1 /*
2 * QEMU ETRAX DMA Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/irq.h"
28 #include "qemu/main-loop.h"
29 #include "sysemu/runstate.h"
30 #include "exec/address-spaces.h"
31
32 #include "hw/cris/etraxfs_dma.h"
33
34 #define D(x)
35
36 #define RW_DATA (0x0 / 4)
37 #define RW_SAVED_DATA (0x58 / 4)
38 #define RW_SAVED_DATA_BUF (0x5c / 4)
39 #define RW_GROUP (0x60 / 4)
40 #define RW_GROUP_DOWN (0x7c / 4)
41 #define RW_CMD (0x80 / 4)
42 #define RW_CFG (0x84 / 4)
43 #define RW_STAT (0x88 / 4)
44 #define RW_INTR_MASK (0x8c / 4)
45 #define RW_ACK_INTR (0x90 / 4)
46 #define R_INTR (0x94 / 4)
47 #define R_MASKED_INTR (0x98 / 4)
48 #define RW_STREAM_CMD (0x9c / 4)
49
50 #define DMA_REG_MAX (0x100 / 4)
51
52 /* descriptors */
53
54 // ------------------------------------------------------------ dma_descr_group
55 typedef struct dma_descr_group {
56 uint32_t next;
57 unsigned eol : 1;
58 unsigned tol : 1;
59 unsigned bol : 1;
60 unsigned : 1;
61 unsigned intr : 1;
62 unsigned : 2;
63 unsigned en : 1;
64 unsigned : 7;
65 unsigned dis : 1;
66 unsigned md : 16;
67 struct dma_descr_group *up;
68 union {
69 struct dma_descr_context *context;
70 struct dma_descr_group *group;
71 } down;
72 } dma_descr_group;
73
74 // ---------------------------------------------------------- dma_descr_context
75 typedef struct dma_descr_context {
76 uint32_t next;
77 unsigned eol : 1;
78 unsigned : 3;
79 unsigned intr : 1;
80 unsigned : 1;
81 unsigned store_mode : 1;
82 unsigned en : 1;
83 unsigned : 7;
84 unsigned dis : 1;
85 unsigned md0 : 16;
86 unsigned md1;
87 unsigned md2;
88 unsigned md3;
89 unsigned md4;
90 uint32_t saved_data;
91 uint32_t saved_data_buf;
92 } dma_descr_context;
93
94 // ------------------------------------------------------------- dma_descr_data
95 typedef struct dma_descr_data {
96 uint32_t next;
97 uint32_t buf;
98 unsigned eol : 1;
99 unsigned : 2;
100 unsigned out_eop : 1;
101 unsigned intr : 1;
102 unsigned wait : 1;
103 unsigned : 2;
104 unsigned : 3;
105 unsigned in_eop : 1;
106 unsigned : 4;
107 unsigned md : 16;
108 uint32_t after;
109 } dma_descr_data;
110
111 /* Constants */
112 enum {
113 regk_dma_ack_pkt = 0x00000100,
114 regk_dma_anytime = 0x00000001,
115 regk_dma_array = 0x00000008,
116 regk_dma_burst = 0x00000020,
117 regk_dma_client = 0x00000002,
118 regk_dma_copy_next = 0x00000010,
119 regk_dma_copy_up = 0x00000020,
120 regk_dma_data_at_eol = 0x00000001,
121 regk_dma_dis_c = 0x00000010,
122 regk_dma_dis_g = 0x00000020,
123 regk_dma_idle = 0x00000001,
124 regk_dma_intern = 0x00000004,
125 regk_dma_load_c = 0x00000200,
126 regk_dma_load_c_n = 0x00000280,
127 regk_dma_load_c_next = 0x00000240,
128 regk_dma_load_d = 0x00000140,
129 regk_dma_load_g = 0x00000300,
130 regk_dma_load_g_down = 0x000003c0,
131 regk_dma_load_g_next = 0x00000340,
132 regk_dma_load_g_up = 0x00000380,
133 regk_dma_next_en = 0x00000010,
134 regk_dma_next_pkt = 0x00000010,
135 regk_dma_no = 0x00000000,
136 regk_dma_only_at_wait = 0x00000000,
137 regk_dma_restore = 0x00000020,
138 regk_dma_rst = 0x00000001,
139 regk_dma_running = 0x00000004,
140 regk_dma_rw_cfg_default = 0x00000000,
141 regk_dma_rw_cmd_default = 0x00000000,
142 regk_dma_rw_intr_mask_default = 0x00000000,
143 regk_dma_rw_stat_default = 0x00000101,
144 regk_dma_rw_stream_cmd_default = 0x00000000,
145 regk_dma_save_down = 0x00000020,
146 regk_dma_save_up = 0x00000020,
147 regk_dma_set_reg = 0x00000050,
148 regk_dma_set_w_size1 = 0x00000190,
149 regk_dma_set_w_size2 = 0x000001a0,
150 regk_dma_set_w_size4 = 0x000001c0,
151 regk_dma_stopped = 0x00000002,
152 regk_dma_store_c = 0x00000002,
153 regk_dma_store_descr = 0x00000000,
154 regk_dma_store_g = 0x00000004,
