1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "hw/boards.h"
26 #include "hw/hw.h"
27 #include "hw/arm/arm.h"
28 #include "hw/arm/omap.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/arm/soc_dma.h"
31 #include "sysemu/qtest.h"
32 #include "qemu/range.h"
33 #include "hw/sysbus.h"
34 #include "qemu/cutils.h"
35 #include "qemu/bcd.h"
36
omap_log_badwidth(const char * funcname,hwaddr addr,int sz)37 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
38 {
39 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
40 funcname, 8 * sz, addr);
41 }
42
43 /* Should signal the TCMI/GPMC */
omap_badwidth_read8(void * opaque,hwaddr addr)44 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
45 {
46 uint8_t ret;
47
48 omap_log_badwidth(__func__, addr, 1);
49 cpu_physical_memory_read(addr, &ret, 1);
50 return ret;
51 }
52
omap_badwidth_write8(void * opaque,hwaddr addr,uint32_t value)53 void omap_badwidth_write8(void *opaque, hwaddr addr,
54 uint32_t value)
55 {
56 uint8_t val8 = value;
57
58 omap_log_badwidth(__func__, addr, 1);
59 cpu_physical_memory_write(addr, &val8, 1);
60 }
61
omap_badwidth_read16(void * opaque,hwaddr addr)62 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
63 {
64 uint16_t ret;
65
66 omap_log_badwidth(__func__, addr, 2);
67 cpu_physical_memory_read(addr, &ret, 2);
68 return ret;
69 }
70
omap_badwidth_write16(void * opaque,hwaddr addr,uint32_t value)71 void omap_badwidth_write16(void *opaque, hwaddr addr,
72 uint32_t value)
73 {
74 uint16_t val16 = value;
75
76 omap_log_badwidth(__func__, addr, 2);
77 cpu_physical_memory_write(addr, &val16, 2);
78 }
79
omap_badwidth_read32(void * opaque,hwaddr addr)80 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
81 {
82 uint32_t ret;
83
84 omap_log_badwidth(__func__, addr, 4);
85 cpu_physical_memory_read(addr, &ret, 4);
86 return ret;
87 }
88
omap_badwidth_write32(void * opaque,hwaddr addr,uint32_t value)89 void omap_badwidth_write32(void *opaque, hwaddr addr,
90 uint32_t value)
91 {
92 omap_log_badwidth(__func__, addr, 4);
93 cpu_physical_memory_write(addr, &value, 4);
94 }
95
96 /* MPU OS timers */
97 struct omap_mpu_timer_s {
98 MemoryRegion iomem;
99 qemu_irq irq;
100 omap_clk clk;
101 uint32_t val;
102 int64_t time;
103 QEMUTimer *timer;
104 QEMUBH *tick;
105 int64_t rate;
106 int it_ena;
107
108 int enable;
109 int ptv;
110 int ar;
111 int st;
112 uint32_t reset_val;
113 };
114
omap_timer_read(struct omap_mpu_timer_s * timer)115 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
116 {
117 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
118
119 if (timer->st && timer->enable && timer->rate)
120 return timer->val - muldiv64(distance >> (timer->ptv + 1),
121 timer->rate, NANOSECONDS_PER_SECOND);
122 else
123 return timer->val;
124 }
125
omap_timer_sync(struct omap_mpu_timer_s * timer)126 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
127 {
128 timer->val = omap_timer_read(timer);
129 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
130 }
131
omap_timer_update(struct omap_mpu_timer_s * timer)132 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
133 {
134 int64_t expires;
135
136 if (timer->enable && timer->st && timer->rate) {
137 timer->val = timer->reset_val; /* Should skip this on clk enable */
138 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
139 NANOSECONDS_PER_SECOND, timer->rate);
140
141 /* If timer expiry would be sooner than in about 1 ms and
142 * auto-reload isn't set, then fire immediately. This is a hack
143 * to make systems like PalmOS run in acceptable time. PalmOS
144 * sets the interval to a very low value and polls the status bit
145 * in a busy loop when it wants to sleep just a couple of CPU
146 * ticks. */
147 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
148 timer_mod(timer->timer, timer->time + expires);
149 } else {
150 qemu_bh_schedule(timer->tick);
151 }
152 } else
153 timer_del(timer->timer);
154 }
155
omap_timer_fire(void * opaque)156 static void omap_timer_fire(void *opaque)
157 {
158 struct omap_mpu_timer_s *timer = opaque;
159
160 if (!timer->ar) {
161 timer->val = 0;
162 timer->st = 0;
163 }
164
165 if (timer->it_ena)
166 /* Edge-triggered irq */
167 qemu_irq_pulse(timer->irq);
168 }
169
omap_timer_tick(void * opaque)170 static void omap_timer_tick(void *opaque)
171 {
172 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
173
174 omap_timer_sync(timer);
175 omap_timer_fire(timer);
176 omap_timer_update(timer);
177 }
178
omap_timer_clk_update(void * opaque,int line,int on)179 static void omap_timer_clk_update(void *opaque, int line, int on)
180 {
181 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
182
183 omap_timer_sync(timer);
184 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
185 omap_timer_update(timer);
186 }
187
omap_timer_clk_setup(struct omap_mpu_timer_s * timer)188 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
189 {
190 omap_clk_adduser(timer->clk,
191 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
192 timer->rate = omap_clk_getrate(timer->clk);
193 }
194
omap_mpu_timer_read(void * opaque,hwaddr addr,unsigned size)195 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
196 unsigned size)
197 {
198 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
199
200 if (size != 4) {
201 return omap_badwidth_read32(opaque, addr);
202 }
203
204 switch (addr) {
205 case 0x00: /* CNTL_TIMER */
206 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
207
208 case 0x04: /* LOAD_TIM */
209 break;
210
211 case 0x08: /* READ_TIM */
212 return omap_timer_read(s);
213 }
214
215 OMAP_BAD_REG(addr);
216 return 0;
217 }
218
omap_mpu_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)219 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
220 uint64_t value, unsigned size)
221 {
222 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
223
224 if (size != 4) {
225 omap_badwidth_write32(opaque, addr, value);
226 return;
227 }
228
229 switch (addr) {
230 case 0x00: /* CNTL_TIMER */
231 omap_timer_sync(s);
232 s->enable = (value >> 5) & 1;
233 s->ptv = (value >> 2) & 7;
234 s->ar = (value >> 1) & 1;
235 s->st = value & 1;
236 omap_timer_update(s);
237 return;
238
239 case 0x04: /* LOAD_TIM */
240 s->reset_val = value;
241 return;
242
243 case 0x08: /* READ_TIM */
244 OMAP_RO_REG(addr);
245 break;
246
247 default:
248 OMAP_BAD_REG(addr);
249 }
250 }
251
252 static const MemoryRegionOps omap_mpu_timer_ops = {
253 .read = omap_mpu_timer_read,
254 .write = omap_mpu_timer_write,
255 .endianness = DEVICE_LITTLE_ENDIAN,
256 };
257
omap_mpu_timer_reset(struct omap_mpu_timer_s * s)258 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
259 {
260 timer_del(s->timer);
261 s->enable = 0;
262 s->reset_val = 31337;
263 s->val = 0;
264 s->ptv = 0;
265 s->ar = 0;
266 s->st = 0;
267 s->it_ena = 1;
268 }
269
omap_mpu_timer_init(MemoryRegion * system_memory,hwaddr base,qemu_irq irq,omap_clk clk)270 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
271 hwaddr base,
272 qemu_irq irq, omap_clk clk)
273 {
274 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
275
276 s->irq = irq;
277 s->clk = clk;
278 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
279 s->tick = qemu_bh_new(omap_timer_fire, s);
280 omap_mpu_timer_reset(s);
281 omap_timer_clk_setup(s);
282
283 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
284 "omap-mpu-timer", 0x100);
285
286 memory_region_add_subregion(system_memory, base, &s->iomem);
287
288 return s;
289 }
290
291 /* Watchdog timer */
292 struct omap_watchdog_timer_s {
293 struct omap_mpu_timer_s timer;
294 MemoryRegion iomem;
295 uint8_t last_wr;
296 int mode;
297 int free;
298 int reset;
299 };
300
omap_wd_timer_read(void * opaque,hwaddr addr,unsigned size)301 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
302 unsigned size)
303 {
304 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
305
306 if (size != 2) {
307 return omap_badwidth_read16(opaque, addr);
308 }
309
310 switch (addr) {
311 case 0x00: /* CNTL_TIMER */
312 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
313 (s->timer.st << 7) | (s->free << 1);
314
315 case 0x04: /* READ_TIMER */
316 return omap_timer_read(&s->timer);
317
318 case 0x08: /* TIMER_MODE */
319 return s->mode << 15;
320 }
321
322 OMAP_BAD_REG(addr);
323 return 0;
324 }
325
omap_wd_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)326 static void omap_wd_timer_write(void *opaque, hwaddr addr,
327 uint64_t value, unsigned size)
328 {
329 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
330
331 if (size != 2) {
332 omap_badwidth_write16(opaque, addr, value);
333 return;
334 }
335
336 switch (addr) {
337 case 0x00: /* CNTL_TIMER */
338 omap_timer_sync(&s->timer);
339 s->timer.ptv = (value >> 9) & 7;
340 s->timer.ar = (value >> 8) & 1;
341 s->timer.st = (value >> 7) & 1;
342 s->free = (value >> 1) & 1;
343 omap_timer_update(&s->timer);
344 break;
345
346 case 0x04: /* LOAD_TIMER */
347 s->timer.reset_val = value & 0xffff;
348 break;
349
350 case 0x08: /* TIMER_MODE */
351 if (!s->mode && ((value >> 15) & 1))
352 omap_clk_get(s->timer.clk);
353 s->mode |= (value >> 15) & 1;
354 if (s->last_wr == 0xf5) {
355 if ((value & 0xff) == 0xa0) {
356 if (s->mode) {
357 s->mode = 0;
358 omap_clk_put(s->timer.clk);
359 }
360 } else {
361 /* XXX: on T|E hardware somehow this has no effect,
362 * on Zire 71 it works as specified. */
363 s->reset = 1;
364 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
365 }
366 }
367 s->last_wr = value & 0xff;
368 break;
369
370 default:
371 OMAP_BAD_REG(addr);
372 }
373 }
374
375 static const MemoryRegionOps omap_wd_timer_ops = {
376 .read = omap_wd_timer_read,
377 .write = omap_wd_timer_write,
378 .endianness = DEVICE_NATIVE_ENDIAN,
379 };
380
omap_wd_timer_reset(struct omap_watchdog_timer_s * s)381 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
382 {
383 timer_del(s->timer.timer);
384 if (!s->mode)
385 omap_clk_get(s->timer.clk);
386 s->mode = 1;
387 s->free = 1;
388 s->reset = 0;
389 s->timer.enable = 1;
390 s->timer.it_ena = 1;
391 s->timer.reset_val = 0xffff;
392 s->timer.val = 0;
393 s->timer.st = 0;
394 s->timer.ptv = 0;
395 s->timer.ar = 0;
396 omap_timer_update(&s->timer);
397 }
398
omap_wd_timer_init(MemoryRegion * memory,hwaddr base,qemu_irq irq,omap_clk clk)399 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
400 hwaddr base,
401 qemu_irq irq, omap_clk clk)
402 {
403 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
404
405 s->timer.irq = irq;
406 s->timer.clk = clk;
407 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
408 omap_wd_timer_reset(s);
409 omap_timer_clk_setup(&s->timer);
410
411 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
412 "omap-wd-timer", 0x100);
413 memory_region_add_subregion(memory, base, &s->iomem);
414
415 return s;
416 }
417
418 /* 32-kHz timer */
419 struct omap_32khz_timer_s {
420 struct omap_mpu_timer_s timer;
421 MemoryRegion iomem;
422 };
423
omap_os_timer_read(void * opaque,hwaddr addr,unsigned size)424 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
425 unsigned size)
426 {
427 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
428 int offset = addr & OMAP_MPUI_REG_MASK;
429
430 if (size != 4) {
431 return omap_badwidth_read32(opaque, addr);
432 }
433
434 switch (offset) {
435 case 0x00: /* TVR */
436 return s->timer.reset_val;
437
438 case 0x04: /* TCR */
439 return omap_timer_read(&s->timer);
440
441 case 0x08: /* CR */
442 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
443
444 default:
445 break;
446 }
447 OMAP_BAD_REG(addr);
448 return 0;
449 }
450
omap_os_timer_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)451 static void omap_os_timer_write(void *opaque, hwaddr addr,
452 uint64_t value, unsigned size)
453 {
454 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
455 int offset = addr & OMAP_MPUI_REG_MASK;
456
457 if (size != 4) {
458 omap_badwidth_write32(opaque, addr, value);
459 return;
460 }
461
462 switch (offset) {
463 case 0x00: /* TVR */
464 s->timer.reset_val = value & 0x00ffffff;
465 break;
466
467 case 0x04: /* TCR */
468 OMAP_RO_REG(addr);
469 break;
470
471 case 0x08: /* CR */
472 s->timer.ar = (value >> 3) & 1;
473 s->timer.it_ena = (value >> 2) & 1;
474 if (s->timer.st != (value & 1) || (value & 2)) {
475 omap_timer_sync(&s->timer);
476 s->timer.enable = value & 1;
477 s->timer.st = value & 1;
478 omap_timer_update(&s->timer);
479 }
480 break;
481
482 default:
483 OMAP_BAD_REG(addr);
484 }
485 }
486
487 static const MemoryRegionOps omap_os_timer_ops = {
488 .read = omap_os_timer_read,
489 .write = omap_os_timer_write,
490 .endianness = DEVICE_NATIVE_ENDIAN,
491 };
492
omap_os_timer_reset(struct omap_32khz_timer_s * s)493 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
494 {
495 timer_del(s->timer.timer);
496 s->timer.enable = 0;
497 s->timer.it_ena = 0;
498 s->timer.reset_val = 0x00ffffff;
499 s->timer.val = 0;
500 s->timer.st = 0;
501 s->timer.ptv = 0;
502 s->timer.ar = 1;
503 }
504
omap_os_timer_init(MemoryRegion * memory,hwaddr base,qemu_irq irq,omap_clk clk)505 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
506 hwaddr base,
507 qemu_irq irq, omap_clk clk)
508 {
509 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
510
511 s->timer.irq = irq;
512 s->timer.clk = clk;
513 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
514 omap_os_timer_reset(s);
515 omap_timer_clk_setup(&s->timer);
516
517 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
518 "omap-os-timer", 0x800);
519 memory_region_add_subregion(memory, base, &s->iomem);
520
521 return s;
522 }
523
524 /* Ultra Low-Power Device Module */
omap_ulpd_pm_read(void * opaque,hwaddr addr,unsigned size)525 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
526 unsigned size)
527 {
528 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
529 uint16_t ret;
530
531 if (size != 2) {
532 return omap_badwidth_read16(opaque, addr);
533 }
534
535 switch (addr) {
536 case 0x14: /* IT_STATUS */
537 ret = s->ulpd_pm_regs[addr >> 2];
538 s->ulpd_pm_regs[addr >> 2] = 0;
539 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
540 return ret;
541
542 case 0x18: /* Reserved */
543 case 0x1c: /* Reserved */
544 case 0x20: /* Reserved */
545 case 0x28: /* Reserved */
546 case 0x2c: /* Reserved */
547 OMAP_BAD_REG(addr);
548 /* fall through */
549 case 0x00: /* COUNTER_32_LSB */
550 case 0x04: /* COUNTER_32_MSB */
551 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
552 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
553 case 0x10: /* GAUGING_CTRL */
554 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
555 case 0x30: /* CLOCK_CTRL */
556 case 0x34: /* SOFT_REQ */
557 case 0x38: /* COUNTER_32_FIQ */
558 case 0x3c: /* DPLL_CTRL */
559 case 0x40: /* STATUS_REQ */
560 /* XXX: check clk::usecount state for every clock */
561 case 0x48: /* LOCL_TIME */
562 case 0x4c: /* APLL_CTRL */
563 case 0x50: /* POWER_CTRL */
564 return s->ulpd_pm_regs[addr >> 2];
