1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Modified for iPXE by Scott K Logan <logans@cottsay.net> July 2011
5  * Original from Linux kernel 3.0.1
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <ipxe/io.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 
ath9k_hw_set_txq_interrupts(struct ath_hw * ah,struct ath9k_tx_queue_info * qi __unused)25 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
26 					struct ath9k_tx_queue_info *qi __unused)
27 {
28 	DBG2("ath9k: "
29 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
30 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
31 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
32 		ah->txurn_interrupt_mask);
33 
34 	ENABLE_REGWRITE_BUFFER(ah);
35 
36 	REG_WRITE(ah, AR_IMR_S0,
37 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
38 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
39 	REG_WRITE(ah, AR_IMR_S1,
40 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
41 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
42 
43 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
44 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
45 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
46 
47 	REGWRITE_BUFFER_FLUSH(ah);
48 }
49 
ath9k_hw_puttxbuf(struct ath_hw * ah,u32 q,u32 txdp)50 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
51 {
52 	REG_WRITE(ah, AR_QTXDP(q), txdp);
53 }
54 
ath9k_hw_txstart(struct ath_hw * ah,u32 q)55 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
56 {
57 	DBG2("ath9k: "
58 		"Enable TXE on queue: %d\n", q);
59 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
60 }
61 
ath9k_hw_numtxpending(struct ath_hw * ah,u32 q)62 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
63 {
64 	u32 npend;
65 
66 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
67 	if (npend == 0) {
68 
69 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
70 			npend = 1;
71 	}
72 
73 	return npend;
74 }
75 
76 /**
77  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
78  *
79  * @ah: atheros hardware struct
80  * @bIncTrigLevel: whether or not the frame trigger level should be updated
81  *
82  * The frame trigger level specifies the minimum number of bytes,
83  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
84  * before the PCU will initiate sending the frame on the air. This can
85  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
86  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
87  * first)
88  *
89  * Caution must be taken to ensure to set the frame trigger level based
90  * on the DMA request size. For example if the DMA request size is set to
91  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
92  * there need to be enough space in the tx FIFO for the requested transfer
93  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
94  * the threshold to a value beyond 6, then the transmit will hang.
95  *
96  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
97  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
98  * there is a hardware issue which forces us to use 2 KB instead so the
99  * frame trigger level must not exceed 2 KB for these chipsets.
100  */
ath9k_hw_updatetxtriglevel(struct ath_hw * ah,int bIncTrigLevel)101 int ath9k_hw_updatetxtriglevel(struct ath_hw *ah, int bIncTrigLevel)
102 {
103 	u32 txcfg, curLevel, newLevel;
104 
105 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
106 		return 0;
107 
108 	ath9k_hw_disable_interrupts(ah);
109 
110 	txcfg = REG_READ(ah, AR_TXCFG);
111 	curLevel = MS(txcfg, AR_FTRIG);
112 	newLevel = curLevel;
113 	if (bIncTrigLevel) {
114 		if (curLevel < ah->config.max_txtrig_level)
115 			newLevel++;
116 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
117 		newLevel--;
118 	if (newLevel != curLevel)
119 		REG_WRITE(ah, AR_TXCFG,
120 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
121 
122 	ath9k_hw_enable_interrupts(ah);
123 
124 	ah->tx_trig_level = newLevel;
125 
126 	return newLevel != curLevel;
127 }
128 
ath9k_hw_abort_tx_dma(struct ath_hw * ah)129 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
130 {
131 	int i, q;
132 
133 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
134 
135 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
136 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
137 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
138 
139 	for (q = 0; q < AR_NUM_QCU; q++) {
140 		for (i = 0; i < 1000; i++) {
141 			if (i)
142 				udelay(5);
143 
144 			if (!ath9k_hw_numtxpending(ah, q))
145 				break;
146 		}
147 	}
148 
149 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
150 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
151 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
152 
153 	REG_WRITE(ah, AR_Q_TXD, 0);
154 }
155 
ath9k_hw_gettxintrtxqs(struct ath_hw * ah,u32 * txqs)156 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
157 {
158 	*txqs &= ah->intr_txqs;
159 	ah->intr_txqs &= ~(*txqs);
160 }
161 
ath9k_hw_set_txq_props(struct ath_hw * ah,int q,const struct ath9k_tx_queue_info * qinfo)162 int ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
163 			    const struct ath9k_tx_queue_info *qinfo)
164 {
165 	u32 cw;
166 	struct ath9k_tx_queue_info *qi;
167 
168 	qi = &ah->txq[q];
169 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
170 		DBG("ath9k: "
171 			"Set TXQ properties, inactive queue: %d\n", q);
172 		return 0;