155 regk_dma_store_md = 0x00000001,
156 regk_dma_sw = 0x00000008,
157 regk_dma_update_down = 0x00000020,
158 regk_dma_yes = 0x00000001
159 };
160
161 enum dma_ch_state
162 {
163 RST = 1,
164 STOPPED = 2,
165 RUNNING = 4
166 };
167
168 struct fs_dma_channel
169 {
170 qemu_irq irq;
171 struct etraxfs_dma_client *client;
172
173 /* Internal status. */
174 int stream_cmd_src;
175 enum dma_ch_state state;
176
177 unsigned int input : 1;
178 unsigned int eol : 1;
179
180 struct dma_descr_group current_g;
181 struct dma_descr_context current_c;
182 struct dma_descr_data current_d;
183
184 /* Control registers. */
185 uint32_t regs[DMA_REG_MAX];
186 };
187
188 struct fs_dma_ctrl
189 {
190 MemoryRegion mmio;
191 int nr_channels;
192 struct fs_dma_channel *channels;
193
194 QEMUBH *bh;
195 };
196
197 static void DMA_run(void *opaque);
198 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);
199
channel_reg(struct fs_dma_ctrl * ctrl,int c,int reg)200 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
201 {
202 return ctrl->channels[c].regs[reg];
203 }
204
channel_stopped(struct fs_dma_ctrl * ctrl,int c)205 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
206 {
207 return channel_reg(ctrl, c, RW_CFG) & 2;
208 }
209
channel_en(struct fs_dma_ctrl * ctrl,int c)210 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
211 {
212 return (channel_reg(ctrl, c, RW_CFG) & 1)
213 && ctrl->channels[c].client;
214 }
215
fs_channel(hwaddr addr)216 static inline int fs_channel(hwaddr addr)
217 {
218 /* Every channel has a 0x2000 ctrl register map. */
219 return addr >> 13;
220 }
221
222 #ifdef USE_THIS_DEAD_CODE
channel_load_g(struct fs_dma_ctrl * ctrl,int c)223 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
224 {
225 hwaddr addr = channel_reg(ctrl, c, RW_GROUP);
226
227 /* Load and decode. FIXME: handle endianness. */
228 cpu_physical_memory_read (addr,
229 (void *) &ctrl->channels[c].current_g,
230 sizeof ctrl->channels[c].current_g);
231 }
232
dump_c(int ch,struct dma_descr_context * c)233 static void dump_c(int ch, struct dma_descr_context *c)
234 {
235 printf("%s ch=%d\n", __func__, ch);
236 printf("next=%x\n", c->next);
237 printf("saved_data=%x\n", c->saved_data);
238 printf("saved_data_buf=%x\n", c->saved_data_buf);
239 printf("eol=%x\n", (uint32_t) c->eol);
240 }
241
dump_d(int ch,struct dma_descr_data * d)242 static void dump_d(int ch, struct dma_descr_data *d)
243 {
244 printf("%s ch=%d\n", __func__, ch);
245 printf("next=%x\n", d->next);
246 printf("buf=%x\n", d->buf);
247 printf("after=%x\n", d->after);
248 printf("intr=%x\n", (uint32_t) d->intr);
249 printf("out_eop=%x\n", (uint32_t) d->out_eop);
250 printf("in_eop=%x\n", (uint32_t) d->in_eop);
251 printf("eol=%x\n", (uint32_t) d->eol);
252 }
253 #endif
254
channel_load_c(struct fs_dma_ctrl * ctrl,int c)255 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
256 {
257 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
258
259 /* Load and decode. FIXME: handle endianness. */
260 cpu_physical_memory_read (addr,
261 (void *) &ctrl->channels[c].current_c,
262 sizeof ctrl->channels[c].current_c);
263
264 D(dump_c(c, &ctrl->channels[c].current_c));
265 /* I guess this should update the current pos. */
266 ctrl->channels[c].regs[RW_SAVED_DATA] =
267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
268 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
269 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
270 }
271
channel_load_d(struct fs_dma_ctrl * ctrl,int c)272 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
273 {
274 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
275
276 /* Load and decode. FIXME: handle endianness. */