565 }
566
567 OMAP_BAD_REG(addr);
568 return 0;
569 }
570
omap_ulpd_clk_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)571 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
572 uint16_t diff, uint16_t value)
573 {
574 if (diff & (1 << 4)) /* USB_MCLK_EN */
575 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
576 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
577 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
578 }
579
omap_ulpd_req_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)580 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
581 uint16_t diff, uint16_t value)
582 {
583 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
584 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
585 if (diff & (1 << 1)) /* SOFT_COM_REQ */
586 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
587 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
588 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
589 if (diff & (1 << 3)) /* SOFT_USB_REQ */
590 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
591 }
592
omap_ulpd_pm_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)593 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
594 uint64_t value, unsigned size)
595 {
596 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
597 int64_t now, ticks;
598 int div, mult;
599 static const int bypass_div[4] = { 1, 2, 4, 4 };
600 uint16_t diff;
601
602 if (size != 2) {
603 omap_badwidth_write16(opaque, addr, value);
604 return;
605 }
606
607 switch (addr) {
608 case 0x00: /* COUNTER_32_LSB */
609 case 0x04: /* COUNTER_32_MSB */
610 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
611 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
612 case 0x14: /* IT_STATUS */
613 case 0x40: /* STATUS_REQ */
614 OMAP_RO_REG(addr);
615 break;
616
617 case 0x10: /* GAUGING_CTRL */
618 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
619 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
620 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
621
622 if (value & 1)
623 s->ulpd_gauge_start = now;
624 else {
625 now -= s->ulpd_gauge_start;
626
627 /* 32-kHz ticks */
628 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
629 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
630 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
631 if (ticks >> 32) /* OVERFLOW_32K */
632 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
633
634 /* High frequency ticks */
635 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
636 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
637 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
638 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
640
641 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
642 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
643 }
644 }
645 s->ulpd_pm_regs[addr >> 2] = value;
646 break;
647
648 case 0x18: /* Reserved */
649 case 0x1c: /* Reserved */
650 case 0x20: /* Reserved */
651 case 0x28: /* Reserved */
652 case 0x2c: /* Reserved */
653 OMAP_BAD_REG(addr);
654 /* fall through */
655 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
656 case 0x38: /* COUNTER_32_FIQ */
657 case 0x48: /* LOCL_TIME */
658 case 0x50: /* POWER_CTRL */
659 s->ulpd_pm_regs[addr >> 2] = value;
660 break;
661
662 case 0x30: /* CLOCK_CTRL */
663 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
664 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
665 omap_ulpd_clk_update(s, diff, value);
666 break;
667
668 case 0x34: /* SOFT_REQ */
669 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
670 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
671 omap_ulpd_req_update(s, diff, value);
672 break;
673
674 case 0x3c: /* DPLL_CTRL */
675 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
676 * omitted altogether, probably a typo. */
677 /* This register has identical semantics with DPLL(1:3) control
678 * registers, see omap_dpll_write() */
679 diff = s->ulpd_pm_regs[addr >> 2] & value;
680 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
681 if (diff & (0x3ff << 2)) {
682 if (value & (1 << 4)) { /* PLL_ENABLE */
683 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
684 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
685 } else {
686 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
687 mult = 1;
688 }
689 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
690 }
691
692 /* Enter the desired mode. */
693 s->ulpd_pm_regs[addr >> 2] =
694 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
695 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
696
697 /* Act as if the lock is restored. */
698 s->ulpd_pm_regs[addr >> 2] |= 2;
699 break;
700
701 case 0x4c: /* APLL_CTRL */
702 diff = s->ulpd_pm_regs[addr >> 2] & value;
703 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
704 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
705 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
706 (value & (1 << 0)) ? "apll" : "dpll4"));
707 break;
708
709 default:
710 OMAP_BAD_REG(addr);
711 }
712 }
713
714 static const MemoryRegionOps omap_ulpd_pm_ops = {
715 .read = omap_ulpd_pm_read,
716 .write = omap_ulpd_pm_write,
717 .endianness = DEVICE_NATIVE_ENDIAN,
718 };
719
omap_ulpd_pm_reset(struct omap_mpu_state_s * mpu)720 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
721 {
722 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
723 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
724 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
725 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
726 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
727 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
728 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
729 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
730 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
731 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
732 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
733 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
734 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
735 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
736 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
737 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
738 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
739 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
740 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
741 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
742 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
743 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
744 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
745 }
746
omap_ulpd_pm_init(MemoryRegion * system_memory,hwaddr base,struct omap_mpu_state_s * mpu)747 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
748 hwaddr base,
749 struct omap_mpu_state_s *mpu)
750 {
751 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
752 "omap-ulpd-pm", 0x800);
753 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
754 omap_ulpd_pm_reset(mpu);
755 }
756
757 /* OMAP Pin Configuration */
omap_pin_cfg_read(void * opaque,hwaddr addr,unsigned size)758 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
759 unsigned size)
760 {
761 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
762
763 if (size != 4) {
764 return omap_badwidth_read32(opaque, addr);
765 }
766
767 switch (addr) {
768 case 0x00: /* FUNC_MUX_CTRL_0 */
769 case 0x04: /* FUNC_MUX_CTRL_1 */
770 case 0x08: /* FUNC_MUX_CTRL_2 */
771 return s->func_mux_ctrl[addr >> 2];
772
773 case 0x0c: /* COMP_MODE_CTRL_0 */
774 return s->comp_mode_ctrl[0];
775
776 case 0x10: /* FUNC_MUX_CTRL_3 */
777 case 0x14: /* FUNC_MUX_CTRL_4 */
778 case 0x18: /* FUNC_MUX_CTRL_5 */
779 case 0x1c: /* FUNC_MUX_CTRL_6 */
780 case 0x20: /* FUNC_MUX_CTRL_7 */
781 case 0x24: /* FUNC_MUX_CTRL_8 */
782 case 0x28: /* FUNC_MUX_CTRL_9 */
783 case 0x2c: /* FUNC_MUX_CTRL_A */
784 case 0x30: /* FUNC_MUX_CTRL_B */
785 case 0x34: /* FUNC_MUX_CTRL_C */
786 case 0x38: /* FUNC_MUX_CTRL_D */
787 return s->func_mux_ctrl[(addr >> 2) - 1];
788
789 case 0x40: /* PULL_DWN_CTRL_0 */
790 case 0x44: /* PULL_DWN_CTRL_1 */
791 case 0x48: /* PULL_DWN_CTRL_2 */
792 case 0x4c: /* PULL_DWN_CTRL_3 */
793 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
794
795 case 0x50: /* GATE_INH_CTRL_0 */
796 return s->gate_inh_ctrl[0];
797
798 case 0x60: /* VOLTAGE_CTRL_0 */
799 return s->voltage_ctrl[0];
800
801 case 0x70: /* TEST_DBG_CTRL_0 */
802 return s->test_dbg_ctrl[0];
803
804 case 0x80: /* MOD_CONF_CTRL_0 */
805 return s->mod_conf_ctrl[0];
806 }
807
808 OMAP_BAD_REG(addr);
809 return 0;
810 }
811
omap_pin_funcmux0_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)812 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
813 uint32_t diff, uint32_t value)
814 {
815 if (s->compat1509) {
816 if (diff & (1 << 9)) /* BLUETOOTH */
817 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
818 (~value >> 9) & 1);
819 if (diff & (1 << 7)) /* USB.CLKO */
820 omap_clk_onoff(omap_findclk(s, "usb.clko"),
821 (value >> 7) & 1);
822 }
823 }
824
omap_pin_funcmux1_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)825 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
826 uint32_t diff, uint32_t value)
827 {
828 if (s->compat1509) {
829 if (diff & (1U << 31)) {
830 /* MCBSP3_CLK_HIZ_DI */
831 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
832 }
833 if (diff & (1 << 1)) {
834 /* CLK32K */
835 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
836 }
837 }
838 }
839
omap_pin_modconf1_update(struct omap_mpu_state_s * s,uint32_t diff,uint32_t value)840 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
841 uint32_t diff, uint32_t value)
842 {
843 if (diff & (1U << 31)) {
844 /* CONF_MOD_UART3_CLK_MODE_R */
845 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
846 omap_findclk(s, ((value >> 31) & 1) ?
847 "ck_48m" : "armper_ck"));
848 }
849 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
850 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
851 omap_findclk(s, ((value >> 30) & 1) ?
852 "ck_48m" : "armper_ck"));
853 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
854 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
855 omap_findclk(s, ((value >> 29) & 1) ?
856 "ck_48m" : "armper_ck"));
857 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
858 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
859 omap_findclk(s, ((value >> 23) & 1) ?
860 "ck_48m" : "armper_ck"));
861 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
862 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
863 omap_findclk(s, ((value >> 12) & 1) ?
864 "ck_48m" : "armper_ck"));
865 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
866 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
867 }
868
omap_pin_cfg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)869 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
870 uint64_t value, unsigned size)
871 {
872 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
873 uint32_t diff;
874
875 if (size != 4) {
876 omap_badwidth_write32(opaque, addr, value);
877 return;
878 }
879
880 switch (addr) {
881 case 0x00: /* FUNC_MUX_CTRL_0 */
882 diff = s->func_mux_ctrl[addr >> 2] ^ value;
883 s->func_mux_ctrl[addr >> 2] = value;
884 omap_pin_funcmux0_update(s, diff, value);
885 return;
886
887 case 0x04: /* FUNC_MUX_CTRL_1 */
888 diff = s->func_mux_ctrl[addr >> 2] ^ value;
889 s->func_mux_ctrl[addr >> 2] = value;
890 omap_pin_funcmux1_update(s, diff, value);
891 return;
892
893 case 0x08: /* FUNC_MUX_CTRL_2 */
894 s->func_mux_ctrl[addr >> 2] = value;
895 return;
896
897 case 0x0c: /* COMP_MODE_CTRL_0 */
898 s->comp_mode_ctrl[0] = value;
899 s->compat1509 = (value != 0x0000eaef);
900 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
901 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
902 return;
903
904 case 0x10: /* FUNC_MUX_CTRL_3 */
905 case 0x14: /* FUNC_MUX_CTRL_4 */
906 case 0x18: /* FUNC_MUX_CTRL_5 */
907 case 0x1c: /* FUNC_MUX_CTRL_6 */
908 case 0x20: /* FUNC_MUX_CTRL_7 */
909 case 0x24: /* FUNC_MUX_CTRL_8 */
910 case 0x28: /* FUNC_MUX_CTRL_9 */
911 case 0x2c: /* FUNC_MUX_CTRL_A */
912 case 0x30: /* FUNC_MUX_CTRL_B */
913 case 0x34: /* FUNC_MUX_CTRL_C */
914 case 0x38: /* FUNC_MUX_CTRL_D */
915 s->func_mux_ctrl[(addr >> 2) - 1] = value;
916 return;
917
918 case 0x40: /* PULL_DWN_CTRL_0 */
919 case 0x44: /* PULL_DWN_CTRL_1 */
920 case 0x48: /* PULL_DWN_CTRL_2 */
921 case 0x4c: /* PULL_DWN_CTRL_3 */
922 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
923 return;
924
925 case 0x50: /* GATE_INH_CTRL_0 */
926 s->gate_inh_ctrl[0] = value;
927 return;
928
929 case 0x60: /* VOLTAGE_CTRL_0 */
930 s->voltage_ctrl[0] = value;
931 return;
932
933 case 0x70: /* TEST_DBG_CTRL_0 */
934 s->test_dbg_ctrl[0] = value;
935 return;
936
937 case 0x80: /* MOD_CONF_CTRL_0 */
938 diff = s->mod_conf_ctrl[0] ^ value;
939 s->mod_conf_ctrl[0] = value;
940 omap_pin_modconf1_update(s, diff, value);
941 return;
942
943 default:
944 OMAP_BAD_REG(addr);
945 }
946 }
947
948 static const MemoryRegionOps omap_pin_cfg_ops = {
949 .read = omap_pin_cfg_read,
950 .write = omap_pin_cfg_write,
951 .endianness = DEVICE_NATIVE_ENDIAN,
952 };
953
omap_pin_cfg_reset(struct omap_mpu_state_s * mpu)954 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
955 {
956 /* Start in Compatibility Mode. */
957 mpu->compat1509 = 1;
958 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
959 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
960 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
961 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
962 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
963 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
964 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
965 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
966 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
967 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
968 }
969
omap_pin_cfg_init(MemoryRegion * system_memory,hwaddr base,struct omap_mpu_state_s * mpu)970 static void omap_pin_cfg_init(MemoryRegion *system_memory,
971 hwaddr base,
972 struct omap_mpu_state_s *mpu)
973 {
974 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
975 "omap-pin-cfg", 0x800);
976 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
977 omap_pin_cfg_reset(mpu);
978 }
979
980 /* Device Identification, Die Identification */
omap_id_read(void * opaque,hwaddr addr,unsigned size)981 static uint64_t omap_id_read(void *opaque, hwaddr addr,
982 unsigned size)
983 {
984 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
985
986 if (size != 4) {
987 return omap_badwidth_read32(opaque, addr);
988 }
989
990 switch (addr) {
991 case 0xfffe1800: /* DIE_ID_LSB */
992 return 0xc9581f0e;
993 case 0xfffe1804: /* DIE_ID_MSB */
994 return 0xa8858bfa;
995
996 case 0xfffe2000: /* PRODUCT_ID_LSB */
997 return 0x00aaaafc;