173 	}
174 
175 	DBG2("ath9k: Set queue properties for: %d\n", q);
176 
177 	qi->tqi_ver = qinfo->tqi_ver;
178 	qi->tqi_subtype = qinfo->tqi_subtype;
179 	qi->tqi_qflags = qinfo->tqi_qflags;
180 	qi->tqi_priority = qinfo->tqi_priority;
181 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
182 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
183 	else
184 		qi->tqi_aifs = INIT_AIFS;
185 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
186 		cw = min(qinfo->tqi_cwmin, 1024U);
187 		qi->tqi_cwmin = 1;
188 		while (qi->tqi_cwmin < cw)
189 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
190 	} else
191 		qi->tqi_cwmin = qinfo->tqi_cwmin;
192 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
193 		cw = min(qinfo->tqi_cwmax, 1024U);
194 		qi->tqi_cwmax = 1;
195 		while (qi->tqi_cwmax < cw)
196 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
197 	} else
198 		qi->tqi_cwmax = INIT_CWMAX;
199 
200 	if (qinfo->tqi_shretry != 0)
201 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
202 	else
203 		qi->tqi_shretry = INIT_SH_RETRY;
204 	if (qinfo->tqi_lgretry != 0)
205 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
206 	else
207 		qi->tqi_lgretry = INIT_LG_RETRY;
208 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
209 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
210 	qi->tqi_burstTime = qinfo->tqi_burstTime;
211 	qi->tqi_readyTime = qinfo->tqi_readyTime;
212 
213 	return 1;
214 }
215 
ath9k_hw_setuptxqueue(struct ath_hw * ah,enum ath9k_tx_queue type,const struct ath9k_tx_queue_info * qinfo)216 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
217 			  const struct ath9k_tx_queue_info *qinfo)
218 {
219 	struct ath9k_tx_queue_info *qi;
220 	int q;
221 
222 	for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
223 		if (ah->txq[q].tqi_type ==
224 		    ATH9K_TX_QUEUE_INACTIVE)
225 			break;
226 	if (q == ATH9K_NUM_TX_QUEUES) {
227 		DBG("No available TX queue\n");
228 		return -1;
229 	}
230 
231 	DBG2("ath9K: Setup TX queue: %d\n", q);
232 
233 	qi = &ah->txq[q];
234 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
235 		DBG("ath9k: TX queue: %d already active\n", q);
236 		return -1;
237 	}
238 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
239 	qi->tqi_type = type;
240 	if (qinfo == NULL) {
241 		qi->tqi_qflags =
242 			TXQ_FLAG_TXOKINT_ENABLE
243 			| TXQ_FLAG_TXERRINT_ENABLE
244 			| TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
245 		qi->tqi_aifs = INIT_AIFS;
246 		qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
247 		qi->tqi_cwmax = INIT_CWMAX;
248 		qi->tqi_shretry = INIT_SH_RETRY;
249 		qi->tqi_lgretry = INIT_LG_RETRY;
250 		qi->tqi_physCompBuf = 0;
251 	} else {
252 		qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
253 		(void) ath9k_hw_set_txq_props(ah, q, qinfo);
254 	}
255 
256 	return q;
257 }
258 
ath9k_hw_releasetxqueue(struct ath_hw * ah,u32 q)259 int ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
260 {
261 	struct ath9k_tx_queue_info *qi;
262 
263 	qi = &ah->txq[q];
264 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
265 		DBG("ath9k: "
266 			"Release TXQ, inactive queue: %d\n", q);
267 		return 0;
268 	}
269 
270 	DBG2("ath9k: Release TX queue: %d\n", q);
271 
272 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
273 	ah->txok_interrupt_mask &= ~(1 << q);
274 	ah->txerr_interrupt_mask &= ~(1 << q);
275 	ah->txdesc_interrupt_mask &= ~(1 << q);
276 	ah->txeol_interrupt_mask &= ~(1 << q);
277 	ah->txurn_interrupt_mask &= ~(1 << q);
278 	ath9k_hw_set_txq_interrupts(ah, qi);
279 
280 	return 1;
281 }
282 
ath9k_hw_resettxqueue(struct ath_hw * ah,u32 q)283 int ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
284 {
285 	struct ath9k_channel *chan = ah->curchan;
286 	struct ath9k_tx_queue_info *qi;
287 	u32 cwMin, chanCwMin, value __unused;
288 
289 	qi = &ah->txq[q];
290 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
291 		DBG("ath9k: "
292 			"Reset TXQ, inactive queue: %d\n", q);
293 		return 1;
294 	}
295 
296 	DBG2("ath9k: Reset TX queue: %d\n", q);
297 
298 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
299 		if (chan && IS_CHAN_B(chan))
300 			chanCwMin = INIT_CWMIN_11B;
301 		else
302 			chanCwMin = INIT_CWMIN;
303 
304 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
305 	} else
306 		cwMin = qi->tqi_cwmin;
307 
308 	ENABLE_REGWRITE_BUFFER(ah);
309 
310 	REG_WRITE(ah, AR_DLCL_IFS(q),
311 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
312 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
313 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
314 
315 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
316 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
317 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
318 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
319 
320 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
321 
322 	if (AR_SREV_9340(ah))
323 		REG_WRITE(ah, AR_DMISC(q),
324 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
325 	else
326 		REG_WRITE(ah, AR_DMISC(q),
327 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
328 
329 	if (qi->tqi_cbrPeriod) {
330 		REG_WRITE(ah, AR_QCBRCFG(q),
331 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
332 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
333 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
334 			    (qi->tqi_cbrOverflowLimit ?
