1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
4  *
5  * Copyright 2011 Freescale Semiconductor, Inc.
6  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
7  */
8 
9 #include <common.h>
10 #include <asm/io.h>
11 #include <fsl_ifc.h>
12 #include <linux/mtd/rawnand.h>
13 #ifdef CONFIG_CHAIN_OF_TRUST
14 #include <fsl_validate.h>
15 #endif
16 
is_blank(uchar * addr,int page_size)17 static inline int is_blank(uchar *addr, int page_size)
18 {
19 	int i;
20 
21 	for (i = 0; i < page_size; i++) {
22 		if (__raw_readb(&addr[i]) != 0xff)
23 			return 0;
24 	}
25 
26 	/*
27 	 * For the SPL, don't worry about uncorrectable errors
28 	 * where the main area is all FFs but shouldn't be.
29 	 */
30 	return 1;
31 }
32 
33 /* returns nonzero if entire page is blank */
check_read_ecc(uchar * buf,u32 * eccstat,unsigned int bufnum,int page_size)34 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
35 				 unsigned int bufnum, int page_size)
36 {
37 	u32 reg = eccstat[bufnum / 4];
38 	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
39 
40 	if (errors == 0xf) { /* uncorrectable */
41 		/* Blank pages fail hw ECC checks */
42 		if (is_blank(buf, page_size))
43 			return 1;
44 
45 		puts("ecc error\n");
46 		for (;;)
47 			;
48 	}
49 
50 	return 0;
51 }
52 
runtime_regs_address(void)53 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
54 {
55 	struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
56 	int ver = 0;
57 
58 	ver = ifc_in32(&regs.gregs->ifc_rev);
59 	if (ver >= FSL_IFC_V2_0_0)
60 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
61 	else
62 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
63 
64 	return regs.rregs;
65 }
66 
nand_wait(uchar * buf,int bufnum,int page_size)67 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
68 {
69 	struct fsl_ifc_runtime *ifc = runtime_regs_address();
70 	u32 status;
71 	u32 eccstat[8];
72 	int bufperpage = page_size / 512;
73 	int bufnum_end, i;
74 
75 	bufnum *= bufperpage;
76 	bufnum_end = bufnum + bufperpage - 1;
77 
78 	do {
79 		status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
80 	} while (!(status & IFC_NAND_EVTER_STAT_OPC));
81 
82 	if (status & IFC_NAND_EVTER_STAT_FTOER) {
83 		puts("flash time out error\n");
84 		for (;;)
85 			;
86 	}
87 
88 	for (i = bufnum / 4; i <= bufnum_end / 4; i++)
89 		eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
90 
91 	for (i = bufnum; i <= bufnum_end; i++) {
92 		if (check_read_ecc(buf, eccstat, i, page_size))
93 			break;
94 	}
95 
96 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
97 }
98 
bad_block(uchar * marker,int port_size)99 static inline int bad_block(uchar *marker, int port_size)
100 {
101 	if (port_size == 8)
102 		return __raw_readb(marker) != 0xff;
103 	else
104 		return __raw_readw((u16 *)marker) != 0xffff;
105 }
106 
nand_spl_load_image(uint32_t offs,unsigned int uboot_size,void * vdst)107 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
108 {
109 	struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
110 	struct fsl_ifc_runtime *ifc = NULL;
111 	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
112 	int page_size;
113 	int port_size;
114 	int pages_per_blk;
115 	int blk_size;
116 	int bad_marker = 0;
117 	int bufnum_mask, bufnum, ver = 0;
118 
119 	int csor, cspr;
120 	int pos = 0;
121 	int j = 0;
122 
123 	int sram_addr;
124 	int pg_no;
125 	uchar *dst = vdst;
126 
127 	ifc = runtime_regs_address();
128 
129 	/* Get NAND Flash configuration */
130 	csor = CONFIG_SYS_NAND_CSOR;
131 	cspr = CONFIG_SYS_NAND_CSPR;
132 
133 	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
134 
135 	if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
136 		page_size = 8192;
137 		bufnum_mask = 0x0;
138 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
139 		page_size = 4096;
140 		bufnum_mask = 0x1;
141 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
142 		page_size = 2048;
143 		bufnum_mask = 0x3;
144 	} else {
145 		page_size = 512;
146 		bufnum_mask = 0xf;
147 
148 		if (port_size == 8)
149 			bad_marker = 5;
150 	}
151 
152 	ver = ifc_in32(&gregs->ifc_rev);
153 	if (ver >= FSL_IFC_V2_0_0)
154 		bufnum_mask = (bufnum_mask * 2) + 1;
155 
156 	pages_per_blk =
157 		32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
158 
159 	blk_size = pages_per_blk * page_size;
160 
161 	/* Open Full SRAM mapping for spare are access */
162 	ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
163 
164 	/* Clear Boot events */
165 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
166 
167 	/* Program FIR/FCR for Large/Small page */