998 case 0xfffe2004: /* PRODUCT_ID_MSB */
999 return 0xcafeb574;
1000
1001 case 0xfffed400: /* JTAG_ID_LSB */
1002 switch (s->mpu_model) {
1003 case omap310:
1004 return 0x03310315;
1005 case omap1510:
1006 return 0x03310115;
1007 default:
1008 hw_error("%s: bad mpu model\n", __func__);
1009 }
1010 break;
1011
1012 case 0xfffed404: /* JTAG_ID_MSB */
1013 switch (s->mpu_model) {
1014 case omap310:
1015 return 0xfb57402f;
1016 case omap1510:
1017 return 0xfb47002f;
1018 default:
1019 hw_error("%s: bad mpu model\n", __func__);
1020 }
1021 break;
1022 }
1023
1024 OMAP_BAD_REG(addr);
1025 return 0;
1026 }
1027
omap_id_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1028 static void omap_id_write(void *opaque, hwaddr addr,
1029 uint64_t value, unsigned size)
1030 {
1031 if (size != 4) {
1032 omap_badwidth_write32(opaque, addr, value);
1033 return;
1034 }
1035
1036 OMAP_BAD_REG(addr);
1037 }
1038
1039 static const MemoryRegionOps omap_id_ops = {
1040 .read = omap_id_read,
1041 .write = omap_id_write,
1042 .endianness = DEVICE_NATIVE_ENDIAN,
1043 };
1044
omap_id_init(MemoryRegion * memory,struct omap_mpu_state_s * mpu)1045 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1046 {
1047 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1048 "omap-id", 0x100000000ULL);
1049 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1050 0xfffe1800, 0x800);
1051 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1052 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1053 0xfffed400, 0x100);
1054 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1055 if (!cpu_is_omap15xx(mpu)) {
1056 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1057 &mpu->id_iomem, 0xfffe2000, 0x800);
1058 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1059 }
1060 }
1061
1062 /* MPUI Control (Dummy) */
omap_mpui_read(void * opaque,hwaddr addr,unsigned size)1063 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1064 unsigned size)
1065 {
1066 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1067
1068 if (size != 4) {
1069 return omap_badwidth_read32(opaque, addr);
1070 }
1071
1072 switch (addr) {
1073 case 0x00: /* CTRL */
1074 return s->mpui_ctrl;
1075 case 0x04: /* DEBUG_ADDR */
1076 return 0x01ffffff;
1077 case 0x08: /* DEBUG_DATA */
1078 return 0xffffffff;
1079 case 0x0c: /* DEBUG_FLAG */
1080 return 0x00000800;
1081 case 0x10: /* STATUS */
1082 return 0x00000000;
1083
1084 /* Not in OMAP310 */
1085 case 0x14: /* DSP_STATUS */
1086 case 0x18: /* DSP_BOOT_CONFIG */
1087 return 0x00000000;
1088 case 0x1c: /* DSP_MPUI_CONFIG */
1089 return 0x0000ffff;
1090 }
1091
1092 OMAP_BAD_REG(addr);
1093 return 0;
1094 }
1095
omap_mpui_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1096 static void omap_mpui_write(void *opaque, hwaddr addr,
1097 uint64_t value, unsigned size)
1098 {
1099 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1100
1101 if (size != 4) {
1102 omap_badwidth_write32(opaque, addr, value);
1103 return;
1104 }
1105
1106 switch (addr) {
1107 case 0x00: /* CTRL */
1108 s->mpui_ctrl = value & 0x007fffff;
1109 break;
1110
1111 case 0x04: /* DEBUG_ADDR */
1112 case 0x08: /* DEBUG_DATA */
1113 case 0x0c: /* DEBUG_FLAG */
1114 case 0x10: /* STATUS */
1115 /* Not in OMAP310 */
1116 case 0x14: /* DSP_STATUS */
1117 OMAP_RO_REG(addr);
1118 break;
1119 case 0x18: /* DSP_BOOT_CONFIG */
1120 case 0x1c: /* DSP_MPUI_CONFIG */
1121 break;
1122
1123 default:
1124 OMAP_BAD_REG(addr);
1125 }
1126 }
1127
1128 static const MemoryRegionOps omap_mpui_ops = {
1129 .read = omap_mpui_read,
1130 .write = omap_mpui_write,
1131 .endianness = DEVICE_NATIVE_ENDIAN,
1132 };
1133
omap_mpui_reset(struct omap_mpu_state_s * s)1134 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1135 {
1136 s->mpui_ctrl = 0x0003ff1b;
1137 }
1138
omap_mpui_init(MemoryRegion * memory,hwaddr base,struct omap_mpu_state_s * mpu)1139 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1140 struct omap_mpu_state_s *mpu)
1141 {
1142 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1143 "omap-mpui", 0x100);
1144 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1145
1146 omap_mpui_reset(mpu);
1147 }
1148
1149 /* TIPB Bridges */
1150 struct omap_tipb_bridge_s {
1151 qemu_irq abort;
1152 MemoryRegion iomem;
1153
1154 int width_intr;
1155 uint16_t control;
1156 uint16_t alloc;
1157 uint16_t buffer;
1158 uint16_t enh_control;
1159 };
1160
omap_tipb_bridge_read(void * opaque,hwaddr addr,unsigned size)1161 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1162 unsigned size)
1163 {
1164 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1165
1166 if (size < 2) {
1167 return omap_badwidth_read16(opaque, addr);
1168 }
1169
1170 switch (addr) {
1171 case 0x00: /* TIPB_CNTL */
1172 return s->control;
1173 case 0x04: /* TIPB_BUS_ALLOC */
1174 return s->alloc;
1175 case 0x08: /* MPU_TIPB_CNTL */
1176 return s->buffer;
1177 case 0x0c: /* ENHANCED_TIPB_CNTL */
1178 return s->enh_control;
1179 case 0x10: /* ADDRESS_DBG */
1180 case 0x14: /* DATA_DEBUG_LOW */
1181 case 0x18: /* DATA_DEBUG_HIGH */
1182 return 0xffff;
1183 case 0x1c: /* DEBUG_CNTR_SIG */
1184 return 0x00f8;
1185 }
1186
1187 OMAP_BAD_REG(addr);
1188 return 0;
1189 }
1190
omap_tipb_bridge_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1191 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1192 uint64_t value, unsigned size)
1193 {
1194 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1195
1196 if (size < 2) {
1197 omap_badwidth_write16(opaque, addr, value);
1198 return;
1199 }
1200
1201 switch (addr) {
1202 case 0x00: /* TIPB_CNTL */
1203 s->control = value & 0xffff;
1204 break;
1205
1206 case 0x04: /* TIPB_BUS_ALLOC */
1207 s->alloc = value & 0x003f;
1208 break;
1209
1210 case 0x08: /* MPU_TIPB_CNTL */
1211 s->buffer = value & 0x0003;
1212 break;
1213
1214 case 0x0c: /* ENHANCED_TIPB_CNTL */
1215 s->width_intr = !(value & 2);
1216 s->enh_control = value & 0x000f;
1217 break;
1218
1219 case 0x10: /* ADDRESS_DBG */
1220 case 0x14: /* DATA_DEBUG_LOW */
1221 case 0x18: /* DATA_DEBUG_HIGH */
1222 case 0x1c: /* DEBUG_CNTR_SIG */
1223 OMAP_RO_REG(addr);
1224 break;
1225
1226 default:
1227 OMAP_BAD_REG(addr);
1228 }
1229 }
1230
1231 static const MemoryRegionOps omap_tipb_bridge_ops = {
1232 .read = omap_tipb_bridge_read,
1233 .write = omap_tipb_bridge_write,
1234 .endianness = DEVICE_NATIVE_ENDIAN,
1235 };
1236
omap_tipb_bridge_reset(struct omap_tipb_bridge_s * s)1237 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1238 {
1239 s->control = 0xffff;
1240 s->alloc = 0x0009;
1241 s->buffer = 0x0000;
1242 s->enh_control = 0x000f;
1243 }
1244
omap_tipb_bridge_init(MemoryRegion * memory,hwaddr base,qemu_irq abort_irq,omap_clk clk)1245 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1246 MemoryRegion *memory, hwaddr base,
1247 qemu_irq abort_irq, omap_clk clk)
1248 {
1249 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1250
1251 s->abort = abort_irq;
1252 omap_tipb_bridge_reset(s);
1253
1254 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1255 "omap-tipb-bridge", 0x100);
1256 memory_region_add_subregion(memory, base, &s->iomem);
1257
1258 return s;
1259 }
1260
1261 /* Dummy Traffic Controller's Memory Interface */
omap_tcmi_read(void * opaque,hwaddr addr,unsigned size)1262 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1263 unsigned size)
1264 {
1265 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1266 uint32_t ret;
1267
1268 if (size != 4) {
1269 return omap_badwidth_read32(opaque, addr);
1270 }
1271
1272 switch (addr) {
1273 case 0x00: /* IMIF_PRIO */
1274 case 0x04: /* EMIFS_PRIO */
1275 case 0x08: /* EMIFF_PRIO */
1276 case 0x0c: /* EMIFS_CONFIG */
1277 case 0x10: /* EMIFS_CS0_CONFIG */
1278 case 0x14: /* EMIFS_CS1_CONFIG */
1279 case 0x18: /* EMIFS_CS2_CONFIG */
1280 case 0x1c: /* EMIFS_CS3_CONFIG */
1281 case 0x24: /* EMIFF_MRS */
1282 case 0x28: /* TIMEOUT1 */
1283 case 0x2c: /* TIMEOUT2 */
1284 case 0x30: /* TIMEOUT3 */
1285 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1286 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1287 return s->tcmi_regs[addr >> 2];
1288
1289 case 0x20: /* EMIFF_SDRAM_CONFIG */
1290 ret = s->tcmi_regs[addr >> 2];
1291 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1292 /* XXX: We can try using the VGA_DIRTY flag for this */
1293 return ret;
1294 }
1295
1296 OMAP_BAD_REG(addr);
1297 return 0;
1298 }
1299
omap_tcmi_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1300 static void omap_tcmi_write(void *opaque, hwaddr addr,
1301 uint64_t value, unsigned size)
1302 {
1303 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1304
1305 if (size != 4) {
1306 omap_badwidth_write32(opaque, addr, value);
1307 return;
1308 }
1309
1310 switch (addr) {
1311 case 0x00: /* IMIF_PRIO */
1312 case 0x04: /* EMIFS_PRIO */
1313 case 0x08: /* EMIFF_PRIO */
1314 case 0x10: /* EMIFS_CS0_CONFIG */
1315 case 0x14: /* EMIFS_CS1_CONFIG */
1316 case 0x18: /* EMIFS_CS2_CONFIG */
1317 case 0x1c: /* EMIFS_CS3_CONFIG */
1318 case 0x20: /* EMIFF_SDRAM_CONFIG */
1319 case 0x24: /* EMIFF_MRS */
1320 case 0x28: /* TIMEOUT1 */
1321 case 0x2c: /* TIMEOUT2 */
1322 case 0x30: /* TIMEOUT3 */
1323 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1324 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1325 s->tcmi_regs[addr >> 2] = value;
1326 break;
1327 case 0x0c: /* EMIFS_CONFIG */
1328 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1329 break;
1330
1331 default:
1332 OMAP_BAD_REG(addr);
1333 }
1334 }
1335
1336 static const MemoryRegionOps omap_tcmi_ops = {
1337 .read = omap_tcmi_read,
1338 .write = omap_tcmi_write,
1339 .endianness = DEVICE_NATIVE_ENDIAN,
1340 };
1341
omap_tcmi_reset(struct omap_mpu_state_s * mpu)1342 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1343 {
1344 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1345 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1346 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1347 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1348 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1349 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1350 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1351 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1352 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1353 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1354 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1355 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1356 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1357 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1358 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1359 }
1360
omap_tcmi_init(MemoryRegion * memory,hwaddr base,struct omap_mpu_state_s * mpu)1361 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1362 struct omap_mpu_state_s *mpu)
1363 {
1364 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1365 "omap-tcmi", 0x100);
1366 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1367 omap_tcmi_reset(mpu);
1368 }
1369
1370 /* Digital phase-locked loops control */
1371 struct dpll_ctl_s {
1372 MemoryRegion iomem;
1373 uint16_t mode;
1374 omap_clk dpll;
1375 };
1376
omap_dpll_read(void * opaque,hwaddr addr,unsigned size)1377 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1378 unsigned size)
1379 {
1380 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1381
1382 if (size != 2) {
1383 return omap_badwidth_read16(opaque, addr);
1384 }
1385
1386 if (addr == 0x00) /* CTL_REG */
1387 return s->mode;
1388
1389 OMAP_BAD_REG(addr);
1390 return 0;
1391 }
1392
omap_dpll_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1393 static void omap_dpll_write(void *opaque, hwaddr addr,
1394 uint64_t value, unsigned size)
1395 {
1396 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1397 uint16_t diff;
1398 static const int bypass_div[4] = { 1, 2, 4, 4 };
1399 int div, mult;
1400
1401 if (size != 2) {
1402 omap_badwidth_write16(opaque, addr, value);
1403 return;
1404 }
1405
1406 if (addr == 0x00) { /* CTL_REG */
1407 /* See omap_ulpd_pm_write() too */
1408 diff = s->mode & value;
1409 s->mode = value & 0x2fff;
1410 if (diff & (0x3ff << 2)) {
1411 if (value & (1 << 4)) { /* PLL_ENABLE */
1412 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1413 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1414 } else {
1415 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1416 mult = 1;
1417 }
1418 omap_clk_setrate(s->dpll, div, mult);
1419 }
1420
1421 /* Enter the desired mode. */
1422 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1423
1424 /* Act as if the lock is restored. */
1425 s->mode |= 2;
1426 } else {
1427 OMAP_BAD_REG(addr);
1428 }
1429 }
1430
1431 static const MemoryRegionOps omap_dpll_ops = {
1432 .read = omap_dpll_read,
1433 .write = omap_dpll_write,
1434 .endianness = DEVICE_NATIVE_ENDIAN,
1435 };
1436
omap_dpll_reset(struct dpll_ctl_s * s)1437 static void omap_dpll_reset(struct dpll_ctl_s *s)
1438 {
1439 s->mode = 0x2002;
1440 omap_clk_setrate(s->dpll, 1, 1);
1441 }
1442
omap_dpll_init(MemoryRegion * memory,hwaddr base,omap_clk clk)1443 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1444 hwaddr base, omap_clk clk)
1445 {
1446 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1447 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1448
1449 s->dpll = clk;
1450 omap_dpll_reset(s);
1451
1452 memory_region_add_subregion(memory, base, &s->iomem);
1453 return s;
1454 }
1455
1456 /* MPU Clock/Reset/Power Mode Control */
omap_clkm_read(void * opaque,hwaddr addr,unsigned size)1457 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1458 unsigned size)
1459 {
1460 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1461
1462 if (size != 2) {
1463 return omap_badwidth_read16(opaque, addr);
1464 }
1465
1466 switch (addr) {
1467 case 0x00: /* ARM_CKCTL */
1468 return s->clkm.arm_ckctl;
1469
1470 case 0x04: /* ARM_IDLECT1 */
1471 return s->clkm.arm_idlect1;
1472
1473 case 0x08: /* ARM_IDLECT2 */
1474 return s->clkm.arm_idlect2;
1475
1476 case 0x0c: /* ARM_EWUPCT */
1477 return s->clkm.arm_ewupct;
1478
1479 case 0x10: /* ARM_RSTCT1 */
1480 return s->clkm.arm_rstct1;
1481
1482 case 0x14: /* ARM_RSTCT2 */
1483 return s->clkm.arm_rstct2;
1484
1485 case 0x18: /* ARM_SYSST */
1486 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1487
1488 case 0x1c: /* ARM_CKOUT1 */
1489 return s->clkm.arm_ckout1;
1490
1491 case 0x20: /* ARM_CKOUT2 */
1492 break;
1493 }
1494
1495 OMAP_BAD_REG(addr);
1496 return 0;
1497 }
1498
omap_clkm_ckctl_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1499 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1500 uint16_t diff, uint16_t value)
1501 {
1502 omap_clk clk;
1503
1504 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1505 if (value & (1 << 14))
1506 /* Reserved */;
1507 else {
1508 clk = omap_findclk(s, "arminth_ck");
1509 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1510 }
1511 }