277 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
278 cpu_physical_memory_read (addr,
279 (void *) &ctrl->channels[c].current_d,
280 sizeof ctrl->channels[c].current_d);
281
282 D(dump_d(c, &ctrl->channels[c].current_d));
283 ctrl->channels[c].regs[RW_DATA] = addr;
284 }
285
channel_store_c(struct fs_dma_ctrl * ctrl,int c)286 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
287 {
288 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
289
290 /* Encode and store. FIXME: handle endianness. */
291 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
292 D(dump_d(c, &ctrl->channels[c].current_d));
293 cpu_physical_memory_write (addr,
294 (void *) &ctrl->channels[c].current_c,
295 sizeof ctrl->channels[c].current_c);
296 }
297
channel_store_d(struct fs_dma_ctrl * ctrl,int c)298 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
299 {
300 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA);
301
302 /* Encode and store. FIXME: handle endianness. */
303 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
304 cpu_physical_memory_write (addr,
305 (void *) &ctrl->channels[c].current_d,
306 sizeof ctrl->channels[c].current_d);
307 }
308
channel_stop(struct fs_dma_ctrl * ctrl,int c)309 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
310 {
311 /* FIXME: */
312 }
313
channel_start(struct fs_dma_ctrl * ctrl,int c)314 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
315 {
316 if (ctrl->channels[c].client)
317 {
318 ctrl->channels[c].eol = 0;
319 ctrl->channels[c].state = RUNNING;
320 if (!ctrl->channels[c].input)
321 channel_out_run(ctrl, c);
322 } else
323 printf("WARNING: starting DMA ch %d with no client\n", c);
324
325 qemu_bh_schedule_idle(ctrl->bh);
326 }
327
channel_continue(struct fs_dma_ctrl * ctrl,int c)328 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
329 {
330 if (!channel_en(ctrl, c)
331 || channel_stopped(ctrl, c)
332 || ctrl->channels[c].state != RUNNING
333 /* Only reload the current data descriptor if it has eol set. */
334 || !ctrl->channels[c].current_d.eol) {
335 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
336 c, ctrl->channels[c].state,
337 channel_stopped(ctrl, c),
338 channel_en(ctrl,c),
339 ctrl->channels[c].eol));
340 D(dump_d(c, &ctrl->channels[c].current_d));
341 return;
342 }
343
344 /* Reload the current descriptor. */
345 channel_load_d(ctrl, c);
346
347 /* If the current descriptor cleared the eol flag and we had already
348 reached eol state, do the continue. */
349 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
350 D(printf("continue %d ok %x\n", c,
351 ctrl->channels[c].current_d.next));
352 ctrl->channels[c].regs[RW_SAVED_DATA] =
353 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
354 channel_load_d(ctrl, c);
355 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
356 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
357
358 channel_start(ctrl, c);
359 }
360 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
361 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
362 }
363
channel_stream_cmd(struct fs_dma_ctrl * ctrl,int c,uint32_t v)364 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
365 {
366 unsigned int cmd = v & ((1 << 10) - 1);
367
368 D(printf("%s ch=%d cmd=%x\n",
369 __func__, c, cmd));
370 if (cmd & regk_dma_load_d) {
371 channel_load_d(ctrl, c);
372 if (cmd & regk_dma_burst)
373 channel_start(ctrl, c);
374 }
375
376 if (cmd & regk_dma_load_c) {
377 channel_load_c(ctrl, c);
378 }
379 }
380
channel_update_irq(struct fs_dma_ctrl * ctrl,int c)381 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
382 {
383 D(printf("%s %d\n", __func__, c));
384 ctrl->channels[c].regs[R_INTR] &=