335 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
336 	}
337 	if (qi->tqi_readyTime) {
338 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
339 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
340 			  AR_Q_RDYTIMECFG_EN);
341 	}
342 
343 	REG_WRITE(ah, AR_DCHNTIME(q),
344 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
345 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
346 
347 	if (qi->tqi_burstTime
348 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
349 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
350 
351 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
352 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
353 
354 	REGWRITE_BUFFER_FLUSH(ah);
355 
356 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
357 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
358 
359 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
360 		REG_SET_BIT(ah, AR_DMISC(q),
361 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
362 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
363 			    AR_D_MISC_POST_FR_BKOFF_DIS);
364 	}
365 
366 	if (AR_SREV_9300_20_OR_LATER(ah))
367 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
368 
369 	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
370 		ah->txok_interrupt_mask |= 1 << q;
371 	else
372 		ah->txok_interrupt_mask &= ~(1 << q);
373 	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
374 		ah->txerr_interrupt_mask |= 1 << q;
375 	else
376 		ah->txerr_interrupt_mask &= ~(1 << q);
377 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
378 		ah->txdesc_interrupt_mask |= 1 << q;
379 	else
380 		ah->txdesc_interrupt_mask &= ~(1 << q);
381 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
382 		ah->txeol_interrupt_mask |= 1 << q;
383 	else
384 		ah->txeol_interrupt_mask &= ~(1 << q);
385 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
386 		ah->txurn_interrupt_mask |= 1 << q;
387 	else
388 		ah->txurn_interrupt_mask &= ~(1 << q);
389 	ath9k_hw_set_txq_interrupts(ah, qi);
390 
391 	return 1;
392 }
393 
ath9k_hw_rxprocdesc(struct ath_hw * ah,struct ath_desc * ds,struct ath_rx_status * rs,u64 tsf __unused)394 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
395 			struct ath_rx_status *rs, u64 tsf __unused)
396 {
397 	struct ar5416_desc ads;
398 	struct ar5416_desc *adsp = AR5416DESC(ds);
399 	u32 phyerr;
400 
401 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
402 		return -EINPROGRESS;
403 
404 	ads.u.rx = adsp->u.rx;
405 
406 	rs->rs_status = 0;
407 	rs->rs_flags = 0;
408 
409 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
410 	rs->rs_tstamp = ads.AR_RcvTimestamp;
411 
412 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
413 		rs->rs_rssi = ATH9K_RSSI_BAD;
414 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
415 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
416 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
417 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
418 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
419 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
420 	} else {
421 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
422 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
423 						AR_RxRSSIAnt00);
424 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
425 						AR_RxRSSIAnt01);
426 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
427 						AR_RxRSSIAnt02);
428 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
429 						AR_RxRSSIAnt10);
430 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
431 						AR_RxRSSIAnt11);
432 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
433 						AR_RxRSSIAnt12);
434 	}
435 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
436 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
437 	else
438 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
439 
440 	rs->rs_rate = RXSTATUS_RATE(ah, (&ads));
441 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
442 
443 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
444 	rs->rs_moreaggr =
445 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
446 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
447 	rs->rs_flags =
448 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
449 	rs->rs_flags |=
450 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
451 
452 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
453 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
454 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
455 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
456 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
457 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
458 
459 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
460 		/*
461 		 * Treat these errors as mutually exclusive to avoid spurious
462 		 * extra error reports from the hardware. If a CRC error is
463 		 * reported, then decryption and MIC errors are irrelevant,
464 		 * the frame is going to be dropped either way
465 		 */
466 		if (ads.ds_rxstatus8 & AR_CRCErr)
467 			rs->rs_status |= ATH9K_RXERR_CRC;
468 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
469 			rs->rs_status |= ATH9K_RXERR_PHY;
470 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
471 			rs->rs_phyerr = phyerr;
472 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
473 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
474 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
475 			rs->rs_status |= ATH9K_RXERR_MIC;
476 		else if (ads.ds_rxstatus8 & AR_KeyMiss)
477 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
478 	}
479 
480 	return 0;
481 }
482 
483 /*
484  * This can stop or re-enables RX.