1512 if (diff & (1 << 12)) { /* ARM_TIMXO */
1513 clk = omap_findclk(s, "armtim_ck");
1514 if (value & (1 << 12))
1515 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1516 else
1517 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1518 }
1519 /* XXX: en_dspck */
1520 if (diff & (3 << 10)) { /* DSPMMUDIV */
1521 clk = omap_findclk(s, "dspmmu_ck");
1522 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1523 }
1524 if (diff & (3 << 8)) { /* TCDIV */
1525 clk = omap_findclk(s, "tc_ck");
1526 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1527 }
1528 if (diff & (3 << 6)) { /* DSPDIV */
1529 clk = omap_findclk(s, "dsp_ck");
1530 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1531 }
1532 if (diff & (3 << 4)) { /* ARMDIV */
1533 clk = omap_findclk(s, "arm_ck");
1534 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1535 }
1536 if (diff & (3 << 2)) { /* LCDDIV */
1537 clk = omap_findclk(s, "lcd_ck");
1538 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1539 }
1540 if (diff & (3 << 0)) { /* PERDIV */
1541 clk = omap_findclk(s, "armper_ck");
1542 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1543 }
1544 }
1545
omap_clkm_idlect1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1546 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1547 uint16_t diff, uint16_t value)
1548 {
1549 omap_clk clk;
1550
1551 if (value & (1 << 11)) { /* SETARM_IDLE */
1552 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1553 }
1554 if (!(value & (1 << 10))) { /* WKUP_MODE */
1555 /* XXX: disable wakeup from IRQ */
1556 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1557 }
1558
1559 #define SET_CANIDLE(clock, bit) \
1560 if (diff & (1 << bit)) { \
1561 clk = omap_findclk(s, clock); \
1562 omap_clk_canidle(clk, (value >> bit) & 1); \
1563 }
1564 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1565 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1566 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1567 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1568 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1569 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1570 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1571 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1572 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1573 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1574 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1575 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1576 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1577 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1578 }
1579
omap_clkm_idlect2_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1580 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1581 uint16_t diff, uint16_t value)
1582 {
1583 omap_clk clk;
1584
1585 #define SET_ONOFF(clock, bit) \
1586 if (diff & (1 << bit)) { \
1587 clk = omap_findclk(s, clock); \
1588 omap_clk_onoff(clk, (value >> bit) & 1); \
1589 }
1590 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1591 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1592 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1593 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1594 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1595 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1596 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1597 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1598 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1599 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1600 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1601 }
1602
omap_clkm_ckout1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1603 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1604 uint16_t diff, uint16_t value)
1605 {
1606 omap_clk clk;
1607
1608 if (diff & (3 << 4)) { /* TCLKOUT */
1609 clk = omap_findclk(s, "tclk_out");
1610 switch ((value >> 4) & 3) {
1611 case 1:
1612 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1613 omap_clk_onoff(clk, 1);
1614 break;
1615 case 2:
1616 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1617 omap_clk_onoff(clk, 1);
1618 break;
1619 default:
1620 omap_clk_onoff(clk, 0);
1621 }
1622 }
1623 if (diff & (3 << 2)) { /* DCLKOUT */
1624 clk = omap_findclk(s, "dclk_out");
1625 switch ((value >> 2) & 3) {
1626 case 0:
1627 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1628 break;
1629 case 1:
1630 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1631 break;
1632 case 2:
1633 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1634 break;
1635 case 3:
1636 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1637 break;
1638 }
1639 }
1640 if (diff & (3 << 0)) { /* ACLKOUT */
1641 clk = omap_findclk(s, "aclk_out");
1642 switch ((value >> 0) & 3) {
1643 case 1:
1644 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1645 omap_clk_onoff(clk, 1);
1646 break;
1647 case 2:
1648 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1649 omap_clk_onoff(clk, 1);
1650 break;
1651 case 3:
1652 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1653 omap_clk_onoff(clk, 1);
1654 break;
1655 default:
1656 omap_clk_onoff(clk, 0);
1657 }
1658 }
1659 }
1660
omap_clkm_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1661 static void omap_clkm_write(void *opaque, hwaddr addr,
1662 uint64_t value, unsigned size)
1663 {
1664 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1665 uint16_t diff;
1666 omap_clk clk;
1667 static const char *clkschemename[8] = {
1668 "fully synchronous", "fully asynchronous", "synchronous scalable",
1669 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1670 };
1671
1672 if (size != 2) {
1673 omap_badwidth_write16(opaque, addr, value);
1674 return;
1675 }
1676
1677 switch (addr) {
1678 case 0x00: /* ARM_CKCTL */
1679 diff = s->clkm.arm_ckctl ^ value;
1680 s->clkm.arm_ckctl = value & 0x7fff;
1681 omap_clkm_ckctl_update(s, diff, value);
1682 return;
1683
1684 case 0x04: /* ARM_IDLECT1 */
1685 diff = s->clkm.arm_idlect1 ^ value;
1686 s->clkm.arm_idlect1 = value & 0x0fff;
1687 omap_clkm_idlect1_update(s, diff, value);
1688 return;
1689
1690 case 0x08: /* ARM_IDLECT2 */
1691 diff = s->clkm.arm_idlect2 ^ value;
1692 s->clkm.arm_idlect2 = value & 0x07ff;
1693 omap_clkm_idlect2_update(s, diff, value);
1694 return;
1695
1696 case 0x0c: /* ARM_EWUPCT */
1697 s->clkm.arm_ewupct = value & 0x003f;
1698 return;
1699
1700 case 0x10: /* ARM_RSTCT1 */
1701 diff = s->clkm.arm_rstct1 ^ value;
1702 s->clkm.arm_rstct1 = value & 0x0007;
1703 if (value & 9) {
1704 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1705 s->clkm.cold_start = 0xa;
1706 }
1707 if (diff & ~value & 4) { /* DSP_RST */
1708 omap_mpui_reset(s);
1709 omap_tipb_bridge_reset(s->private_tipb);
1710 omap_tipb_bridge_reset(s->public_tipb);
1711 }
1712 if (diff & 2) { /* DSP_EN */
1713 clk = omap_findclk(s, "dsp_ck");
1714 omap_clk_canidle(clk, (~value >> 1) & 1);
1715 }
1716 return;
1717
1718 case 0x14: /* ARM_RSTCT2 */
1719 s->clkm.arm_rstct2 = value & 0x0001;
1720 return;
1721
1722 case 0x18: /* ARM_SYSST */
1723 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1724 s->clkm.clocking_scheme = (value >> 11) & 7;
1725 printf("%s: clocking scheme set to %s\n", __func__,
1726 clkschemename[s->clkm.clocking_scheme]);
1727 }
1728 s->clkm.cold_start &= value & 0x3f;
1729 return;
1730
1731 case 0x1c: /* ARM_CKOUT1 */
1732 diff = s->clkm.arm_ckout1 ^ value;
1733 s->clkm.arm_ckout1 = value & 0x003f;
1734 omap_clkm_ckout1_update(s, diff, value);
1735 return;
1736
1737 case 0x20: /* ARM_CKOUT2 */
1738 default:
1739 OMAP_BAD_REG(addr);
1740 }
1741 }
1742
1743 static const MemoryRegionOps omap_clkm_ops = {
1744 .read = omap_clkm_read,
1745 .write = omap_clkm_write,
1746 .endianness = DEVICE_NATIVE_ENDIAN,
1747 };
1748
omap_clkdsp_read(void * opaque,hwaddr addr,unsigned size)1749 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1750 unsigned size)
1751 {
1752 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1753 CPUState *cpu = CPU(s->cpu);
1754
1755 if (size != 2) {
1756 return omap_badwidth_read16(opaque, addr);
1757 }
1758
1759 switch (addr) {
1760 case 0x04: /* DSP_IDLECT1 */
1761 return s->clkm.dsp_idlect1;
1762
1763 case 0x08: /* DSP_IDLECT2 */
1764 return s->clkm.dsp_idlect2;
1765
1766 case 0x14: /* DSP_RSTCT2 */
1767 return s->clkm.dsp_rstct2;
1768
1769 case 0x18: /* DSP_SYSST */
1770 cpu = CPU(s->cpu);
1771 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1772 (cpu->halted << 6); /* Quite useless... */
1773 }
1774
1775 OMAP_BAD_REG(addr);
1776 return 0;
1777 }
1778
omap_clkdsp_idlect1_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1779 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1780 uint16_t diff, uint16_t value)
1781 {
1782 omap_clk clk;
1783
1784 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1785 }
1786
omap_clkdsp_idlect2_update(struct omap_mpu_state_s * s,uint16_t diff,uint16_t value)1787 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1788 uint16_t diff, uint16_t value)
1789 {
1790 omap_clk clk;
1791
1792 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1793 }
1794
omap_clkdsp_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1795 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1796 uint64_t value, unsigned size)
1797 {
1798 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1799 uint16_t diff;
1800
1801 if (size != 2) {
1802 omap_badwidth_write16(opaque, addr, value);
1803 return;
1804 }
1805
1806 switch (addr) {
1807 case 0x04: /* DSP_IDLECT1 */
1808 diff = s->clkm.dsp_idlect1 ^ value;
1809 s->clkm.dsp_idlect1 = value & 0x01f7;
1810 omap_clkdsp_idlect1_update(s, diff, value);
1811 break;
1812
1813 case 0x08: /* DSP_IDLECT2 */
1814 s->clkm.dsp_idlect2 = value & 0x0037;
1815 diff = s->clkm.dsp_idlect1 ^ value;
1816 omap_clkdsp_idlect2_update(s, diff, value);
1817 break;
1818
1819 case 0x14: /* DSP_RSTCT2 */
1820 s->clkm.dsp_rstct2 = value & 0x0001;
1821 break;
1822
1823 case 0x18: /* DSP_SYSST */
1824 s->clkm.cold_start &= value & 0x3f;
1825 break;
1826
1827 default:
1828 OMAP_BAD_REG(addr);
1829 }
1830 }
1831
1832 static const MemoryRegionOps omap_clkdsp_ops = {
1833 .read = omap_clkdsp_read,
1834 .write = omap_clkdsp_write,
1835 .endianness = DEVICE_NATIVE_ENDIAN,
1836 };
1837
omap_clkm_reset(struct omap_mpu_state_s * s)1838 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1839 {
1840 if (s->wdt && s->wdt->reset)
1841 s->clkm.cold_start = 0x6;
1842 s->clkm.clocking_scheme = 0;
1843 omap_clkm_ckctl_update(s, ~0, 0x3000);
1844 s->clkm.arm_ckctl = 0x3000;
1845 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1846 s->clkm.arm_idlect1 = 0x0400;
1847 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1848 s->clkm.arm_idlect2 = 0x0100;
1849 s->clkm.arm_ewupct = 0x003f;
1850 s->clkm.arm_rstct1 = 0x0000;
1851 s->clkm.arm_rstct2 = 0x0000;
1852 s->clkm.arm_ckout1 = 0x0015;
1853 s->clkm.dpll1_mode = 0x2002;
1854 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1855 s->clkm.dsp_idlect1 = 0x0040;
1856 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1857 s->clkm.dsp_idlect2 = 0x0000;
1858 s->clkm.dsp_rstct2 = 0x0000;
1859 }
1860
omap_clkm_init(MemoryRegion * memory,hwaddr mpu_base,hwaddr dsp_base,struct omap_mpu_state_s * s)1861 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1862 hwaddr dsp_base, struct omap_mpu_state_s *s)
1863 {
1864 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1865 "omap-clkm", 0x100);
1866 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1867 "omap-clkdsp", 0x1000);
1868
1869 s->clkm.arm_idlect1 = 0x03ff;
1870 s->clkm.arm_idlect2 = 0x0100;
1871 s->clkm.dsp_idlect1 = 0x0002;
1872 omap_clkm_reset(s);
1873 s->clkm.cold_start = 0x3a;
1874
1875 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1876 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1877 }
1878
1879 /* MPU I/O */
1880 struct omap_mpuio_s {
1881 qemu_irq irq;
1882 qemu_irq kbd_irq;
1883 qemu_irq *in;
1884 qemu_irq handler[16];
1885 qemu_irq wakeup;
1886 MemoryRegion iomem;
1887
1888 uint16_t inputs;
1889 uint16_t outputs;
1890 uint16_t dir;
1891 uint16_t edge;
1892 uint16_t mask;
1893 uint16_t ints;
1894
1895 uint16_t debounce;
1896 uint16_t latch;
1897 uint8_t event;
1898
1899 uint8_t buttons[5];
1900 uint8_t row_latch;
1901 uint8_t cols;
1902 int kbd_mask;
1903 int clk;
1904 };
1905
omap_mpuio_set(void * opaque,int line,int level)1906 static void omap_mpuio_set(void *opaque, int line, int level)
1907 {
1908 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1909 uint16_t prev = s->inputs;
1910
1911 if (level)
1912 s->inputs |= 1 << line;
1913 else
1914 s->inputs &= ~(1 << line);
1915
1916 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1917 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1918 s->ints |= 1 << line;
1919 qemu_irq_raise(s->irq);
1920 /* TODO: wakeup */
1921 }
1922 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1923 (s->event >> 1) == line) /* PIN_SELECT */
1924 s->latch = s->inputs;
1925 }
1926 }
1927
omap_mpuio_kbd_update(struct omap_mpuio_s * s)1928 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1929 {
1930 int i;
1931 uint8_t *row, rows = 0, cols = ~s->cols;
1932
1933 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1934 if (*row & cols)
1935 rows |= i;
1936
1937 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1938 s->row_latch = ~rows;
1939 }
1940
omap_mpuio_read(void * opaque,hwaddr addr,unsigned size)1941 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1942 unsigned size)
1943 {
1944 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1945 int offset = addr & OMAP_MPUI_REG_MASK;
1946 uint16_t ret;
1947
1948 if (size != 2) {
1949 return omap_badwidth_read16(opaque, addr);
1950 }
1951
1952 switch (offset) {
1953 case 0x00: /* INPUT_LATCH */
1954 return s->inputs;
1955
1956 case 0x04: /* OUTPUT_REG */
1957 return s->outputs;
1958
1959 case 0x08: /* IO_CNTL */
1960 return s->dir;
1961
1962 case 0x10: /* KBR_LATCH */
1963 return s->row_latch;
1964
1965 case 0x14: /* KBC_REG */
1966 return s->cols;
1967
1968 case 0x18: /* GPIO_EVENT_MODE_REG */
1969 return s->event;
1970
1971 case 0x1c: /* GPIO_INT_EDGE_REG */
1972 return s->edge;
1973
1974 case 0x20: /* KBD_INT */
1975 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1976
1977 case 0x24: /* GPIO_INT */
1978 ret = s->ints;
1979 s->ints &= s->mask;
1980 if (ret)
1981 qemu_irq_lower(s->irq);
1982 return ret;
1983
1984 case 0x28: /* KBD_MASKIT */
1985 return s->kbd_mask;
1986
1987 case 0x2c: /* GPIO_MASKIT */
1988 return s->mask;
1989
1990 case 0x30: /* GPIO_DEBOUNCING_REG */
1991 return s->debounce;
1992
1993 case 0x34: /* GPIO_LATCH_REG */
1994 return s->latch;
1995 }
1996
1997 OMAP_BAD_REG(addr);
1998 return 0;
1999 }
2000
omap_mpuio_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2001 static void omap_mpuio_write(void *opaque, hwaddr addr,
2002 uint64_t value, unsigned size)
2003 {