385 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
386
387 ctrl->channels[c].regs[R_MASKED_INTR] =
388 ctrl->channels[c].regs[R_INTR]
389 & ctrl->channels[c].regs[RW_INTR_MASK];
390
391 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
392 c,
393 ctrl->channels[c].regs[R_MASKED_INTR]));
394
395 qemu_set_irq(ctrl->channels[c].irq,
396 !!ctrl->channels[c].regs[R_MASKED_INTR]);
397 }
398
channel_out_run(struct fs_dma_ctrl * ctrl,int c)399 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
400 {
401 uint32_t len;
402 uint32_t saved_data_buf;
403 unsigned char buf[2 * 1024];
404
405 struct dma_context_metadata meta;
406 bool send_context = true;
407
408 if (ctrl->channels[c].eol)
409 return 0;
410
411 do {
412 bool out_eop;
413 D(printf("ch=%d buf=%x after=%x\n",
414 c,
415 (uint32_t)ctrl->channels[c].current_d.buf,
416 (uint32_t)ctrl->channels[c].current_d.after));
417
418 if (send_context) {
419 if (ctrl->channels[c].client->client.metadata_push) {
420 meta.metadata = ctrl->channels[c].current_d.md;
421 ctrl->channels[c].client->client.metadata_push(
422 ctrl->channels[c].client->client.opaque,
423 &meta);
424 }
425 send_context = false;
426 }
427
428 channel_load_d(ctrl, c);
429 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
430 len = (uint32_t)(unsigned long)
431 ctrl->channels[c].current_d.after;
432 len -= saved_data_buf;
433
434 if (len > sizeof buf)
435 len = sizeof buf;
436 cpu_physical_memory_read (saved_data_buf, buf, len);
437
438 out_eop = ((saved_data_buf + len) ==
439 ctrl->channels[c].current_d.after) &&
440 ctrl->channels[c].current_d.out_eop;
441
442 D(printf("channel %d pushes %x %u bytes eop=%u\n", c,
443 saved_data_buf, len, out_eop));
444
445 if (ctrl->channels[c].client->client.push) {
446 if (len > 0) {
447 ctrl->channels[c].client->client.push(
448 ctrl->channels[c].client->client.opaque,
449 buf, len, out_eop);
450 }
451 } else {
452 printf("WARNING: DMA ch%d dataloss,"
453 " no attached client.\n", c);
454 }
455
456 saved_data_buf += len;
457
458 if (saved_data_buf == (uint32_t)(unsigned long)
459 ctrl->channels[c].current_d.after) {
460 /* Done. Step to next. */
461 if (ctrl->channels[c].current_d.out_eop) {
462 send_context = true;
463 }
464 if (ctrl->channels[c].current_d.intr) {
465 /* data intr. */
466 D(printf("signal intr %d eol=%d\n",
467 len, ctrl->channels[c].current_d.eol));
468 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
469 channel_update_irq(ctrl, c);
470 }
471 channel_store_d(ctrl, c);
472 if (ctrl->channels[c].current_d.eol) {
473 D(printf("channel %d EOL\n", c));
474 ctrl->channels[c].eol = 1;
475
476 /* Mark the context as disabled. */
477 ctrl->channels[c].current_c.dis = 1;
478 channel_store_c(ctrl, c);
479
480 channel_stop(ctrl, c);
481 } else {
482 ctrl->channels[c].regs[RW_SAVED_DATA] =
483 (uint32_t)(unsigned long)ctrl->
484 channels[c].current_d.next;
485 /* Load new descriptor. */
486 channel_load_d(ctrl, c);
487 saved_data_buf = (uint32_t)(unsigned long)
488 ctrl->channels[c].current_d.buf;
489 }
490
491 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
492 saved_data_buf;
493 D(dump_d(c, &ctrl->channels[c].current_d));
494 }
495 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
496 } while (!ctrl->channels[c].eol);
497 return 1;
498 }
499
channel_in_process(struct fs_dma_ctrl * ctrl,int c,unsigned char * buf,int buflen,int eop)500 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
501 unsigned char *buf, int buflen, int eop)
502 {
503 uint32_t len;
504 uint32_t saved_data_buf;
505
506 if (ctrl->channels[c].eol == 1)
507 return 0;
508
509 channel_load_d(ctrl, c);
510 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
