	ah->ah_txpower.txp_max_pwr = rates[0];
2466 	ah->ah_txpower.txp_ofdm = rates[7];
2467 }
2468 
2469 
2470 /*
2471  * Set transmition power
2472  */
2473 int
ath5k_hw_txpower(struct ath5k_hw * ah,struct net80211_channel * channel,u8 ee_mode,u8 txpower)2474 ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel,
2475 		u8 ee_mode, u8 txpower)
2476 {
2477 	struct ath5k_rate_pcal_info rate_info;
2478 	u8 type;
2479 	int ret;
2480 
2481 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2482 		DBG("ath5k: invalid tx power %d\n", txpower);
2483 		return -EINVAL;
2484 	}
2485 	if (txpower == 0)
2486 		txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2487 
2488 	/* Reset TX power values */
2489 	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2490 	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2491 	ah->ah_txpower.txp_min_pwr = 0;
2492 	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2493 
2494 	/* Initialize TX power table */
2495 	switch (ah->ah_radio) {
2496 	case AR5K_RF5111:
2497 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2498 		break;
2499 	case AR5K_RF5112:
2500 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
2501 		break;
2502 	case AR5K_RF2413:
2503 	case AR5K_RF5413:
2504 	case AR5K_RF2316:
2505 	case AR5K_RF2317:
2506 	case AR5K_RF2425:
2507 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
2508 		break;
2509 	default:
2510 		return -EINVAL;
2511 	}
2512 
2513 	/* FIXME: Only on channel/mode change */
2514 	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2515 	if (ret)
2516 		return ret;
2517 
2518 	/* Limit max power if we have a CTL available */
2519 	ath5k_get_max_ctl_power(ah, channel);
2520 
2521 	/* FIXME: Tx power limit for this regdomain
2522 	 * XXX: Mac80211/CRDA will do that anyway ? */
2523 
2524 	/* FIXME: Antenna reduction stuff */
2525 
2526 	/* FIXME: Limit power on turbo modes */
2527 
2528 	/* FIXME: TPC scale reduction */
2529 
2530 	/* Get surounding channels for per-rate power table
2531 	 * calibration */
2532 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2533 
2534 	/* Setup rate power table */
2535 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2536 
2537 	/* Write rate power table on hw */
2538 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2539 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2540 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2541 
2542 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2543 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2544 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2545 
2546 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2547 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2548 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2549 
2550 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2551 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2552 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2553 
2554 	/* FIXME: TPC support */
2555 	if (ah->ah_txpower.txp_tpc) {
2556 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2557 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2558 
2559 		ath5k_hw_reg_write(ah,
2560 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2561 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2562 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2563 			AR5K_TPC);
2564 	} else {
2565 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
2566 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
ath5k_hw_set_txpower_limit(struct ath5k_hw * ah,u8 mode,u8 txpower)2572 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2573 {
2574 	struct net80211_channel *channel = ah->ah_current_channel;
2575 
2576 	DBG2("ath5k: changing txpower to %d\n", txpower);
2577 
2578 	return ath5k_hw_txpower(ah, channel, mode, txpower);
2579 }
2580 
2581 #undef _ATH5K_PHY
2582