2004 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2005 int offset = addr & OMAP_MPUI_REG_MASK;
2006 uint16_t diff;
2007 int ln;
2008
2009 if (size != 2) {
2010 omap_badwidth_write16(opaque, addr, value);
2011 return;
2012 }
2013
2014 switch (offset) {
2015 case 0x04: /* OUTPUT_REG */
2016 diff = (s->outputs ^ value) & ~s->dir;
2017 s->outputs = value;
2018 while ((ln = ctz32(diff)) != 32) {
2019 if (s->handler[ln])
2020 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2021 diff &= ~(1 << ln);
2022 }
2023 break;
2024
2025 case 0x08: /* IO_CNTL */
2026 diff = s->outputs & (s->dir ^ value);
2027 s->dir = value;
2028
2029 value = s->outputs & ~s->dir;
2030 while ((ln = ctz32(diff)) != 32) {
2031 if (s->handler[ln])
2032 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2033 diff &= ~(1 << ln);
2034 }
2035 break;
2036
2037 case 0x14: /* KBC_REG */
2038 s->cols = value;
2039 omap_mpuio_kbd_update(s);
2040 break;
2041
2042 case 0x18: /* GPIO_EVENT_MODE_REG */
2043 s->event = value & 0x1f;
2044 break;
2045
2046 case 0x1c: /* GPIO_INT_EDGE_REG */
2047 s->edge = value;
2048 break;
2049
2050 case 0x28: /* KBD_MASKIT */
2051 s->kbd_mask = value & 1;
2052 omap_mpuio_kbd_update(s);
2053 break;
2054
2055 case 0x2c: /* GPIO_MASKIT */
2056 s->mask = value;
2057 break;
2058
2059 case 0x30: /* GPIO_DEBOUNCING_REG */
2060 s->debounce = value & 0x1ff;
2061 break;
2062
2063 case 0x00: /* INPUT_LATCH */
2064 case 0x10: /* KBR_LATCH */
2065 case 0x20: /* KBD_INT */
2066 case 0x24: /* GPIO_INT */
2067 case 0x34: /* GPIO_LATCH_REG */
2068 OMAP_RO_REG(addr);
2069 return;
2070
2071 default:
2072 OMAP_BAD_REG(addr);
2073 return;
2074 }
2075 }
2076
2077 static const MemoryRegionOps omap_mpuio_ops = {
2078 .read = omap_mpuio_read,
2079 .write = omap_mpuio_write,
2080 .endianness = DEVICE_NATIVE_ENDIAN,
2081 };
2082
omap_mpuio_reset(struct omap_mpuio_s * s)2083 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2084 {
2085 s->inputs = 0;
2086 s->outputs = 0;
2087 s->dir = ~0;
2088 s->event = 0;
2089 s->edge = 0;
2090 s->kbd_mask = 0;
2091 s->mask = 0;
2092 s->debounce = 0;
2093 s->latch = 0;
2094 s->ints = 0;
2095 s->row_latch = 0x1f;
2096 s->clk = 1;
2097 }
2098
omap_mpuio_onoff(void * opaque,int line,int on)2099 static void omap_mpuio_onoff(void *opaque, int line, int on)
2100 {
2101 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2102
2103 s->clk = on;
2104 if (on)
2105 omap_mpuio_kbd_update(s);
2106 }
2107
omap_mpuio_init(MemoryRegion * memory,hwaddr base,qemu_irq kbd_int,qemu_irq gpio_int,qemu_irq wakeup,omap_clk clk)2108 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2109 hwaddr base,
2110 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2111 omap_clk clk)
2112 {
2113 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2114
2115 s->irq = gpio_int;
2116 s->kbd_irq = kbd_int;
2117 s->wakeup = wakeup;
2118 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2119 omap_mpuio_reset(s);
2120
2121 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2122 "omap-mpuio", 0x800);
2123 memory_region_add_subregion(memory, base, &s->iomem);
2124
2125 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2126
2127 return s;
2128 }
2129
omap_mpuio_in_get(struct omap_mpuio_s * s)2130 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2131 {
2132 return s->in;
2133 }
2134
omap_mpuio_out_set(struct omap_mpuio_s * s,int line,qemu_irq handler)2135 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2136 {
2137 if (line >= 16 || line < 0)
2138 hw_error("%s: No GPIO line %i\n", __func__, line);
2139 s->handler[line] = handler;
2140 }
2141
omap_mpuio_key(struct omap_mpuio_s * s,int row,int col,int down)2142 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2143 {
2144 if (row >= 5 || row < 0)
2145 hw_error("%s: No key %i-%i\n", __func__, col, row);
2146
2147 if (down)
2148 s->buttons[row] |= 1 << col;
2149 else
2150 s->buttons[row] &= ~(1 << col);
2151
2152 omap_mpuio_kbd_update(s);
2153 }
2154
2155 /* MicroWire Interface */
2156 struct omap_uwire_s {
2157 MemoryRegion iomem;
2158 qemu_irq txirq;
2159 qemu_irq rxirq;
2160 qemu_irq txdrq;
2161
2162 uint16_t txbuf;
2163 uint16_t rxbuf;
2164 uint16_t control;
2165 uint16_t setup[5];
2166
2167 uWireSlave *chip[4];
2168 };
2169
omap_uwire_transfer_start(struct omap_uwire_s * s)2170 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2171 {
2172 int chipselect = (s->control >> 10) & 3; /* INDEX */
2173 uWireSlave *slave = s->chip[chipselect];
2174
2175 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2176 if (s->control & (1 << 12)) /* CS_CMD */
2177 if (slave && slave->send)
2178 slave->send(slave->opaque,
2179 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2180 s->control &= ~(1 << 14); /* CSRB */
2181 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2182 * a DRQ. When is the level IRQ supposed to be reset? */
2183 }
2184
2185 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2186 if (s->control & (1 << 12)) /* CS_CMD */
2187 if (slave && slave->receive)
2188 s->rxbuf = slave->receive(slave->opaque);
2189 s->control |= 1 << 15; /* RDRB */
2190 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2191 * a DRQ. When is the level IRQ supposed to be reset? */
2192 }
2193 }
2194
omap_uwire_read(void * opaque,hwaddr addr,unsigned size)2195 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2196 unsigned size)
2197 {
2198 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2199 int offset = addr & OMAP_MPUI_REG_MASK;
2200
2201 if (size != 2) {
2202 return omap_badwidth_read16(opaque, addr);
2203 }
2204
2205 switch (offset) {
2206 case 0x00: /* RDR */
2207 s->control &= ~(1 << 15); /* RDRB */
2208 return s->rxbuf;
2209
2210 case 0x04: /* CSR */
2211 return s->control;
2212
2213 case 0x08: /* SR1 */
2214 return s->setup[0];
2215 case 0x0c: /* SR2 */
2216 return s->setup[1];
2217 case 0x10: /* SR3 */
2218 return s->setup[2];
2219 case 0x14: /* SR4 */
2220 return s->setup[3];
2221 case 0x18: /* SR5 */
2222 return s->setup[4];
2223 }
2224
2225 OMAP_BAD_REG(addr);
2226 return 0;
2227 }
2228
omap_uwire_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2229 static void omap_uwire_write(void *opaque, hwaddr addr,
2230 uint64_t value, unsigned size)
2231 {
2232 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2233 int offset = addr & OMAP_MPUI_REG_MASK;
2234
2235 if (size != 2) {
2236 omap_badwidth_write16(opaque, addr, value);
2237 return;
2238 }
2239
2240 switch (offset) {
2241 case 0x00: /* TDR */
2242 s->txbuf = value; /* TD */
2243 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2244 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2245 (s->control & (1 << 12)))) { /* CS_CMD */
2246 s->control |= 1 << 14; /* CSRB */
2247 omap_uwire_transfer_start(s);
2248 }
2249 break;
2250
2251 case 0x04: /* CSR */
2252 s->control = value & 0x1fff;
2253 if (value & (1 << 13)) /* START */
2254 omap_uwire_transfer_start(s);
2255 break;
2256
2257 case 0x08: /* SR1 */
2258 s->setup[0] = value & 0x003f;
2259 break;
2260
2261 case 0x0c: /* SR2 */
2262 s->setup[1] = value & 0x0fc0;
2263 break;
2264
2265 case 0x10: /* SR3 */
2266 s->setup[2] = value & 0x0003;
2267 break;
2268
2269 case 0x14: /* SR4 */
2270 s->setup[3] = value & 0x0001;
2271 break;
2272
2273 case 0x18: /* SR5 */
2274 s->setup[4] = value & 0x000f;
2275 break;
2276
2277 default:
2278 OMAP_BAD_REG(addr);
2279 return;
2280 }
2281 }
2282
2283 static const MemoryRegionOps omap_uwire_ops = {
2284 .read = omap_uwire_read,
2285 .write = omap_uwire_write,
2286 .endianness = DEVICE_NATIVE_ENDIAN,
2287 };
2288
omap_uwire_reset(struct omap_uwire_s * s)2289 static void omap_uwire_reset(struct omap_uwire_s *s)
2290 {
2291 s->control = 0;
2292 s->setup[0] = 0;
2293 s->setup[1] = 0;
2294 s->setup[2] = 0;
2295 s->setup[3] = 0;
2296 s->setup[4] = 0;
2297 }
2298
omap_uwire_init(MemoryRegion * system_memory,hwaddr base,qemu_irq txirq,qemu_irq rxirq,qemu_irq dma,omap_clk clk)2299 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2300 hwaddr base,
2301 qemu_irq txirq, qemu_irq rxirq,
2302 qemu_irq dma,
2303 omap_clk clk)
2304 {
2305 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2306
2307 s->txirq = txirq;
2308 s->rxirq = rxirq;
2309 s->txdrq = dma;
2310 omap_uwire_reset(s);
2311
2312 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2313 memory_region_add_subregion(system_memory, base, &s->iomem);
2314
2315 return s;
2316 }
2317
omap_uwire_attach(struct omap_uwire_s * s,uWireSlave * slave,int chipselect)2318 void omap_uwire_attach(struct omap_uwire_s *s,
2319 uWireSlave *slave, int chipselect)
2320 {
2321 if (chipselect < 0 || chipselect > 3) {
2322 error_report("%s: Bad chipselect %i", __func__, chipselect);
2323 exit(-1);
2324 }
2325
2326 s->chip[chipselect] = slave;
2327 }
2328
2329 /* Pseudonoise Pulse-Width Light Modulator */
2330 struct omap_pwl_s {
2331 MemoryRegion iomem;
2332 uint8_t output;
2333 uint8_t level;
2334 uint8_t enable;
2335 int clk;
2336 };
2337
omap_pwl_update(struct omap_pwl_s * s)2338 static void omap_pwl_update(struct omap_pwl_s *s)
2339 {
2340 int output = (s->clk && s->enable) ? s->level : 0;
2341
2342 if (output != s->output) {
2343 s->output = output;
2344 printf("%s: Backlight now at %i/256\n", __func__, output);
2345 }
2346 }
2347
omap_pwl_read(void * opaque,hwaddr addr,unsigned size)2348 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2349 unsigned size)
2350 {
2351 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2352 int offset = addr & OMAP_MPUI_REG_MASK;
2353
2354 if (size != 1) {
2355 return omap_badwidth_read8(opaque, addr);
2356 }
2357
2358 switch (offset) {
2359 case 0x00: /* PWL_LEVEL */
2360 return s->level;
2361 case 0x04: /* PWL_CTRL */
2362 return s->enable;
2363 }
2364 OMAP_BAD_REG(addr);
2365 return 0;
2366 }
2367
omap_pwl_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2368 static void omap_pwl_write(void *opaque, hwaddr addr,
2369 uint64_t value, unsigned size)
2370 {
2371 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2372 int offset = addr & OMAP_MPUI_REG_MASK;
2373
2374 if (size != 1) {
2375 omap_badwidth_write8(opaque, addr, value);
2376 return;
2377 }
2378
2379 switch (offset) {
2380 case 0x00: /* PWL_LEVEL */
2381 s->level = value;
2382 omap_pwl_update(s);
2383 break;
2384 case 0x04: /* PWL_CTRL */
2385 s->enable = value & 1;
2386 omap_pwl_update(s);
2387 break;
2388 default:
2389 OMAP_BAD_REG(addr);
2390 return;
2391 }
2392 }
2393
2394 static const MemoryRegionOps omap_pwl_ops = {
2395 .read = omap_pwl_read,
2396 .write = omap_pwl_write,
2397 .endianness = DEVICE_NATIVE_ENDIAN,
2398 };
2399
omap_pwl_reset(struct omap_pwl_s * s)2400 static void omap_pwl_reset(struct omap_pwl_s *s)
2401 {
2402 s->output = 0;
2403 s->level = 0;
2404 s->enable = 0;
2405 s->clk = 1;
2406 omap_pwl_update(s);
2407 }
2408
omap_pwl_clk_update(void * opaque,int line,int on)2409 static void omap_pwl_clk_update(void *opaque, int line, int on)
2410 {
2411 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2412
2413 s->clk = on;
2414 omap_pwl_update(s);
2415 }
2416
omap_pwl_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)2417 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2418 hwaddr base,
2419 omap_clk clk)
2420 {
2421 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2422
2423 omap_pwl_reset(s);
2424
2425 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2426 "omap-pwl", 0x800);
2427 memory_region_add_subregion(system_memory, base, &s->iomem);
2428
2429 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2430 return s;
2431 }
2432
2433 /* Pulse-Width Tone module */
2434 struct omap_pwt_s {
2435 MemoryRegion iomem;
2436 uint8_t frc;
2437 uint8_t vrc;
2438 uint8_t gcr;
2439 omap_clk clk;
2440 };
2441
omap_pwt_read(void * opaque,hwaddr addr,unsigned size)2442 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2443 unsigned size)
2444 {
2445 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2446 int offset = addr & OMAP_MPUI_REG_MASK;
2447
2448 if (size != 1) {
2449 return omap_badwidth_read8(opaque, addr);
2450 }
2451
2452 switch (offset) {
2453 case 0x00: /* FRC */
2454 return s->frc;
2455 case 0x04: /* VCR */
2456 return s->vrc;
2457 case 0x08: /* GCR */
2458 return s->gcr;
2459 }
2460 OMAP_BAD_REG(addr);
2461 return 0;
2462 }
2463
omap_pwt_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2464 static void omap_pwt_write(void *opaque, hwaddr addr,
2465 uint64_t value, unsigned size)
2466 {
2467 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2468 int offset = addr & OMAP_MPUI_REG_MASK;
2469
2470 if (size != 1) {
2471 omap_badwidth_write8(opaque, addr, value);
2472 return;
2473 }
2474
2475 switch (offset) {
2476 case 0x00: /* FRC */
2477 s->frc = value & 0x3f;
2478 break;
2479 case 0x04: /* VRC */
2480 if ((value ^ s->vrc) & 1) {
2481 if (value & 1)
2482 printf("%s: %iHz buzz on\n", __func__, (int)
2483 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2484 ((omap_clk_getrate(s->clk) >> 3) /
2485 /* Pre-multiplexer divider */
2486 ((s->gcr & 2) ? 1 : 154) /
2487 /* Octave multiplexer */
2488 (2 << (value & 3)) *
2489 /* 101/107 divider */
2490 ((value & (1 << 2)) ? 101 : 107) *
2491 /* 49/55 divider */
2492 ((value & (1 << 3)) ? 49 : 55) *
2493 /* 50/63 divider */
2494 ((value & (1 << 4)) ? 50 : 63) *
2495 /* 80/127 divider */
2496 ((value & (1 << 5)) ? 80 : 127) /
2497 (107 * 55 * 63 * 127)));
2498 else
2499 printf("%s: silence!\n", __func__);
2500 }
2501 s->vrc = value & 0x7f;
2502 break;
2503 case 0x08: /* GCR */
2504 s->gcr = value & 3;
2505 break;
2506 default:
2507 OMAP_BAD_REG(addr);
2508 return;
2509 }
2510 }
2511
2512 static const MemoryRegionOps omap_pwt_ops = {
2513 .read =omap_pwt_read,
2514 .write = omap_pwt_write,
2515 .endianness = DEVICE_NATIVE_ENDIAN,
2516 };
2517
omap_pwt_reset(struct omap_pwt_s * s)2518 static void omap_pwt_reset(struct omap_pwt_s *s)
2519 {
2520 s->frc = 0;
2521 s->vrc = 0;
2522 s->gcr = 0;
2523 }
2524
omap_pwt_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)2525 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2526 hwaddr base,
2527 omap_clk clk)
2528 {
2529 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2530 s->clk = clk;
2531 omap_pwt_reset(s);
2532
2533 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2534 "omap-pwt", 0x800);
2535 memory_region_add_subregion(system_memory, base, &s->iomem);
2536 return s;
2537 }
2538
2539 /* Real-time Clock module */
2540 struct omap_rtc_s {
2541 MemoryRegion iomem;
2542 qemu_irq irq;
2543 qemu_irq alarm;
2544 QEMUTimer *clk;
2545
2546 uint8_t interrupts;
2547 uint8_t status;
2548 int16_t comp_reg;
2549 int running;
2550 int pm_am;
2551 int auto_comp;
2552 int round;
2553 struct tm alarm_tm;
2554 time_t alarm_ti;
2555
2556 struct tm current_tm;
2557 time_t ti;
2558 uint64_t tick;
2559 };
2560
omap_rtc_interrupts_update(struct omap_rtc_s * s)2561 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2562 {
2563 /* s->alarm is level-triggered */