511 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
512 len -= saved_data_buf;
513
514 if (len > buflen)
515 len = buflen;
516
517 cpu_physical_memory_write (saved_data_buf, buf, len);
518 saved_data_buf += len;
519
520 if (saved_data_buf ==
521 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
522 || eop) {
523 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
524
525 D(printf("in dscr end len=%d\n",
526 ctrl->channels[c].current_d.after
527 - ctrl->channels[c].current_d.buf));
528 ctrl->channels[c].current_d.after = saved_data_buf;
529
530 /* Done. Step to next. */
531 if (ctrl->channels[c].current_d.intr) {
532 /* TODO: signal eop to the client. */
533 /* data intr. */
534 ctrl->channels[c].regs[R_INTR] |= 3;
535 }
536 if (eop) {
537 ctrl->channels[c].current_d.in_eop = 1;
538 ctrl->channels[c].regs[R_INTR] |= 8;
539 }
540 if (r_intr != ctrl->channels[c].regs[R_INTR])
541 channel_update_irq(ctrl, c);
542
543 channel_store_d(ctrl, c);
544 D(dump_d(c, &ctrl->channels[c].current_d));
545
546 if (ctrl->channels[c].current_d.eol) {
547 D(printf("channel %d EOL\n", c));
548 ctrl->channels[c].eol = 1;
549
550 /* Mark the context as disabled. */
551 ctrl->channels[c].current_c.dis = 1;
552 channel_store_c(ctrl, c);
553
554 channel_stop(ctrl, c);
555 } else {
556 ctrl->channels[c].regs[RW_SAVED_DATA] =
557 (uint32_t)(unsigned long)ctrl->
558 channels[c].current_d.next;
559 /* Load new descriptor. */
560 channel_load_d(ctrl, c);
561 saved_data_buf = (uint32_t)(unsigned long)
562 ctrl->channels[c].current_d.buf;
563 }
564 }
565
566 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
567 return len;
568 }
569
channel_in_run(struct fs_dma_ctrl * ctrl,int c)570 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
571 {
572 if (ctrl->channels[c].client->client.pull) {
573 ctrl->channels[c].client->client.pull(
574 ctrl->channels[c].client->client.opaque);
575 return 1;
576 } else
577 return 0;
578 }
579
dma_rinvalid(void * opaque,hwaddr addr)580 static uint32_t dma_rinvalid (void *opaque, hwaddr addr)
581 {
582 hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
583 return 0;
584 }
585
586 static uint64_t
dma_read(void * opaque,hwaddr addr,unsigned int size)587 dma_read(void *opaque, hwaddr addr, unsigned int size)
588 {
589 struct fs_dma_ctrl *ctrl = opaque;
590 int c;
591 uint32_t r = 0;
592
593 if (size != 4) {
594 dma_rinvalid(opaque, addr);
595 }
596
597 /* Make addr relative to this channel and bounded to nr regs. */
598 c = fs_channel(addr);
599 addr &= 0xff;
600 addr >>= 2;
601 switch (addr)
602 {
603 case RW_STAT:
604 r = ctrl->channels[c].state & 7;
605 r |= ctrl->channels[c].eol << 5;
606 r |= ctrl->channels[c].stream_cmd_src << 8;
607 break;
608
609 default:
610 r = ctrl->channels[c].regs[addr];
611 D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
612 __func__, c, addr));
613 break;
614 }
615 return r;
616 }
617
618 static void
dma_winvalid(void * opaque,hwaddr addr,uint32_t value)619 dma_winvalid (void *opaque, hwaddr addr, uint32_t value)
620 {
621 hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
622 }
623
624 static void
dma_update_state(struct fs_dma_ctrl * ctrl,int c)625 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
626 {
627 if (ctrl->channels[c].regs[RW_CFG] & 2)
628 ctrl->channels[c].state = STOPPED;
629 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
630 ctrl->channels[c].state = RST;
631 }
632
633 static void
dma_write(void * opaque,hwaddr addr,uint64_t val64,unsigned int size)634 dma_write(void *opaque, hwaddr addr,
635 uint64_t val64, unsigned int size)
636 {
637 struct fs_dma_ctrl *ctrl = opaque;
638 uint32_t value = val64;
639 int c;
640
641 if (size != 4) {
