1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10include "ARMSystemRegister.td"
11
12//===----------------------------------------------------------------------===//
13//  Declarations that describe the ARM register file
14//===----------------------------------------------------------------------===//
15
16// Registers are identified with 4-bit ID numbers.
17class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> {
18  let HWEncoding = Enc;
19  let Namespace = "ARM";
20  let SubRegs = subregs;
21  // All bits of ARM registers with sub-registers are covered by sub-registers.
22  let CoveredBySubRegs = 1;
23}
24
25class ARMFReg<bits<16> Enc, string n> : Register<n> {
26  let HWEncoding = Enc;
27  let Namespace = "ARM";
28}
29
30// Subregister indices.
31let Namespace = "ARM" in {
32def qqsub_0 : SubRegIndex<256>;
33def qqsub_1 : SubRegIndex<256, 256>;
34
35// Note: Code depends on these having consecutive numbers.
36def qsub_0 : SubRegIndex<128>;
37def qsub_1 : SubRegIndex<128, 128>;
38def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>;
39def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>;
40
41def dsub_0 : SubRegIndex<64>;
42def dsub_1 : SubRegIndex<64, 64>;
43def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>;
44def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>;
45def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>;
46def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>;
47def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>;
48def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>;
49
50def ssub_0  : SubRegIndex<32>;
51def ssub_1  : SubRegIndex<32, 32>;
52def ssub_2  : ComposedSubRegIndex<dsub_1, ssub_0>;
53def ssub_3  : ComposedSubRegIndex<dsub_1, ssub_1>;
54def ssub_4  : ComposedSubRegIndex<dsub_2, ssub_0>;
55def ssub_5  : ComposedSubRegIndex<dsub_2, ssub_1>;
56def ssub_6  : ComposedSubRegIndex<dsub_3, ssub_0>;
57def ssub_7  : ComposedSubRegIndex<dsub_3, ssub_1>;
58def ssub_8  : ComposedSubRegIndex<dsub_4, ssub_0>;
59def ssub_9  : ComposedSubRegIndex<dsub_4, ssub_1>;
60def ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>;
61def ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>;
62def ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>;
63def ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>;
64
65def gsub_0 : SubRegIndex<32>;
66def gsub_1 : SubRegIndex<32, 32>;
67// Let TableGen synthesize the remaining 12 ssub_* indices.
68// We don't need to name them.
69}
70
71// Integer registers
72def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
73def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
74def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
75def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
76def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
77def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
78def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
79def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
80// These require 32-bit instructions.
81let CostPerUse = 1 in {
82def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
83def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
84def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
85def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
86def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
87def SP  : ARMReg<13, "r13">,  DwarfRegNum<[13]>;
88def LR  : ARMReg<14, "r14">,  DwarfRegNum<[14]>;
89def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
90}
91
92// Float registers
93def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
94def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
95def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
96def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
97def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
98def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
99def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
100def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
101def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
102def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
103def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
104def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
105def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
106def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
107def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
108def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
109
110// Aliases of the F* registers used to hold 64-bit fp values (doubles)
111let SubRegIndices = [ssub_0, ssub_1] in {
112def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
113def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
114def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
115def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
116def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
117def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
118def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
119def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
120def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
121def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
122def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
123def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
124def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
125def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
126def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
127def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
128}
129
130// VFP3 defines 16 additional double registers
131def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
132def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
133def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
134def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
135def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
136def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
137def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
138def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
139def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
140def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
141def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
142def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
143def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
144def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
145def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
146def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
147
148// Advanced SIMD (NEON) defines 16 quad-word aliases
149let SubRegIndices = [dsub_0, dsub_1] in {
150def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
151def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
152def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
153def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
154def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
155def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
156def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
157def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
158}
159let SubRegIndices = [dsub_0, dsub_1] in {
160def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
161def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
162def Q10 : ARMReg<10, "q10", [D20, D21]>;
163def Q11 : ARMReg<11, "q11", [D22, D23]>;
164def Q12 : ARMReg<12, "q12", [D24, D25]>;
165def Q13 : ARMReg<13, "q13", [D26, D27]>;
166def Q14 : ARMReg<14, "q14", [D28, D29]>;
167def Q15 : ARMReg<15, "q15", [D30, D31]>;
168}
169
170// Current Program Status Register.
171// We model fpscr with two registers: FPSCR models the control bits and will be
172// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV
173// models the APSR when it's accessed by some special instructions. In such cases
174// it has the same encoding as PC.
175def CPSR       : ARMReg<0,  "cpsr">;
176def APSR       : ARMReg<1,  "apsr">;
177def APSR_NZCV  : ARMReg<15, "apsr_nzcv">;
178def SPSR       : ARMReg<2,  "spsr">;
179def FPSCR      : ARMReg<3,  "fpscr">;
180def FPSCR_NZCV : ARMReg<3,  "fpscr_nzcv"> {
181  let Aliases = [FPSCR];
182}
183def ITSTATE    : ARMReg<4, "itstate">;
184
185// Special Registers - only available in privileged mode.