2564 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2565 }
2566
omap_rtc_alarm_update(struct omap_rtc_s * s)2567 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2568 {
2569 s->alarm_ti = mktimegm(&s->alarm_tm);
2570 if (s->alarm_ti == -1)
2571 printf("%s: conversion failed\n", __func__);
2572 }
2573
omap_rtc_read(void * opaque,hwaddr addr,unsigned size)2574 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2575 unsigned size)
2576 {
2577 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2578 int offset = addr & OMAP_MPUI_REG_MASK;
2579 uint8_t i;
2580
2581 if (size != 1) {
2582 return omap_badwidth_read8(opaque, addr);
2583 }
2584
2585 switch (offset) {
2586 case 0x00: /* SECONDS_REG */
2587 return to_bcd(s->current_tm.tm_sec);
2588
2589 case 0x04: /* MINUTES_REG */
2590 return to_bcd(s->current_tm.tm_min);
2591
2592 case 0x08: /* HOURS_REG */
2593 if (s->pm_am)
2594 return ((s->current_tm.tm_hour > 11) << 7) |
2595 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2596 else
2597 return to_bcd(s->current_tm.tm_hour);
2598
2599 case 0x0c: /* DAYS_REG */
2600 return to_bcd(s->current_tm.tm_mday);
2601
2602 case 0x10: /* MONTHS_REG */
2603 return to_bcd(s->current_tm.tm_mon + 1);
2604
2605 case 0x14: /* YEARS_REG */
2606 return to_bcd(s->current_tm.tm_year % 100);
2607
2608 case 0x18: /* WEEK_REG */
2609 return s->current_tm.tm_wday;
2610
2611 case 0x20: /* ALARM_SECONDS_REG */
2612 return to_bcd(s->alarm_tm.tm_sec);
2613
2614 case 0x24: /* ALARM_MINUTES_REG */
2615 return to_bcd(s->alarm_tm.tm_min);
2616
2617 case 0x28: /* ALARM_HOURS_REG */
2618 if (s->pm_am)
2619 return ((s->alarm_tm.tm_hour > 11) << 7) |
2620 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2621 else
2622 return to_bcd(s->alarm_tm.tm_hour);
2623
2624 case 0x2c: /* ALARM_DAYS_REG */
2625 return to_bcd(s->alarm_tm.tm_mday);
2626
2627 case 0x30: /* ALARM_MONTHS_REG */
2628 return to_bcd(s->alarm_tm.tm_mon + 1);
2629
2630 case 0x34: /* ALARM_YEARS_REG */
2631 return to_bcd(s->alarm_tm.tm_year % 100);
2632
2633 case 0x40: /* RTC_CTRL_REG */
2634 return (s->pm_am << 3) | (s->auto_comp << 2) |
2635 (s->round << 1) | s->running;
2636
2637 case 0x44: /* RTC_STATUS_REG */
2638 i = s->status;
2639 s->status &= ~0x3d;
2640 return i;
2641
2642 case 0x48: /* RTC_INTERRUPTS_REG */
2643 return s->interrupts;
2644
2645 case 0x4c: /* RTC_COMP_LSB_REG */
2646 return ((uint16_t) s->comp_reg) & 0xff;
2647
2648 case 0x50: /* RTC_COMP_MSB_REG */
2649 return ((uint16_t) s->comp_reg) >> 8;
2650 }
2651
2652 OMAP_BAD_REG(addr);
2653 return 0;
2654 }
2655
omap_rtc_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2656 static void omap_rtc_write(void *opaque, hwaddr addr,
2657 uint64_t value, unsigned size)
2658 {
2659 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2660 int offset = addr & OMAP_MPUI_REG_MASK;
2661 struct tm new_tm;
2662 time_t ti[2];
2663
2664 if (size != 1) {
2665 omap_badwidth_write8(opaque, addr, value);
2666 return;
2667 }
2668
2669 switch (offset) {
2670 case 0x00: /* SECONDS_REG */
2671 #ifdef ALMDEBUG
2672 printf("RTC SEC_REG <-- %02x\n", value);
2673 #endif
2674 s->ti -= s->current_tm.tm_sec;
2675 s->ti += from_bcd(value);
2676 return;
2677
2678 case 0x04: /* MINUTES_REG */
2679 #ifdef ALMDEBUG
2680 printf("RTC MIN_REG <-- %02x\n", value);
2681 #endif
2682 s->ti -= s->current_tm.tm_min * 60;
2683 s->ti += from_bcd(value) * 60;
2684 return;
2685
2686 case 0x08: /* HOURS_REG */
2687 #ifdef ALMDEBUG
2688 printf("RTC HRS_REG <-- %02x\n", value);
2689 #endif
2690 s->ti -= s->current_tm.tm_hour * 3600;
2691 if (s->pm_am) {
2692 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2693 s->ti += ((value >> 7) & 1) * 43200;
2694 } else
2695 s->ti += from_bcd(value & 0x3f) * 3600;
2696 return;
2697
2698 case 0x0c: /* DAYS_REG */
2699 #ifdef ALMDEBUG
2700 printf("RTC DAY_REG <-- %02x\n", value);
2701 #endif
2702 s->ti -= s->current_tm.tm_mday * 86400;
2703 s->ti += from_bcd(value) * 86400;
2704 return;
2705
2706 case 0x10: /* MONTHS_REG */
2707 #ifdef ALMDEBUG
2708 printf("RTC MTH_REG <-- %02x\n", value);
2709 #endif
2710 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2711 new_tm.tm_mon = from_bcd(value);
2712 ti[0] = mktimegm(&s->current_tm);
2713 ti[1] = mktimegm(&new_tm);
2714
2715 if (ti[0] != -1 && ti[1] != -1) {
2716 s->ti -= ti[0];
2717 s->ti += ti[1];
2718 } else {
2719 /* A less accurate version */
2720 s->ti -= s->current_tm.tm_mon * 2592000;
2721 s->ti += from_bcd(value) * 2592000;
2722 }
2723 return;
2724
2725 case 0x14: /* YEARS_REG */
2726 #ifdef ALMDEBUG
2727 printf("RTC YRS_REG <-- %02x\n", value);
2728 #endif
2729 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2730 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2731 ti[0] = mktimegm(&s->current_tm);
2732 ti[1] = mktimegm(&new_tm);
2733
2734 if (ti[0] != -1 && ti[1] != -1) {
2735 s->ti -= ti[0];
2736 s->ti += ti[1];
2737 } else {
2738 /* A less accurate version */
2739 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2740 s->ti += (time_t)from_bcd(value) * 31536000;
2741 }
2742 return;
2743
2744 case 0x18: /* WEEK_REG */
2745 return; /* Ignored */
2746
2747 case 0x20: /* ALARM_SECONDS_REG */
2748 #ifdef ALMDEBUG
2749 printf("ALM SEC_REG <-- %02x\n", value);
2750 #endif
2751 s->alarm_tm.tm_sec = from_bcd(value);
2752 omap_rtc_alarm_update(s);
2753 return;
2754
2755 case 0x24: /* ALARM_MINUTES_REG */
2756 #ifdef ALMDEBUG
2757 printf("ALM MIN_REG <-- %02x\n", value);
2758 #endif
2759 s->alarm_tm.tm_min = from_bcd(value);
2760 omap_rtc_alarm_update(s);
2761 return;
2762
2763 case 0x28: /* ALARM_HOURS_REG */
2764 #ifdef ALMDEBUG
2765 printf("ALM HRS_REG <-- %02x\n", value);
2766 #endif
2767 if (s->pm_am)
2768 s->alarm_tm.tm_hour =
2769 ((from_bcd(value & 0x3f)) % 12) +
2770 ((value >> 7) & 1) * 12;
2771 else
2772 s->alarm_tm.tm_hour = from_bcd(value);
2773 omap_rtc_alarm_update(s);
2774 return;
2775
2776 case 0x2c: /* ALARM_DAYS_REG */
2777 #ifdef ALMDEBUG
2778 printf("ALM DAY_REG <-- %02x\n", value);
2779 #endif
2780 s->alarm_tm.tm_mday = from_bcd(value);
2781 omap_rtc_alarm_update(s);
2782 return;
2783
2784 case 0x30: /* ALARM_MONTHS_REG */
2785 #ifdef ALMDEBUG
2786 printf("ALM MON_REG <-- %02x\n", value);
2787 #endif
2788 s->alarm_tm.tm_mon = from_bcd(value);
2789 omap_rtc_alarm_update(s);
2790 return;
2791
2792 case 0x34: /* ALARM_YEARS_REG */
2793 #ifdef ALMDEBUG
2794 printf("ALM YRS_REG <-- %02x\n", value);
2795 #endif
2796 s->alarm_tm.tm_year = from_bcd(value);
2797 omap_rtc_alarm_update(s);
2798 return;
2799
2800 case 0x40: /* RTC_CTRL_REG */
2801 #ifdef ALMDEBUG
2802 printf("RTC CONTROL <-- %02x\n", value);
2803 #endif
2804 s->pm_am = (value >> 3) & 1;
2805 s->auto_comp = (value >> 2) & 1;
2806 s->round = (value >> 1) & 1;
2807 s->running = value & 1;
2808 s->status &= 0xfd;
2809 s->status |= s->running << 1;
2810 return;
2811
2812 case 0x44: /* RTC_STATUS_REG */
2813 #ifdef ALMDEBUG
2814 printf("RTC STATUSL <-- %02x\n", value);
2815 #endif
2816 s->status &= ~((value & 0xc0) ^ 0x80);
2817 omap_rtc_interrupts_update(s);
2818 return;
2819
2820 case 0x48: /* RTC_INTERRUPTS_REG */
2821 #ifdef ALMDEBUG
2822 printf("RTC INTRS <-- %02x\n", value);
2823 #endif
2824 s->interrupts = value;
2825 return;
2826
2827 case 0x4c: /* RTC_COMP_LSB_REG */
2828 #ifdef ALMDEBUG
2829 printf("RTC COMPLSB <-- %02x\n", value);
2830 #endif
2831 s->comp_reg &= 0xff00;
2832 s->comp_reg |= 0x00ff & value;
2833 return;
2834
2835 case 0x50: /* RTC_COMP_MSB_REG */
2836 #ifdef ALMDEBUG
2837 printf("RTC COMPMSB <-- %02x\n", value);
2838 #endif
2839 s->comp_reg &= 0x00ff;
2840 s->comp_reg |= 0xff00 & (value << 8);
2841 return;
2842
2843 default:
2844 OMAP_BAD_REG(addr);
2845 return;
2846 }
2847 }
2848
2849 static const MemoryRegionOps omap_rtc_ops = {
2850 .read = omap_rtc_read,
2851 .write = omap_rtc_write,
2852 .endianness = DEVICE_NATIVE_ENDIAN,
2853 };
2854
omap_rtc_tick(void * opaque)2855 static void omap_rtc_tick(void *opaque)
2856 {
2857 struct omap_rtc_s *s = opaque;
2858
2859 if (s->round) {
2860 /* Round to nearest full minute. */
2861 if (s->current_tm.tm_sec < 30)
2862 s->ti -= s->current_tm.tm_sec;
2863 else
2864 s->ti += 60 - s->current_tm.tm_sec;
2865
2866 s->round = 0;
2867 }
2868
2869 localtime_r(&s->ti, &s->current_tm);
2870
2871 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2872 s->status |= 0x40;
2873 omap_rtc_interrupts_update(s);
2874 }
2875
2876 if (s->interrupts & 0x04)
2877 switch (s->interrupts & 3) {
2878 case 0:
2879 s->status |= 0x04;
2880 qemu_irq_pulse(s->irq);
2881 break;
2882 case 1:
2883 if (s->current_tm.tm_sec)
2884 break;
2885 s->status |= 0x08;
2886 qemu_irq_pulse(s->irq);
2887 break;
2888 case 2:
2889 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2890 break;
2891 s->status |= 0x10;
2892 qemu_irq_pulse(s->irq);
2893 break;
2894 case 3:
2895 if (s->current_tm.tm_sec ||
2896 s->current_tm.tm_min || s->current_tm.tm_hour)
2897 break;
2898 s->status |= 0x20;
2899 qemu_irq_pulse(s->irq);
2900 break;
2901 }
2902
2903 /* Move on */
2904 if (s->running)
2905 s->ti ++;
2906 s->tick += 1000;
2907
2908 /*
2909 * Every full hour add a rough approximation of the compensation
2910 * register to the 32kHz Timer (which drives the RTC) value.
2911 */
2912 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2913 s->tick += s->comp_reg * 1000 / 32768;
2914
2915 timer_mod(s->clk, s->tick);
2916 }
2917
omap_rtc_reset(struct omap_rtc_s * s)2918 static void omap_rtc_reset(struct omap_rtc_s *s)
2919 {
2920 struct tm tm;
2921
2922 s->interrupts = 0;
2923 s->comp_reg = 0;
2924 s->running = 0;
2925 s->pm_am = 0;
2926 s->auto_comp = 0;
2927 s->round = 0;
2928 s->tick = qemu_clock_get_ms(rtc_clock);
2929 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2930 s->alarm_tm.tm_mday = 0x01;
2931 s->status = 1 << 7;
2932 qemu_get_timedate(&tm, 0);
2933 s->ti = mktimegm(&tm);
2934
2935 omap_rtc_alarm_update(s);
2936 omap_rtc_tick(s);
2937 }
2938
omap_rtc_init(MemoryRegion * system_memory,hwaddr base,qemu_irq timerirq,qemu_irq alarmirq,omap_clk clk)2939 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2940 hwaddr base,
2941 qemu_irq timerirq, qemu_irq alarmirq,
2942 omap_clk clk)
2943 {
2944 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2945
2946 s->irq = timerirq;
2947 s->alarm = alarmirq;
2948 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2949
2950 omap_rtc_reset(s);
2951
2952 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2953 "omap-rtc", 0x800);
2954 memory_region_add_subregion(system_memory, base, &s->iomem);
2955
2956 return s;
2957 }
2958
2959 /* Multi-channel Buffered Serial Port interfaces */
2960 struct omap_mcbsp_s {
2961 MemoryRegion iomem;
2962 qemu_irq txirq;
2963 qemu_irq rxirq;
2964 qemu_irq txdrq;
2965 qemu_irq rxdrq;
2966
2967 uint16_t spcr[2];
2968 uint16_t rcr[2];
2969 uint16_t xcr[2];
2970 uint16_t srgr[2];
2971 uint16_t mcr[2];
2972 uint16_t pcr;
2973 uint16_t rcer[8];
2974 uint16_t xcer[8];
2975 int tx_rate;
2976 int rx_rate;
2977 int tx_req;
2978 int rx_req;
2979
2980 I2SCodec *codec;
2981 QEMUTimer *source_timer;
2982 QEMUTimer *sink_timer;
2983 };
2984
omap_mcbsp_intr_update(struct omap_mcbsp_s * s)2985 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2986 {
2987 int irq;
2988
2989 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2990 case 0:
2991 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2992 break;
2993 case 3:
2994 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2995 break;
2996 default:
2997 irq = 0;
2998 break;
2999 }
3000
3001 if (irq)
3002 qemu_irq_pulse(s->rxirq);
3003
3004 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3005 case 0:
3006 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3007 break;
3008 case 3:
3009 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3010 break;
3011 default:
3012 irq = 0;
3013 break;
3014 }
3015
3016 if (irq)
3017 qemu_irq_pulse(s->txirq);
3018 }
3019
omap_mcbsp_rx_newdata(struct omap_mcbsp_s * s)3020 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3021 {
3022 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3023 s->spcr[0] |= 1 << 2; /* RFULL */
3024 s->spcr[0] |= 1 << 1; /* RRDY */
3025 qemu_irq_raise(s->rxdrq);
3026 omap_mcbsp_intr_update(s);
3027 }
3028
omap_mcbsp_source_tick(void * opaque)3029 static void omap_mcbsp_source_tick(void *opaque)
3030 {
3031 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3032 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3033
3034 if (!s->rx_rate)
3035 return;
3036 if (s->rx_req)
3037 printf("%s: Rx FIFO overrun\n", __func__);
3038
3039 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3040
3041 omap_mcbsp_rx_newdata(s);
3042 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3043 NANOSECONDS_PER_SECOND);
3044 }
3045
omap_mcbsp_rx_start(struct omap_mcbsp_s * s)3046 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3047 {
3048 if (!s->codec || !s->codec->rts)
3049 omap_mcbsp_source_tick(s);
3050 else if (s->codec->in.len) {
3051 s->rx_req = s->codec->in.len;
3052 omap_mcbsp_rx_newdata(s);
3053 }
3054 }
3055
omap_mcbsp_rx_stop(struct omap_mcbsp_s * s)3056 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3057 {
3058 timer_del(s->source_timer);
3059 }
3060
omap_mcbsp_rx_done(struct omap_mcbsp_s * s)3061 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3062 {
3063 s->spcr[0] &= ~(1 << 1); /* RRDY */
3064 qemu_irq_lower(s->rxdrq);
3065 omap_mcbsp_intr_update(s);
3066 }
3067
omap_mcbsp_tx_newdata(struct omap_mcbsp_s * s)3068 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3069 {
3070 s->spcr[1] |= 1 << 1; /* XRDY */
3071 qemu_irq_raise(s->txdrq);
3072 omap_mcbsp_intr_update(s);
3073 }
3074
omap_mcbsp_sink_tick(void * opaque)3075 static void omap_mcbsp_sink_tick(void *opaque)
3076 {
3077 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3078 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3079
3080 if (!s->tx_rate)
3081 return;
3082 if (s->tx_req)
3083 printf("%s: Tx FIFO underrun\n", __func__);
3084
3085 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3086
3087 omap_mcbsp_tx_newdata(s);
3088 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3089 NANOSECONDS_PER_SECOND);
3090 }
3091
omap_mcbsp_tx_start(struct omap_mcbsp_s * s)3092 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3093 {
3094 if (!s->codec || !s->codec->cts)
3095 omap_mcbsp_sink_tick(s);
3096 else if (s->codec->out.size) {
3097 s->tx_req = s->codec->out.size;
3098 omap_mcbsp_tx_newdata(s);
3099 }
3100 }
3101
omap_mcbsp_tx_done(struct omap_mcbsp_s * s)3102 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3103 {
3104 s->spcr[1] &= ~(1 << 1); /* XRDY */
3105 qemu_irq_lower(s->txdrq);
3106 omap_mcbsp_intr_update(s);
3107 if (s->codec && s->codec->cts)
3108 s->codec->tx_swallow(s->codec->opaque);
3109 }
3110
omap_mcbsp_tx_stop(struct omap_mcbsp_s * s)3111 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3112 {
3113 s->tx_req = 0;
3114 omap_mcbsp_tx_done(s);