485  *
486  * If bool is set this will kill any frame which is currently being
487  * transferred between the MAC and baseband and also prevent any new
488  * frames from getting started.
489  */
ath9k_hw_setrxabort(struct ath_hw * ah,int set)490 int ath9k_hw_setrxabort(struct ath_hw *ah, int set)
491 {
492 	u32 reg;
493 
494 	if (set) {
495 		REG_SET_BIT(ah, AR_DIAG_SW,
496 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
497 
498 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
499 				   0, AH_WAIT_TIMEOUT)) {
500 			REG_CLR_BIT(ah, AR_DIAG_SW,
501 				    (AR_DIAG_RX_DIS |
502 				     AR_DIAG_RX_ABORT));
503 
504 			reg = REG_READ(ah, AR_OBS_BUS_1);
505 			DBG("ath9k: "
506 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
507 				reg);
508 
509 			return 0;
510 		}
511 	} else {
512 		REG_CLR_BIT(ah, AR_DIAG_SW,
513 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
514 	}
515 
516 	return 1;
517 }
518 
ath9k_hw_putrxbuf(struct ath_hw * ah,u32 rxdp)519 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
520 {
521 	REG_WRITE(ah, AR_RXDP, rxdp);
522 }
523 
ath9k_hw_startpcureceive(struct ath_hw * ah,int is_scanning)524 void ath9k_hw_startpcureceive(struct ath_hw *ah, int is_scanning)
525 {
526 	ath9k_ani_reset(ah, is_scanning);
527 
528 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
529 }
530 
ath9k_hw_abortpcurecv(struct ath_hw * ah)531 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
532 {
533 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
534 }
535 
ath9k_hw_stopdmarecv(struct ath_hw * ah,int * reset)536 int ath9k_hw_stopdmarecv(struct ath_hw *ah, int *reset)
537 {
538 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
539 	u32 mac_status, last_mac_status = 0;
540 	int i;
541 
542 	/* Enable access to the DMA observation bus */
543 	REG_WRITE(ah, AR_MACMISC,
544 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
545 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
546 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
547 
548 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
549 
550 	/* Wait for rx enable bit to go low */
551 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
552 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
553 			break;
554 
555 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
556 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
557 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
558 				*reset = 1;
559 				break;
560 			}
561 
562 			last_mac_status = mac_status;
563 		}
564 
565 		udelay(AH_TIME_QUANTUM);
566 	}
567 
568 	if (i == 0) {
569 		DBG("ath9k: "
570 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
571 			AH_RX_STOP_DMA_TIMEOUT / 1000,
572 			REG_READ(ah, AR_CR),
573 			REG_READ(ah, AR_DIAG_SW),
574 			REG_READ(ah, AR_DMADBG_7));
575 		return 0;
576 	} else {
577 		return 1;
578 	}
579 
580 #undef AH_RX_STOP_DMA_TIMEOUT
581 }
582 
ath9k_hw_intrpend(struct ath_hw * ah)583 int ath9k_hw_intrpend(struct ath_hw *ah)
584 {
585 	u32 host_isr;
586 
587 	if (AR_SREV_9100(ah) || !(ah->ah_ier & AR_IER_ENABLE))
588 		return 1;
589 
590 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
591 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
592 		return 1;
593 
594 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
595 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
596 	    && (host_isr != AR_INTR_SPURIOUS))
597 		return 1;
598 
599 	return 0;
600 }
601 
ath9k_hw_disable_interrupts(struct ath_hw * ah)602 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
603 {
604 	DBG2("ath9k: disable IER\n");
605 	REG_WRITE(ah, AR_IER, ah->ah_ier);
606 	(void) REG_READ(ah, AR_IER);
607 	if (!AR_SREV_9100(ah)) {
608 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
609 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
610 