186def FPSID   : ARMReg<0,  "fpsid">;
187def MVFR2   : ARMReg<5,  "mvfr2">;
188def MVFR1   : ARMReg<6,  "mvfr1">;
189def MVFR0   : ARMReg<7,  "mvfr0">;
190def FPEXC   : ARMReg<8,  "fpexc">;
191def FPINST  : ARMReg<9,  "fpinst">;
192def FPINST2 : ARMReg<10, "fpinst2">;
193
194// Register classes.
195//
196// pc  == Program Counter
197// lr  == Link Register
198// sp  == Stack Pointer
199// r12 == ip (scratch)
200// r7  == Frame Pointer (thumb-style backtraces)
201// r9  == May be reserved as Thread Register
202// r11 == Frame Pointer (arm-style backtraces)
203// r10 == Stack Limit
204//
205def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
206                                               SP, LR, PC)> {
207  // Allocate LR as the first CSR since it is always saved anyway.
208  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
209  // know how to spill them. If we make our prologue/epilogue code smarter at
210  // some point, we can go back to using the above allocation orders for the
211  // Thumb1 instructions that know how to use hi regs.
212  let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
213  let AltOrderSelect = [{
214      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
215  }];
216  let DiagnosticString = "operand must be a register in range [r0, r15]";
217}
218
219// GPRs without the PC.  Some ARM instructions do not allow the PC in
220// certain operand slots, particularly as the destination.  Primarily
221// useful for disassembly.
222def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
223  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
224  let AltOrderSelect = [{
225      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
226  }];
227  let DiagnosticString = "operand must be a register in range [r0, r14]";
228}
229
230// GPRs without the PC but with APSR. Some instructions allow accessing the
231// APSR, while actually encoding PC in the register field. This is useful
232// for assembly and disassembly only.
233def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> {
234  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
235  let AltOrderSelect = [{
236      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
237  }];
238  let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv";
239}
240
241// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
242// implied SP argument list.
243// FIXME: It would be better to not use this at all and refactor the
244// instructions to not have SP an an explicit argument. That makes
245// frame index resolution a bit trickier, though.
246def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> {
247  let DiagnosticString = "operand must be a register sp";
248}
249
250// restricted GPR register class. Many Thumb2 instructions allow the full
251// register range for operands, but have undefined behaviours when PC
252// or SP (R13 or R15) are used. The ARM ISA refers to these operands
253// via the BadReg() pseudo-code description.
254def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
255  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
256  let AltOrderSelect = [{
257      return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only();
258  }];
259  let DiagnosticType = "rGPR";
260}
261
262// Thumb registers are R0-R7 normally. Some instructions can still use
263// the general GPR register class above (MOV, e.g.)
264def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> {
265  let DiagnosticString = "operand must be a register in range [r0, r7]";
266}
267
268// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow
269// the PC to be used as a destination operand as well.
270def tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>;
271
272// The high registers in thumb mode, R8-R15.
273def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> {
274  let DiagnosticString = "operand must be a register in range [r8, r15]";
275}
276
277// For tail calls, we can't use callee-saved registers, as they are restored
278// to the saved value before the tail call, which would clobber a call address.
279// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
280// this class and the preceding one(!)  This is what we want.
281def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> {
282  let AltOrders = [(and tcGPR, tGPR)];
283  let AltOrderSelect = [{
284      return MF.getSubtarget<ARMSubtarget>().isThumb1Only();
285  }];
286}
287
288// Condition code registers.
289def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
290  let CopyCost = -1;  // Don't allow copying of status registers.
291  let isAllocatable = 0;
292}
293
294// Scalar single precision floating point register class..
295// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack
296// to avoid partial-write dependencies on D or Q (depending on platform)
297// registers (S registers are renamed as portions of D/Q registers).
298def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> {
299  let AltOrders = [(add (decimate SPR, 2), SPR),
300                   (add (decimate SPR, 4),
301                        (decimate SPR, 2),
302                        (decimate (rotl SPR, 1), 4),
303                        (decimate (rotl SPR, 1), 2))];
304  let AltOrderSelect = [{
305    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF);
306  }];
307  let DiagnosticString = "operand must be a register in range [s0, s31]";
308}
309
310def HPR : RegisterClass<"ARM", [f16], 32, (sequence "S%u", 0, 31)> {
311  let AltOrders = [(add (decimate HPR, 2), SPR),
312                   (add (decimate HPR, 4),
313                        (decimate HPR, 2),
314                        (decimate (rotl HPR, 1), 4),
315                        (decimate (rotl HPR, 1), 2))];
316  let AltOrderSelect = [{
317    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF);
318  }];
319  let DiagnosticString = "operand must be a register in range [s0, s31]";
320}
321
322// Subset of SPR which can be used as a source of NEON scalars for 16-bit
323// operations
324def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> {
325  let DiagnosticString = "operand must be a register in range [s0, s15]";
326}
327
328// Scalar double precision floating point / generic 64-bit vector register
329// class.
330// ARM requires only word alignment for double. It's more performant if it
331// is double-word alignment though.
332def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
333                        (sequence "D%u", 0, 31)> {
334  // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on
335  // Darwin platforms.