3115 timer_del(s->sink_timer);
3116 }
3117
omap_mcbsp_req_update(struct omap_mcbsp_s * s)3118 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3119 {
3120 int prev_rx_rate, prev_tx_rate;
3121 int rx_rate = 0, tx_rate = 0;
3122 int cpu_rate = 1500000; /* XXX */
3123
3124 /* TODO: check CLKSTP bit */
3125 if (s->spcr[1] & (1 << 6)) { /* GRST */
3126 if (s->spcr[0] & (1 << 0)) { /* RRST */
3127 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3128 (s->pcr & (1 << 8))) { /* CLKRM */
3129 if (~s->pcr & (1 << 7)) /* SCLKME */
3130 rx_rate = cpu_rate /
3131 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3132 } else
3133 if (s->codec)
3134 rx_rate = s->codec->rx_rate;
3135 }
3136
3137 if (s->spcr[1] & (1 << 0)) { /* XRST */
3138 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3139 (s->pcr & (1 << 9))) { /* CLKXM */
3140 if (~s->pcr & (1 << 7)) /* SCLKME */
3141 tx_rate = cpu_rate /
3142 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3143 } else
3144 if (s->codec)
3145 tx_rate = s->codec->tx_rate;
3146 }
3147 }
3148 prev_tx_rate = s->tx_rate;
3149 prev_rx_rate = s->rx_rate;
3150 s->tx_rate = tx_rate;
3151 s->rx_rate = rx_rate;
3152
3153 if (s->codec)
3154 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3155
3156 if (!prev_tx_rate && tx_rate)
3157 omap_mcbsp_tx_start(s);
3158 else if (s->tx_rate && !tx_rate)
3159 omap_mcbsp_tx_stop(s);
3160
3161 if (!prev_rx_rate && rx_rate)
3162 omap_mcbsp_rx_start(s);
3163 else if (prev_tx_rate && !tx_rate)
3164 omap_mcbsp_rx_stop(s);
3165 }
3166
omap_mcbsp_read(void * opaque,hwaddr addr,unsigned size)3167 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3168 unsigned size)
3169 {
3170 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3171 int offset = addr & OMAP_MPUI_REG_MASK;
3172 uint16_t ret;
3173
3174 if (size != 2) {
3175 return omap_badwidth_read16(opaque, addr);
3176 }
3177
3178 switch (offset) {
3179 case 0x00: /* DRR2 */
3180 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3181 return 0x0000;
3182 /* Fall through. */
3183 case 0x02: /* DRR1 */
3184 if (s->rx_req < 2) {
3185 printf("%s: Rx FIFO underrun\n", __func__);
3186 omap_mcbsp_rx_done(s);
3187 } else {
3188 s->tx_req -= 2;
3189 if (s->codec && s->codec->in.len >= 2) {
3190 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3191 ret |= s->codec->in.fifo[s->codec->in.start ++];
3192 s->codec->in.len -= 2;
3193 } else
3194 ret = 0x0000;
3195 if (!s->tx_req)
3196 omap_mcbsp_rx_done(s);
3197 return ret;
3198 }
3199 return 0x0000;
3200
3201 case 0x04: /* DXR2 */
3202 case 0x06: /* DXR1 */
3203 return 0x0000;
3204
3205 case 0x08: /* SPCR2 */
3206 return s->spcr[1];
3207 case 0x0a: /* SPCR1 */
3208 return s->spcr[0];
3209 case 0x0c: /* RCR2 */
3210 return s->rcr[1];
3211 case 0x0e: /* RCR1 */
3212 return s->rcr[0];
3213 case 0x10: /* XCR2 */
3214 return s->xcr[1];
3215 case 0x12: /* XCR1 */
3216 return s->xcr[0];
3217 case 0x14: /* SRGR2 */
3218 return s->srgr[1];
3219 case 0x16: /* SRGR1 */
3220 return s->srgr[0];
3221 case 0x18: /* MCR2 */
3222 return s->mcr[1];
3223 case 0x1a: /* MCR1 */
3224 return s->mcr[0];
3225 case 0x1c: /* RCERA */
3226 return s->rcer[0];
3227 case 0x1e: /* RCERB */
3228 return s->rcer[1];
3229 case 0x20: /* XCERA */
3230 return s->xcer[0];
3231 case 0x22: /* XCERB */
3232 return s->xcer[1];
3233 case 0x24: /* PCR0 */
3234 return s->pcr;
3235 case 0x26: /* RCERC */
3236 return s->rcer[2];
3237 case 0x28: /* RCERD */
3238 return s->rcer[3];
3239 case 0x2a: /* XCERC */
3240 return s->xcer[2];
3241 case 0x2c: /* XCERD */
3242 return s->xcer[3];
3243 case 0x2e: /* RCERE */
3244 return s->rcer[4];
3245 case 0x30: /* RCERF */
3246 return s->rcer[5];
3247 case 0x32: /* XCERE */
3248 return s->xcer[4];
3249 case 0x34: /* XCERF */
3250 return s->xcer[5];
3251 case 0x36: /* RCERG */
3252 return s->rcer[6];
3253 case 0x38: /* RCERH */
3254 return s->rcer[7];
3255 case 0x3a: /* XCERG */
3256 return s->xcer[6];
3257 case 0x3c: /* XCERH */
3258 return s->xcer[7];
3259 }
3260
3261 OMAP_BAD_REG(addr);
3262 return 0;
3263 }
3264
omap_mcbsp_writeh(void * opaque,hwaddr addr,uint32_t value)3265 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3266 uint32_t value)
3267 {
3268 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3269 int offset = addr & OMAP_MPUI_REG_MASK;
3270
3271 switch (offset) {
3272 case 0x00: /* DRR2 */
3273 case 0x02: /* DRR1 */
3274 OMAP_RO_REG(addr);
3275 return;
3276
3277 case 0x04: /* DXR2 */
3278 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3279 return;
3280 /* Fall through. */
3281 case 0x06: /* DXR1 */
3282 if (s->tx_req > 1) {
3283 s->tx_req -= 2;
3284 if (s->codec && s->codec->cts) {
3285 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3286 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3287 }
3288 if (s->tx_req < 2)
3289 omap_mcbsp_tx_done(s);
3290 } else
3291 printf("%s: Tx FIFO overrun\n", __func__);
3292 return;
3293
3294 case 0x08: /* SPCR2 */
3295 s->spcr[1] &= 0x0002;
3296 s->spcr[1] |= 0x03f9 & value;
3297 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3298 if (~value & 1) /* XRST */
3299 s->spcr[1] &= ~6;
3300 omap_mcbsp_req_update(s);
3301 return;
3302 case 0x0a: /* SPCR1 */
3303 s->spcr[0] &= 0x0006;
3304 s->spcr[0] |= 0xf8f9 & value;
3305 if (value & (1 << 15)) /* DLB */
3306 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3307 if (~value & 1) { /* RRST */
3308 s->spcr[0] &= ~6;
3309 s->rx_req = 0;
3310 omap_mcbsp_rx_done(s);
3311 }
3312 omap_mcbsp_req_update(s);
3313 return;
3314
3315 case 0x0c: /* RCR2 */
3316 s->rcr[1] = value & 0xffff;
3317 return;
3318 case 0x0e: /* RCR1 */
3319 s->rcr[0] = value & 0x7fe0;
3320 return;
3321 case 0x10: /* XCR2 */
3322 s->xcr[1] = value & 0xffff;
3323 return;
3324 case 0x12: /* XCR1 */
3325 s->xcr[0] = value & 0x7fe0;
3326 return;
3327 case 0x14: /* SRGR2 */
3328 s->srgr[1] = value & 0xffff;
3329 omap_mcbsp_req_update(s);
3330 return;
3331 case 0x16: /* SRGR1 */
3332 s->srgr[0] = value & 0xffff;
3333 omap_mcbsp_req_update(s);
3334 return;
3335 case 0x18: /* MCR2 */
3336 s->mcr[1] = value & 0x03e3;
3337 if (value & 3) /* XMCM */
3338 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3339 return;
3340 case 0x1a: /* MCR1 */
3341 s->mcr[0] = value & 0x03e1;
3342 if (value & 1) /* RMCM */
3343 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3344 return;
3345 case 0x1c: /* RCERA */
3346 s->rcer[0] = value & 0xffff;
3347 return;
3348 case 0x1e: /* RCERB */
3349 s->rcer[1] = value & 0xffff;
3350 return;
3351 case 0x20: /* XCERA */
3352 s->xcer[0] = value & 0xffff;
3353 return;
3354 case 0x22: /* XCERB */
3355 s->xcer[1] = value & 0xffff;
3356 return;
3357 case 0x24: /* PCR0 */
3358 s->pcr = value & 0x7faf;
3359 return;
3360 case 0x26: /* RCERC */
3361 s->rcer[2] = value & 0xffff;
3362 return;
3363 case 0x28: /* RCERD */
3364 s->rcer[3] = value & 0xffff;
3365 return;
3366 case 0x2a: /* XCERC */
3367 s->xcer[2] = value & 0xffff;
3368 return;
3369 case 0x2c: /* XCERD */
3370 s->xcer[3] = value & 0xffff;
3371 return;
3372 case 0x2e: /* RCERE */
3373 s->rcer[4] = value & 0xffff;
3374 return;
3375 case 0x30: /* RCERF */
3376 s->rcer[5] = value & 0xffff;
3377 return;
3378 case 0x32: /* XCERE */
3379 s->xcer[4] = value & 0xffff;
3380 return;
3381 case 0x34: /* XCERF */
3382 s->xcer[5] = value & 0xffff;
3383 return;
3384 case 0x36: /* RCERG */
3385 s->rcer[6] = value & 0xffff;
3386 return;
3387 case 0x38: /* RCERH */
3388 s->rcer[7] = value & 0xffff;
3389 return;
3390 case 0x3a: /* XCERG */
3391 s->xcer[6] = value & 0xffff;
3392 return;
3393 case 0x3c: /* XCERH */
3394 s->xcer[7] = value & 0xffff;
3395 return;
3396 }
3397
3398 OMAP_BAD_REG(addr);
3399 }
3400
omap_mcbsp_writew(void * opaque,hwaddr addr,uint32_t value)3401 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3402 uint32_t value)
3403 {
3404 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3405 int offset = addr & OMAP_MPUI_REG_MASK;
3406
3407 if (offset == 0x04) { /* DXR */
3408 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3409 return;
3410 if (s->tx_req > 3) {
3411 s->tx_req -= 4;
3412 if (s->codec && s->codec->cts) {
3413 s->codec->out.fifo[s->codec->out.len ++] =
3414 (value >> 24) & 0xff;
3415 s->codec->out.fifo[s->codec->out.len ++] =
3416 (value >> 16) & 0xff;
3417 s->codec->out.fifo[s->codec->out.len ++] =
3418 (value >> 8) & 0xff;
3419 s->codec->out.fifo[s->codec->out.len ++] =
3420 (value >> 0) & 0xff;
3421 }
3422 if (s->tx_req < 4)
3423 omap_mcbsp_tx_done(s);
3424 } else
3425 printf("%s: Tx FIFO overrun\n", __func__);
3426 return;
3427 }
3428
3429 omap_badwidth_write16(opaque, addr, value);
3430 }
3431
omap_mcbsp_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3432 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3433 uint64_t value, unsigned size)
3434 {
3435 switch (size) {
3436 case 2:
3437 omap_mcbsp_writeh(opaque, addr, value);
3438 break;
3439 case 4:
3440 omap_mcbsp_writew(opaque, addr, value);
3441 break;
3442 default:
3443 omap_badwidth_write16(opaque, addr, value);
3444 }
3445 }
3446
3447 static const MemoryRegionOps omap_mcbsp_ops = {
3448 .read = omap_mcbsp_read,
3449 .write = omap_mcbsp_write,
3450 .endianness = DEVICE_NATIVE_ENDIAN,
3451 };
3452
omap_mcbsp_reset(struct omap_mcbsp_s * s)3453 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3454 {
3455 memset(&s->spcr, 0, sizeof(s->spcr));
3456 memset(&s->rcr, 0, sizeof(s->rcr));
3457 memset(&s->xcr, 0, sizeof(s->xcr));
3458 s->srgr[0] = 0x0001;
3459 s->srgr[1] = 0x2000;
3460 memset(&s->mcr, 0, sizeof(s->mcr));
3461 memset(&s->pcr, 0, sizeof(s->pcr));
3462 memset(&s->rcer, 0, sizeof(s->rcer));
3463 memset(&s->xcer, 0, sizeof(s->xcer));
3464 s->tx_req = 0;
3465 s->rx_req = 0;
3466 s->tx_rate = 0;
3467 s->rx_rate = 0;
3468 timer_del(s->source_timer);
3469 timer_del(s->sink_timer);
3470 }
3471
omap_mcbsp_init(MemoryRegion * system_memory,hwaddr base,qemu_irq txirq,qemu_irq rxirq,qemu_irq * dma,omap_clk clk)3472 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3473 hwaddr base,
3474 qemu_irq txirq, qemu_irq rxirq,
3475 qemu_irq *dma, omap_clk clk)
3476 {
3477 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3478
3479 s->txirq = txirq;
3480 s->rxirq = rxirq;
3481 s->txdrq = dma[0];
3482 s->rxdrq = dma[1];
3483 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3484 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3485 omap_mcbsp_reset(s);
3486
3487 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3488 memory_region_add_subregion(system_memory, base, &s->iomem);
3489
3490 return s;
3491 }
3492
omap_mcbsp_i2s_swallow(void * opaque,int line,int level)3493 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3494 {
3495 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3496
3497 if (s->rx_rate) {
3498 s->rx_req = s->codec->in.len;
3499 omap_mcbsp_rx_newdata(s);
3500 }
3501 }
3502
omap_mcbsp_i2s_start(void * opaque,int line,int level)3503 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3504 {
3505 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3506
3507 if (s->tx_rate) {
3508 s->tx_req = s->codec->out.size;
3509 omap_mcbsp_tx_newdata(s);
3510 }
3511 }
3512
omap_mcbsp_i2s_attach(struct omap_mcbsp_s * s,I2SCodec * slave)3513 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3514 {
3515 s->codec = slave;
3516 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3517 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3518 }
3519
3520 /* LED Pulse Generators */
3521 struct omap_lpg_s {
3522 MemoryRegion iomem;
3523 QEMUTimer *tm;
3524
3525 uint8_t control;
3526 uint8_t power;
3527 int64_t on;
3528 int64_t period;
3529 int clk;
3530 int cycle;
3531 };
3532
omap_lpg_tick(void * opaque)3533 static void omap_lpg_tick(void *opaque)
3534 {
3535 struct omap_lpg_s *s = opaque;
3536
3537 if (s->cycle)
3538 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3539 else
3540 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3541
3542 s->cycle = !s->cycle;
3543 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3544 }
3545
omap_lpg_update(struct omap_lpg_s * s)3546 static void omap_lpg_update(struct omap_lpg_s *s)
3547 {
3548 int64_t on, period = 1, ticks = 1000;
3549 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3550
3551 if (~s->control & (1 << 6)) /* LPGRES */
3552 on = 0;
3553 else if (s->control & (1 << 7)) /* PERM_ON */
3554 on = period;
3555 else {
3556 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3557 256 / 32);
3558 on = (s->clk && s->power) ? muldiv64(ticks,
3559 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3560 }
3561
3562 timer_del(s->tm);
3563 if (on == period && s->on < s->period)
3564 printf("%s: LED is on\n", __func__);
3565 else if (on == 0 && s->on)
3566 printf("%s: LED is off\n", __func__);
3567 else if (on && (on != s->on || period != s->period)) {
3568 s->cycle = 0;
3569 s->on = on;
3570 s->period = period;
3571 omap_lpg_tick(s);
3572 return;
3573 }
3574
3575 s->on = on;
3576 s->period = period;
3577 }
3578
omap_lpg_reset(struct omap_lpg_s * s)3579 static void omap_lpg_reset(struct omap_lpg_s *s)
3580 {
3581 s->control = 0x00;
3582 s->power = 0x00;
3583 s->clk = 1;
3584 omap_lpg_update(s);
3585 }
3586
omap_lpg_read(void * opaque,hwaddr addr,unsigned size)3587 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3588 unsigned size)
3589 {
3590 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3591 int offset = addr & OMAP_MPUI_REG_MASK;
3592
3593 if (size != 1) {
3594 return omap_badwidth_read8(opaque, addr);
3595 }
3596
3597 switch (offset) {
3598 case 0x00: /* LCR */
3599 return s->control;
3600
3601 case 0x04: /* PMR */
3602 return s->power;
3603 }
3604
3605 OMAP_BAD_REG(addr);
3606 return 0;
3607 }
3608
omap_lpg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3609 static void omap_lpg_write(void *opaque, hwaddr addr,
3610 uint64_t value, unsigned size)
3611 {
3612 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3613 int offset = addr & OMAP_MPUI_REG_MASK;
3614
3615 if (size != 1) {
3616 omap_badwidth_write8(opaque, addr, value);
3617 return;
3618 }
3619
3620 switch (offset) {
3621 case 0x00: /* LCR */
3622 if (~value & (1 << 6)) /* LPGRES */
3623 omap_lpg_reset(s);
3624 s->control = value & 0xff;
3625 omap_lpg_update(s);
3626 return;
3627
3628 case 0x04: /* PMR */
3629 s->power = value & 0x01;
3630 omap_lpg_update(s);
3631 return;
3632
3633 default:
3634 OMAP_BAD_REG(addr);
3635 return;
3636 }
3637 }
3638
3639 static const MemoryRegionOps omap_lpg_ops = {
3640 .read = omap_lpg_read,
3641 .write = omap_lpg_write,
3642 .endianness = DEVICE_NATIVE_ENDIAN,
3643 };
3644
omap_lpg_clk_update(void * opaque,int line,int on)3645 static void omap_lpg_clk_update(void *opaque, int line, int on)
3646 {
3647 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3648
3649 s->clk = on;
3650 omap_lpg_update(s);
3651 }
3652
omap_lpg_init(MemoryRegion * system_memory,hwaddr base,omap_clk clk)3653 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3654 hwaddr base, omap_clk clk)