611 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
612 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
613 	}
614 }
615 
ath9k_hw_enable_interrupts(struct ath_hw * ah)616 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
617 {
618 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
619 
620 	if (!(ah->imask & ATH9K_INT_GLOBAL))
621 		return;
622 
623 	if (AR_SREV_9340(ah))
624 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
625 
626 	DBG2("ath9k: enable IER\n");
627 	REG_WRITE(ah, AR_IER, ah->ah_ier);
628 	if (!AR_SREV_9100(ah)) {
629 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
630 			  AR_INTR_MAC_IRQ);
631 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
632 
633 
634 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
635 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
636 	}
637 	DBG2("ath9k: AR_IMR 0x%x IER 0x%x\n",
638 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
639 }
640 
ath9k_hw_set_interrupts(struct ath_hw * ah,unsigned int ints)641 void ath9k_hw_set_interrupts(struct ath_hw *ah, unsigned int ints)
642 {
643 	enum ath9k_int omask = ah->imask;
644 	u32 mask, mask2;
645 	struct ath9k_hw_capabilities *pCap = &ah->caps;
646 
647 	if (!(ints & ATH9K_INT_GLOBAL))
648 		ath9k_hw_disable_interrupts(ah);
649 
650 	DBG2("ath9k: 0x%x => 0x%x\n", omask, ints);
651 
652 	/* TODO: global int Ref count */
653 	mask = ints & ATH9K_INT_COMMON;
654 	mask2 = 0;
655 
656 	if (ints & ATH9K_INT_TX) {
657 		if (ah->config.tx_intr_mitigation)
658 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
659 		else {
660 			if (ah->txok_interrupt_mask)
661 				mask |= AR_IMR_TXOK;
662 			if (ah->txdesc_interrupt_mask)
663 				mask |= AR_IMR_TXDESC;
664 		}
665 		if (ah->txerr_interrupt_mask)
666 			mask |= AR_IMR_TXERR;
667 		if (ah->txeol_interrupt_mask)
668 			mask |= AR_IMR_TXEOL;
669 	}
670 	if (ints & ATH9K_INT_RX) {
671 		if (AR_SREV_9300_20_OR_LATER(ah)) {
672 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
673 			if (ah->config.rx_intr_mitigation) {
674 				mask &= ~AR_IMR_RXOK_LP;
675 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
676 			} else {
677 				mask |= AR_IMR_RXOK_LP;
678 			}
679 		} else {
680 			if (ah->config.rx_intr_mitigation)
681 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
682 			else
683 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
684 		}
685 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
686 			mask |= AR_IMR_GENTMR;
687 	}
688 
689 	if (ints & ATH9K_INT_GENTIMER)
690 		mask |= AR_IMR_GENTMR;
691 
692 	if (ints & (ATH9K_INT_BMISC)) {
693 		mask |= AR_IMR_BCNMISC;
694 		if (ints & ATH9K_INT_TIM)
695 			mask2 |= AR_IMR_S2_TIM;
696 		if (ints & ATH9K_INT_DTIM)
697 			mask2 |= AR_IMR_S2_DTIM;
698 		if (ints & ATH9K_INT_DTIMSYNC)
699 			mask2 |= AR_IMR_S2_DTIMSYNC;
700 		if (ints & ATH9K_INT_CABEND)
701 			mask2 |= AR_IMR_S2_CABEND;
702 		if (ints & ATH9K_INT_TSFOOR)
703 			mask2 |= AR_IMR_S2_TSFOOR;
704 	}
705 
706 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
707 		mask |= AR_IMR_BCNMISC;
708 		if (ints & ATH9K_INT_GTT)
709 			mask2 |= AR_IMR_S2_GTT;
710 		if (ints & ATH9K_INT_CST)
711 			mask2 |= AR_IMR_S2_CST;
712 	}
713 
714 	DBG2("ath9k: new IMR 0x%x\n", mask);
715 	REG_WRITE(ah, AR_IMR, mask);
716 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
717 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
718 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
719 	ah->imrs2_reg |= mask2;
720 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
721 
722 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
723 		if (ints & ATH9K_INT_TIM_TIMER)
724 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
725 		else
726 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
727 	}
728 
729 	if (ints & ATH9K_INT_GLOBAL)
730 		ath9k_hw_enable_interrupts(ah);
731 
732 	return;
733 }
734