336  let AltOrders = [(rotl DPR, 16),
337                   (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))];
338  let AltOrderSelect = [{
339    return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(MF);
340  }];
341  let DiagnosticType = "DPR";
342}
343
344// Subset of DPR that are accessible with VFP2 (and so that also have
345// 32-bit SPR subregs).
346def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
347                             (trunc DPR, 16)> {
348  let DiagnosticString = "operand must be a register in range [d0, d15]";
349}
350
351// Subset of DPR which can be used as a source of NEON scalars for 16-bit
352// operations
353def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16], 64,
354                          (trunc DPR, 8)> {
355  let DiagnosticString = "operand must be a register in range [d0, d7]";
356}
357
358// Generic 128-bit vector register class.
359def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 128,
360                        (sequence "Q%u", 0, 15)> {
361  // Allocate non-VFP2 aliases Q8-Q15 first.
362  let AltOrders = [(rotl QPR, 8)];
363  let AltOrderSelect = [{ return 1; }];
364  let DiagnosticString = "operand must be a register in range [q0, q15]";
365}
366
367// Subset of QPR that have 32-bit SPR subregs.
368def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
369                             128, (trunc QPR, 8)> {
370  let DiagnosticString = "operand must be a register in range [q0, q7]";
371}
372
373// Subset of QPR that have DPR_8 and SPR_8 subregs.
374def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
375                           128, (trunc QPR, 4)> {
376  let DiagnosticString = "operand must be a register in range [q0, q3]";
377}
378
379// Pseudo-registers representing odd-even pairs of D registers. The even-odd
380// pairs are already represented by the Q registers.
381// These are needed by NEON instructions requiring two consecutive D registers.
382// There is no D31_D0 register as that is always an UNPREDICTABLE encoding.
383def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1],
384                                [(decimate (shl DPR, 1), 2),
385                                 (decimate (shl DPR, 2), 2)]>;
386
387// Register class representing a pair of consecutive D registers.
388// Use the Q registers for the even-odd pairs.
389def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
390                          128, (interleave QPR, TuplesOE2D)> {
391  // Allocate starting at non-VFP2 registers D16-D31 first.
392  // Prefer even-odd pairs as they are easier to copy.
393  let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))];
394  let AltOrderSelect = [{ return 1; }];
395}
396
397// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP.
398// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs.
399def Tuples2R : RegisterTuples<[gsub_0, gsub_1],
400                              [(add R0, R2, R4, R6, R8, R10, R12),
401                               (add R1, R3, R5, R7, R9, R11, SP)]>;
402
403// Register class representing a pair of even-odd GPRs.
404def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> {
405  let Size = 64; // 2 x 32 bits, we have no predefined type of that size.
406}
407
408// Pseudo-registers representing 3 consecutive D registers.
409def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2],
410                              [(shl DPR, 0),
411                               (shl DPR, 1),
412                               (shl DPR, 2)]>;
413
414// 3 consecutive D registers.
415def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> {
416  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
417}
418
419// Pseudo 256-bit registers to represent pairs of Q registers. These should
420// never be present in the emitted code.
421// These are used for NEON load / store instructions, e.g., vld4, vst3.
422def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>;
423
424// Pseudo 256-bit vector register class to model pairs of Q registers
425// (4 consecutive D registers).
426def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> {
427  // Allocate non-VFP2 aliases first.
428  let AltOrders = [(rotl QQPR, 8)];
429  let AltOrderSelect = [{ return 1; }];
430}
431
432// Tuples of 4 D regs that isn't also a pair of Q regs.
433def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3],
434                                [(decimate (shl DPR, 1), 2),
435                                 (decimate (shl DPR, 2), 2),
436                                 (decimate (shl DPR, 3), 2),
437                                 (decimate (shl DPR, 4), 2)]>;
438
439// 4 consecutive D registers.
440def DQuad : RegisterClass<"ARM", [v4i64], 256,
441                          (interleave Tuples2Q, TuplesOE4D)>;
442
443// Pseudo 512-bit registers to represent four consecutive Q registers.
444def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1],
445                               [(shl QQPR, 0), (shl QQPR, 2)]>;
446
447// Pseudo 512-bit vector register class to model 4 consecutive Q registers
448// (8 consecutive D registers).
449def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> {
450  // Allocate non-VFP2 aliases first.
451  let AltOrders = [(rotl QQQQPR, 8)];
452  let AltOrderSelect = [{ return 1; }];
453}
454
455
456// Pseudo-registers representing 2-spaced consecutive D registers.
457def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2],
458                                 [(shl DPR, 0),
459                                  (shl DPR, 2)]>;
460
461// Spaced pairs of D registers.
462def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>;
463
464def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4],
465                                 [(shl DPR, 0),
466                                  (shl DPR, 2),
467                                  (shl DPR, 4)]>;
468
469// Spaced triples of D registers.
470def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> {
471  let Size = 192; // 3 x 64 bits, we have no predefined type of that size.
472}
473
474def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6],
475                                 [(shl DPR, 0),
476                                  (shl DPR, 2),
477                                  (shl DPR, 4),
478                                  (shl DPR, 6)]>;
479
480// Spaced quads of D registers.
481def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>;
482