3655 {
3656 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3657
3658 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3659
3660 omap_lpg_reset(s);
3661
3662 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3663 memory_region_add_subregion(system_memory, base, &s->iomem);
3664
3665 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3666
3667 return s;
3668 }
3669
3670 /* MPUI Peripheral Bridge configuration */
omap_mpui_io_read(void * opaque,hwaddr addr,unsigned size)3671 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3672 unsigned size)
3673 {
3674 if (size != 2) {
3675 return omap_badwidth_read16(opaque, addr);
3676 }
3677
3678 if (addr == OMAP_MPUI_BASE) /* CMR */
3679 return 0xfe4d;
3680
3681 OMAP_BAD_REG(addr);
3682 return 0;
3683 }
3684
omap_mpui_io_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)3685 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3686 uint64_t value, unsigned size)
3687 {
3688 /* FIXME: infinite loop */
3689 omap_badwidth_write16(opaque, addr, value);
3690 }
3691
3692 static const MemoryRegionOps omap_mpui_io_ops = {
3693 .read = omap_mpui_io_read,
3694 .write = omap_mpui_io_write,
3695 .endianness = DEVICE_NATIVE_ENDIAN,
3696 };
3697
omap_setup_mpui_io(MemoryRegion * system_memory,struct omap_mpu_state_s * mpu)3698 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3699 struct omap_mpu_state_s *mpu)
3700 {
3701 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3702 "omap-mpui-io", 0x7fff);
3703 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3704 &mpu->mpui_io_iomem);
3705 }
3706
3707 /* General chip reset */
omap1_mpu_reset(void * opaque)3708 static void omap1_mpu_reset(void *opaque)
3709 {
3710 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3711
3712 omap_dma_reset(mpu->dma);
3713 omap_mpu_timer_reset(mpu->timer[0]);
3714 omap_mpu_timer_reset(mpu->timer[1]);
3715 omap_mpu_timer_reset(mpu->timer[2]);
3716 omap_wd_timer_reset(mpu->wdt);
3717 omap_os_timer_reset(mpu->os_timer);
3718 omap_lcdc_reset(mpu->lcd);
3719 omap_ulpd_pm_reset(mpu);
3720 omap_pin_cfg_reset(mpu);
3721 omap_mpui_reset(mpu);
3722 omap_tipb_bridge_reset(mpu->private_tipb);
3723 omap_tipb_bridge_reset(mpu->public_tipb);
3724 omap_dpll_reset(mpu->dpll[0]);
3725 omap_dpll_reset(mpu->dpll[1]);
3726 omap_dpll_reset(mpu->dpll[2]);
3727 omap_uart_reset(mpu->uart[0]);
3728 omap_uart_reset(mpu->uart[1]);
3729 omap_uart_reset(mpu->uart[2]);
3730 omap_mmc_reset(mpu->mmc);
3731 omap_mpuio_reset(mpu->mpuio);
3732 omap_uwire_reset(mpu->microwire);
3733 omap_pwl_reset(mpu->pwl);
3734 omap_pwt_reset(mpu->pwt);
3735 omap_rtc_reset(mpu->rtc);
3736 omap_mcbsp_reset(mpu->mcbsp1);
3737 omap_mcbsp_reset(mpu->mcbsp2);
3738 omap_mcbsp_reset(mpu->mcbsp3);
3739 omap_lpg_reset(mpu->led[0]);
3740 omap_lpg_reset(mpu->led[1]);
3741 omap_clkm_reset(mpu);
3742 cpu_reset(CPU(mpu->cpu));
3743 }
3744
3745 static const struct omap_map_s {
3746 hwaddr phys_dsp;
3747 hwaddr phys_mpu;
3748 uint32_t size;
3749 const char *name;
3750 } omap15xx_dsp_mm[] = {
3751 /* Strobe 0 */
3752 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3753 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3754 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3755 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3756 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3757 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3758 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3759 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3760 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3761 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3762 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3763 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3764 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3765 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3766 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3767 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3768 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3769 /* Strobe 1 */
3770 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3771
3772 { 0 }
3773 };
3774
omap_setup_dsp_mapping(MemoryRegion * system_memory,const struct omap_map_s * map)3775 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3776 const struct omap_map_s *map)
3777 {
3778 MemoryRegion *io;
3779
3780 for (; map->phys_dsp; map ++) {
3781 io = g_new(MemoryRegion, 1);
3782 memory_region_init_alias(io, NULL, map->name,
3783 system_memory, map->phys_mpu, map->size);
3784 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3785 }
3786 }
3787
omap_mpu_wakeup(void * opaque,int irq,int req)3788 void omap_mpu_wakeup(void *opaque, int irq, int req)
3789 {
3790 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3791 CPUState *cpu = CPU(mpu->cpu);
3792
3793 if (cpu->halted) {
3794 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3795 }
3796 }
3797
3798 static const struct dma_irq_map omap1_dma_irq_map[] = {
3799 { 0, OMAP_INT_DMA_CH0_6 },
3800 { 0, OMAP_INT_DMA_CH1_7 },
3801 { 0, OMAP_INT_DMA_CH2_8 },
3802 { 0, OMAP_INT_DMA_CH3 },
3803 { 0, OMAP_INT_DMA_CH4 },
3804 { 0, OMAP_INT_DMA_CH5 },
3805 { 1, OMAP_INT_1610_DMA_CH6 },
3806 { 1, OMAP_INT_1610_DMA_CH7 },
3807 { 1, OMAP_INT_1610_DMA_CH8 },
3808 { 1, OMAP_INT_1610_DMA_CH9 },
3809 { 1, OMAP_INT_1610_DMA_CH10 },
3810 { 1, OMAP_INT_1610_DMA_CH11 },
3811 { 1, OMAP_INT_1610_DMA_CH12 },
3812 { 1, OMAP_INT_1610_DMA_CH13 },
3813 { 1, OMAP_INT_1610_DMA_CH14 },
3814 { 1, OMAP_INT_1610_DMA_CH15 }
3815 };
3816
3817 /* DMA ports for OMAP1 */
omap_validate_emiff_addr(struct omap_mpu_state_s * s,hwaddr addr)3818 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3819 hwaddr addr)
3820 {
3821 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3822 }
3823
omap_validate_emifs_addr(struct omap_mpu_state_s * s,hwaddr addr)3824 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3825 hwaddr addr)
3826 {
3827 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3828 addr);
3829 }
3830
omap_validate_imif_addr(struct omap_mpu_state_s * s,hwaddr addr)3831 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3832 hwaddr addr)
3833 {
3834 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3835 }
3836
omap_validate_tipb_addr(struct omap_mpu_state_s * s,hwaddr addr)3837 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3838 hwaddr addr)
3839 {
3840 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3841 }
3842
omap_validate_local_addr(struct omap_mpu_state_s * s,hwaddr addr)3843 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3844 hwaddr addr)
3845 {
3846 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3847 }
3848
omap_validate_tipb_mpui_addr(struct omap_mpu_state_s * s,hwaddr addr)3849 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3850 hwaddr addr)
3851 {
3852 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3853 }
3854
omap310_mpu_init(MemoryRegion * system_memory,unsigned long sdram_size,const char * cpu_type)3855 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3856 unsigned long sdram_size,
3857 const char *cpu_type)
3858 {
3859 int i;
3860 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3861 qemu_irq dma_irqs[6];
3862 DriveInfo *dinfo;
3863 SysBusDevice *busdev;
3864
3865 /* Core */
3866 s->mpu_model = omap310;
3867 s->cpu = ARM_CPU(cpu_create(cpu_type));
3868 s->sdram_size = sdram_size;
3869 s->sram_size = OMAP15XX_SRAM_SIZE;
3870
3871 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3872
3873 /* Clocks */
3874 omap_clk_init(s);
3875
3876 /* Memory-mapped stuff */
3877 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3878 s->sdram_size);
3879 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3880 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3881 &error_fatal);
3882 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3883
3884 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3885
3886 s->ih[0] = qdev_create(NULL, "omap-intc");
3887 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3888 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3889 qdev_init_nofail(s->ih[0]);
3890 busdev = SYS_BUS_DEVICE(s->ih[0]);
3891 sysbus_connect_irq(busdev, 0,
3892 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3893 sysbus_connect_irq(busdev, 1,
3894 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3895 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3896 s->ih[1] = qdev_create(NULL, "omap-intc");
3897 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3898 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3899 qdev_init_nofail(s->ih[1]);
3900 busdev = SYS_BUS_DEVICE(s->ih[1]);
3901 sysbus_connect_irq(busdev, 0,
3902 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3903 /* The second interrupt controller's FIQ output is not wired up */
3904 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3905
3906 for (i = 0; i < 6; i++) {
3907 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3908 omap1_dma_irq_map[i].intr);
3909 }
3910 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3911 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3912 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3913
3914 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3915 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3916 s->port[imif ].addr_valid = omap_validate_imif_addr;
3917 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3918 s->port[local ].addr_valid = omap_validate_local_addr;
3919 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3920
3921 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3922 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3923 OMAP_EMIFF_BASE, s->sdram_size);
3924 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3925 OMAP_IMIF_BASE, s->sram_size);
3926
3927 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3928 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3929 omap_findclk(s, "mputim_ck"));
3930 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3931 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3932 omap_findclk(s, "mputim_ck"));
3933 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3934 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3935 omap_findclk(s, "mputim_ck"));
3936
3937 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3939 omap_findclk(s, "armwdt_ck"));
3940
3941 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3942 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3943 omap_findclk(s, "clk32-kHz"));
3944
3945 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3946 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3947 omap_dma_get_lcdch(s->dma),
3948 omap_findclk(s, "lcd_ck"));
3949
3950 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3951 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3952 omap_id_init(system_memory, s);
3953
3954 omap_mpui_init(system_memory, 0xfffec900, s);
3955
3956 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3957 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3958 omap_findclk(s, "tipb_ck"));
3959 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3960 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3961 omap_findclk(s, "tipb_ck"));
3962
3963 omap_tcmi_init(system_memory, 0xfffecc00, s);
3964
3965 s->uart[0] = omap_uart_init(0xfffb0000,
3966 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3967 omap_findclk(s, "uart1_ck"),
3968 omap_findclk(s, "uart1_ck"),
3969 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3970 "uart1",
3971 serial_hd(0));
3972 s->uart[1] = omap_uart_init(0xfffb0800,
3973 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3974 omap_findclk(s, "uart2_ck"),
3975 omap_findclk(s, "uart2_ck"),
3976 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3977 "uart2",
3978 serial_hd(0) ? serial_hd(1) : NULL);
3979 s->uart[2] = omap_uart_init(0xfffb9800,
3980 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3981 omap_findclk(s, "uart3_ck"),
3982 omap_findclk(s, "uart3_ck"),
3983 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3984 "uart3",
3985 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3986
3987 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3988 omap_findclk(s, "dpll1"));
3989 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3990 omap_findclk(s, "dpll2"));
3991 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3992 omap_findclk(s, "dpll3"));
3993
3994 dinfo = drive_get(IF_SD, 0, 0);
3995 if (!dinfo && !qtest_enabled()) {
3996 warn_report("missing SecureDigital device");
3997 }
3998 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3999 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4000 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4001 &s->drq[OMAP_DMA_MMC_TX],
4002 omap_findclk(s, "mmc_ck"));
4003
4004 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007 s->wakeup, omap_findclk(s, "clk32-kHz"));
4008
4009 s->gpio = qdev_create(NULL, "omap-gpio");
4010 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4012 qdev_init_nofail(s->gpio);
4013 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4016
4017 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4021
4022 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023 omap_findclk(s, "armxor_ck"));
4024 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025 omap_findclk(s, "armxor_ck"));
4026
4027 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4028 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4030 qdev_init_nofail(s->i2c[0]);
4031 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4032 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4036
4037 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040 omap_findclk(s, "clk32-kHz"));
4041
4042 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047 qdev_get_gpio_in(s->ih[0],
4048 OMAP_INT_310_McBSP2_TX),
4049 qdev_get_gpio_in(s->ih[0],
4050 OMAP_INT_310_McBSP2_RX),
4051 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4056
4057 s->led[0] = omap_lpg_init(system_memory,
4058 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059 s->led[1] = omap_lpg_init(system_memory,
4060 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4061
4062 /* Register mappings not currenlty implemented:
4063 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4064 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4065 * USB W2FC fffb4000 - fffb47ff
4066 * Camera Interface fffb6800 - fffb6fff
4067 * USB Host fffba000 - fffba7ff
4068 * FAC fffba800 - fffbafff
4069 * HDQ/1-Wire fffbc000 - fffbc7ff
4070 * TIPB switches fffbc800 - fffbcfff
4071 * Mailbox fffcf000 - fffcf7ff
4072 * Local bus IF fffec100 - fffec1ff
4073 * Local bus MMU fffec200 - fffec2ff
4074 * DSP MMU fffed200 - fffed2ff
4075 */
4076
4077 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078 omap_setup_mpui_io(system_memory, s);
4079
4080 qemu_register_reset(omap1_mpu_reset, s);
4081
4082 return s;
4083 }
4084