642 dma_winvalid(opaque, addr, value);
643 }
644
645 /* Make addr relative to this channel and bounded to nr regs. */
646 c = fs_channel(addr);
647 addr &= 0xff;
648 addr >>= 2;
649 switch (addr)
650 {
651 case RW_DATA:
652 ctrl->channels[c].regs[addr] = value;
653 break;
654
655 case RW_CFG:
656 ctrl->channels[c].regs[addr] = value;
657 dma_update_state(ctrl, c);
658 break;
659 case RW_CMD:
660 /* continue. */
661 if (value & ~1)
662 printf("Invalid store to ch=%d RW_CMD %x\n",
663 c, value);
664 ctrl->channels[c].regs[addr] = value;
665 channel_continue(ctrl, c);
666 break;
667
668 case RW_SAVED_DATA:
669 case RW_SAVED_DATA_BUF:
670 case RW_GROUP:
671 case RW_GROUP_DOWN:
672 ctrl->channels[c].regs[addr] = value;
673 break;
674
675 case RW_ACK_INTR:
676 case RW_INTR_MASK:
677 ctrl->channels[c].regs[addr] = value;
678 channel_update_irq(ctrl, c);
679 if (addr == RW_ACK_INTR)
680 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
681 break;
682
683 case RW_STREAM_CMD:
684 if (value & ~1023)
685 printf("Invalid store to ch=%d "
686 "RW_STREAMCMD %x\n",
687 c, value);
688 ctrl->channels[c].regs[addr] = value;
689 D(printf("stream_cmd ch=%d\n", c));
690 channel_stream_cmd(ctrl, c, value);
691 break;
692
693 default:
694 D(printf ("%s c=%d " TARGET_FMT_plx "\n",
695 __func__, c, addr));
696 break;
697 }
698 }
699
700 static const MemoryRegionOps dma_ops = {
701 .read = dma_read,
702 .write = dma_write,
703 .endianness = DEVICE_NATIVE_ENDIAN,
704 .valid = {
705 .min_access_size = 1,
706 .max_access_size = 4
707 }
708 };
709
etraxfs_dmac_run(void * opaque)710 static int etraxfs_dmac_run(void *opaque)
711 {
712 struct fs_dma_ctrl *ctrl = opaque;
713 int i;
714 int p = 0;
715
716 for (i = 0;
717 i < ctrl->nr_channels;
718 i++)
719 {
720 if (ctrl->channels[i].state == RUNNING)
721 {
722 if (ctrl->channels[i].input) {
723 p += channel_in_run(ctrl, i);
724 } else {
725 p += channel_out_run(ctrl, i);
726 }
727 }
728 }
729 return p;
730 }
731
etraxfs_dmac_input(struct etraxfs_dma_client * client,void * buf,int len,int eop)732 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
733 void *buf, int len, int eop)
734 {
735 return channel_in_process(client->ctrl, client->channel,
736 buf, len, eop);
737 }
738
739 /* Connect an IRQ line with a channel. */
etraxfs_dmac_connect(void * opaque,int c,qemu_irq * line,int input)740 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
741 {
742 struct fs_dma_ctrl *ctrl = opaque;
743 ctrl->channels[c].irq = *line;
744 ctrl->channels[c].input = input;
745 }
746
etraxfs_dmac_connect_client(void * opaque,int c,struct etraxfs_dma_client * cl)747 void etraxfs_dmac_connect_client(void *opaque, int c,
748 struct etraxfs_dma_client *cl)
749 {
750 struct fs_dma_ctrl *ctrl = opaque;
751 cl->ctrl = ctrl;
752 cl->channel = c;
753 ctrl->channels[c].client = cl;
754 }
755
756
DMA_run(void * opaque)757 static void DMA_run(void *opaque)
758 {
759 struct fs_dma_ctrl *etraxfs_dmac = opaque;
760 int p = 1;
761
762 if (runstate_is_running())
763 p = etraxfs_dmac_run(etraxfs_dmac);
764
765 if (p)
766 qemu_bh_schedule_idle(etraxfs_dmac->bh);
767 }
768
etraxfs_dmac_init(hwaddr base,int nr_channels)769 void *etraxfs_dmac_init(hwaddr base, int nr_channels)
770 {
771 struct fs_dma_ctrl *ctrl = NULL;
772
773 ctrl = g_malloc0(sizeof *ctrl);
774
775 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
776
777 ctrl->nr_channels = nr_channels;
778 ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels);
779
780 memory_region_init_io(&ctrl->mmio, NULL, &dma_ops, ctrl, "etraxfs-dma",
781 nr_channels * 0x2000);
782 memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio);
783
784 return ctrl;
785 }
786