168 	if (page_size > 512) {
169 		ifc_out32(&ifc->ifc_nand.nand_fir0,
170 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
171 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
172 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
173 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
174 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
175 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
176 
177 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
178 			  (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
179 			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
180 	} else {
181 		ifc_out32(&ifc->ifc_nand.nand_fir0,
182 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
183 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
184 			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
185 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
186 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
187 
188 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
189 			  NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
190 	}
191 
192 	/* Program FBCR = 0 for full page read */
193 	ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
194 
195 	/* Read and copy u-boot on SDRAM from NAND device, In parallel
196 	 * check for Bad block if found skip it and read continue to
197 	 * next Block
198 	 */
199 	while (pos < uboot_size) {
200 		int i = 0;
201 		do {
202 			pg_no = offs / page_size;
203 			bufnum = pg_no & bufnum_mask;
204 			sram_addr = bufnum * page_size * 2;
205 
206 			ifc_out32(&ifc->ifc_nand.row0, pg_no);
207 			ifc_out32(&ifc->ifc_nand.col0, 0);
208 			/* start read */
209 			ifc_out32(&ifc->ifc_nand.nandseq_strt,
210 				  IFC_NAND_SEQ_STRT_FIR_STRT);
211 
212 			/* wait for read to complete */
213 			nand_wait(&buf[sram_addr], bufnum, page_size);
214 
215 			/*
216 			 * If either of the first two pages are marked bad,
217 			 * continue to the next block.
218 			 */
219 			if (i++ < 2 &&
220 			    bad_block(&buf[sram_addr + page_size + bad_marker],
221 				      port_size)) {
222 				puts("skipping\n");
223 				offs = (offs + blk_size) & ~(blk_size - 1);
224 				pos &= ~(blk_size - 1);
225 				break;
226 			}
227 
228 			for (j = 0; j < page_size; j++)
229 				dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
230 
231 			pos += page_size;
232 			offs += page_size;
233 		} while ((offs & (blk_size - 1)) && (pos < uboot_size));
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
241  * configured and available since this code loads the main U-Boot image
242  * from NAND into SDRAM and starts from there.
243  */
nand_boot(void)244 void nand_boot(void)
245 {
246 	__attribute__((noreturn)) void (*uboot)(void);
247 	/*
248 	 * Load U-Boot image from NAND into RAM
249 	 */
250 	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
251 			    CONFIG_SYS_NAND_U_BOOT_SIZE,
252 			    (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
253 
254 #ifdef CONFIG_NAND_ENV_DST
255 	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
256 			    (uchar *)CONFIG_NAND_ENV_DST);
257 
258 #ifdef CONFIG_ENV_OFFSET_REDUND
259 	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
260 			    (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
261 #endif
262 #endif
263 	/*
264 	 * Jump to U-Boot image
265 	 */
266 #ifdef CONFIG_SPL_FLUSH_IMAGE
267 	/*
268 	 * Clean d-cache and invalidate i-cache, to
269 	 * make sure that no stale data is executed.
270 	 */
271 	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
272 #endif
273 
274 #ifdef CONFIG_CHAIN_OF_TRUST
275 	/*
276 	 * U-Boot header is appended at end of U-boot image, so
277 	 * calculate U-boot header address using U-boot header size.
278 	 */
279 #define CONFIG_U_BOOT_HDR_ADDR \
280 		((CONFIG_SYS_NAND_U_BOOT_START + \
281 		  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
282 		 CONFIG_U_BOOT_HDR_SIZE)
283 	spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
284 			   CONFIG_SYS_NAND_U_BOOT_START);
285 	/*
286 	 * In case of failure in validation, spl_validate_uboot would
287 	 * not return back in case of Production environment with ITS=1.
288 	 * Thus U-Boot will not start.
289 	 * In Development environment (ITS=0 and SB_EN=1), the function
290 	 * may return back in case of non-fatal failures.
291 	 */
292 #endif
293 
294 	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
295 	uboot();
296 }
297 
298 #ifndef CONFIG_SPL_NAND_INIT
nand_init(void)299 void nand_init(void)
300 {
301 }
302 
nand_deselect(void)303 void nand_deselect(void)
304 {
305 }
306 #endif
307